Simulation Preorder on Simple Process Algebras

Antonin Kutera! and Richard May¥

1 Faculty of Informatics MU, Botanick 68a, 60200 Brno, Czech Repuhiony@fi.muni.cz
2 Institut fur Informatik TUM, Arcisstr. 21, 80290 Kinchen, Germanyiayrri@in.tum.de

Abstract. We consider the problem of simulation preorder/equivalence between
infinite-state processes and finite-state ones. We prove that simulation preorder
(in both directions) and simulation equivalence iateactablebetween all major
classes of infinite-state systems and finite-state ones. This result is obtained by
showing that the problem whether a BPA (or BPP) process simulates a finite-
state one i>SPA CE-hard, and the other direction is ¢gP-hard; consequently,
simulation equivalence between BPA (or BPP) and finite-state processes is also
co-N"P-hard.

The decidability borderfor the mentioned problem is also established. Simula-
tion preorder (in both directions) and simulation equivalence are decidable in
EXPTIME between pushdown processes and finite-state ones. On the other
hand, simulation preorder is undecidable between PA and finite-state processes
in both directions. The obtained results also hold for those PA and finite-state
processes which are deterministic and normed, and thus immediately extend to
trace preorder. Regularity (finiteness) w.r.t. simulation and trace equivalence is
also shown to be undecidable for PA.

Finally, we describe a way how to utilize decidability of bisimulation problems to
solve certain instances of undecidable simulation problems. We apply this method
to BPP processes.

1 Introduction

We study the decidability and complexity of checking simulation preorder and equiva-
lence between certain infinite-state systems and finite-state ones. The motivation is that
the intended behavior of a process can often be easily specified by a finite-state system,
while the actual implementation may contain components which are infinite-state (e.g.
counters, buffers). The task of formal verification is to prove that the specification and
the implementation are equivalent.

The same problem has been studied recently for strong and weak bisimilarity][
and it has been shown that these equivalences are notlecigable but alsatractable
between certain infinite-state processes and finite-state ones. Those issues (hamely the
complexity ones) are dramatically different from the ‘symmetric’ case when we com-
pare two infinite-state processes. Here we consider (and answer) analogous questions
for simulation, giving a complete overview (see Flj.

* Supported by a Research Fellowship granted by the Alexander von Humboldt Foundation and
by a Post-Doc grant GER No. 201/98/P046.

The state of the art: Simulation preorder/equivalence is known to be undecidable for
BPA [7] and BPP {] processes. An interesting positive result is that simulation preorder
(and hence also equivalence) is decidable for Petri nets with at most one unbounded
place []. In[12] it is shown that simulation preorder between Petri nets and finite-state
processes islecidablein both directions. Moreover, a related problemrefularity
(finiteness) of Petri nets w.r.t. simulation equivalence is proved to be undecidable.

Our contribution: In Section3 we concentrate on the complexity issues for simulation
preorder and equivalence with finite-state processes. We prove that the problem whether
a BPA (or BPP) process simulates a finite-state or&sSiBA CE-hard, and the other di-
rection is coAP-hard. Consequently, simulation equivalence between BPA (or BPP)
and finite-state processes is also/¢@-hard. Hence, the main message of this section
is that simulation with finite-state systems is unfortunatetyactablefor any studied
class of infinite-state systems (assumifg# N'P)—see Fig.1. It contrasts sharply
with the complexity issues for strong and weak bisimilarity; for example, weak bisimi-
larity between BPA and finite-state processes, and between normed BPP and finite-state
processes is i [14].

