
Efficient Verification Algorithms for One-Counter
Processes

Antonı́n Kučera⋆

Faculty of Informatics MU, Botanická 68a, 60200 Brno, Czech Republic,tony@fi.muni.cz

Abstract. We study the problem of strong/weak bisimilarity between processes
of one-counter automata and finite-state processes. We showthat the problem of
weak bisimilarity between processes of one-counter nets (which are ‘weak’ one-
counter automata) and finite-state processes isDP-hard (in particular, it means
that the problem is bothNP and co-NP hard). The same technique is used to
demonstrateco-NP-hardness of strong bisimilarity between processes of one-
counter nets. Then we design an algorithm which decides weakbisimilarity be-
tween processes of one-counter automata and finite-state processes in time which
is polynomial for most ‘practical’ instances, giving a characterization of all hard
instances as a byproduct. Moreover, we show how to efficiently compute a rather
tight bound for the time which is needed to solve a given instance. Finally, we
prove that the problem of strong bisimilarity between processes of one-counter
automata and finite-state processes is inP.

1 Introduction

In concurrency theory,processesare typically understood as (being associated with)
states intransition systems, a fundamental and widely accepted model of discrete sys-
tems. Formally, a transition system is a tripleT = (S, Σ,→) whereS is a set ofstates,
Σ is a finite set ofactions(or labels), and→⊆ S × Σ × S is a transition relation.
We writes

a
→ t instead of(s, a, t) ∈→ and we extend this notation to elements ofΣ∗

in the natural way. A statet is reachablefrom a states iff there isw ∈ Σ∗ such that
s

w
→ t. A systemT is finite-stateiff the set of states ofT is finite.

Theequivalence approachto formal verification of concurrent systems is based on
the following scheme: One describes thespecification(the intended behaviour)S and
the implementationI of a given system in some ‘higher’ formalism whose semantics
is given in terms of transition systems, and then it is shown thatS andI areequiva-
lent. Actually, there are many ways how to capture the notion of process equivalence
(see, e.g., [18]). It seems, however, thatbisimulation equivalence[15, 13] is of spe-
cial importance, as its accompanying theory has been developed very intensively. Let
T = (S, Σ,→) be a transition system. A binary relationR ⊆ S × S is a bisimula-
tion iff whenever(s, t) ∈ R, then for eachs

a
→ s′ there is somet

a
→ t′ such that

(s′, t′) ∈ R, and for eacht
a
→ t′ there is somes

a
→ s′ such that(s′, t′) ∈ R. States

s, t arebisimulation equivalent(or bisimilar), writtens ∼ t, iff there is a bisimulation
⋆ Supported by the Grant Agency of the Czech Republic, grants No. 201/98/P046 and

No. 201/00/0400.

relating them. Bisimulations can also be used to relate states ofdifferenttransition sys-
tems; formally, two systems can be considered as a single oneby taking their disjoint
union. An important variant of bisimilarity isweak bisimilarityintroduced by Milner
in his work on CCS [13]. This relation distinguishes between‘external’ and ‘internal’
computational steps, and allows to ‘ignore’ the internal steps (which are usually de-
noted by a distinguished actionτ) to a certain extent. Formally, we define theextended
transition relation⇒⊆ S × Σ × S as follows:s

τ
⇒ t iff t is reachable froms via a

finite (and possibly empty) sequence of transitions labelled by τ (note thats
τ
⇒ s for

eachs), ands
a
⇒ t wherea 6= τ iff there are statesu, v such thats

τ
⇒ u

a
→ v

τ
⇒ t.

The relation ofweak bisimulationis defined in the same way as bisimulation, but ‘⇒’
is used instead of ‘→’. Processess, t areweakly bisimilar, writtens ≈ t, iff there is a
weak bisimulation relating them. To prevent a confusion about bisimilarity and weak
bisimilarity, we refer to bisimilarity asstrong bisimilarityin the rest of this paper.

In this paper we study the complexity of checking strong and weak bisimilarity
between processes of transition systems generated by (certain subclasses of)push-
down automataand processes of finite-state systems. Apushdown automatonis a tuple
P = (Q, Γ, Σ, δ) whereQ is a finite set ofcontrol states, Γ is a finitestack alphabet,
Σ is a finite input alphabet, andδ : (Q × Γ) → 2Σ×(Q×Γ∗) is a transition function
with finite image. We can assume (w.l.o.g.) that each transition increases the height (or
length) of the stack at most by one (each PDA can be efficientlytransformed to this
kind of normal form). ToP we associate the transition systemTP whereQ × Σ∗ is
the set of states,Σ is the set of actions, and the transition relation is determined by
(p, Aα)

a
→ (q, βα) iff (a, (q, β)) ∈ δ(p, A). As usual, we writepγ instead of(p, γ)

