
Simulation Preorder on Simple Process Algebras

Antońın Kučera?1 and Richard Mayr2

1 Faculty of Informatics MU, Botanicḱa 68a, 60200 Brno, Czech Repubic,tony@fi.muni.cz
2 Institut für Informatik TUM, Arcisstr. 21, 80290 M̈unchen, Germany,mayrri@in.tum.de

Abstract. We consider the problem of simulation preorder/equivalence between
infinite-state processes and finite-state ones. We prove that simulation preorder
(in both directions) and simulation equivalence areintractablebetween all major
classes of infinite-state systems and finite-state ones. This result is obtained by
showing that the problem whether a BPA (or BPP) process simulates a finite-
state one isPSPACE -hard, and the other direction is co-NP-hard; consequently,
simulation equivalence between BPA (or BPP) and finite-state processes is also
co-NP-hard.
The decidability borderfor the mentioned problem is also established. Simula-
tion preorder (in both directions) and simulation equivalence are decidable in
EXPTIME between pushdown processes and finite-state ones. On the other
hand, simulation preorder is undecidable between PA and finite-state processes
in both directions. The obtained results also hold for those PA and finite-state
processes which are deterministic and normed, and thus immediately extend to
trace preorder. Regularity (finiteness) w.r.t. simulation and trace equivalence is
also shown to be undecidable for PA.
Finally, we describe a way how to utilize decidability of bisimulation problems to
solve certain instances of undecidable simulation problems. We apply this method
to BPP processes.

1 Introduction

We study the decidability and complexity of checking simulation preorder and equiva-
lence between certain infinite-state systems and finite-state ones. The motivation is that
the intended behavior of a process can often be easily specified by a finite-state system,
while the actual implementation may contain components which are infinite-state (e.g.
counters, buffers). The task of formal verification is to prove that the specification and
the implementation are equivalent.

The same problem has been studied recently for strong and weak bisimilarity [11,14],
and it has been shown that these equivalences are not onlydecidable, but alsotractable
between certain infinite-state processes and finite-state ones. Those issues (namely the
complexity ones) are dramatically different from the ‘symmetric’ case when we com-
pare two infinite-state processes. Here we consider (and answer) analogous questions
for simulation, giving a complete overview (see Fig.1).

? Supported by a Research Fellowship granted by the Alexander von Humboldt Foundation and
by a Post-Doc grant GǍCR No. 201/98/P046.

The state of the art: Simulation preorder/equivalence is known to be undecidable for
BPA [7] and BPP [9] processes. An interesting positive result is that simulation preorder
(and hence also equivalence) is decidable for Petri nets with at most one unbounded
place [1]. In [12] it is shown that simulation preorder between Petri nets and finite-state
processes isdecidablein both directions. Moreover, a related problem ofregularity
(finiteness) of Petri nets w.r.t. simulation equivalence is proved to be undecidable.

Our contribution: In Section3 we concentrate on the complexity issues for simulation
preorder and equivalence with finite-state processes. We prove that the problem whether
a BPA (or BPP) process simulates a finite-state one isPSPACE -hard, and the other di-
rection is co-NP-hard. Consequently, simulation equivalence between BPA (or BPP)
and finite-state processes is also co-NP-hard. Hence, the main message of this section
is that simulation with finite-state systems is unfortunatelyintractablefor any studied
class of infinite-state systems (assumingP 6= NP)—see Fig.1. It contrasts sharply
with the complexity issues for strong and weak bisimilarity; for example, weak bisimi-
larity between BPA and finite-state processes, and between normed BPP and finite-state
processes is inP [14].

In Section4 we establish the decidability border of Fig.1. First we prove that simu-
lation preorder between PDA processes and finite-state ones isdecidablein EXPTIME
in both directions. Consequently, simulation equivalence is also inEXPTIME . Then
we show that simulation preorder between PA and finite-state processes isundecidable
in both directions. It is rather interesting that the undecidability results hold even for
those PA and finite-state processes which aredeterministicandnormed. Simulatione-
quivalencebetween such processes is decidable (it coincides with bisimilarity [11]);
however, as soon as we allow just one nondeterministic state in PA processes, simula-
tion equivalence becomes undecidable. We also show that all the obtained undecidabil-
ity results can be formulated in a ‘stronger’ form—it is possible tofix a PA or a finite-
state process in each of the mentioned undecidable problems. Then we demonstrate that
regularity of (normed) PA processes w.r.t. simulation equivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity for normed PA processes, which is
decidable in polynomial time [13]. All the obtained undecidability results also hold for
trace preorder and trace equivalence, and therefore they might be also interesting from a
point of view of ‘classical’ automata theory (see the last section for further comments).

