
Bisimilarity of Processes with
Finite-State Systems�

Petr Jančary
e-mail: jancar@osu.cz Antonín Kučeraz

e-mail: tony@fi.muni.cz
Abstract

We describe a general method for deciding bisimilarity for pairs of processes where
one process has finitely many states. We apply this method to pushdown processes
and to PA processes. We also demonstrate that the mentioned problem is undecid-
able for ‘state-extended’ PA processes.

1 Introduction

The aim of this paper is to highlight an approach for deciding bisimulation equivalence
between (some) infinite-state systems and finite-state ones. Previous results like [17],
[4] and [16] in fact employed special instances of the general method described in this
paper. Furthermore, we present two (new) applications to the classes of pushdown
processes and PA processes. As an immediate consequence we obtain semi-decidability
of regularity for these process classes. On the other hand, if we extend PA processes
with a finite-state control unit, we obtain a calculus with full Turing power and the
mentioned problems become undecidable.
The first result indicating that decidability issues for bisimilarity are rather different

from the ones for language equivalence is due to Baeten, Bergstra, and Klop. They
proved in [5, 6] that bisimilarity is decidable for context-free grammars in GNF (this
class of processes is also known under the name ‘normed BPA’). Much simpler proofs
of this were later given in [9], [13] and [11]. In [13] Hüttel and Stirling used a tableau
decision method and gave also sound and complete equational theory.
If we replace the binary sequential operator with the parallel operator, we obtain BPP

processes. They can thus be seen as simple parallel programs. Christensen, Hirshfeld
and Moller proved in [10] that bisimilarity is decidable for BPP processes.�Supported by GA ČR, grant number 201/97/0456yDept. of Computer Science, Univ. of Ostrava and Techn. Univ. of Ostrava, Czech RepubliczFaculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic

1

Another positive result [22] is due to Stirling—it says that bisimilarity is decidable
for normed PDA processes.
Jančar demonstrated in [14] that bisimilarity is undecidable for labelled Petri nets.

However, if one of those nets is bounded (i.e., finite-state), bisimilarity becomes decid-
able (see [17]).
Abdulla and Kindahl proved in [4] that bisimilarity is decidable between lossy chan-

nel systems and finite-state processes.
In this paper we show that bisimilarity is decidable for any pair of processes such

that one process of this pair is a (general) PDA or PA process and the other process
has finitely many states. Moreover, we also show that bisimilarity cannot be checked
effectively between state-extended PA processes and finite-state ones.
Another interesting property of processes is regularity. A process is regular if it is

bisimilar to some finite-state one. Jančar and Esparza proved in [16] that regularity is
decidable for labelled Petri nets. Consequently, it is also decidable for BPP processes.
Burkart, Caucal and Steffen demonstrated in [8] that regularity is decidable for BPA
processes. Another class of normed PA processes has been studied by Kučera in [18]—
regularity is decidable even in polynomial time. A recent result [15] due to Jančar says
that regularity is decidable for one-counter processes.
Our results on decidability of bisimilarity between PDA (or PA) processes and finite-

state processes immediately imply semi-decidability of regularity for PDA and PA pro-
cesses. On the other hand, regularity of state-extended PA processes is shown to be
undecidable.

2 Definitions

Transition systems are widely accepted as a structure which can exactly define oper-
ational semantics of processes. In the rest of this paper we understand processes as
(being associated with) nodes in transition systems of certain types.

Definition 1 (transition system). A transition system T is a triple (S;Act;!) where S is a
set of states, Act is a set of actions (or labels) and!� S� Act� S is a transition relation.
As usual, we write s

a! t instead of (s; a; t) 2! and we extend this notation to elements
of Act� in an obvious way (we sometimes write s !� t instead of s w! t if w 2 Act� is
irrelevant). A state t is reachable from a state s if s!� t.
A transition system T = (S;Act;!) is finitely-branching if each state has finitely many

immediate successors. T is image-finite is the set ft j s a! tg is finite for each s 2 S and
a 2 Act.
Definition 2 (bisimilarity). Let T1 = (S1;Act1;!1), T2 = (S2;Act2;!2) be transition sys-
tems. A binary relation R � S1 � S2 is a bisimulation if whenever (s; t) 2 R, then for each
a 2 Act1 [Act2:

2

� if s a!1 s0, then t a!2 t0 for some t0 such that (s0; t0) 2 R.� if t a!2 t0, then s a!1 s0 for some s0 such that (s0; t0) 2 R.
States s 2 S1 and t 2 S2 are bisimulation equivalent (or bisimilar), written s � t, if there is
a bisimulation relating them.