and we useε to denote the empty word. The size ofP is the length of a string which
is obtained by writing all elements of the tuple linearly in binary. The size of a process
pα of is the length of its corresponding binary encoding. Pushdown processes (i.e., pro-
cesses of pushdown automata) have their origin in theory of formal languages [5], but
recently (i.e., in the last decade) they have been found appropriate also in the context
of concurrency theory because they provide a natural and important model of sequen-
tial systems. In this paper we mainly concentrate on a subclass of pushdown automata
where the stack behaves like acounter. Such a restriction is reasonable because in prac-
tice we often meet systems which can be abstracted to finite-state programs operating on
a single unbounded variable. For example, network protocols can maintain the count on
how many unacknowledged messages have been sent, printer spool should know how
many processes are waiting in the input queue, etc. Formally, aone-counter automaton
A is a pushdown automaton with just two stack symbolsI andZ; the transition function
δ of A is a union of functionsδZ andδI whereδZ : (Q × {Z}) → 2Σ×(Q×({I}∗{Z}))

andδI : (Q × {I}) → 2Σ×(Q×{I}∗). Hence,Z works like a bottom symbol (which
cannot be removed), and the number ofI ’s which are stored in the stack represents the
counter value. Processes ofA (i.e., states ofTA) are of the formpIiZ. In the rest of
this paper we adopt a more intuitive notation, writingp(i) instead ofpIiZ. It is worth
to note that the size ofp(i) isO(i) andnotO(log i), becausep(i) is just asymbolicab-
breviation forpαZ whereα is a string ofi symbolsI. Again, we assume (w.l.o.g) that
each transition increases the counter at most by one. A proper subclass of one-counter
automata of its own interest areone-counter nets. Intuitively, OC-nets are ‘weak’ OC-

automata which cannot test for zero explicitly. They are computationally equivalent to a
subclass of Petri nets [16] with (at most) one unbounded place. Formally, aone-counter
net N is a one-counter automaton such that whenever(a, qIiZ) ∈ δZ(p, Z), then
(a, qIi+1) ∈ δZ(p, I). In other words, each transition which is enabled at zero-level
is also enabled at (each) non-zero-level. Hence, there are no ‘zero-specific’ transitions
which could be used to ‘test for zero’.

Observe that the out-going transitions of a OC processq(i) wherei > 0 do not
depend on the actual value ofi. Hence, the structure of transition systems which are
associated with OC-automata (and, in particular, with OC-nets) is rather regular—they
consist of a ‘zero pattern’ and a ‘non-zero pattern’ which isrepeated infinitely often.
Despite this regularity, some problems for OC-automata (and even for OC-nets) are
computationally hard, as we shall see in the next section.

Now we give a short summary of relevant results for PDA and OC automata. The
decidability of strong bisimilarity for processes of stateless PDA (which are also known
as BPA processes) is due to [3]. Another (incomparable) positive result is [6] where it is
shown that strong bisimilarity is decidable for processes of OC-automata. These results
have been recently extended to general PDA in [17]. The problem of weak bisimilarity
is still open for all of the mentioned (sub)classes. The decidability of strong/weak bisim-
ilarity between processes of a (general) classC and finite-state ones has been studied in
[7]. It is shown that the problem can be reduced to the model-checking problem for a
temporal logic EF and processes ofC. Since EF is decidable for PDA processes, it suf-
fices for showing the decidability, but the obtained algorithm is not very efficient—we
only obtainEXPTIME upper-bound in this way for both strong and weak bisimilarity.
Recently,PSPACElower-bound for the problem of strong (and hence also weak) bisim-
ilarity between PDA and FS processes has been given in [12]. Asomewhat surprising
result is [11] which says that strong and weak bisimilarity between BPA processes and
finite-state ones is inP. OC-nets are studied, e.g., in [1, 9] where it is shown that simu-
lation equivalence (which is coarser than strong bisimilarity) is decidable for processes
of OC-nets, and in [8] where a close relationship between simulation problems for OC-
nets and the corresponding bisimulation problems for OC-automata is established.

In this paper we concentrate on the complexity of checking strong and weak bisim-
ilarity between processes of OC-automata and FS processes.Our motivation is that the
specification or the implementation of a system which is to beverified (see above) can
often be specified as a finite-state process. Moreover, a number of ‘classical’ verification
problems (e.g., liveness, safety) can be easily reduced to the problem of weak bisimilar-
ity with a finite-state system. For example, if we want to check that the actiona is live
for a processg (i.e., each state which is reachable fromg can reach a state which can
emit a), we can rename all actions ofg excepta to τ and then check weak bisimilarity
betweeng andf wheref is a one-state process with the only transitionf

a
→ f .