Finally, in Section5 we study the relationship between bisimilarity and simulation
equivalence. Our effort is motivated by a general trend that problems for bisimilari-
ty (equivalence, regularity) are often decidable, but the corresponding problems for
simulation equivalence are not. We propose a way how to use existing algorithms for
‘bisimulation’ problems to solve certain instances of the corresponding (and possibly
undecidable) ‘simulation’ ones. Such techniques are interesting from a practical point
of view, as only small instances of undecidable problems can be solved in an ad-hoc
fashion, and some kind of computer support is absolutely necessary for problems of
‘real’ size.

In the last section we give a summary of existing results in the area of comparing
infinite-state systems with finite-state ones and discuss language-theoretic aspects of
the obtained results.

The missing proofs can be found in the full version of the paper [15].

2 Definitions

Let Act = {a, b, c, . . .} andConst = {X,Y, Z, . . .} be disjoint countably infinite sets
of actionsandprocess constants, respectively. The class ofgeneral process expressions
G is defined byE ::= ε | X | E‖E | E.E, whereX ∈ Const and ε is a special
constant that denotes the empty expression. Intuitively, ‘.’ is a sequential composition
and ‘‖’ is a parallel composition. We do not distinguish between expressions related by
structural congruencewhich is given by the following laws: ‘.’ and ‘‖’ are associative,
‘‖’ is commutative, and ‘ε’ is a unit for ‘.’ and ‘‖’.

A process rewrite system[16] is specified by a finite set∆ of ruleswhich have the
formE

a→ F , whereE,F ∈ G anda ∈ Act . Const(∆) andAct(∆) denote the sets of
process constants and actions which are used in the rules of∆, respectively (note that
these sets are finite). Each process rewrite system∆ defines a unique transition system
where states are process expressions overConst(∆), Act(∆) is the set of labels, and
transitions are determined by∆ and the following inference rules (remember that ‘‖’ is
commutative):

(E a→ F) ∈ ∆
E

a→ F
E

a→ E′

E.F
a→ E′.F

E
a→ E′

E‖F a→ E′‖F
We extend the notationE

a→ F to elements ofAct∗ in a standard way. Moreover, we
say thatF is reachablefromE if E

w→ F for somew ∈ Act∗.

������� ��� ��	 ��
�� ��� ��	

�
����� ��� ��	

����� ��� ��	

�
����� ��� ��	

����
�� ��� ��	������� ��� ��	

������� ��� ��	

����� ��� ��	

��� � � ��� � � � � !

 " � � ��� � � � !

Fig. 1.A hierarchy of PRS

Various subclasses of process rewrite systems
can be obtained by imposing certain restrictions on
the form of rules. To specify those restrictions, we
first define the classesS andP of sequentialand
parallel expressions, composed of all process ex-
pressions which do not contain the ‘‖’ and the ‘.’
operator, respectively. We also use1 to denote the
set of process constants. The hierarchy of process
rewrite systems is presented in Fig.1; the restric-
tions are specified by a pair(A,B), whereA and
B are the classes of expressions which can appear
on the left-hand and the right-hand side of rules, re-
spectively. This hierarchy contains almost all class-
es of infinite state systems which have been stud-
ied so far; BPA, BPP, and PA processes are well-
known [2], PDA correspond to pushdown process-
es (as proved by Caucal in [4]), PN correspond to
Petri nets, etc. In Fig.1 we also indicated the decidability/tractability border for sim-
ulation preorder and equivalence with finite-state systems which is established in the
following sections.

Processesare considered as states in transition systems generated by process rewrite
systems. We also assume that for each system∆ there is some distinguished process ex-
pression which is considered as theinitial stateof∆. In what follows, we often identify
process rewrite systems with their initial states. A processP is said to bedeterministic

iff each reachable state ofP has at most onea-successor for everya ∈ Act . A PA
process∆ is normediff X →∗ ε for everyX ∈ Const(∆).

