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Abstract. One-counter MDPs (OC-MDPs) and one-counter simple stochastic
games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic
games played on the transition graph of classic one-counter automata (equiva-
lently, pushdown automata with a 1-letter stack alphabet). A key objective for
the analysis and verification of these games is the termination objective, where
the players aim to maximize (minimize, respectively) the probability of hitting
counter value 0, starting at a given control state and given counter value.
Recently [4, 2], we studied qualitative decision problems (“is the optimal ter-
mination value = 1?”) for OC-MDPs (and OC-SSGs) and showed them to be
decidable in P-time (in NP∩coNP, respectively). However, quantitative decision
and approximation problems (“is the optimal termination value ≥ p”, or “approx-
imate the termination value within ε”) are far more challenging. This is so in part
because optimal strategies may not exist, and because even when they do exist
they can have a highly non-trivial structure. It thus remained open even whether
any of these quantitative termination problems are computable.
In this paper we show that all quantitative approximation problems for the termi-
nation value for OC-MDPs and OC-SSGs are computable. Specifically, given a
OC-SSG, and given ε > 0, we can compute a value v that approximates the value
of the OC-SSG termination game within additive error ε, and furthermore we can
compute ε-optimal strategies for both players in the game.
A key ingredient in our proofs is a subtle martingale, derived from solving cer-
tain LPs that we can associate with a maximizing OC-MDP. An application
of Azuma’s inequality on these martingales yields a computable bound for the
“wealth” at which a “rich person’s strategy” becomes ε-optimal for OC-MDPs.

1 Introduction

In recent years, there has been substantial research done to understand the computa-
tional complexity of analysis and verification problems for classes of finitely-presented
but infinite-state stochastic models, MDPs, and stochastic games, whose transition
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graphs arise from basic infinite-state automata-theoretic models, including: context-free
processes, one-counter processes, and pushdown processes. It turns out these models are
intimately related to important stochastic processes studied extensively in applied prob-
ability theory. In particular, one-counter probabilistic automata are basically equivalent
to (discrete-time) quasi-birth-death processes (QBDs) (see [8]), which are heavily stud-
ied in queuing theory and performance evaluation as a basic model of an unbounded
queue with multiple states (phases). It is very natural to extend these purely probabilis-
tic models to MDPs and games, to model adversarial queuing scenarios.

In this paper we continue this work by studying quantitative approximation prob-
lems for one-counter MDPs (OC-MDPs) and one-counter simple stochastic games
(OC-SSGs), which are 1-player, and turn-based zero-sum 2-player, stochastic games
on transition graphs of classic one-counter automata. In more detail, an OC-SSG has a
finite set of control states, which are partitioned into three types: a set of random states,
from where the next transition is chosen according to a given probability distribution,
and states belonging to one of two players: Max or Min, from where the respective
player chooses the next transition. Transitions can change the state and can also change
the value of the (unbounded) counter by at most 1. If there are no control states belong-
ing to Max (Min, respectively), then we call the resulting 1-player OC-SSG a minimiz-
ing (maximizing, respectively) OC-MDP. Fixing strategies for the two players yields a
countable state Markov chain and thus a probability space of infinite runs (trajectories).

A central objective for the analysis and verification of OC-SSGs, is the termination
objective: starting at a given control state and a given counter value j > 0, player Max
(Min) wishes to maximize (minimize) the probability of eventually hitting the counter
value 0 (in any control state). From well know fact, it follows that these games are
determined, meaning they have a value, ν, such that for every ε > 0, player Max (Min)
has a strategy that ensures the objective is satisfied with probability at least ν − ε (at
most ν + ε, respectively), regardless of what the other player does. This value can be
irrational even when the input data contains only rational probabilities, and this is so
even in the purely stochastic case of QBDs without players ([8]).

A special subclass of OC-MDPs, called solvency games, was studied in [1] as a sim-
ple model of risk-averse investment. Solvency games correspond to OC-MDPs where
there is only one control state, but there are multiple actions that change the counter
value (“wealth”), possibly by more than 1 per transition, according to a finite support
probability distribution on the integers associated with each action. The goal is to min-
imize the probability of going bankrupt, starting with a given positive wealth. It is not
hard to see that these are subsumed by minimizing OC-MDPs (see [4]). It was shown in
[1] that if the solvency game satisfies a number of restrictive assumptions (in particular,
on the eigenvalues of a matrix associated with the game), then an optimal “rich per-
son’s” strategy (which does the same action whenever the wealth is large enough) can
be computed for it (in exponential time). They showed such strategies are not optimal
for unrestricted solvency games and left the unrestricted case unresolved in [1].