In Sectiord we establish the decidability border of Fig.First we prove that simu-
lation preorder between PDA processes and finite-state odesitablen EXPTIME
in both directions. Consequently, simulation equivalence is ald0Xi? TIME. Then
we show that simulation preorder between PA and finite-state processedeisidable
in both directions. It is rather interesting that the undecidability results hold even for
those PA and finite-state processes whichdmterministicandnormed Simulatione-
quivalencebetween such processes is decidable (it coincides with bisimilarify; [
however, as soon as we allow just one nondeterministic state in PA processes, simula-
tion equivalence becomes undecidable. We also show that all the obtained undecidabil-
ity results can be formulated in a ‘stronger’ form—it is possibléixa PA or a finite-
state process in each of the mentioned undecidable problems. Then we demonstrate that
regularity of (normed) PA processes w.r.t. simulation equivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity for normed PA processes, which is
decidable in polynomial timel[3]. All the obtained undecidability results also hold for
trace preorder and trace equivalence, and therefore they might be also interesting from a
point of view of ‘classical’ automata theory (see the last section for further comments).

Finally, in Sections we study the relationship between bisimilarity and simulation
equivalence. Our effort is motivated by a general trend that problems for bisimilari-
ty (equivalence, regularity) are often decidable, but the corresponding problems for
simulation equivalence are not. We propose a way how to use existing algorithms for
‘bisimulation’ problems to solve certain instances of the corresponding (and possibly
undecidable) ‘simulation’ ones. Such techniques are interesting from a practical point
of view, as only small instances of undecidable problems can be solved in an ad-hoc
fashion, and some kind of computer support is absolutely necessary for problems of
‘real’ size.

In the last section we give a summary of existing results in the area of comparing
infinite-state systems with finite-state ones and discuss language-theoretic aspects of
the obtained results.

The missing proofs can be found in the full version of the pap&. [

2 Definitions

Let Act = {a,b,c,...} andConst = {X,Y, Z, ...} be disjoint countably infinite sets
of actionsandprocess constantsespectively. The class gkneral process expressions
G is defined byE = ¢ | X | E||E | E.E, whereX € Const ande is a special
constant that denotes the empty expression. Intuitivélis a sequential composition
and |’ is a parallel composition. We do not distinguish between expressions related by
structural congruencgvhich is given by the following laws:.*and ‘||’ are associative,
‘|I' is commutative, ande’ is a unit for ‘. and ‘||".

A process rewrite systefrif] is specified by a finite sef\ of ruleswhich have the
formE % F,whereE, F € G anda € Act. Const(A) andAct(A) denote the sets of
process constants and actions which are used in the rulds mefspectively (note that
these sets are finite). Each process rewrite systamefines a unique transition system
where states are process expressions 6erst(A), Act(A) is the set of labels, and
transitions are determined ky and the following inference rules (remember tHgis
commutative):

(ELF)eA ESE ELFE
ELF EF % E.F E|F % E'|F
We extend the notatioR % F to elements ofdct* in a standard way. Moreover, we

w

say thatF is reachablefrom E if E — F for somew € Act”.

Various subclasses of process rewrite systems PRS (G,G)
can be obtained by imposing certain restrictions on
the form of rules. To specify those restrictions, we / \
first define the classeS and P of sequentialand
parallel expressions, composed of all process ex-

pressions which do not contain thg and the " ____ ety
operator, respectively. We also uséo denote the AN ,’

set of process constants. The hierarchy of processass '\ raae , eNED

rewrite systems is presented in Fig.the restric- N & -
tions are specified by a pai#, B), whereA and
B are the classes of expressions which can appear

PAD (S,G) PAN (P,G)

on the left-hand and the right-hand side of rules, re- N per o
spectively. This hierarchy contains almost all class- \\ / o i
es of infinite state systems which have been stud---"~
ied so far; BPA, BPP, and PA processes are well- FS 1D

known [2], PDA correspond to pushdown process- | ,

es (as proved by Caucal ifi]j, PN correspond to Fi9- 1. A hierarchy of PRS

Petri nets, etc. In Figl we also indicated the decidability/tractability border for sim-
ulation preorder and equivalence with finite-state systems which is established in the
following sections.

Processeare considered as states in transition systems generated by process rewrite
systems. We also assume that for each systdirere is some distinguished process ex-
pression which is considered as thitial stateof A. In what follows, we often identify
process rewrite systems with their initial states. A prodess said to bedeterministic

iff each reachable state d? has at most one-successor for every € Act. A PA
processA is normediff X —* ¢ for every X € Const(A).

