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Abstract. We study the problem of strong/weak bisimilarity betweeocpsses
of one-counter automata and finite-state processes. Wetslabthe problem of
weak bisimilarity between processes of one-counter neticfware ‘weak’ one-
counter automata) and finite-state processd3Hshard (in particular, it means
that the problem is bottNP and co-NP hard). The same technique is used to
demonstrateco-NP-hardness of strong bisimilarity between processes of one-
counter nets. Then we design an algorithm which decides Wwisékilarity be-
tween processes of one-counter automata and finite-stategses in time which
is polynomial for most ‘practical’ instances, giving a cheterization of all hard
instances as a byproduct. Moreover, we show how to effigieatinpute a rather
tight bound for the time which is needed to solve a given msta Finally, we
prove that the problem of strong bisimilarity between pss&s of one-counter
automata and finite-state processes B.in

1 Introduction

In concurrency theoryprocessesre typically understood as (being associated with)
states intransition systemsa fundamental and widely accepted model of discrete sys-
tems. Formally, a transition system is a trifle= (S, X', —) whereS is a set oktates

X is a finite set ofactions(or labelg, and— C S x X' x S is atransition relation

We write s % ¢ instead of(s, a, t) € — and we extend this notation to elementsof

in the natural way. A stateis reachablefrom a states iff there isw € X* such that

s = t. A systemT is finite-stateiff the set of states of is finite.

Theequivalence approado formal verification of concurrent systems is based on
the following scheme: One describes #pecificationthe intended behavioud§ and
theimplementatior? of a given system in some ‘higher’ formalism whose semantics
is given in terms of transition systems, and then it is shdwat§ andZ areequiva-
lent Actually, there are many ways how to capture the notion otess equivalence
(see, e.g., [18]). It seems, however, thiimulation equivalenc§l5, 13] is of spe-
cial importance, as its accompanying theory has been deseéleery intensively. Let
7 = (S,X,—) be a transition system. A binary relatidh C S x S is abisimula-
tion iff whenever(s,t) € R, then for eachs % s’ there is some % ¢’ such that
(s',t") € R, and for eacht % #' there is some % s’ such that(s’,#') € R. States
s, t arebisimulation equivalentor bisimilar), written s ~ ¢, iff there is a bisimulation
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relating them. Bisimulations can also be used to relatestfdifferenttransition sys-
tems; formally, two systems can be considered as a singl®pteking their disjoint
union. An important variant of bisimilarity isveak bisimilarityintroduced by Milner
in his work on CCS [13]. This relation distinguishes betwésdernal’ and ‘internal’
computational steps, and allows to ‘ignore’ the internapst(which are usually de-
noted by a distinguished actiof) to a certain extent. Formally, we define isdended
transition relation=C S x X x S as follows:s = t iff ¢ is reachable froms via a
finite (and possibly empty) sequence of transitions laddiigr (note thats = s for
eachs), ands = t wherea # 7 iff there are states, v such thats = u > v = t.
The relation ofweak bisimulatioris defined in the same way as bisimulation, bat *
is used instead of~’. Processes, t areweakly bisimilay written s ~ ¢, iff there is a
weak bisimulation relating them. To prevent a confusionutiasimilarity and weak
bisimilarity, we refer to bisimilarity astrong bisimilarityin the rest of this paper.