We can classify analysis problems for OC-MDPs and OC-SSGs into two kinds.
Quantitative analyses, which include: “is the game value at least/at most p” for a given
p ∈ [0, 1]; or “approximate the game value” to within a desired additive error ε > 0. We



can also restrict ourselves to qualitative analyses, which asks “is the game value = 1?
= 0?”.3 We are also interested in strategies (e.g., memoryless, etc.) that achieve these.

In recent work [4, 2], we have studied qualitative termination problems for OC-
SSGs. For both maximizing and minimizing OC-MDPs, we showed that these problems
are decidable in P-time, using linear programming, connections to the theory of random
walks on integers, and other MDP objectives. For OC-SSGs, we showed the qualitative
termination problem “is the termination value = 1?” is in NP ∩ coNP. This problem is
already as hard as Condon’s quantitative termination problem for finite-state SSGs.

However we left open, as the main open question, the computability of quantita-
tive termination problems for OC-MDPs and OC-SSGs. In this paper, we resolve pos-
itively the computability of all quantitative approximation problems associated with
OC-MDPs and OC-SSGs. Note that, in some sense, approximation of the termination
value in the setting of OC-MDPs and OC-SSGs can not be avoided. This is so not only
because the value can be irrational, but because (see [3]) for maximizing OC-MDPs
there need not exist any optimal strategy for maximizing the termination probability,
only ε-optimal ones (whereas Min does have an optimal strategy in OC-SSGs). More-
over, even for minimizing OC-MDPs, where optimal strategies do exist, they can have
a very complicated structure. In particular, as already mentioned for solvency games,
there need not exist any “rich person’s” strategy that can ignore the counter value when
it is larger than some finite N ≥ 0.

Nevertheless, we show all these difficulties can be overcome when the goal is to
approximate the termination value of OC-SSGs and to compute ε-optimal strategies.
Our main theorem is the following:

Theorem 1 (ε-approximation of OC-SSG termination value). Given as input: a OC-
SSG, G, an initial control state s, an initial counter value j > 0, and a (rational)
approximation threshold ε > 0, there is an algorithm that computes a rational number,
v′, such that |v′ − v∗| < ε, where v∗ is the value of the OC-SSG termination game on G,
starting in configuration (s, j). Moreover, there is an algorithm that computes ε-optimal
strategies for both players in the OC-SSG termination game. These algorithms run in
exponential time in the encoding size of a 1-player OC-SSG, i.e., a OC-MDP, and in
polynomial time in log(1/ε) and log( j). In the case of 2-player OC-SSGs, the algorithms
run in nondeterministic exponential time in the encoding size of the OC-SSG.

We now outline our basic strategy for proving this theorem. Consider the case of
maximizing OC-MDPs, and suppose we would like to approximate the optimal termi-
nation probability, starting at state q and counter value i. Intuitively, it is not hard to
see that as the counter value goes to infinity, except for some basic cases that we can
detect and eliminate in polynomial time, the optimal probability of termination starting
at a state q begins to approach the optimal probability of forcing the counter to have a
lim inf value = −∞. But we can compute this optimal value, and an optimal strategy
for it, based on results in our prior work [4, 2]. Of particular importance are the set of
states T from which this value is 1. For a given ε > 0, we need to compute a bound
N on the counter value, such that for any state q, and all counter values N′ > N, the

3 The problem “is the termination value = 0?” is easier, and can be solved in polynomial time
without even looking at the probabilities labeling the transitions of the OC-SSG.



optimal termination probability starting at (q,N′) is at most ε away from the optimal
probability for the counter to have lim inf value = −∞. A priori it is not at all clear
whether such a bound N is computable, although it is clear that N exists. To show that
it is computable, we employ a subtle (sub)martingale, derived from solving a certain
linear programming problem associated with a given OC-MDP. By applying Azuma’s
inequality on this martingale, we are able to show there are computable values c < 1,
and h ≥ 0, such that for all i > h, starting from a state q and counter value i, the op-
timal probability of both terminating and not encountering any state from which with
probability 1 the player can force the lim inf counter value to go to −∞, is at most
ci/(1−c). Thus, the optimal termination probability approaches from above the optimal
probability of forcing the lim inf counter value to be −∞, and the difference between
these two values is exponentially small in i, with a computable base c. This martingale
argument extends to OC-MDPs an argument recently used in [7] for analyzing purely
probabilistic one-counter automata (i.e., QBDs).