In Section 2, it is shown that the problem of weak bisimilarity between processes
of OC-nets and FS processes isDP-hard, even for a fixed finite-state process (intu-
itively, the classDP [14] is expected to be somewhat larger than the union ofNP and
co-NP; however, it is still contained in the∆2 = P

NP level of the polynomial hierar-
chy). Here we have to devise a special technique for encoding, guessing, and checking
assignments of Boolean variables in the structure of OC-nets. As transition systems

which are associated with OC-nets are rather regular, the method is not straightforward
(observe that assignments are easy to handle with a stack; itis not so easy if there is
only (one) counter at our disposal). Using the same technique we also show that strong
bisimilarity between processes of OC-nets isco-NP-hard (strong bisimilarity between
processes of OC-automata and finite-state processes is already polynomial—see be-
low). Assuming the expected relationship among complexityclasses, theDP-hardness
result for weak bisimilarity actually says that any deterministic algorithm which decides
the problem requires exponential time in the worst case. Rather than trying to establish
DP-completeness, we turn our attention to a more ‘practical’ direction—in Section 3 we
design an algorithm which decides weak bisimilarity between a processp(i) of a OC-
automatonA and a processf of a finite-state systemF in time O(n3 m5 z3 (i + 1))
wheren is the size ofA, m is the size ofF , andz is a special constant which depends
on A. So, if there was noz, or if z was always ‘small’, the problem would be inP.
However,z canbe much (exponentially) larger thann in general. However, it follows
from the way howz is defined that the automaton must beveryperverse to make its as-
sociatedz large (a good example is the automaton constructed in theDP-hardness proof
of Section 2). Hence, we conclude that our algorithm is actually efficient for many (if
not all) practical instances, giving a sort of ‘characterization’ of all hard instances as
a byproduct. Another advantage of our algorithm is that we can efficiently estimate
the time which is needed to solve a given instance—although the computation ofz for
a given automatonA may take exponential time in general, we can efficiently (i.e., in
polynomial time) compute a quite reliable bound forz. All hard instances are efficiently
recognized in this way; it can also happen that some ‘easy’ instance is incorrectly de-
clared as hard, but we argue that such situations are quite rare. The algorithm also works
for strong bisimilarity, but in this case it only needs polynomial time—we obtain (as a
simple consequence) that the problem of strong bisimilarity between OC processes and
finite-state ones is inP. Proofs which were omitted due to space constraints can be
found in [10].

2 Lower Bounds

In this section we show that the problem of weak bisimilaritybetween processes of
OC-nets and finite-state processes isDP-hard (even for afixedfinite-state process), and
that the problem of strong bisimilarity between processes of OC-nets isco-NP-hard.

Theorem 1. The problem of weak bisimilarity between processes of one-counter nets
and finite-state processes isDP-hard.

Proof. For purposes of this proof, we first fix the following finite-state systemF :

C

a b

ba

τ

ba

1a

a2

C1

2

A

A

τ

P

P

P

τ

D

c

c

τ

We showDP-hardness by reduction of theDP-complete problem SAT-UNSAT. An in-
stance of the SAT-UNSAT problem is a pair(ϕ1, ϕ2) of Boolean formulae in CNF. The

question is whetherϕ1 is satisfiable andϕ2 unsatisfiable. First, we describe a poly-
nomial algorithm which for a given formulaϕ in CNF constructs a one-counter net
Nϕ and its processsϕ(0) such thatϕ is satisfiable iffsϕ(0) ≈ P1, andϕ is unsatis-
fiable iff sϕ(0) ≈ P2, whereP1, P2 are the (fixed) FS processes of the systemF . It
clearly suffices for our purposes, because then we can also construct a one-counter net
N by taking the disjoint union ofNϕ1

, Nϕ2
and adding a new control states together

with transitionssZ
a1→ sϕ1

Z, sI
a1→ sϕ1

I andsZ
a2→ sϕ2

Z, sI
a2→ sϕ2

I (the non-zero
transitions are added just to fulfil the constraints of the definition of OC nets). Clearly
(ϕ1, ϕ2) is a positive instance of the SAT-UNSAT problem iff s(0) ≈ P whereP is the
fixed FS process of the systemF .

In our proof we use the following theorem of number theory (see, e.g., [2]): Letπi

be theith prime number, and letf : N → N be a function which assigns to eachn

the sum
∑n

i=1 πi. Thenf is O(n3). (In our case, it suffices to know that the sum is
asymptotically bounded by a polynomial inn.) With the help of this fact we can readily
confirm that the below described construction is indeed polynomial.