In this paper we compare infinite-state processes with finite-state ones w.r.t. certain
‘behavioral’ preorders and equivalences.

Definition 1. We say thatw ∈ Act∗ is a traceof a processE iff E
w→ E′ for someE′.

LetTr(E) be the set of all traces ofE. We writeE vt F iff Tr(E) ⊆ Tr(F). Moreover,
we say thatE andF are trace equivalent, writtenA =t B, iff Tr(E) = Tr(F).

Trace preorder and equivalence are very similar to language inclusion and equivalence
of ‘classical’ automata theory. In concurrency theory, trace equivalence is usually con-
sidered as being too coarse. A plethora of finer ‘behavioral’ equivalences have been
proposed [19]. It seems thatsimulationandbisimulationequivalence are of special im-
portance, as their accompanying theory has been developed very intensively.

Definition 2. A binary relationR over process expressions is asimulationif whenever
(E,F) ∈ R then for eacha ∈ Act : if E

a→ E′ thenF
a→ F ′ for someF ′ s.t.(E′, F ′) ∈

R. A symmetric simulation is calledbisimulation. A processE is simulatedby a process
F , writtenE vs F , if there is a simulationR s.t. (E,F) ∈ R. We say thatE andF
are simulation equivalent, writtenE =s F , iff E vs F andF vs E. Similarly, we say
thatE andF are bisimilar (or bisimulation equivalent), writtenE ∼ F , iff there is a
bisimulation relating them.

Another natural (and studied) problem is decidability ofregularity (i.e. ‘semantical
finiteness’) of processes w.r.t. certain behavioral equivalences. A processE is regular
w.r.t. bisimulation (or simulation, trace) equivalence iff there is a finite-state processF
such thatE ∼ F (orE =s F , E =t F , respectively).

Almost all undecidability results in this paper are obtained by reduction of the halt-
ing problem for Minsky counter machines (the halting problem is undecidable even for
Minsky machines with two counters initialized to zero [17]).

Definition 3. A counter machineM with nonnegative countersc1, c2, · · · , cm is a se-
quence of instructions 1: INS1, · · · , k: INSk wherek ∈ IN, INSk = halt, and every
INSi (1 ≤ i < k) is in one of the following forms (where1 ≤ l, l′, l′′ ≤ k, 1 ≤ j ≤ m).

– cj := cj + 1; goto l
– if cj = 0 then goto l′ else (cj := cj − 1; goto l′′)

3 The Tractability Border

In this section we show that the problem whether a BPA (or BPP) process simulates
a finite-state one isPSPACE -hard. The other preorder is shown to be co-NP-hard.
Consequently, we also obtain co-NP-hardness of simulation equivalence between B-
PA (or BPP) and finite-state processes. As simulation preorder and equivalence are
easily decidable for finite-state processes in polynomial time, the tractability border for
simulation preorder/equivalence with finite-state systems of Fig.1 is established.

Theorem 1. LetP be a BPA (or BPP) process,F a finite-state process. The problem
whetherF vs P is PSPACE -hard.

Theorem 2. LetP be a BPA (or BPP) process,F a finite-state process. The problem
whetherP vs F is co-NP-hard.

Theorem 3. The problems of simulation equivalence between BPA and finite-state pro-
cesses, and between BPP and finite-state processes are co-NP-hard.

4 The Decidability Border

In this section we establish the decidability border of Fig.1. We show that simulation
preorder (in both directions) and simulation equivalence with finite-state processes are
decidable for PDA processes inEXPTIME . It is possible to reduce each of the men-
tioned problems to the model-checking problem for an (almost) fixed formulaϕ of the
alternation-free modalµ-calculus (we would like to thank Javier Esparza who observed
the idea of our proof).