These bounds allow us to reduce the problem of approximating the termination
value to the reachability problem for an exponentially larger finite-state MDP, which
we can solve (in exponential time) using linear programming. The case for general OC-
SSGs and minimizing OC-MDPs turns out to follow a similar line of argument, reduc-
ing the essential problem to the case of maximizing OC-MDPs. In terms of complexity,
the OC-SSG case requires “guessing” an appropriate (albeit, exponential-sized) strat-
egy, whereas the relevant exponential-sized strategy can be computed in deterministic
exponential time for OC-MDPs. So our approximation algorithms run in exponential
time for OC-MDPs and nondeterministic exponential time for OC-SSGs.

Open problems. An obvious remaining open problem is to obtain better complexity
bounds for OC-MDPs. We know of no non-trivial lower bounds for OC-MDP approxi-
mation problems. Our results also leave open the decidability of the quantitative termi-
nation decision problem for OC-MDPs and OC-SSGs, which asks: “is the termination
value ≥ p?” for a given rational probability p. Furthermore, our results leave open
computability for approximating the value of selective termination objectives for OC-
MDPs, where the goal is to terminate (reach counter value 0) in a specific subset of the
control states. Qualitative versions of selective termination problems were studied in [4,
2].

Related work. As noted, one-counter automata with a non-negative counter are equiva-
lent to pushdown automata restricted to a 1-letter stack alphabet (see [8]), and thus OC-
SSGs with the termination objective form a subclass of pushdown stochastic games, or
equivalently, Recursive simple stochastic games (RSSGs). These more general stochas-
tic games were studied in [9], where it was shown that many interesting computational
problems, including any nontrivial approximation of the termination value for general
RSSGs and RMDPs is undecidable, as are qualitative termination problems. It was also
shown in [9] that for stochastic context-free games (1-exit RSSGs), which correspond
to pushdown stochastic games with only one state, both qualitative and quantitative
termination problems are decidable, and in fact qualitative termination problems are
decidable in NP∩coNP ([10]), while quantitative termination problems are decidable
in PSPACE. Solving termination objectives is a key ingredient for many more general
analyses and model checking problems for such stochastic games (see, e.g., [5, 6]). OC-



SSGs are incompatible with stochastic context-free games. Specifically, for OC-SSGs,
the number of stack symbols is bounded by 1, instead of the number of control states.

MDP variants of QBDs, essentially equivalent to OC-MDPs, have been considered
in the queueing theory and stochastic modeling literature, see [14, 12]. However, in
order to keep their analyses tractable, these works perform a naive finite-state “approxi-
mation” by cutting off the value of the counter at an arbitrary finite value N, and adding
dead-end absorbing states for counter values higher than N. Doing this can radically
alter the behavior of the model, even for purely probabilistic QBDs, and these authors
establish no rigorous approximation bounds for their models. In a sense, our work can
be seen as a much more careful and rigorous approach to finite approximation, employ-
ing at the boundary other objectives like maximizing the probability that the lim inf
counter value = −∞. Unlike the prior work we establish rigorous bounds on how well
our finite-state model approximates the original infinite OC-MDP.

2 Definitions

We assume familiarity with basic notions from probability theory. We call a probability
distribution f over a discrete set, A, positive if f (a) > 0 for all a ∈ A, and Dirac if
f (a) = 1 for some a ∈ A.

Definition 1 (SSG). A simple stochastic game (SSG) is a tuple G =

(S , (S 0, S 1, S 2), { , Prob), consisting of a countable set of states, S , partitioned
into the set S 0 of stochastic states, and sets S 1, S 2 of states owned by Player 1 (Max)
and 2 (Min), respectively. The edge relation { ⊆ S × S is total, i.e., for every r ∈ S
there is s ∈ S such that r{ s. Finally, Prob assigns to every s ∈ S 0 a positive
probability distribution over outgoing edges. If S 2 = ∅, we call the SSG a maximizing
Markov Decision Processes (MDP). If S 1 = ∅ we call it a minimizing MDP.