In case of finitely-branching (and even image-finite) transition systems bisimilarity is
characterizable using the following sequence of approximations (the symbolN0 denotes
the set of nonnegative integers):

Definition 3. Let T1 = (S1;Act1;!1), T2 = (S2;Act2;!2) be transition systems. The familyf�i j i 2 N0g is defined inductively as follows:� s �0 t for all s 2 S1 and t 2 S2.� s �i+1 t iff for each a 2 Act1 [Act2:
– if s

a!1 s0 then t a!2 t0 for some t0 such that s0 �i t0.
– if t

a!2 t0 then s a!1 s0 for some s0 such that s0 �i t0.
It is easy to see that each �i is an equivalence relation; moreover, it is easily decidable
in case of finitely-branching transition systems.1 The following proposition is standard.

Proposition 1. Let T1;T2 be image-finite transition systems and let s and t be states of T1 and
T2, respectively. Then s � t iff s �i t for each i 2 N0.
2.1 PA processes

Let Act = fa; b; c; : : :g be a countably infinite set of atomic actions. Let Var = fX;Y;Z; : : :g
be a countably infinite set of variables such thatVar\Act = ;. The class of PA expressions
is defined by the following abstract syntax equation:

EPA ::= � j a j X j aEPA j EPAkEPA j EPATEPA j EPA:EPA j EPA + EPA
Here a ranges over Act and X ranges over Var. In the rest of this paper we do not
distinguish between expressions related by structural congruence which is the smallest
congruence relation over PA expressions such that the following laws hold:� associativity for ‘:’, ‘k’ and ‘+’� ‘�’ as a unit for ‘:’, ‘k’, ‘T’ and ‘+’� commutativity for ‘k’ and ‘+’
1We assume that transition systems are defined in a “reasonable” way, i.e., the sets of states and labels

are recursive, and the set of immediate successors of each state is effectively constructible.

3

aE
a! E E

a! E0
E:F a! E0:F E

a! E0
E+ F a! E0 F

a! F0
E+ F a! F0

E
a! E0

EkF a! E0kF F
a! F0

EkF a! EkF0 E
a! E0

ETF a! E0kF E
a! E0

X
a! E0 (X def= E 2 �)

Figure 1: SOS rules� a� = a
As usual, we restrict our attention to guarded expressions; a PA expression E is guarded
if there is a PA expression E0 such that E and E0 are structurally congruent and every
variable occurrence in E0 is within the scope of an atomic action.
A PA system is defined by a finite family � of recursive process equations� = fXi def= Ei j 1 � i � ng

where Xi are distinct elements of Var and Ei are guarded PA expressions, containing
variables from fX1; : : : ;Xng. The set of variables which appear in � is denoted by
Var(�).
Each PA system � determines a transition system whose states are PA expressions

with variables fromVar(�) (called PA processes),Act is the set of labels, and the transition
relation is determined by the SOS rules of Figure 1.
We can even suppose each PA system to be in normal form (which is called Greibach

normal form by analogy with CF grammars).

Definition 4 (GNF for PA systems). A PA system� is inGreibach normal form (GNF) if
each defining equation from� is of the form

Xi
def=X

j

aij�ij
where aij 2 Act and �ij is a PA expression over the signature fk; T; :g, including � (the set of
all such expressions is denoted VPA(�)). The set Si;jf(Xi; aij; �ij)g is denoted by BT� (Basic
Transitions of �).
Given a PA system � and a PA process E, it is possible to construct a PA system �0 in
GNF and a PA process E0 2 VPA(�0) such that E � E0 (see [7]). Hence the assumptions
that � is in GNF and PA processes are elements of VPA(�) can be used w.l.o.g. Each
transition � a! � is then due to a unique element of BT�0 which is denoted Step(� a! �).
If we omit the ‘k’ and ‘T’ operators from the definition of PA systems, we get an

important subclass of BPA systems. Greibach normal form for BPA allows to assume that
BPA processes are sequences of variables; in the next subsection we extend PA systems
with finite-state control unit. If we apply the same construction to BPA systems, we
obtain exactly the class of pushdown (PDA) systems.