Then we turn our attention to PA processes. We prove that simulation preorder is
undecidablebetween PA processes and finite-state ones in both directions. It is some-
what surprising, as for the subclasses BPP and BPA we have positive decidability re-
sults. Moreover, simulation preorder is undecidable even if we consider those PA and
finite-state processes which aredeterministicandnormed. Thus, our undecidability re-
sults immediately extend to trace preorder (which coincides with simulation preorder
on deterministic processes). It is worth noting that simulationequivalencebetween de-
terministic PA and deterministic finite-state processes is decidable, as it coincides with
bisimilarity which is known to be decidable [11]. However, as soon as we allow just one
nondeterministic state in PA processes, simulation equivalence with finite-state process-
es becomes undecidable (there is even a fixed normed deterministic finite-state process
F such that simulation equivalence withF is undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PA processes w.r.t. simulation
and trace equivalence is undecidable, even for the normed subclass of PA. Again, the
role of nondeterminism is very special as regularity of normed deterministic PA process-
es w.r.t. simulation and trace equivalence coincides with regularity w.r.t. bisimilarity,
which is easily decidable in polynomial time [13]. However, just one nondeterministic
state in the PA process makes the undecidability proof possible.

Theorem 4. Simulation preorder is decidable between PDA processes and finite-state
ones inEXPTIME (in both directions).

Corollary 1. Simulation equivalence between PDA and finite-state processes is decid-
able inEXPTIME .

Theorem 5. Let P be a deterministic PA process andF a deterministic finite-state
process. It is undecidable whetherP vs F .

Proof. LetM be an arbitrary two-counter machine with counters initialized tom1,m2.
We construct a deterministic PA processP (M) and a deterministic finite-state pro-
cessF (M) s.t. P (M) vs F (M) iff the machineM does not halt. LetAct :=

{zero1, inc1, dec1, zero2, inc2, dec2}. The PA processP (M) is defined by the fol-
lowing rules:

Z1
zero1−→ Z1 Z1

inc1−→ C1.Z1 C1
inc1−→ C1.C1 C1

dec1−→ ε

Z2
zero2−→ Z2 Z2

inc2−→ C2.Z2 C2
inc2−→ C2.C2 C2

dec2−→ ε

The initial state is(Cm1
1 .Z1) ‖ (Cm2

2 .Z2).
The processF (M) corresponds to the finite control ofM. For every instruction of

the formn : ci := ci + 1; goto n′ we have an arcn
inci−→ n′. For every instruction

of the formn : if ci = 0 then goto n′ else ci := ci − 1; goto n′′ fi we have

arcsn
zeroi−→ n′ andn

deci−→ n′′. Then we add a new stateall and arcsall a→ all for
everya ∈ Act . Finally, we complete the processF (M) in the following way: for every
noden, except for the one which corresponds to the final statehalt ofM, and every
a ∈ Act , if there is no arcn

a→ n′ for anyn′, then add an arcn
a→ all . The initial state

of F (M) corresponds to the initial state ofM.
The state ofP (M) corresponds to the contents of the counters ofM and the state

of F (M) corresponds to the state of the finite control ofM. A round in the simulation
game corresponds to a computational step ofM.

The only problem is thatP (M) may do steps that do not correspond to steps of
the counter machine, e.g.P (M) does a stepdec1 when the current state inF (M)
expectsinc1. In all these cases the construction ofF (M) ensures thatF (M) can (and
must) respond by a step that ends in the stateall . After such a stepF (M) can simulate
anything. It is easy to see thatP (M) 6vs F (M) iff P (M) can forceF (M) to enter
the statehalt via a sequence of moves which correspond to the correct simulation of
M. Thus,P (M) vs F (M) iff the machineM does not halt. ut

Remark 1.Theorem7 still holds under an additional condition that both the PA process
and the finite-state one are normed. We can make the PA process normed by adding the
following rules:Z1

x1−→ ε, C1
x1−→ ε, Z2

x2−→ ε, C2
x2−→ ε. Observe that the resulting

process is still deterministic. To make sure thatF (M) can simulate the actionsx1, x2,
we add the rulesn

x1→ all andn
x2→ all for every staten of F (M) (this also includes

the rulesall x1→ all andall x2→ all). The processF (M) is made normed by introducing
a new stateterminated where no action is enabled, and a ruleall x→ terminated . It is
easy to see that these new systemsP ′(M) andF ′(M) are deterministic and normed,
and still satisfy the property thatP ′(M) vs F ′(M) iff the machineM does not halt.