A finite path is a sequence w = s0s1 · · · sn of states such that si{ si+1 for all i, 0 ≤ i < n.
We write len(w) = n for the length of the path. A run, ω, is an infinite sequence of states
every finite prefix of which is a path. For a finite path, w, we denote by Run(w) the set
of runs having w as a prefix. These generate the standard σ-algebra on the set of runs.

Definition 2 (OC-SSG). A one-counter SSG (OC-SSG), A = (Q, (Q0,Q1,Q2), δ, P),
consists of a finite non-empty set of control states, Q, partitioned into stochastic and
players’ states, as in the case of SSGs, a set of transition rules δ ⊆ Q × {+1, 0,−1} × Q
such that δ(q) B {(q, i, r) ∈ δ} , ∅ for all q ∈ Q, and P = {Pq}q∈Q0 where Pq is a positive
rational probability distribution over δ(q) for all q ∈ Q0.

Purely for convenience, we assume that for each pair q, r ∈ Q there is at most one i
such that (q, i, r) ∈ δ (this is clearly w.l.o.g., by adding suitable auxiliary states to Q).
By ||A|| B |Q|+ |δ|+ ||P|| we denote the encoding size ofA, where ||P|| is the sum of the
number of bits needed to encode the numerator and denominator of Pq(%) for all q ∈ Q
and % ∈ δ. The set of all configurations is C B {(q, i) | q ∈ Q, i ≥ 0}. Again, maximizing
and minimizing OC-MDPs are defined as analogous subclasses of OC-SSGs.

To A we associate an infinite-state SSG A∞ = (C, (C0,C1,C2), → , Prob), where
the partition of C is defined by (q, i) ∈ C0 iff q ∈ Q0, and similarly for the players. The



edges are defined by (q, i)→ (r, j) iff either i > 0 and (q, j − i, r) ∈ δ, or i = j = 0 and
q = r. The probability assignment Prob is derived naturally from P.

By forgetting the counter values, the OC-SSG A also describes a finite-state SSG
GA = (Q, (Q0,Q1,Q2), { , Prob′). Here q{ r iff (q, i, r) ∈ δ for some i, and Prob′ is
derived in the obvious way from P by forgetting the counter changes. If A is a OC-
MDP, both GA andA∞ are MDPs.

Strategies and Probability. LetG be a SSG. A history is a finite path inG. A strategy
for Player 1 in G, is a function assigning to each history ending in a state from S 1 a
distribution on edges leaving the last state of the history. A strategy is pure if it always
assigns a Dirac distribution, i.e., one which assigns 1 to one edge and 0 to the others.
A strategy, σ, is memoryless if σ(w) = σ(s) where s is the last state of a history w.
Assume that G = A∞ for some OC-SSG A. Then a strategy, σ, is counterless if it is
memoryless andσ((q, i)) = σ((q, 1)) for all i ≥ 1. Observe that every strategy,σ, forGA
gives a unique strategy, σ′, forA∞; the strategy σ′ just forgets the counter values in the
history and plays as σ. This correspondence is bijective when restricted to memoryless
strategies in GA and counterless strategies in A∞. We will use this correspondence
implicitly throughout the paper. Strategies for Player 2 are defined analogously.

Fixing a pair (σ, π) of strategies for Player 1 and 2, respectively, and an initial state,
s, we obtain in a standard way a probability measure Pσ,πs (·) on the subspace of runs
starting in s. For SSGs of the form A∞ for some OC-SSG, A, we consider two se-
quences of random variables, {C(i)}i≥0 and {S (i)}i≥0, returning the height of the counter,
and the control state after completing i transitions.

For a SSG, G, an objective, R, is for us a Borel subset of runs in G. Player 1 is
trying to maximize the probability of R, while player 2 is trying to minimize it. We say
that (G,R) is determined if for every state s of G we have that supσ infπ Pσ,πs (R) =

infπ supσ P
σ,π
s (R) . If (G,R) is determined, then for every state s of G, the above equality

defines the value of s, denoted by Val(R, s). For a given ε ≥ 0, a strategy, σ∗, of Player 1
is ε-optimal in s, if Pσ

∗,π
s (R) ≥ Val(R, s)−ε for every strategy π of Player 2. An ε-optimal

strategy for Player 2 is defined analogously. 0-optimal strategies are called optimal.
Note that (G,R) is determined iff both players have ε-optimal strategies for every ε > 0.