In this paper we compare infinite-state processes with finite-state ones w.r.t. certain
‘behavioral’ preorders and equivalences.

Definition 1. We say thaiv € Act* is atraceof a procesF iff E = E’ for someE.
Let Tr(E) be the set of all traces &. We writeE C, F'iff Tr(E) C Tr(F). Moreover,
we say that’ and F aretrace equivalentwritten A =; B, iff Tr(E) = Tr(F).

Trace preorder and equivalence are very similar to language inclusion and equivalence
of ‘classical’ automata theory. In concurrency theory, trace equivalence is usually con-
sidered as being too coarse. A plethora of finer ‘behavioral’ equivalences have been
proposed 19]. It seems thasimulationandbisimulationequivalence are of special im-
portance, as their accompanying theory has been developed very intensively.

Definition 2. A binary relationR over process expressions isinulationif whenever
(E,F) € Rthenforeachu € Act:if E % E'thenF % F’ for someF’ s.t.(E', F') €
R. A symmetric simulation is calldzsimulation A process is simulatedoy a process
F, written E C; F, if there is a simulatiorR s.t. (E, F) € R. We say that” and F'
are simulation equivalentwritten £ =, F, iff E C, F andF' C, E. Similarly, we say
that £ and F' are bisimilar (or bisimulation equivalenf written £ ~ F, iff there is a
bisimulation relating them.

Another natural (and studied) problem is decidabilityegfularity (i.e. ‘semantical
finiteness’) of processes w.r.t. certain behavioral equivalences. A pratssegular
w.r.t. bisimulation (or simulation, trace) equivalence iff there is a finite-state prdcess
suchthatt ~ F (or E =, F, E =, F, respectively).

Almost all undecidability results in this paper are obtained by reduction of the halt-
ing problem for Minsky counter machines (the halting problem is undecidable even for
Minsky machines with two counters initialized to zefid’]).

Definition 3. A counter machineM with nonnegative counteks, co, - - -, ¢, IS @ Se-
quence of instructions 1: INS - -, k: INS, wherek € IN, INS, = halt, and every
INS; (1 < i < k) is in one of the following forms (whete< 1,1’,1" < k,1 < 5 < m).

—cji=c¢j+1; goto !
—if ¢; =0 then goto I’ else (¢j :=¢; —1; goto I”)

3 The Tractability Border

In this section we show that the problem whether a BPA (or BPP) process simulates
a finite-state one i$?SPACE-hard. The other preorder is shown to beXf@?-hard.
Consequently, we also obtain ¢éP-hardness of simulation equivalence between B-
PA (or BPP) and finite-state processes. As simulation preorder and equivalence are
easily decidable for finite-state processes in polynomial time, the tractability border for
simulation preorder/equivalence with finite-state systems oflHgestablished.

Theorem 1. Let P be a BPA (or BPP) procesg; a finite-state process. The problem
whetherF’ C, P is PSPACE-hard.

Theorem 2. Let P be a BPA (or BPP) procesg; a finite-state process. The problem
whetherP C, F is co-NP-hard.

Theorem 3. The problems of simulation equivalence between BPA and finite-state pro-
cesses, and between BPP and finite-state processes avéPehard.

4 The Decidability Border

In this section we establish the decidability border of HigWe show that simulation
preorder (in both directions) and simulation equivalence with finite-state processes are
decidable for PDA processes MXPTIME. It is possible to reduce each of the men-
tioned problems to the model-checking problem for an (almost) fixed formuolathe
alternation-free modal-calculus (we would like to thank Javier Esparza who observed
the idea of our proof).