In this paper we study the complexity of checking strong am@kvbisimilarity
between processes of transition systems generated byifceribclasses ofyush-
down automatand processes of finite-state systemgushdown automatas a tuple
P =(Q, I, X, ) whereQ is a finite set otontrol states!" is a finitestack alphabet
X is a finiteinput alphabetands : (Q x I') — 2¥*(@xI") js atransition function
with finite image. We can assume (w.l.0.g.) that each tremsihcreases the height (or
length) of the stack at most by one (each PDA can be efficigrdlysformed to this
kind of normal form). ToP we associate the transition systéf where@ x X* is
the set of statesY is the set of actions, and the transition relation is deteeahiby
(p, Aa) % (q, Ba) iff (a,(q,B)) € §(p, A). As usual, we writepy instead of(p, v)
and we use to denote the empty word. The sizeBfis the length of a string which
is obtained by writing all elements of the tuple linearly indry. The size of a process
pa of is the length of its corresponding binary encoding. Poghtprocesses (i.e., pro-
cesses of pushdown automata) have their origin in theorgrofidl languages [5], but
recently (i.e., in the last decade) they have been foundogpiate also in the context
of concurrency theory because they provide a natural andritaupt model of sequen-
tial systems. In this paper we mainly concentrate on a sabdapushdown automata
where the stack behaves likeaunter Such a restriction is reasonable because in prac-
tice we often meet systems which can be abstracted to fitateqsrograms operating on
a single unbounded variable. For example, network prosozanh maintain the count on
how many unacknowledged messages have been sent, priotdrsipuld know how
many processes are waiting in the input queue, etc. Fornaadlye-counter automaton
A is a pushdown automaton with just two stack symliaedZ; the transition function
6 of A is a union of functions; andd; whered, : (Q x {Z}) — 2= *(@x{1}"{Z})
andd; : (Q x {I}) — 2¥*(@{I}") Hence,Z works like a bottom symbol (which
cannot be removed), and the numbersfwhich are stored in the stack represents the
counter value. Processes 4f(i.e., states o) are of the formpI‘Z. In the rest of
this paper we adopt a more intuitive notation, writin@) instead ofpI?Z. It is worth
to note that the size ¢f(i) is O(i) andnot O(log i), because(i) is just asymbolicab-
breviation forpaZ wherea is a string ofi symbols/. Again, we assume (w.l.0.g) that
each transition increases the counter at most by one. A penbelass of one-counter
automata of its own interest aome-counter netdntuitively, OC-nets are ‘weak’ OC-



automata which cannot test for zero explicitly. They are potationally equivalent to a
subclass of Petri nets [16] with (at most) one unboundedpkarmally, sone-counter
net \ is a one-counter automaton such that whendueq/‘Z) € §7(p, Z), then
(a,qI**1) € 6z(p,I). In other words, each transition which is enabled at zevetle
is also enabled at (each) non-zero-level. Hence, theremzeno-specific’ transitions
which could be used to ‘test for zero’.

Observe that the out-going transitions of a OC proegsswhere: > 0 do not
depend on the actual value ©fHence, the structure of transition systems which are
associated with OC-automata (and, in particular, with @@his rather regular—they
consist of a ‘zero pattern’ and a ‘non-zero pattern’ whicleigeated infinitely often.
Despite this regularity, some problems for OC-automata @ren for OC-nets) are
computationally hard, as we shall see in the next section.

Now we give a short summary of relevant results for PDA and Q®rmaata. The
decidability of strong bisimilarity for processes of stags PDA (which are also known
as BPA processes) is due to [3]. Another (incomparable}igesesult is [6] where itis
shown that strong bisimilarity is decidable for procesde3@-automata. These results
have been recently extended to general PDA in [17]. The prolaf weak bisimilarity
is still open for all of the mentioned (sub)classes. Thedkaility of strong/weak bisim-
ilarity between processes of a (general) classd finite-state ones has been studied in
[7]. It is shown that the problem can be reduced to the moHetking problem for a
temporal logic EF and processesbfSince EF is decidable for PDA processes, it suf-
fices for showing the decidability, but the obtained aldoritis not very efficient—we
only obtainEXPTIME upper-bound in this way for both strong and weak bisimyarit
RecentlyPSPACElower-bound for the problem of strong (and hence also weisinb
ilarity between PDA and FS processes has been given in [18pmewhat surprising
result is [11] which says that strong and weak bisimilarigivieen BPA processes and
finite-state ones is iR. OC-nets are studied, e.g., in [1, 9] where it is shown thatsi
lation equivalence (which is coarser than strong bisirtifais decidable for processes
of OC-nets, and in [8] where a close relationship betweenlsition problems for OC-
nets and the corresponding bisimulation problems for Otoraata is established.

In this paper we concentrate on the complexity of checkirmnstand weak bisim-
ilarity between processes of OC-automata and FS procé3sesotivation is that the
specification or the implementation of a system which is tedrfied (see above) can
often be specified as a finite-state process. Moreover, aaunfilclassical’ verification
problems (e.g., liveness, safety) can be easily reducdnbtproblem of weak bisimilar-
ity with a finite-state system. For example, if we want to d¢heat the action is live
for a procesg (i.e., each state which is reachable frgman reach a state which can
emita), we can rename all actions gfexcepta to 7 and then check weak bisimilarity
betweeny andf wheref is a one-state process with the only transitfos> f.