Termination Objective. Let A be a OC-SSG. A run in A∞ terminates if it contains
a configuration of the form (q, 0). The termination objective is the set of all terminating
runs, and is denoted Term. OC-SSG termination games are determined (see [2]).

3 Main Result

Theorem 1 (Main). Given an OC-SSG,A, a configuration, (q, i), and a rational ε > 0,
there is an algorithm that computes a rational number, ν, such that |Val(Term, (q, i)) −
ν| ≤ ε, and strategies σ, π for both players that are ε-optimal starting in (q, i). The al-
gorithm runs in nondeterministic time exponential in ||A|| and polynomial in log(i) and
log(1/ε). IfA is an OC-MDP, then the algorithm runs in deterministic time exponential
in ||A|| and polynomial in log(1/ε) and log(i).



3.1 Proof sketch

We now sketch the main ideas in the proof of Theorem 1. First, observe that for all
q ∈ Q and i ≤ j we have that Val(Term, (q, i)) ≥ Val(Term, (q, j)) ≥ 0. Let

µq B lim
i→∞

Val(Term, (q, i)).

Since µq ≤ Val(Term, (q, i)) for an arbitrarily large i, Player 1 should be able to decrease
the counter by an arbitrary value with probability at least µq, no matter what Player 2
does. The objective of “decreasing the counter by an arbitrary value” cannot be formal-
ized directly onA∞, because the counter cannot become negative in the configurations
of A∞. Instead, we formalize this objective on GA, extended with rewards on tran-
sitions. These rewards are precisely the counter changes, which were left out from the
transition graph, i.e., each transition q{ r generated by a rule (q, i, r) ofA has reward i.
This allows us to define a sequence, {R(i)}i≥0, of random variables for runs in GA, where
R(i) returns the sum total of rewards accumulated during the first i steps. Note that R(i)

may be negative, unlike the r.v. C(i). The considered objective then corresponds to the
event LimInf (= −∞) consisting of all runs w in GA such that lim infi→∞ R(i)(w) = −∞.
These games are determined. For every q ∈ Q, let

νq B Val(LimInf (= −∞), q).

One intuitively expects that µq = νq, and we show that this is indeed the case. Further, it
was shown in [4, 2] that νq is rational and computable in non-deterministic time polyno-
mial in ||A||. Moreover, both players have optimal pure memoryless strategies (σ∗, π∗)
in GA, computable in non-deterministic polynomial time. For MDPs, both the value νq

and the optimal strategies can be computed in deterministic time polynomial in ||A||.
Since µq = νq, there is a sufficiently large N such that Val(Term, (q, i))−νq ≤ ε for all

q ∈ Q and i ≥ N. We show that an upper bound on N is computable, which is at most ex-
ponential in ||A|| and polynomial in log(1/ε), in Section 3.2. As we shall see, this part is
highly non-trivial. For all configurations (q, i), where i ≥ N, the value Val(Term, (q, i))
can be approximated by νq, and both players can use the optimal strategies (σ∗, π∗)
for the LimInf (= −∞) objective (which are “translated” into the corresponding coun-
terless strategies in A∞; cf. Section 2). For the remaining configurations (q, i), where
i < N, we consider a finite-state SSG obtained by restrictingA∞ to configurations with
counter between 0 and N, extended by two fresh stochastic states s0, s1 with self-loops.
All configurations of the form (q, 0) have only one outgoing edge leading to s0, and all
configurations of the form (q,N) can enter either s0 with probability νq, or s1 with prob-
ability 1−νq. In this finite-state game, we compute the values and optimal strategies for
the reachability objective, where the set of target states is {s0}. This can be done in non-
deterministic time polynomial in the size of the game (i.e., exponential in ||A||). IfA is
an OC-MDP, then the values and optimal strategies can be computed in deterministic
polynomial time in the size of the MDP (i.e., exponential in ||A||) by linear program-
ming (this applies both to the “maximizing” and the “minimizing” OC-MDP). Thus,
we obtain the required approximations of Val(Term, (q, i)) for i < N, and the associated
ε-optimal strategies.



Technically, we first consider the simpler case whenA is a “maximizing” OC-MDP
(Section 3.2). The general case is then obtained simply by computing the optimal coun-
terless strategy π∗ for the LimInf (= −∞) objective in GA, and “applying” this strategy
to resolve the choices of Player 2 inA∞ (again, note that π∗ corresponds to a counterless
strategy inA∞). Thus, we obtain an OC-MDPA′ and apply the result of Section 3.2.