Letϕ ≡ C1∧· · ·∧Cm be a formula in CNF whereCi are clauses over propositional
variablesx1, · · · , xn. We assume (w.l.o.g.) that for every assignmentν : {x1, · · · , xn} →
{true, false} there is at least one clauseCi such thatν(Ci) = true (this can be
achieved, e.g., by adding the clause(x1∨¬x1) to ϕ). Furthermore, we also assume that
ϕ is not a tautology, i.e., there is at least one assignmentν such thatν(ϕ) = false

(it actually means that there is a clause where no variable appears both positively and
negatively). The construction ofNϕ = (Q, {I, Z}, {a, b, c, τ}, δ) will be described in a
stepwise manner. The setsQ andδ are initially empty. For each clauseCi, 1 ≤ i ≤ m,
we do the following:

– We add new control statesci andqi to Q. Moreover, for each variablexj and each
k such that0 ≤ k < πj we add toQ a control state〈Ci, xj , k〉 (observe that for
eachCi we addO(n4) states in this way).

– We add toδ the transitionqiI
c
→ qiI.

– For each1 ≤ j ≤ n we add toδ the transitionsciI
τ
→ 〈Ci, Xj, 0〉I andciI

τ
→ qI.

– For all j, k such that1 ≤ j ≤ n and0 ≤ k < πj we add toδ the transition
〈Ci, xj , k〉I

τ
→ 〈Ci, xj , (k + 1) mod πj〉ε.

– For all j, k such that1 ≤ j ≤ n and 0 ≤ k < πj we add toδ the ‘loop’
〈Ci, xj , k〉I

c
→ 〈Ci, xj , k〉I.

– If a variablexj doesnot appear positively in a clauseCi, then we add toδ the loop
〈Ci, xj , 0〉Z

c
→ 〈Ci, xj , 0〉Z.

– If a variablexj does not appear negatively in a clauseCi, then we add toδ the loops
〈Ci, xj , k〉Z

c
→ 〈Ci, xj , k〉Z for every1 ≤ k < πj .

If we draw the transition system which is generated by the current approximation of
Nϕ, we obtain a collection ofGi graphs,1 ≤ i ≤ m; eachGi corresponds to the ‘sub-
graph’ ofTNϕ

which is obtained by restrictingQ to the set of control states which have
been added for the clauseCi. The structure ofGi is shown in the following picture.
(To understand this figure, observe that transition systemsassociated to OC-automata
can be viewed as two-dimensional ‘tables’ where column-indexes are control states and
row-indexes are counter values (0, 1, 2, . . .). As the out-going transitions of a stateq(i)

wherei > 0 do not depend on the actual value ofi, it suffices to depict the out-going
transitions at zero and (some) non-zero level.)

cc cc c c

c c c c c cc c

<C ,X ,0> <C ,X ,1>1 2 2 21 n n

0:

τ τ τ τ τ τ τ τ

<C ,X ,1><C ,X ,0>

>0:

<C ,X ,0> <C ,X ,1> <C ,X ,2>qc i iiiiiiii

c
τ

n πn<C , X , -1>i

τ

τ

τ

Now we give several important facts aboutGi (each fact easily follows from the previ-
ous ones):

– For eachl > 0 we have thatci(l)
τ
⇒ 〈Ci, xj , k〉(0) iff l mod πj = k.

– For eachl > 0, the stateci(l) ‘encodes’ the (unique) assignmentνl defined by
νl(xj) = true iff ci(l)

τ
⇒ 〈Ci, xj , 0〉(0); conversely, for each assignmentν there

is l ∈ N such thatν = νl (for example, we can putl = Πn
j=0f(j), wheref(j) = πj

if ν(xj) = true, andf(j) = 1 otherwise).
– For eachl > 0 we have the following:

• νl(Ci) = false iff ci(l) ≈ C for the stateC of the systemF . Indeed, if
νl(Ci) = false, thenci(l) cannot reach any of the ‘zero-states’ where the
actionc is disabled—it can only emitc’s (possibly with some intermediateτ ’s)
without a possibility to terminate.

• νl(Ci) = true (i.e., the clauseCi is true forνl) iff ci(l) ≈ C for the stateC
of the systemF . This also explains the role of the control stateqi — we need
it to make sure that the transitionC

τ
→ D can always be matched.

We finish the construction ofNϕ by connecting theGi components together. To do that,
we add two new control statessϕ andr to Q, and enrichδ by adding the transitions

sϕZ
τ
→ sϕIZ, sϕI

τ
→ sϕI I, sϕI

τ
→ rI, andrI

b
→ ciI for every1 ≤ i ≤ m. The

structure ofTNϕ
is shown below.

0:

G G G1 2 m

>0:
a b

b

b

r c cs

τ

τ

ϕ cm21

Now we can observe the following:

– For eachl > 0 we have that
• νl(ϕ) = true iff r(l) ≈ A for the stateA of the systemF . To see this, realize

thatνl(ϕ) = true iff νl(Ci) = true for each1 ≤ i ≤ m iff ci(l) ≈ C for
each1 ≤ i ≤ m due to the previous observations.