Then we turn our attention to PA processes. We prove that simulation preorder is
undecidablébetween PA processes and finite-state ones in both directions. It is some-
what surprising, as for the subclasses BPP and BPA we have positive decidability re-
sults. Moreover, simulation preorder is undecidable even if we consider those PA and
finite-state processes which ateterministicandnormed Thus, our undecidability re-
sults immediately extend to trace preorder (which coincides with simulation preorder
on deterministic processes). It is worth noting that simulagiquivalencédetween de-
terministic PA and deterministic finite-state processes is decidable, as it coincides with
bisimilarity which is known to be decidablé]]. However, as soon as we allow just one
nondeterministic state in PA processes, simulation equivalence with finite-state process-
es becomes undecidable (there is even a fixed normed deterministic finite-state process
F such that simulation equivalence withis undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PA processes w.r.t. simulation
and trace equivalence is undecidable, even for the normed subclass of PA. Again, the
role of nondeterminism is very special as regularity of normed deterministic PA process-
es w.r.t. simulation and trace equivalence coincides with regularity w.r.t. bisimilarity,
which is easily decidable in polynomial timé3]. However, just one nondeterministic
state in the PA process makes the undecidability proof possible.

Theorem 4. Simulation preorder is decidable between PDA processes and finite-state
ones iNEXPTIME (in both directions).

Corollary 1. Simulation equivalence between PDA and finite-state processes is decid-
able inEXPTIME.

Theorem 5. Let P be a deterministic PA process arid a deterministic finite-state
process. It is undecidable whethBrC F.

Proof. Let M be an arbitrary two-counter machine with counters initializegh{om..
We construct a deterministic PA proceB$M) and a deterministic finite-state pro-
cessF (M) s.t. P(M) C, F(M) iff the machine M does not halt. Letdct :=

{zeroq, incy, decy, zeros, inca, deca }. The PA procesP (M) is defined by the fol-
lowing rules:

decy

zero inc inc
Zl b Zl Zl - Cl.Zl Cl - Cl.Cl Cl — €
zero inc inc dec
ZQ = ZQ Z2 - CQ.ZQ 02 - CQ.CQ CQ = €

The initial state iC{"*.2Z1) || (C5"*.Z2).

The procesd’(M) corresponds to the finite control @f1. For every instruction of
the formn : ¢; := ¢; + 1; goto n’ we have an ara % . For every instruction
of the formn : if ¢; = 0 then goto n’ else ¢; := ¢; — 1; goto n” £i we have
arcsn 2% n' andn “ n”. Then we add a new statg! and arcsall % all for
everya € Act. Finally, we complete the proces¥ M) in the following way: for every
noden, except for the one which corresponds to the final stafé of M, and every
a € Act, if there is no ara = n/ for anyn’, then add an are % all. The initial state
of F'(M) corresponds to the initial state 8ff.

The state ofP (M) corresponds to the contents of the counterdbaind the state
of F'(M) corresponds to the state of the finite contro\df A round in the simulation
game corresponds to a computational stepbf

The only problem is thaP (M) may do steps that do not correspond to steps of
the counter machine, e.®(M) does a steplec; when the current state if'(M)
expectsinc, . In all these cases the constructionfafM) ensures thak'(M) can (and
must) respond by a step that ends in the stéteAfter such a stefg’(M) can simulate
anything. It is easy to see th&(M) IZ;, F(M) iff P(M) can forceF (M) to enter
the statehalt via a sequence of moves which correspond to the correct simulation of
M. Thus,P(M) C, F(M) iff the machineM does not halt. O

Remark 1.Theorem? still holds under an additional condition that both the PA process
and the finite-state one are normed. We can make the PA process normed by adding the
following rules: Z; =5 €, C; =5 €, Zo —2 ¢, Cy —2 €. Observe that the resulting
process is still deterministic. To make sure thgiM) can simulate the actions, z-,

we add the rules. 2 all andn %3 all for every stater of F/(M) (this also includes

the rulesall =5 all andall 23 all). The proces$'(M) is made normed by introducing

a new stateéerminated where no action is enabled, and a rulé = terminated. It is

easy to see that these new systaMgM) and F' (M) are deterministic and normed,

and still satisfy the property thd' (M) C, F'(M) iff the machineM does not halt.