3.2 Bounding counter value N for maximizing OC-MDPs

In this section we consider a maximizing OC-MDP A = (Q, (Q0,Q1), δ, P). The maxi-
mum termination value is Val(Term, (q, i)) = supσ P

σ
(q,i)(Term) .

For a q ∈ Q we set νq B supσ P
σ
q (LimInf (= −∞)) . Given A, and ε > 0, we

show here how to obtain a computable (exponential) bound on a number N such that∣∣∣Val(Term, (q, i)) − νq

∣∣∣ < ε for all i ≥ N. Thus, by the arguments described in the Sec-
tion 3, once we have such a computable bound on N, we have an algorithm for approx-
imating Val(Term, (q, i)). We denote by T the set of all states q with νq = 1.

Fact 2 (cf. [4]). The number νq is the max. probability of reaching T from q in GA:

νq = sup
σ
Pσq (reach T ) = max

σ
Pσq (reach T ) .

Claim. ∀q ∈ Q : ∀i ≥ 0 : νq ≤ Val(Term, (q, i)) ≤ supσ P
σ
(q,i)(Term ∩ not reach T ) + νq.

Proof. The first inequality is easy. By [4, Theorem 12], Val(Term, (q, i)) = 1 for all
q ∈ T , i ≥ 0, proving the second inequality. ut

Lemma 1. Given a maximizing OC-MDP, A, one can compute a rational con-
stant c < 1, and an integer h ≥ 0 such that for all i ≥ h and q ∈ Q:
supσ P

σ
(q,i)(Term ∩ not reach T ) ≤ ci

1−c .

Moreover, c ∈ exp(1/2||A||
O(1)

) and h ∈ exp(||A||O(1)).

Observe that this allows us to compute the number N. It suffices to set N B
max{h, dlogc(ε · (1 − c))e}. Based on the bounds on c and h, this allows us to conclude
that N ∈ exp(||A||O(1)), see [3]. In the rest of this section we prove Lemma 1.

We start with two preprocessing steps. First, we make sure that T = ∅, resulting
in Val(Term, (q, i)) = supσ P

σ
(q,i)(Term ∩ not reach T ) . Second, we make sure that there

are no “degenerate” states in the system which would enable a strategy to spend an
unbounded time with a bounded positive counter value. Both these reductions will be
carried out in deterministic polynomial time.

In more detail, the first reduction step takes A and outputs A′ given by replacing
T with a single fresh control state, qD (“D” for “diverging”), equipped with a single
outgoing rule (qD,+1, qD). By results of [4], this can be done in polynomial time. Ob-
viously, for q < T the value supσ P

σ
(q,i)(Term ∩ not reach T ) is the same in bothA∞ and

A′∞. Thus we may assume that T = ∅ when proving Lemma 1.
In the second reduction step, the property we need to assure holds in A is best

stated in terms of GA and the variables R(i). We need to guarantee that under every pure
memoryless strategy, lim infi→∞ R(i)/i is almost surely positive. 4

4 This value is sometimes called the mean payoff, see also [4].



zq ≤ −x + k + zr for all q ∈ Q1 and (q, k, r) ∈ δ,

zq ≤ −x +
∑

(q,k,r)∈δ Pq((q, k, r)) · (k + zr) for all q ∈ Q0,

x > 0.

Fig. 1. The system L of linear inequalities over x and zq, q ∈ Q.

For runs starting in a state q, we denote by Vq the random variable giving the
first time when q is revisited, or ∞ if it is not revisited. Let us call a pure memory-
less strategy, σ, for GA idling if there is a state, q, such that Pσq

(
Vq < ∞

)
= 1 and

Pσq
(
R(Vq) = 0

)
= 1. We want to modify the OC-MDP, so that idling is not possible,

without influencing the termination value. A technique to achieve this was already de-
veloped in our previous work [4], where we used the term “decreasing” for non-idling
strategies. There we gave a construction which preserves the property of optimal termi-
nation probability being = 1. We in fact can establish that that construction preserves
the exact termination value. Because the idea is not new, we leave details to [3].

After performing both reduction steps, we can safely assume that T = ∅ and
that there are no idling pure memoryless strategies. The next claim then follows from
Lemma 10 in [4]:

Claim. Under the assumptions above, for every pure memoryless strategy, σ, for GA,
and every q ∈ Q we have Pσq

(
lim infi→∞ R(i)/i > 0

)
= 1.