In Section 2, it is shown that the problem of weak bisimilabetween processes
of OC-nets and FS processesh®-hard, even for a fixed finite-state process (intu-
itively, the classDP [14] is expected to be somewhat larger than the unioNfand
co-NP, however, it is still contained in thél, = PNF |evel of the polynomial hierar-
chy). Here we have to devise a special technique for encodirgssing, and checking
assignments of Boolean variables in the structure of OG- transition systems



which are associated with OC-nets are rather regular, thieadés not straightforward
(observe that assignments are easy to handle with a staskndt so easy if there is
only (one) counter at our disposal). Using the same teclenipialso show that strong
bisimilarity between processes of OC-netsdsNP-hard (strong bisimilarity between
processes of OC-automata and finite-state processes &lajpelynomial—see be-
low). Assuming the expected relationship among compledtagses, th®P-hardness
result for weak bisimilarity actually says that any detenistic algorithm which decides
the problem requires exponential time in the worst casehdrahan trying to establish
DP-completeness, we turn our attention to a more ‘practidged'aion—in Section 3 we
design an algorithm which decides weak bisimilarity betwagrocess(:) of a OC-
automatonA and a procesg of a finite-state systenf in time O(n® m® 23 (i + 1))
wheren is the size of4, m is the size ofF, andz is a special constant which depends
on A. So, if there was na, or if z was always ‘small’, the problem would be i
However,z canbe much (exponentially) larger thanin general. However, it follows
from the way how is defined that the automaton mustueey perverse to make its as-
sociated: large (a good example is the automaton constructed iDBybardness proof
of Section 2). Hence, we conclude that our algorithm is distedficient for many (if
not all) practical instances, giving a sort of ‘charactatian’ of all hard instances as
a byproduct. Another advantage of our algorithm is that we efficiently estimate
the time which is needed to solve a given instance—altholigltdmputation of for

a given automatond may take exponential time in general, we can efficiently,(ire
polynomial time) compute a quite reliable bound foAll hard instances are efficiently
recognized in this way; it can also happen that some ‘easyairce is incorrectly de-
clared as hard, but we argue that such situations are quiteliae algorithm also works
for strong bisimilarity, but in this case it only needs padymal time—we obtain (as a
simple consequence) that the problem of strong bisimyléetween OC processes and
finite-state ones is if. Proofs which were omitted due to space constraints can be
found in [10].

2 Lower Bounds

In this section we show that the problem of weak bisimilaliBtween processes of
OC-nets and finite-state processeBiB-hard (even for dixedfinite-state process), and
that the problem of strong bisimilarity between proces$€3@-nets isco-NP-hard.

Theorem 1. The problem of weak bisimilarity between processes of oneter nets
and finite-state processeshd?-hard.

Proof. For purposes of this proof, we first fix the following finitextt systens:
P, A c OC
" o a b T T o
NS\
m a Z b — - Qr
P, A c D

We showDP-hardness by reduction of tHaP-complete problem Sr-UNSAT. An in-
stance of the Sr-UNSAT problem is a paify1, ¢2) of Boolean formulae in CNF. The




question is whethep; is satisfiable and», unsatisfiable. First, we describe a poly-
nomial algorithm which for a given formula in CNF constructs a one-counter net
N, and its process,,(0) such thaty is satisfiable iffs,(0) ~ P, andy is unsatis-
fiable iff s,(0) ~ P», whereP;, P, are the (fixed) FS processes of the systéirit
clearly suffices for our purposes, because then we can afsiraoct a one-counter net
N by taking the disjoint union aN,,, \V,,, and adding a new control stateogether
with transitionssZ % s,,Z,sI % s,, I andsZ 2 s,,7,sI “3 s,,I (the non-zero
transitions are added just to fulfil the constraints of théniteon of OC nets). Clearly
(p1,¢2) is a positive instance of theaS-UNSAT problemiff s(0) ~ P whereP is the
fixed FS process of the system

In our proof we use the following theorem of number theorng(seg., [2]): Letr;
be thei*" prime number, and lef : N — N be a function which assigns to eagh
the sumd_"" , m;. Then f is O(n?). (In our case, it suffices to know that the sum is
asymptotically bounded by a polynomialsn) With the help of this fact we can readily
confirm that the below described construction is indeednpmtyial.