• νl(ϕ) = false iff r(l) ≈ A for the stateA of the systemF . A proof is similar
to the previous case; here we also need the assumption that atleast one clause

of ϕ is true forνl (so that we can be sure that the transitionA
b
→ C can be

matched byr(l)).
– ϕ is unsatisfiable iffsϕ(0) ≈ P2 for the stateP2 of F . Indeed,sϕ(0) can perform its

a
⇒ move only by going to some (arbitrary)r(l). If ϕ is unsatisfiable, thenνl(ϕ) =

false for each suchr(l), hence all
a
⇒ successors ofsϕ(0) are weakly bisimilar to

A (see above), hencesϕ(0) ≈ P2. If ϕ is satisfiable, then there is a movesϕ(0)
a
⇒

r(l) for somel such thatνl(ϕ) = true, hencer(l) ≈ A andr(l) 6≈ A. Therefore,
P2 cannot match thesϕ(0)

a
⇒ r(l) move and thussϕ(0) 6≈ P2.

– ϕ is satisfiable iffsϕ(0) ≈ P1 for the stateP1 of F . It is checked in the same
way as above. Here we use the assumption thatϕ is not a tautology, i.e.,sϕ(0) can
always choose an assignment which makesϕ false (i.e.,sϕ(0) can always match
the transitionP1

a
→ A). ⊓⊔

The main reason why we could not extend the hardness result tosome higher complex-
ity class (e.g.,PSPACE) is that there is no apparent way how to implement a ‘stepwise-
guessing’ of Boolean variables which would allow to encode,e.g., the QBF problem;
each such attempt resulted in an exponential blow-up in the number of control states.
However, we can still re-use our technique to prove the following:

Theorem 2. The problem of strong bisimilarity between processes of one-counter nets
is co-NP-hard.

Proof. We use a similar construction as in the proof of Theorem 1. Given a formulaϕ
in CNF, we construct two one-counter netsN ,N and their processess(0), s(0) such
that ϕ is unsatisfiable iffs(0) ∼ s(0). The netN is just a slight modification of the
netNϕ of Theorem 1 — we only rename allτ -labels toc. A key observation is that
ϕ is unsatisfiable iff after each sequence of transitions of the formc∗a (i.e., after each
choice of an assignment) there is ab-transition to a state which can only emit an infinite
sequence ofc actions without a possibility to terminate (i.e., at least one clause is false
for any assignment). The netN is a ‘copy’ ofN but we also add a new control state

q and transitionsqI
c
→ qI, rI

b
→ qI wherer is a ‘twin’ of the stater of Nϕ. We put

s ands to be the corresponding twins of the statesϕ of Nϕ. Now we can easily check
thatϕ is unsatisfiable iffs(0) ∼ s(0) — the crucial argument is stated above. ⊓⊔

3 Efficient Algorithms

In this section we design an algorithm which decides weak bisimilarity between pro-
cesses of OC-automata and finite-state processes. As expected, the algorithm requires

exponential time in the worst case. However, it works ratherefficiently for many (and
we believe that almost all) ‘practical’ instances. It also works for strong bisimilarity
where it needs only polynomial time.

Let T = (S, Σ,→) be a transition system. For eachi ∈ N0 we define the relation
≈i inductively as follows:≈0 = S × S; ands ≈i+1 t iff s ≈i t and for eachs

a
⇒ s′

there is somet
a
⇒ t′ such thats′ ≈i t′, and vice versa. (The≈i relations are also

used to relate states of different transition systems; formally, we consider two transition
systems to be a single one by taking their disjoint union.) Our algorithm relies on the
following theorem established in [7]:

Theorem 3. LetG = (G, Σ,→) be a (general) transition system andF = (F, Σ,→)
a finite-state system. We say that a stateg ∈ G is goodw.r.t. i ∈ N0 iff there isf ∈ F

such thatg ≈i f ; g is badw.r.t. i iff g is not good w.r.t.i.
Letg ∈ G, f ∈ F , andk = |F |. It holds thatg ≈ f iff g ≈k f and each state which

is reachable fromg is good w.r.t.k.

For the rest of this section we fix a one-counter automatonA = (Q, {I, Z}, Σ, δ) of
sizen, and a finite-state systemF = (F, Σ,→) of sizem.