We shall now introduce a linear system of inequalities, L, which is closely related
to a standard LP that one can associate with a finite-state MDP with rewards, in order
to obtain its optimal mean payoff value. The solution to the system of inequalities L
will allow us to define a (sub)martingale that is critical for our arguments. This is an
extension, to OC-MDPs, of a method used in [7] for analysis of purely probabilistic one-
counter machines. The variables of L are x and zq, for all q ∈ Q. The linear inequalities
are defined in Figure 1.

Lemma 2. There is a non-negative rational solution (x̄, (z̄q)q∈Q) ∈ Q|Q|+1 to L, such
that x̄ > 0. (The binary encoding size of the solution is polynomial in ||A||.)

Proof. We first prove that there is some non-negative solution to L with x̄ > 0. The
bound on size then follows by standard facts about linear programming. To find a so-
lution, we will use optimal values of the MDP under the objective of minimizing dis-
counted total reward. For every discount factor, λ, 0 < λ < 1, there is a pure memoryless
strategy, σλ, for GA such that eλq(τ) B

∑
i≥0 λ

i · Eτq
[
R(i+1) − R(i)

]
is minimized by setting

τ B σλ. We prove that there is some λ, such that setting z̄q B eλq(σλ) and

x̄ B min
(
{k + eλr (σλ) − eλq(σλ) | q ∈ Q1, (q, k, r) ∈ δ}

∪ {Pq((q, k, r)) ·
(
k + eλr (σλ) − eλq(σλ)

)
| q ∈ Q0, (q, k, r) ∈ δ}

)
forms a non-negative solution to L with x̄ > 0.



Now we proceed in more detail. By standard results (e.g., [13]), for a fixed state, q,
and a fixed discount, λ < 1, there is always a pure memoryless strategy, σq, minimizing
eλq(τ) in place of τ. As we already proved in the Claim above, due to our assumptions
we have Pσq

q

(
lim infi→∞ R(i)/i > 0

)
= 1. Thus

∑
i≥0 ·E

τ
q

[
R(i+1) − R(i)

]
= ∞, and there is a

λ < 1 such that eλq(σq) > 0 for all q ∈ Q. Finally, observe that there is a single strategy,
σλ, which can be used as σq for all q. This is a consequence of σq being optimal also
in successors of q. Finally, x̄ > 0, because for all q ∈ Q0

eλq(σλ) =
∑
i≥0

λi · Eσλq

[
R(i+1) − R(i)

]
=

∑
(q,k,r)∈δ

Pq((q, k, r)) ·

k + λ ·
∑
i≥0

λi · Eσλr

[
R(i+1) − R(i)

]
=

∑
(q,k,r)∈δ

Pq((q, k, r)) ·
(
k + λ · eλr (σλ)

)
<

∑
(q,k,r)∈δ

Pq((q, k, r)) ·
(
k + eλr (σλ)

)
,

the last inequality following from eλr (σλ) > 0 for all r ∈ Q; and similarly for all q ∈ Q1
and (q, k, r) ∈ δ

eλq(σλ) =
∑
i≥0

λi · Eσλq

[
R(i+1) − R(i)

]
≤ k + λ ·

∑
i≥0

λi · Eσλr

[
R(i+1) − R(i)

]
= k + λ · eλr (σλ) < k + eλr (σλ).

ut

Recall the random variables {C(i)}i≥0 and {S (i)}i≥0, returning the height of the counter,
and the control state after completing i transitions. Given the solution (x̄, (z̄q)q∈Q) ∈
Q|Q|+1 from Lemma 2, we define a sequence of random variables {m(i)}i≥0 by setting

m(i) B

C(i) + z̄S (i) − i · x̄ if C( j) > 0 for all j, 0 ≤ j < i,
m(i−1) otherwise.

We shall now show that m(i) defines a submartingale. For relevant definitions of
(sub)martingales see, e.g., [11].

Lemma 3. Under an arbitrary strategy, τ, for A∞, and with an arbitrary initial con-
figuration (q, n), the process {m(i)}i≥0 is a submartingale.