The halting problem is undecidable even for two-counter machines with counters ini-
tialized to zero. The construction @¢t(M) is then independent of1. Furthermore,
there exists a universal Minsky machind’; the halting problem forM’ (with given

input values) is undecidable, and the constructiod’@M’) is independent of those
input values. Hence, we can conclude the following:

Theorem 6. There is a normed deterministic PA procésand a normed deterministic
finite-state process’ such that

— the problem whetheP C, F for a given (normed and deterministic) finite-state
processF is undecidable,

— the problem whetheP C F for a given (normed and deterministic) PA procéss
is undecidable.

Theorem 7. Let P be a deterministic PA process arid a deterministic finite-state
process. It is undecidable whethErC P.

Proof. Let M be an arbitrary two-counter machine with counters initializegh{om..
We construct a deterministic PA proceBéM) and a deterministic finite-state system
F(M) s.t.F(M) Ty P(M) iff the machineM does not halt.

Let Act := {zeroy, incy, decy, zeroq, inca, deco, T}. FOr the construction aP (M)
we start with the same PA process as in TheoBeand extend it by the following rules,
which handle all the behaviors that are ‘illegal’ in a given stateP?¢f\1) w.r.t. the
counter values it represents.

708 A 0% A A% A, foreverya € {zeroy,incy, decy, T}

Zy decy Ay Cy % A, Ay %5 A, foreverya € {zeros, inca, deca, 7}
The intuition is that an illegal step that concerns the counfetith i € {1, 2}) always
introduces the symboll;, and from then on everything can be simulated. The initial
state is(C"*.Z1) || (C5".Z3). Note thatP(M) is deterministic; a term that contains
both A; and A, can do the action in two different ways, but the result is always the

same.
The systenF' (M) corresponds to the finite control 8#(. For every instruction of

the formn : ¢; := ¢; + 1; goto n’ we have an are == n/. For every instruction of
the formn : if ¢; = 0 then goto n else ¢; := ¢; — 1; goto n” £i we have arcs

zero; dec;

n — n' andn — n". For the unique final statkalt of the finite control ofM we

add the rulehalt = halt. Note that a reachable state Bf M) cannot dor, unless it
containsA; or A,. Every step in the simulation game corresponds to a computational
step of M. It follows that F'(M) Z, P(M) iff F(M) can reach the statealt via

a sequence of legal steps that correspond to steps of the counter machine (and do not
introduce the symball; or A; in P(M)). Thus,F (M) C, P(M) iff the machineM

does not halt. O

Remark 2.Theorem? still holds under an additional condition that both the PA pro-
cess and the finite-state one are normed. The sy#tem) is made normed as fol-
lows: We introduce a new staterminated where no action is enabled, and rules
n % terminated for every other state of F'(M). To assure thaP(M) can always
simulate the action, we add the ruleg; — ¢, C; — ¢, A} —— ¢. To makeP(M)
normed, it now suffices to add the followingy —— €, Cy - €, Ay - €. Itis easy

to see that these new proces#®sM) and F' (M) are deterministic and normed, and
still satisfy the property that”’ (M) C, P’(M) iff the machineM does not halt.

A proof of the following theorem is the same as of Theo@m

Theorem 8. There is a normed deterministic PA procé3and a normed deterministic
finite-state process’ such that

— the problem whetheF C, P for a given (normed and deterministic) finite-state
processF is undecidable,

— the problem whetheF T P for a given (normed and deterministic) PA procéss
is undecidable.

We have seen that simulation preorder is undecidable between deterministic PA pro-
cesses and deterministic finite-state ones in both directions. However, simeigtion
alence(as well as any other equivalence of the linear time/branching time spectrum
of [19)) is decidablefor such a pair of processes, because it coincides with bisimilarity
which is known to be decidablé []. Hence, itis interesting that simulation equivalence
becomesindecidableas soon as we consider PA processes with just one nondetermin-
istic state; this is proved in the following theorem:

Theorem 9. There is a fixed normed deterministic finite-state prodésst. the prob-
lem whetherP = F for a given normed PA proce$3is undecidable.