To decide weak bisimilarity between processesp(i) of A andf of F , it suffices
(by Theorem 3) to find out ifp(i) ≈m f and whetherp(i) can reach a state which is
bad w.r.t.m. We do that by constructing a constantz such that for each stateq(j) of
TA wherej ≥ (4m + 1)z we have thatq(j) ≈m q(j − z). In other words, each state
of TA is (up to≈m) represented by another (and effectively constructible) state whose
counter value is bounded by(4m + 1)z. Then we convert this ‘initial part’ ofTA to
a finite-state systemFA and construct the≈m relation between states ofFA andF .
The question ifp(i) ≈m f is then easy to answer (we look if the representant ofp(i)
within FA is related withf by≈m). The question ifp(i) can reach a state which is bad
w.r.t.m still requires some development—we observe that states which are bad w.r.t.m
are ‘regularly distributed’ inTA and construct a description of that distribution (which
is ‘read’ fromFA) in a form of a finite-state automatonM which recognizes all bad
states. Then we use an algorithm of [4] which constructs fromM an automatonM′

recognizing the set of all states which can reach a state recognized byM, and look
whetherM′ acceptsp(i). All procedures we use are polynomial in the size ofFA.
Hence, it is only the size ofz which can make the problem computationally hard. The
construction ofz can require exponential time; however, we give an algorithmwhich
efficiently (i.e., in polynomial time) computes a reliable upper boundZ for z.

Intuitively, the only difference between processesp(i), p(j), wherei 6= j, is the
way how they can access the ‘zero level’. As long as the counter remains positive, each
process can ‘mimic’ moves of the other process by entering the same control state and
performing the same operation on the counter. Observe that the counter can be generally
decremented by an unbounded value in a single

a
⇒ step (due to an unbounded number

of τ -transitions). The next definitions and lemmata reveal a crucial periodicity in the
structure ofTA which shows that decrementing the counter ‘too much’ in one

a
⇒ step

is not the thing which allows to demonstrate a possible difference betweenp(i), p(j).
For eachl ∈ N0 we define a family of binary relations

a
⇒l, a ∈ Σ, over the set of

states ofTA as follows:p(i)
a
⇒l q(j) iff there is a sequence of transitions fromp(i) to

q(j) which forms one ‘
a
⇒’ move and the counter value remains greater or equall in all

states which appear in the sequence (includingp(i) andq(j)).

Definition 1. We define a functionstepA : Q → 2Q by stepA(p) = {q ∈ Q | p(2)
τ
⇒1

q(1)}.

Since the reachability problem for one-counter automata (and even for pushdown au-
tomata) is inP, the functionstepA is effectively constructible in polynomial time. As
the out-going transitions of a statep(i) for i > 0 do not depend on the actual value ofi,
for eachi ∈ N we have thatq ∈ stepA(p) iff p(i + 1)

τ
⇒i q(i).

We extendstepA to subsets ofQ by stepA(M) =
⋃

p∈M stepA(p). For eachp ∈ Q

we now define the sequenceCp inductively as follows:Cp(1) = {p} andCp(i + 1) =
stepA(Cp(i)). The next lemma is easy to prove by a straightforward induction oni.

Lemma 1. For all p ∈ Q andi, j ∈ N we have thatq ∈ Cp(j) iff p(i + j)
τ
⇒i q(i).

Another simple observation is that the sequenceCp is (for everyp ∈ Q) of the form
Cp = αpβ

ω
p whereαp, βp are finite sequences of pairwise different subsets ofQ (due to

the assumption that the elements ofαp andβp are pairwise different we also have that
αp andβp areunique). Note thatβp can also consist of just one element∅. We define
theprefixandperiod of p, denotedpre(p) andper(p), to be the length ofαp andβp,
respectively. Now we put

z = max{pre(p) | p ∈ Q} · lcm{per(p) | p ∈ Q}

wherelcm(M) denotes the least common multiply of elements ofM . As we shall see,
max{pre(p) | p ∈ Q} is alwaysO(n2). However,lcm{per(p) | p ∈ Q} can beexpo-
nential in n (for example, examine the netNϕ constructed in the proof of Theorem 1).
As we already mentioned, the size ofz is the only thing which can make the considered
problem hard. Hence, we obtain a kind of ‘characterization’of all hard instances—
OC-automata which are presented in hard instances must contain many ‘decreasing
τ -cycles’ of an incomparable length. Also observe that the construction ofz can re-
quire exponential time, becauseper(p) for a givenp can be exponential inn (in the end
of this section we show how to compute a reasonable upper bound Z for z efficiently).
The following lemma is immediate:

Lemma 2. For all p ∈ Q andi ≥ z we have thatCp(i) = Cp(i + z).

The next three lemmata provide a crucial observation about the structure ofTA and
precisely formulate the intuition that ‘decreasing the counter too much in one

a
⇒ step

does not help’. Proofs can be found in [10].

Lemma 3. For all p ∈ Q andj ∈ N it holds that

– if there is a sequence ofτ -transitions fromp(j+2z) to (some)q(l) which decreases
the counter toj at some point, thenp(j + z)

τ
⇒ q(l);

– if there is a sequence ofτ -transitions fromp(j + z) to (some)q(l) which decreases
the counter toj at some point, thenp(j + 2z)

τ
⇒ q(l);

Lemma 4. For all p ∈ Q andj ∈ N it holds that

– if there is a sequence of transitions forming one ‘
a
⇒’ move fromp(j+4z) to (some)

q(l) which decreases the counter toj at some point, thenp(j + 3z)
a
⇒ q(l);

– if there is a sequence of transitions forming one ‘
a
⇒’ move fromp(j+3z) to (some)

q(l) which decreases the counter toj at some point, thenp(j + 4z)
a
⇒ q(l);

Lemma 5. Let p ∈ Q andk ∈ N0. For eachc > (4k + 1)z we have thatp(c) ≈k

p(c − z).