4

2.2 State-extended PA processes

A state-extended PA system is a triple = (�;Q;BTSt) where � is a PA system in GNF, Q
is a finite set of states, and BTSt � BT� �Q�Q is a set of state-extended basic transitions.
The transition system generated by a state-extended PA process = (�;Q;BTSt)

has Q � VPA(�) as the set of states (its elements are called state-extended PA processes,
or StExt(PA) processes for short), Act is the set of labels, and the transition relation is
determined by the rule(p; �) a! (q; �) iff � a! � and (Step(� a! �); p; q;) 2 BTSt
Aswe alreadymentioned in the previous section, the class of pushdown (PDA) systems
can be obtained by extending BPA with a finite-state control unit; PDA processes are
thus StExt(BPA) processes in fact.

3 The general method

In this section we describe the promised general method for deciding bisimilarity be-
tween two processes where one process has finitely many states. For notation simplifi-
cation, we adopt the following conventions:� F denotes a finite-state transition system with k states.� G denotes a (general) transition system.� Labels of F and G are elements of a finite set Act.
Note that each PA or StExt(PA) system actually contains only finitely many actions,
hence the set Act can be considered as finite.

Lemma 1. Let f1; f2 be two states of F. Then f1 � f2 iff f1 �k�1 f2.
Proof:
‘)’: Obvious.
‘(’: As F has k states, �k�1 =�k (note that �i is a refinement of �i�1 for each i 2 N) and
hence �k�1 =�k=�.
Now we come to the crucial proposition.

Proposition 2. Let g and f be states of G and F, respectively. Then g � f iff g �k f and for
each g0 such that g!� g0 there is a state f 0 of F with g0 �k f 0.
Proof:
‘)’: Obvious.
‘(’: We prove that the relationR = f(g0; f 0) j g!� g0 and g0 �k f 0g

5

is a bisimulation. Let (g0; f 0) 2 R and let g0 a! g00 (the case when f 0 a! f 00 is handled is the
same way). By definition of �k, there is f 00 such that f 0 a! f 00 and g00 �k�1 f 00. It suffices to
show that g00 �k f 00; as g!� g00, there is a state f of F such that g00 �k f . By transitivity of�k�1 we have f �k�1 f 00, hence f �k f 00 (due to Lemma 1). Now g00 �k f �k f 00 and thus
g00 �k f 00 as required. Clearly (g; f) 2 R and the proof is finished.
Proposition 2 enables the following general strategy for deciding whether or not g � f :
1. Decide whether g �k f (if not then g 6� f).
2. Check whether g can reach a state g0 such that g0 6�k f 0 for each state f 0 of F (if there
is such a g0, then g 6� f ; otherwise g � f).

As we deal with processes associated with finitely-branching transition systems, the
first condition is easily decidable. We can thus concentrate on the latter one. The aim of
the following definition is to characterize all ‘k-step’ behaviours.

Definition 5 (Tree-process). For each i 2 N0 we define the set of Trees over Act with depth
at most i as follows:� The only Tree with depth 0 is a tree with singleton node and no arcs.� A Tree with depth at most i+1 is any directed tree with root r whose arcs are labelled with

elements of Act which fulfills the following conditions:

– There is no arc ending in r.

– If r
a! s, then the subtree rooted by s is a Tree with depth at most i.

– If r
a! s and r a! s0, then the subtrees rooted by s and s0 are non-isomorphic.

Each Tree can be seen as a transition system. Tree-processes are associated with roots of Trees.

It is clear that for any finite set Act and i 2 N0 there are only finitely many Trees (and
hence also Tree-processes) over Act with depth at most i (up to isomorphism). More
precisely, the total number of such Trees (denoted NT(i)) is given by� NT(0) = 1� NT(i+ 1) = 2n:NT(i), where n = card(Act)
States of G which can be distinguished from any state of F within the first k steps can be
characterized by the following set of Trees:

Definition 6 (INCF). The set INCF of Tree-processes which are incompatible with F is defined
as follows:

INCF = fT j T is a Tree-process with depth at most k
and T 6�k f for each state f of Fg

6

It is obvious that the general method can be applied to a class of processes P if the
following ‘reachability’ problem is decidable:

The R-problem

Instance: [k;P;T]where k 2 N, P is a process of P and T is a Tree with
depth at most k

Question: Is there a state P0 such that P!� P0 and P0 �k T?
4 Applications

In this section we apply the previously described general method to PDA processes and
PA processes. In both cases we just demonstrate decidability of the R-problem.