The halting problem is undecidable even for two-counter machines with counters ini-
tialized to zero. The construction ofP (M) is then independent ofM. Furthermore,
there exists a universal Minsky machineM′; the halting problem forM′ (with given
input values) is undecidable, and the construction ofF (M′) is independent of those
input values. Hence, we can conclude the following:

Theorem 6. There is a normed deterministic PA processP and a normed deterministic
finite-state processF such that

– the problem whetherP vs F for a given (normed and deterministic) finite-state
processF is undecidable,

– the problem whetherP vs F for a given (normed and deterministic) PA processP
is undecidable.

Theorem 7. Let P be a deterministic PA process andF a deterministic finite-state
process. It is undecidable whetherF vs P .

Proof. LetM be an arbitrary two-counter machine with counters initialized tom1,m2.
We construct a deterministic PA processP (M) and a deterministic finite-state system
F (M) s.t.F (M) vs P (M) iff the machineM does not halt.

LetAct := {zero1, inc1, dec1, zero2, inc2, dec2, τ}. For the construction ofP (M)
we start with the same PA process as in Theorem5 and extend it by the following rules,
which handle all the behaviors that are ‘illegal’ in a given state ofP (M) w.r.t. the
counter values it represents.

Z1
dec1−→ A1 C1

zero1−→ A1 A1
a−→ A1 for everya ∈ {zero1, inc1, dec1, τ}

Z2
dec2−→ A2 C2

zero2−→ A2 A2
a−→ A2 for everya ∈ {zero2, inc2, dec2, τ}

The intuition is that an illegal step that concerns the counteri (with i ∈ {1, 2}) always
introduces the symbolAi, and from then on everything can be simulated. The initial
state is(Cm1

1 .Z1) ‖ (Cm2
2 .Z2). Note thatP (M) is deterministic; a term that contains

bothA1 andA2 can do the actionτ in two different ways, but the result is always the
same.

The systemF (M) corresponds to the finite control ofM. For every instruction of

the formn : ci := ci + 1; goto n′ we have an arcn
inci−→ n′. For every instruction of

the formn : if ci = 0 then goto n′ else ci := ci − 1; goto n′′ fi we have arcs

n
zeroi−→ n′ andn

deci−→ n′′. For the unique final statehalt of the finite control ofM we
add the rulehalt τ→ halt . Note that a reachable state ofP (M) cannot doτ , unless it
containsA1 or A2. Every step in the simulation game corresponds to a computational
step ofM. It follows thatF (M) 6vs P (M) iff F (M) can reach the statehalt via
a sequence of legal steps that correspond to steps of the counter machine (and do not
introduce the symbolA1 orA2 in P (M)). Thus,F (M) vs P (M) iff the machineM
does not halt. ut
Remark 2.Theorem7 still holds under an additional condition that both the PA pro-
cess and the finite-state one are normed. The systemF (M) is made normed as fol-
lows: We introduce a new stateterminated where no action is enabled, and rules
n

x→ terminated for every other staten of F (M). To assure thatP (M) can always
simulate the actionx, we add the rulesZ1

x−→ ε, C1
x−→ ε,A1

x−→ ε. To makeP (M)
normed, it now suffices to add the following:Z2

y−→ ε, C2
y−→ ε, A2

y−→ ε. It is easy
to see that these new processesP ′(M) andF ′(M) are deterministic and normed, and
still satisfy the property thatF ′(M) vs P ′(M) iff the machineM does not halt.

A proof of the following theorem is the same as of Theorem6:

Theorem 8. There is a normed deterministic PA processP and a normed deterministic
finite-state processF such that

– the problem whetherF vs P for a given (normed and deterministic) finite-state
processF is undecidable,

– the problem whetherF vs P for a given (normed and deterministic) PA processP
is undecidable.

We have seen that simulation preorder is undecidable between deterministic PA pro-
cesses and deterministic finite-state ones in both directions. However, simulationequiv-
alence(as well as any other equivalence of the linear time/branching time spectrum
of [19]) is decidablefor such a pair of processes, because it coincides with bisimilarity
which is known to be decidable [11]. Hence, it is interesting that simulation equivalence
becomesundecidableas soon as we consider PA processes with just one nondetermin-
istic state; this is proved in the following theorem:

Theorem 9. There is a fixed normed deterministic finite-state processF s.t. the prob-
lem whetherP =s F for a given normed PA processP is undecidable.