Proof. Consider a fixed path, u, of length i ≥ 0. For all j, 0 ≤ j ≤ i the values C( j)(ω)
are the same for all ω ∈ Run(u). We denote these common values by C( j)(u), and simi-
larly for S ( j)(u) and m( j)(u). If C( j)(u) = 0 for some j ≤ i, then m(i+1)(ω) = m(i)(ω) for
every ω ∈ Run(u). Thus Eτ(q,n)

[
m(i+1) | Run(u)

]
= m(i)(u). Otherwise, consider the last

configuration, (r, l), of u. For every possible successor, (r′, l′), set

p(r′,l′) B

τ(u)((r, l)→ (r′, l′)) if r ∈ Q1,
Prob((r, l)→ (r′, l′)) if r ∈ Q0.



Then

Eτ(q,n)

[
C(i+1) −C(i) + z̄S (i+1) − x̄ | Run(u)

]
= −x̄ +

∑
(r,k,r′)∈δ

p(r′,l+k) · (k + z̄r′ ) ≥ z̄r.

This allows us to derive the following:

Eτ(q,n)

[
m(i+1) | Run(u)

]
= Eτ(q,n)

[
C(i+1) + z̄S (i+1) − (i + 1) · x̄ | Run(u)

]
= C(i)(u) + Eτ(q,n)

[
C(i+1) −C(i) + z̄S (i+1) − x̄ | Run(u)

]
− i · x̄

≥ C(i)(u) + z̄S (i)(u) − i · x̄ = m(i)(u). ut

Now we can finally prove Lemma 1. Denote by Term j the event of terminating after
exactly j steps. Further set z̄max B maxq∈Q z̄q −minq∈Q z̄q, and assume that C(0) ≥ z̄max.
Then the event Term j implies that m( j) − m(0) = z̄S ( j) − j · x̄ − C(0) − z̄S (0) ≤ − j · x̄.
Finally, observe that we can bound the one-step change of the submartingale value by
z̄max + x̄+1.Using the Azuma-Hoeffding inequality for the submartingale {m(n)}n≥0 (see,
e.g., Theorem 12.2.3 in [11]), we thus obtain the following bound for every strategy σ
and initial configuration (q, i) with i ≥ z̄max:

Pσ(q,i)
(
Term j

)
≤ Pσ(q,i)

(
m( j) − m(0) ≤ − j · x̄

)
≤ exp

(
−x̄2 · j2

2 j · (z̄max + x̄ + 1)

)
.

We choose c B exp
(

−x̄2

2·(z̄max+x̄+1)

)
< 1 and observe that

Pσ(q,i)(Term) =
∑
j≥i

Pσ(q,i)
(
Term j

)
≤

∑
j≥i

c j =
ci

1 − c
.

This choice of c, together with h B dz̄maxe, finishes the proof of Lemma 1. (The given
bounds on c and h are easy to check.) ut

3.3 Bounding N for general SSGs

For a control state q, let νq B supσ infπ Pσ,πq (LimInf (= −∞)) . Given a OC-SSG,
A = (Q, (Q0,Q1,Q2), δ, P), and ε > 0, we now show how to obtain a computable
bound on the number N such that

∣∣∣Val(Term, (q, i)) − νq

∣∣∣ < ε for all i ≥ N. Again,
by the arguments described in Section 3, once we have this, we have an algorithm for
approximating Val(Term, (q, i)).

By results in [2], there is always a counterless pure strategy, π∗, for Player 2 in GA,
such that

sup
σ

inf
π
Pσ,πq (LimInf (= −∞)) = sup

σ
Pσ,π

∗

q (LimInf (= −∞)) .

Observe that by fixing the choices of π∗ inA we obtain a maximizing OC-MDP,A∗ =

(Q∗, (Q∗0,Q
∗
1), δ∗, P∗), where Q∗0 = Q0 ∪ Q2, Q∗1 = Q1, δ∗ B {(q, k, r) ∈ δ | q ∈ Q0 ∪

Q1 ∨ π
∗(q) = r}, and P∗ is the unique (forA∗) extension of P to states from Q2.

Slightly abusing notation, denote also by π∗ the strategy forA∞ which corresponds,
in the sense explained in Section 2, to π∗ for GA. Then νq = Pσ,π

∗

q (LimInf (= −∞)) ≤
Val(Term, (q, i)) ≤ Pσ,π

∗

(q,i) (Term) . Applying Lemma 1 to the OC-MDPA∗ thus allows us
to give a computable (exponential) bound on N, givenA.
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