Now we are almost in a position to prove the first main theorem of this section. It
remains to extend our equipment with the following tool:

Definition 2. Let P = (Q, Γ, Σ, δ) be a pushdown automaton,M = (S, Γ, γ, F) a
nondeterministic finite-state automaton (note that the input alphabet ofM is the stack
alphabet ofP), andInit : Q → S a total function. A processpα of P is recognizedby
the pair (M, Init) iff γ̂(Init(p), α) ∩ F 6= ∅ whereγ̂ is the natural extension ofγ to
elements ofS × Γ ∗.

The next theorem is taken from [4].

Theorem 4. Let P = (Q, Γ, Σ, δ) be a pushdown automaton,M = (S, Γ, γ, F)
a finite-state automaton, andInit : Q → S a total function. LetN be the set of
processes recognized by(M, Init). Then one can effectively construct an automaton
M′ = (S, Γ, γ′, F) in timeO(|δ| · |S|3) such that(M′, Init) recognizes the set

Pre∗(N) = {qβ | qβ →∗ pα for somepα ∈ N}

of all predecessors ofN .

Theorem 5. The problem of weak bisimilarity between processesp(i) ofA andf ofF
is decidable inO(n3 m5 z3 (i + 1)) time.1

Proof. By Theorem 3, we need to find out whetherp(i) ≈m f and whetherp(i) can
reach a state which is bad w.r.t.m. Due to Lemma 5 we know that the set of all states of
TA up to≈m can be represented by the subset of states ofTA where the counter value
is at most(4m + 1)z. Formally, we first define the functionB : (Q×N0) → (Q×N0)
as follows (where〈q, j〉 is just another notation forq(j)):

B(〈q, j〉) =







〈q, j〉 if j ≤ (4m + 1)z;
〈q, (4m + 1)z〉 if j > (4m + 1)z and(j mod z) = 0;
〈q, 4mz + (j mod z)〉 if j > (4m + 1)z and(j mod z) 6= 0.

An immediate consequence of Lemma 5 is that for allq ∈ Q andj ∈ N0 we have
q(j) ≈m B(q(j)). Now we define a finite-state systemFA = (FA, Σ, →֒) whereFA is
the image ofB (i.e.,FA = {q(j) | q ∈ Q, 0 ≤ j ≤ (4m + 1)z}), Σ is the set of actions

1 Note that we need a non-constant time even in the particular case wheni = 0 (the problem is
still DP-hard). That is why we write ‘i + 1’.

of A, and→֒ is the least relation satisfying the following: ifr(k)
a
→ s(l) is a transition

of TA, thenB(r(k))
a
→֒ B(s(l)). Observe thatFA is actually the ‘initial part’ ofTA;

the only difference is that all up-going transitions of states at level(4m+1)z are ‘bent’
down to the corresponding≈m-equivalent states at level4mz + 1. Note that for each
q(j) we still have thatq(j) ≈m B(q(j)) (whenB(q(j)) is seen as a state ofFA). The
number of states ofFA is O(n m z); moreover, the number of out-going transitions at
each ‘level’ ofTA isO(n), hence the size of→֒ isO(n m z), which means that the total
size ofFA is alsoO(n m z).

Now, let us realize that if we have a finite-state system of size t, it takesO(t3) time
to compute the associated ‘

a
⇒’ relation (for each states and actiona we needO(t) time

to compute the set{r | s
a
⇒ r}). Therefore, we needO(n3 m3 z3) time to construct the

extended transition relations forFA andF . To compute the≈m relation between the
states ofFA andF , we defineR0 = FA×F , andRi+1 = Exp(Ri) where the function
Exp : (FA × F) → (FA × F) refines its argument according to the definition of≈i

— a pair(r(j), g) belongs toExp(R) iff it belongs toR and for each ‘
a
⇒’ move of one

component there is a corresponding ‘
a
⇒’ move of the other component such that the

resulting pair of states belongs toR. Clearly, for each pair(r(j), g) of FA×F we have
thatr(j) ≈m g iff (r(j), g) ∈ Rm. It remains to clarify the time costs. The function
Exp is computedm times. Each time,O(n m2 z) pairs are examined. For each such
pair we have to check the membership toExp(R). This takes onlyO(n m2 z) time,
because the extended transition relations have already been computed. To sum up, we
needO(n3 m5 z3) time in total.