4.1 PDA processes

We prove that the R-problem for PDA processes can be reduced to the problem whether
an extended pushdown automaton2 accepts a nonempty language (this problem is known
to be decidable—see e.g., [12] for general introduction to automata theory).

Theorem 1. Bisimilarity is decidable between PDA processes and finite-state processes.

Proof: Let [k; p�;T] be an instance of R-problem and let = (�;Q;BTSt) be the PDA
system (i.e., StExt(BPA) system) associated with p�. As the ‘k-step’ behaviour of each
PDA process q is completely determined by the first k symbols of , each process which
is related with T by �k has a representative in the following finite set:

Rep = fq j length() � k and q �k Tg
The set Rep is effectively constructible. Now we want to check whether p� can reach a
state r� such that one of the following conditions holds:� length(�) � k and r� 2 Rep� length(�) > k and Rep contains an element r� where � is the prefix of � of length k.
To do this, we construct an extended pushdown automatonAwhich hasQ[fstart; finalg
as the set of states, andVar(�)[fZ0g as the stack alphabet (start is the initial state, final is
the only final state, and Z0 is the stack bottom). The transition function � is determined
as follows:� �(start; �;Z0) = f(p; �Z0)g
2An extended pushdown automaton is a nondeterministic pushdown automaton which can “see” a

bounded prefix of its stack. It can be simulated by an effectively constructible pushdown automaton.

7

� if qX a! r then (r;) 2 �(q; a;X)� �(q; �;) = f(final;)g for each q 2 Rep such that length() = k� �(q; �; Z0) = f(final; Z0)g for each q 2 Rep such that length() < k
The automaton A enters a final state (i.e., accepts a word) iff the process p� can reach a
state which is related with T by �k. This reduction proves the theorem.
4.2 PA processes

Before we prove an analogous theorem for PA processes, we need to introduce further
notation. Let T1 = (S1;Act;!1; r1), T2 = (S2;Act;!2; r2) be two Trees with depth at
most k (remember that Trees can be seen as rooted transition systems—the first three
elements of the tuple are interpreted in the same way as in case of transition systems;
the last one denotes the root). Furthermore, we assume that S1\S2 = ;. Processes T1kT2,
T1:T2 and T1 + T2 are defined as follows:� T1kT2 is associated with the node (r1; r2) in the transition system (S1 � S2;Act;!)

where! is the least transition relation satisfying the following rules:
– s

a!1 s0) (s; t) a! (s0; t) for each t 2 S2.
– t

a!2 t0) (s; t) a! (s; t0) for each s 2 S1.� T1:T2 is associated with the node r1 in the transition system (S1 [S2;Act;!)where! is the least transition relation satisfying the following rules:
– s

a!1 s0 ^ s0 is not a leaf) s
a! s0

– s
a!1 s0 ^ s0 is a leaf) s

a! r2
– t

a!2 t0) t
a! t0� T1+T2 is associated with the node r1 in the transition system (S1[S2�fr2g;Act;!)

where! is the least transition relation satisfying the following rules:
– s

a!1 s0) s
a! s0

– r2 a!2 t) r1 a! t
– t

a!2 t0 ^ t 6= r2) t
a! t0

In the proof of the following theorem we employ a general technique known as tableau
system, a goal-directed proof method. It is specified by a finite system of inference rules
of the form

goal

subgoal1 � � � subgoaln (side conditions)
8

A tableau for a goal G is a maximal proof tree whose root is labelled G and where im-
mediate successors of each node are determined by application of one of the rules (side
conditions optionally specify some restrictions). These rules are applied only to nodes
which are not terminal. Terminal nodes are either successful or unsuccessful; a successful
tableau is a finite tableau where all leaves are successful terminals. Other tableaux are
unsuccessful.
If we want to demonstrate decidability of some problem P by means of a tableau

system, it suffices to prove that the tableau system fulfills the following conditions:

1. Each tableau is finite and there are only finitely many tableaux with a given root
(finiteness).

2. If there is a successful tableau rooted by an instance P of the problem P, then P is
a positive instance (soundness).

3. For each positive instance P of the problem P there is a successful tableau rooted
by P (completeness).

If all the mentioned conditions are true, we can decide P by an exhaustive search for a
successful tableau.