Proof. We reduce the second undecidable problem of Theorem6 to the problem if
P =s F . Let P ′ be a normed deterministic PA process,F be the fixed deterministic
normed finite-state system derived from the finite control of the universal counter ma-
chine as in Theorem6. We construct a normed PA processP and a fixed deterministic
normed finite-state processF such thatP ′ vs F iff P =s F . It suffices to defineF by
F

a→ F , andP byP
a→ P ′, P

a→ F . It follows immediately thatP =s F iff P ′ vs F .
Note thatP is not deterministic; however, it contains only one state (the initial state)
where an action can be done in two different ways. ut

On the other hand, simulation equivalence remains decidable between deterministic PA
andarbitrary (possibly nondeterministic) finite-state systems. This is a consequence of
a more general result—see the next section.

Remark 3.All undecidability results which have been proved in this section immedi-
ately extend to trace preorder and trace equivalence, because trace preorder and trace
equivalence coincide with simulation preorder and simulation equivalence in the class
of deterministic processes, respectively.

Now we prove that regularity w.r.t. simulation and trace equivalence is undecidable
for normed PA processes with at least one nondeterministic state. It is interesting that
regularity of normed deterministic PA processes w.r.t. any equivalence of the linear
time/branching time spectrum of [19] is easily decidable in polynomial time, as it coin-
cides with regularity w.r.t. bisimilarity which is known to have this property [13].

Theorem 10. Regularity w.r.t. simulation equivalence and trace equivalence is unde-
cidable for normed PA processes.

5 The Relationship between Simulation and Bisimulation

In this section we concentrate on the relationship between simulation and bisimulation
equivalence. It is a general trend that decidability results for bisimulation equivalence
are positive, while the ‘same’ problems for simulation equivalence are undecidable.
Major examples of that phenomenon come from the areas of equivalence-checking and
regularity-testing (cf. the decidability issues for BPP and BPA processes which are sum-
marized in the last section).

Theorem 11. For every finitely branching transition systemsT1, T2 there are finitely
branching transition systemsB(T1),B(T2) such thatT1 =s B(T1), T2 =s B(T2), and
B(T1),B(T2) are simulation equivalent iff they are bisimilar, i.e.B(T1) =s B(T2) ⇔
B(T1) ∼ B(T2).

Theorem11can be used as follows: if we are to decide simulation equivalence between
T1, T2, we can try to constructB(T1),B(T2) and decide bisimilarity between them.
Similarly, regularity ofT w.r.t. =s can be tested by constructingB(T) and checking its
regularity w.r.t.∼ (the construction ofB(T) is not effective in general, of course).

As simulation preorder between finite-state processes is decidable, the systemB(T)
can be effectively constructed for any finite-state systemT . Moreover, ifT is determin-
istic thenB(T) = T . Thus, as a consequence of Theorem11we obtain:

Theorem 12. Simulation equivalence is decidable between deterministic PA processes
and (arbitrary) finite-state ones.

Theorem11 can also be applied in a nontrivial way. In a full version of our paper [15]
we provide a little ‘case-study’. We design a rich subclass of BPP processes whereB(T)
is effectively constructible; consequently, simulation equivalence as well as regularity
w.r.t. simulation equivalence are decidable in this subclass.

6 Summary and Conclusions

The known decidability results in the area of equivalence/preorder checking between
infinite-state processes and finite-state ones are summarized in the table below. The
results which have been obtained in this paper are in boldface. In the case of trace
preorder/equivalence/regularity we distinguish between deterministic infinite-state pro-
cesses (left column) and general ones (right column); finite-state systems can be con-
sidered as deterministic here, because the subset construction [8] preserves trace equiv-
alence.