To check ifp(i) ≈m f , we simply look if(B(p(i), f)) ∈ Rm. It remains to find out
whetherp(i) can reach a stateq(j) which is bad w.r.t.m. Observe thatq(j) is bad w.r.t.
m iff the stateB(q(j)) of FA is bad w.r.t.m. Therefore, we can easily construct a finite-
state automatonM and a functionInit such that the pair(M, Init) recognizes the set of
all bad states ofTA — we putM = (S, {I, Z}, γ, {fin}) whereS = {fin}∪{p(i) | p ∈
Q, 0 ≤ i ≤ (4m + 1)z} andγ is the least transition function satisfying the following:

– p(i + 1) ∈ γ(p(i), I) for all p ∈ Q, 0 ≤ i < (4m + 1)z;
– p(4mz + 1) ∈ γ(p((4m + 1)z), I) for eachp ∈ Q;
– if a statep(i) of FA is bad, thenfin ∈ γ(p(i), Z).

The functionInit is defined byInit(p) = p(0) for all p ∈ Q. Note thatM has
O(n m z) states. Now we compute the automatonM′ of Theorem 4 (it takesO(n2 m z)
time) and check if(M′, Init) recognizesp(i). This can be done inO(n m z (i + 1))
time becauseM′ has the same set of states asM.

We see thatO(n3 m5 z3 (i + 1)) time suffices for all of the aforementioned proce-
dures. ⊓⊔

Our algorithm also works for strong bisimilarity in the following way: If we are to
decide strong bisimilarity betweenp(i) andf , we first rename allτ -transitions ofA
andF with some (fresh) actione (it does not change anything from the point of view
of strong bisimilarity, because here theτ -transitions are treated as ‘ordinary’ ones).
As there are noτ -transitions anymore, there is no difference between strong and weak
bisimilarity, hence we can use the designed algorithm. Alsoobserve that if there are no
τ ’s thenz = 1, so we can conclude:

Corollary 1. The problem of strong bisimilarity between processesp(i) of A andf of
F is in P.

As we already mentioned, the construction ofz can take exponential time. Now we
show how to compute a rather tight upper boundZ for z in polynomial time. The
associated lemmata and proofs can be found in [10].

Theorem 6. We say thatp ∈ Q is self-embeddingiff p ∈ Cp(i) for somei ≥ 2. Let
us defineZ = (|Q|2 + |Q|) · lcm{per(p) | p ∈ Q is self-embedding}. ThenZ can be
computed in time which is polynomial inn. Moreover,z ≤ Z.

References

1. P.A. Abdulla and K.̌Cer āns. Simulation is decidable for one-counter nets. InProceedings of
CONCUR’98, volume 1466 ofLNCS, pages 253–268. Springer, 1998.

2. E. Bach and J. Shallit.Algorithmic Number Theory. Vol. 1, Efficient Algorithms. The MIT
Press, 1996.

3. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable for all
context-free processes.Information and Computation, 121:143–148, 1995.

4. J. Esparza and P. Rossmanith. An automata approach to someproblems on context-free
grammars. InFoundations of Computer Science, Potential – Theory – Cognition, volume
1337 ofLNCS, pages 143–152. Springer, 1997.

5. J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

6. P. Jančar. Bisimulation equivalence is decidable for one-counter processes. InProceedings
of ICALP’97, volume 1256 ofLNCS, pages 549–559. Springer, 1997.

7. P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes. InProceedings of ICALP’98, volume 1443 ofLNCS, pages 200–211. Springer,
1998.

8. P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-counter processes.
In Proceedings of STACS 2000, volume 1770 ofLNCS, pages 334–345. Springer, 2000.

9. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. InPro-
ceedings of SOFSEM’99, volume 1725 ofLNCS, pages 404–413. Springer, 1999.

10. A. Kučera. Efficient verification algorithms for one-counter processes. Technical report
FIMU-RS-2000-03, Faculty of Informatics, Masaryk University, 2000.

11. A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in
polynomial time. InProceedings of CONCUR’99, volume 1664 ofLNCS, pages 368–382.
Springer, 1999.

12. R. Mayr.Private communication. 1999.
13. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
14. Ch. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.
15. D.M.R. Park. Concurrency and automata on infinite sequences. InProceedings5th GI

Conference, volume 104 ofLNCS, pages 167–183. Springer, 1981.
16. W. Reisig.Petri Nets—An Introduction. Springer, 1985.
17. G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite out-

degree. InProceedings of 39th Annual Symposium on Foundations of Computer Science,
pages 120–129. IEEE Computer Society Press, 1998.

18. R.J. van Glabbeek. The linear time—branching time spectrum. In Proceedings of CON-
CUR’90, volume 458 ofLNCS, pages 278–297. Springer, 1990.