Theorem 2. Bisimilarity is decidable between PA processes and finite-state processes.

Proof: Decidability of R-problem will be demonstrated by a tableau system specified
by the rules of Figure 2. Let [k;E;T] be an instance of R-problem and let � be the PA
system associated with E (we do not require � to be in GNF). We determine whether
E!� E0 for some E0 such that E0 �k T by constructing a tableau rooted by E;T.
Nodes of each tableau are labelled by expressions of the form E;T or E;T, where E is

a PA process and T is a Tree with depth atmost k. Side conditions place some restrictions
on Trees which can be used in subgoals.3 Terminal nodes are defined as follows:� A successful terminal is a node E;T such that E �k T (note that nodes of the form

E;T cannot be successful terminals).� Unsuccessful terminals can be divided into two groups as follows:
1. A node of the form �;T or �;T where � 6�k T.
2. A node for which there is another node with the same label above (along the
path from the root).

Intuition which stands behind the design of tableau rules is formally expressed by the
following predicate Pr of nodes:� Pr(E;T) = true iff E!� E0 for some E0 such that E0 �k T.
3The side condition E!� �means that E can reach the empty expression; this property is also known

as normedness and it is easily decidable.

9

aE; T
E; T (*)

aE; T
E; T (*)

E1 + E2; T
E1; T E1 + E2; T

E2; T
E1 + E2; T
E1; T E1 + E2; T

E2; T
E1:E2; T
E1; T1 (T �k T1:T2 ^ E2 �k T2) E1:E2; T

E2; T (E1 !� �)
E1:E2; T
E1; T1 (T �k T1:T2 ^ E2 �k T2) E1:E2; T

E2; T (E1 !� �)
E1kE2; T

E1; T1 E2; T2 (T �k T1kT2) E1kE2; T
E1; T1 E2; T2 (T �k T1kT2)

E1kE2; T
E1; T1 E2; T2 (T �k T1kT2) E1TE2; T

E1; T1 E2; T2 (T �k T1kT2)
E1TE2; T

E1; T1 E2; T2 (T �k T1kT2) X; T
E; T (X def= E 2 �)

X; T
E; T (X def= E 2 �)

Figure 2: Tableau rules for the proof of Theorem 2

10

� Pr(E;T) = true iff E w! E0 for some E0 and w 2 Act� such that E0 �k T and
length(w) � 1.

To finish the proof, we need to show finiteness, soundness and completeness of the tableau
method.
Nodes are labelled by pairs of the form E;T or E;T, where E is a subexpression of a

PA expression contained either in the root or in some defining equation from�, and T is
Tree with depth at most k. As there are only finitely many such subexpressions and the
set of all Trees with depth at most k is also finite, there are only finitely many (potential)
labels. This gives an obvious bound on the depth of each tableau (recall the definition
of unsuccessful terminal). As each tableau is finitely branching, it must be finite (due to
König’s lemma). For the same reason there are only finitely many tableaux with a given
root.
For soundness, it suffices to prove that the root of each successful tableau satisfies the

predicate Pr. This is rather straightforward—terminal nodes clearly satisfy Pr and each
rule of Figure 2 is backward sound in the sense that if all subgoals satisfy the predicate Pr,
then the goal satisfies Pr.
Completeness is slightly more complicated. We need to show that if [k;E;T] is a

positive instance of R-problem, then there is a successful tableau with the root E;T. To
do this, realize the following fact: if a node labelled E0;T0 satisfies Pr, then it is possible
to apply an instance of one of the rules of Figure 2 in such a way that all newly-added
subgoals satisfy Pr. This is easy to check. Each such instance is called a good instance.
Naturally, there can bemany good instances for one node—to build a successful tableau,
we always choose an instance with minimal cost. A cost of a good instance is defined to
be the sum of distances of all subgoals, where the distance of a subgoal E00;T00 is defined
as

minflength(w) j E00 w! Fwhere F �k T00g
A tableau for [k;E;T] which is built according to this strategy cannot contain an unsuc-
cessful terminal of the type 1. Moreover, it cannot contain an unsuccessful terminal of
the type 2; this follows from an observation that one of the (*) rules has to be applied
at least once before the same label (say E0;T0) occurs again—and it contradicts mini-
mality of cost of the good instance which was applied to the first (upper) occurrence of
E0;T0.
5 An undecidability result