Proof. We reduce the second undecidable problem of Theddam the problem if

P =, F. Let P’ be a normed deterministic PA procegsbe the fixed deterministic
normed finite-state system derived from the finite control of the universal counter ma-
chine as in Theorerfi. We construct a normed PA proceBsand a fixed deterministic
normed finite-state proce#ssuch thatP’ C, F iff P =, F. It suffices to defing” by
F%F,andPbyP % P, P2 F. It follows immediately thatP =, F iff P’ C, F.

Note thatP is not deterministic; however, it contains only one state (the initial state)
where an action can be done in two different ways. O

On the other hand, simulation equivalence remains decidable between deterministic PA
andarbitrary (possibly nondeterministic) finite-state systems. This is a consequence of
a more general result—see the next section.

Remark 3.All undecidability results which have been proved in this section immedi-
ately extend to trace preorder and trace equivalence, because trace preorder and trace
equivalence coincide with simulation preorder and simulation equivalence in the class
of deterministic processes, respectively.

Now we prove that regularity w.r.t. simulation and trace equivalence is undecidable
for normed PA processes with at least one nondeterministic state. It is interesting that
regularity of normed deterministic PA processes w.r.t. any equivalence of the linear
time/branching time spectrum of] is easily decidable in polynomial time, as it coin-
cides with regularity w.r.t. bisimilarity which is known to have this propefity[

Theorem 10. Regularity w.r.t. simulation equivalence and trace equivalence is unde-
cidable for normed PA processes.

5 The Relationship between Simulation and Bisimulation

In this section we concentrate on the relationship between simulation and bisimulation
equivalence. It is a general trend that decidability results for bisimulation equivalence
are positive, while the ‘same’ problems for simulation equivalence are undecidable.
Major examples of that phenomenon come from the areas of equivalence-checking and
regularity-testing (cf. the decidability issues for BPP and BPA processes which are sum-
marized in the last section).

Theorem 11. For every finitely branching transition systeri§, 75 there are finitely
branching transition system$(T}), B(T») such thatly =, B(T1), Tz =, B(T3), and
B(Ty), B(Tz) are simulation equivalent iff they are bisimilar, iB(T}) =; B(Tz) <

B(T) ~ B(Tz).

Theoreml1 can be used as follows: if we are to decide simulation equivalence between
T,,T>, we can try to construcB(T3), B(T») and decide bisimilarity between them.
Similarly, regularity ofT" w.r.t. =, can be tested by constructititf7") and checking its
regularity w.r.t.~ (the construction oB(T') is not effective in general, of course).

As simulation preorder between finite-state processes is decidable, the #(§t¢m
can be effectively constructed for any finite-state systemvioreover, ifT" is determin-
istic thenB(T') = T'. Thus, as a consequence of TheorEhwe obtain:

Theorem 12. Simulation equivalence is decidable between deterministic PA processes
and (arbitrary) finite-state ones.

Theoremll can also be applied in a nontrivial way. In a full version of our papéf [

we provide a little ‘case-study’. We design a rich subclass of BPP processesi\figre

is effectively constructible; consequently, simulation equivalence as well as regularity
w.r.t. simulation equivalence are decidable in this subclass.

6 Summary and Conclusions

The known decidability results in the area of equivalence/preorder checking between
infinite-state processes and finite-state ones are summarized in the table below. The
results which have been obtained in this paper are in boldface. In the case of trace
preorder/equivalence/regularity we distinguish between deterministic infinite-state pro-
cesses (left column) and general ones (right column); finite-state systems can be con-
sidered as deterministic here, because the subset construdtmegerves trace equiv-
alence.