BPA BPP PA PDA PN

∼ FS yes [6] yes [5] yes [11] yes [18] yes [12]
reg.∼ yes [3] yes [10] ? ? yes [10]

vs FS YES yes [12] NO YES yes [12]
FSvs YES yes [12] NO YES yes [12]
=s FS YES yes [12] NO YES yes [12]
reg.=s ? ? NO ? no [12]

vt FS yes yes yes [12] yes [12] NO NO yes yes yes [12] yes [12]
FSvt yes no yes [12] yes [12] NO no yes no yes [12] yes [12]
=t FS yes no yes [12] yes [12] yes [11] no yes no yes [12] yes [12]
reg.=t yes no yes [10] ? ? no yes no yes [10] no [12]

The results for trace preorder/equivalence might be also interesting from a point of view
of automata theory (trace preorder and equivalence are closely related to language inclu-
sion and equivalence, respectively). All ‘trace’ results for BPA and PDA are immediate
consequences of the ‘classical’ ones for language equivalence (see [8]). It is interesting
to compare those decidability issues with the ones for PA, especially in the deterministic
subcase. Trace preorder with finite-state systems tends to be decidable for deterministic

processes; the class PA is the only exception. At the same time, traceequivalencewith
finite-state systems isdecidablefor deterministic PA. The PA processes we used in our
undecidability proofs are parallel compositions of two deterministic and normed BPA
processes (which can be seen as deterministic CF grammars). The parallel composition
corresponds to theshuffleoperator on languages [8]. Thus, our results bring some new
insight into the power of shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regularity-testing. We can conclude
that all the ‘?’ problems are at least semidecidable, as it is possible to enumerate all
finite-state systems and decide equivalence with them.

References

1. P.A. Abdulla and K.Čer̄ans. Simulation is decidable for one-counter nets. InProceedings of
CONCUR’98, volume 1466 ofLNCS, pages 253–268. Springer-Verlag, 1998.

2. J.C.M. Baeten and W.P. Weijland.Process Algebra. Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

3. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy. In
Proceedings of CONCUR’96, volume 1119 ofLNCS, pages 247–262. Springer-Verlag, 1996.

4. D. Caucal. On the regular structure of prefix rewriting.Theoretical Computer Science,
106:61–86, 1992.

5. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for all basic parallel
processes. InProceedings of CONCUR’93, volume 715 ofLNCS, pages 143–157. Springer-
Verlag, 1993.

6. S. Christensen, H. Ḧuttel, and C. Stirling. Bisimulation equivalence is decidable for all
context-free processes.Information and Computation, 121:143–148, 1995.

7. J.F. Groote and H. Ḧuttel. Undecidable equivalences for basic process algebra.Information
and Computation, 115(2):353–371, 1994.

8. J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

9. H. Hüttel. Undecidable equivalences for basic parallel processes. InProceedings of TAC-
S’94, volume 789 ofLNCS, pages 454–464. Springer-Verlag, 1994.

10. P. Jaňcar and J. Esparza. Deciding finiteness of Petri nets up to bisimilarity. InProceedings
of ICALP’96, volume 1099 ofLNCS, pages 478–489. Springer-Verlag, 1996.

11. P. Jaňcar, A. Kǔcera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes. InProceedings of ICALP’98, volume 1443 ofLNCS, pages 200–211. Springer-
Verlag, 1998.

12. P. Jaňcar and F. Moller. Checking regular properties of Petri nets. InProceedings of CON-
CUR’95, volume 962 ofLNCS, pages 348–362. Springer-Verlag, 1995.

13. A. Kučera. Regularity is decidable for normed PA processes in polynomial time. InPro-
ceedings of FST&TCS’96, volume 1180 ofLNCS, pages 111–122. Springer-Verlag, 1996.

14. A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in
polynomial time. Technical report TUM-I9830, Institut für Informatik, TU-München, 1998.

15. A. Kučera and R. Mayr. Simulation preorder on simple process algebras. Technical report
TUM-I9902, Institut f̈ur Informatik, TU-München, 1999.

16. R. Mayr. Process rewrite systems.Information and Computation. To appear.
17. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
18. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second order

logic. Theoretical Computer Science, 37(1):51–75, 1985.
19. R.J. van Glabbeek. The linear time—branching time spectrum. InProceedings of CON-

CUR’90, volume 458 ofLNCS, pages 278–297. Springer-Verlag, 1990.

	Introduction
	Definitions
	The Tractability Border
	The Decidability Border
	The Relationship between Simulation and Bisimulation
	Summary and Conclusions