In this section we prove that bisimilarity is undecidable between StExt(PA) processes
and finite-state processes. We also demonstrate undecidability of the regularity prob-
lem for StExt(PA) processes. These results are simple consequences of the fact that an
arbitrary Minsky machine can be simulated by an effectively constructible StExt(PA)
process. In other words, StExt(PA) is a calculus with full Turing power.

11

5.1 The Minsky machine

The Minsky machine (denoted here byM) is equipped with two counters C1;C2 which
can store nonnegative integers. The behaviour of M is determined by a finite-state
program, composed of m 2 N labelled statements

l1 : s1
l2 : s2
...
lm�1 : sm�1
lm : HALT

where for each i; 1 � i < m the statement si is of one of the following forms:
si = (

Cj = Cj + 1; goto lkif Cj = 0 then goto lk else Cj = Cj � 1; goto ln;
where j 2 f1; 2g. The machineM starts its execution (with given input values on C1;C2)
from the command l1. M halts if it reaches the command ‘HALT’ in a finite number
of steps, and diverges otherwise. Minsky has shown in [21] that an arbitrary Turing
machine can be simulated by an effectively constructible Minsky machine. This implies
that the halting problem of Minsky machine is generally undecidable.

5.2 The simulation

LetM be an arbitrary Minsky machine whose program has m statements and counters
initialized to v1 and v2. We construct a StExt(PA) system = (�;Q;BTSt) as follows:� � contains the following equations:

Z1 def= a(I1:Z1) + aZ1
I1 def= a(I1:I1) + a
Z2 def= a(I2:Z2) + aZ2
I2 def= a(I2:I2) + a� Q = fq1; : : : ; qmg� BTSt is determined by the following rules:

1. If the program ofM contains an instruction of the form
li : Cj = Cj + 1; goto lk

then BTSt contains the elements qiZj
a! qk(Ij:Zj) and qiIj a! qk(Ij:Ij).

12

2. If the program ofM contains an instruction of the form
li : if Cj = 0 then goto lk else Cj = Cj � 1; goto ln

then BTSt contains the elements qiZj
a! qkZj and qiIj a! qn.

3. Each element of BTSt can be derived using the rule 1 or 2.

The machineM is simulated by the StExt(PA) process' � q1((I1: � � � :I1| {z }
v1 :Z1)k(I2: � � � :I2| {z }

v2 :Z2))
Intuitively, counters ofM are simulated by two BPA processes which are combined in
parallel on the ‘stack’ and the program of M is simulated by the finite-state control
unit of . Each step of M is mimicked by ' which emits the action a. Let Y be a
process defined by Y

def= aY. If the machineM diverges then ' � Y. If the machineM
halts then ' 6� Y, because ' emits the action a only finitely many times (note thatM is
deterministic). This reduction proves the following theorem:

Theorem 3. Bisimilarity is undecidable between StExt(PA) processes and finite-state processes.

Remark 1. Bisimilarity is not the only behavioural equivalence which appeared in the litera-
ture; Rob van Glabbeek presented in [23] a hierarchy of equivalences, relating them w.r.t. their
coarseness. The finest equivalence in this hierarchy is bisimilarity, and at the very bottom is
trace equivalence. It is easy to see that the previous theorem can be generalized to all equiva-
lences of van Glabbeek’s hierarchy because ifM does not halt, then ' and Y are even not trace
equivalent.

Now we can easily prove that regularity of StExt(PA) processes is also undecidable. The
following definition recalls the notion.

Definition 7. A process X is regular if there is a process X0 with finitely many states such that
X � X0.
Theorem 4. Regularity is undecidable for StExt(PA) processes.