Il BPA | BPP | PA | PDA | PN |
~Fs] ves Fl | ves [l | yes 1] \ yes [L1§] | yes[1] |
reg.~ || yes [F] | yes [L0] | ? \ ? | yes [L0] |
CsFS YES yes NO YES yes
FSCs YES yes NO YES yes
= FS YES yes NO YES yes
reg.=; ? ? NO ? no [17]
C:FS yes yes yes yes NO NO yes yes yes yes
FSC, yes no yes yes NO no yes no yes yes
=+ FS yes no yes yes yes [L1] no yes no yes yes
reg.=; yes no yes ? ? no yes no yes no [17]

The results for trace preorder/equivalence might be also interesting from a point of view
of automata theory (trace preorder and equivalence are closely related to language inclu-
sion and equivalence, respectively). All ‘trace’ results for BPA and PDA are immediate
consequences of the ‘classical’ ones for language equivalence3[sdeif interesting

to compare those decidability issues with the ones for PA, especially in the deterministic
subcase. Trace preorder with finite-state systems tends to be decidable for deterministic

processes; the class PA is the only exception. At the same time gladealencevith
finite-state systems ecidablefor deterministic PA. The PA processes we used in our
undecidability proofs are parallel compositions of two deterministic and normed BPA
processes (which can be seen as deterministic CF grammars). The parallel composition
corresponds to thehuffleoperator on languages][Thus, our results bring some new
insight into the power of shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regularity-testing. We can conclude
that all the *?’ problems are at least semidecidable, as it is possible to enumerate all
finite-state systems and decide equivalence with them.

References

1. P.A. Abdulla and KCerans. Simulation is decidable for one-counter net$rivceedings of
CONCUR’98 volume 1466 oL.NCS pages 253-268. Springer-Verlag, 1998.

2. J.C.M. Baeten and W.P. WeijlandProcess Algebra Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

3. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy. In
Proceedings of CONCUR'960lume 1119 o£ NCS pages 247-262. Springer-Verlag, 1996.

4. D. Caucal. On the regular structure of prefix rewritin@heoretical Computer Science
106:61-86, 1992.

5. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for all basic parallel
processes. IRroceedings of CONCUR’'980olume 715 oL NCS pages 143-157. Springer-
Verlag, 1993.

6. S. Christensen, H. tttel, and C. Stirling. Bisimulation equivalence is decidable for all
context-free processemformation and Computatiqri21:143-148, 1995.

7. J.F. Groote and H. tttel. Undecidable equivalences for basic process algétigrmation
and Computation115(2):353-371, 1994.

8. J.E. Hopcroft and J.D. Ulimanintroduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

9. H. Huttel. Undecidable equivalences for basic parallel processeBroteedings of TAC-
S’'94, volume 789 oLNCS pages 454—-464. Springer-Verlag, 1994.

10. P. Jagar and J. Esparza. Deciding finiteness of Petri nets up to bisimilari§rdeceedings
of ICALP’96, volume 1099 of NCS pages 478-489. Springer-Verlag, 1996.

11. P. Jaigar, A. Kitera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes. IRProceedings of ICALP'98volume 1443 oL NCS pages 200-211. Springer-
Verlag, 1998.

12. P. Jagar and F. Moller. Checking regular properties of Petri netPriteedings of CON-
CUR’95 volume 962 olLNCS pages 348—-362. Springer-Verlag, 1995.

13. A. Kucera. Regularity is decidable for normed PA processes in polynomial tim@rokn
ceedings of FST&TCS'9&olume 1180 o£ NCS pages 111-122. Springer-Verlag, 1996.

14. A. KuCera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in
polynomial time. Technical report TUM-19830, Institiitrfinformatik, TU-Minchen, 1998.

15. A. Ku€era and R. Mayr. Simulation preorder on simple process algebras. Technical report
TUM-19902, Institut fir Informatik, TU-Munchen, 1999.

16. R. Mayr. Process rewrite systemaformation and ComputationTo appear.

17. M.L. Minsky. Computation: Finite and Infinite Machine®rentice-Hall, 1967.

18. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second order
logic. Theoretical Computer Sciencg7(1):51-75, 1985.

19. R.J. van Glabbeek. The linear time—branching time spectrumPréceedings of CON-
CUR’90, volume 458 olLNCS pages 278-297. Springer-Verlag, 1990.

	Introduction
	Definitions
	The Tractability Border
	The Decidability Border
	The Relationship between Simulation and Bisimulation
	Summary and Conclusions