Proof: Weuse a similar reduction as in the previous theorem—given aMinskymachineM, we construct the StExt(PA) system . Now we modify the system slightly—we
add a new state q0 which can be entered only from qm (for any contents of the ‘stack’).
The state q0 can manipulate the ‘stack’ in such a way that there are infinitely many states
(up to bisimilarity) reachable from the process q0 for any 2 VPA(�). The resulting
system is denoted 0. IfM does not halt, then the process ' is regular, because it is again
bisimilar to Y

def= aY. IfM halts, then ' is non-regular as it can reach a state of the form
q0.

13

6 Conclusions

We described a general method for deciding bisimilarity between (some) infinite-state
processes and finite-state ones. Successful application of this method to the classes
of PDA and PA processes immediately imply semi-decidability of regularity (by ex-
haustive search for bisimilar finite-state process). Decidability of regularity (i.e., semi-
decidability of the negative subcase) is left open. Furthermore, we also demonstrated
that if we extend PA processes with a finite-state control unit, we obtain a calculus with
full Turing power and the mentioned problems become undecidable.
It is worth mentioning that a similar method can be designed for decidingweak bisim-

ilarity (see e.g., [20]) between some infinite-state processes and finite-state ones. The
problem whether this method can be applied to PA and/or PDA processes is a part of
ongoing research. The same problem was shown to be decidable for BPP processes in
[19], and undecidable for Petri nets and lossy channel systems in [16] and [4], respec-
tively.

References

[1] Proceedings of CONCUR’95, volume 962 of LNCS. Springer-Verlag, 1995.

[2] Proceedings of CONCUR’96, volume 1119 of LNCS. Springer-Verlag, 1996.

[3] Proceedings of FST&TCS’96, volume 1180 of LNCS. Springer-Verlag, 1996.

[4] P.A. Abdulla andM. Kindahl. Decidability of simulation and bisimulation between
lossy channel systems and finite state systems. In Proceedings of CONCUR’95 [1],
pages 333–347.

[5] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equiva-
lence for processes generating context-free languages. In Proceedings of PARLE’87,
volume 259 of LNCS, pages 93–114. Springer-Verlag, 1987.

[6] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equiva-
lence for processes generating context-free languages. Journal of the Association for
Computing Machinery, 40:653–682, 1993.

[7] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state processes with
sequential and parallel composition. In Proceedings of POPL’95, pages 95–106. ACM
Press, 1995.

[8] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxon-
omy. In Proceedings of CONCUR’96 [2], pages 247–262.

[9] D. Caucal. Graphes canoniques de graphes algebriques. Rapport de Recherche
872, INRIA, 1988.

14

[10] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for all basic
parallel processes. In Proceedings of CONCUR’93, volume 715 of LNCS, pages 143–
157. Springer-Verlag, 1993.

[11] J.F. Groote. A short proof of the decidability of bisimulation for normed BPA pro-
cesses. IPL, 42:167–171, 1992.

[12] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[13] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimilarity
for context-free processes. In Proceedings of LICS’91, pages 376–386. IEEE Computer
Society Press, 1991.

[14] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science, 148(2):281–301, 1995.

[15] P. Jančar. Bisimulation equivalence is decidable for one-counter processes. To ap-
pear in Proc. of ICALP’97. LNCS. Springer-Verlag, 1997.

[16] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimilarity. In Pro-
ceedings of ICALP’96, volume 1099 of LNCS, pages 478–489. Springer-Verlag, 1996.

[17] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Proceedings of
CONCUR’95 [1], pages 348–362.

[18] A. Kučera. Regularity is decidable for normed PA processes in polynomial time.
In Proceedings of FST&TCS’96 [3], pages 111–122.

[19] R. Mayr. Weak bisimulation and model checking for basic parallel processes. In
Proceedings of FST&TCS’96 [3], pages 88–99.

[20] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[21] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[22] C. Stirling. Decidability of bisimulation equivalence for normed pushdown pro-
cesses. In Proceedings of CONCUR’96 [2], pages 217–232.

[23] R.J. van Glabbeek. The linear time—branching time spectrum. In Proceedings of
CONCUR’90, volume 458 of LNCS, pages 278–297. Springer-Verlag, 1990.

15