Letp = C1A---AC,, be aformulain CNF wher€; are clauses over propositional
variablesry, - - -, x,,. We assume (w.l.0.g.) that for every assignmen{ x4, - - -, x,,} —
{true, false} there is at least one claugg such thatv(C;) = true (this can be
achieved, e.g., by adding the clayse vV —z1) to ). Furthermore, we also assume that
¢ is not a tautology, i.e., there is at least one assignmeauch that/(¢) = false
(it actually means that there is a clause where no variakgeans both positively and
negatively). The construction &, = (Q, {1, Z},{a,b,c,7},d) will be described in a
stepwise manner. The sepsandJ are initially empty. For each claugg, 1 < i < m,
we do the following:

— We add new control states andg; to Q. Moreover, for each variable; and each
k such thal < k& < 7; we add to@ a control stateC;, z;, k) (observe that for
eachC; we addO(n?) states in this way).

— We add tod the transitiony; I — ¢; 1.

— For eachl < j < n we add tos the transitions; I = (C;, X;,0)I andc;I = qI.

— For all j,k such thatl < j < n and0 < k < w; we add toé the transition
<Ci7xj7 /{>I l> <Ci7xj7 (/{ + 1) mod 7Tj>€.

— For all j,k such thatl < 7 < nand0 < k < m; we add tod the ‘loop’
<Ci,.”L'j, k)[ i> <Ci,.”L'j, k)[

— Ifavariablez; doesnotappear positively in a claugg;, then we add t@ the loop
<Ci, Ij, O>Z —c> <Ol, Ij, O>Z

— Ifavariablez; does not appear negatively in a cladgethen we add té the loops
(Ciyxj,k)Z = (Cy, x5, k) Z foreveryl < k < ;.

If we draw the transition system which is generated by theeturapproximation of
N, we obtain a collection of?; graphs,1 < i < m; eachG; corresponds to the ‘sub-
graph’ of 7y, which is obtained by restrictin@ to the set of control states which have
been added for the clauge. The structure of7; is shown in the following picture.
(To understand this figure, observe that transition sys@sesciated to OC-automata
can be viewed as two-dimensional ‘tables’ where columrexed are control states and
row-indexes are counter valués (, 2, . . .). As the out-going transitions of a statg)



wherei > 0 do not depend on the actual valueipft suffices to depict the out-going
transitions at zero and (some) non-zero level.)

>0:

c c c c c c
0 O o Q o o Q Q ...... Q Q 4444444 Q
ci q; <Ci Xy 0> <Cj X, 1> <C; X, 0>  <CiX;,1> <CiX;,2> <Cj X,,0>  <Cji,X,,1> <G, X, , T,-1>

Now we give several important facts abaut (each fact easily follows from the previ-
ous ones):

— For each > 0 we have that;(1) = (C;,z;, k)(0) iff I mod 7; = k.

— For eachl > 0, the stater;(I) ‘encodes’ the (unique) assignmentdefined by
vi(z;) = trueiff ¢;(1) = (Cy, x;,0)(0); conversely, for each assignmenthere
isl € Nsuchthat = v, (for example, we can put= 117" f (j), wheref (j) = m;
if v(z;) = true, andf(j) = 1 otherwise).

— For eachl > 0 we have the following: .

e 1(C;) = false iff ¢;(I) = C for the stateC of the systemF. Indeed, if
v (C;) = false, thenc;(l) cannot reach any of the ‘zero-states’ where the
actionc is disabled—it can only emits (possibly with some intermediatés)
without a possibility to terminate.

e 1(C;) = true (i.e., the claus€; is true fory,) iff ¢;(1) =~ C for the stateC”
of the systemF. This also explains the role of the control state— we need
it to make sure that the transitian = D can always be matched.

We finish the construction oY, by connecting th€&; components together. To do that,
we add two new control states, andr to @, and enrichd by adding the transitions

5,7 5 8,17, 5,1 5 s,I1, 5,1 5 rl, andrl % ¢;I for everyl < i < m. The
structure ofZ;, is shown below.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



Now we can observe the following:

— For eachl > 0 we have that
e v(p) = trueiff r(I) = A for the stated of the systeny. To see this, realize
thaty;(p) = true iff v;(C;) = true for eachl < i < miff ¢;(I) = C for
eachl < i < m due to the previous observations.
e 1(p) = falseiff r(I) ~ A for the stated of the systeny. A proof is similar
to the previous case; here we also need the assumption tleasaibne clause

of ¢ is true fory; (so that we can be sure that the transitin’ C can be
matched by-(1)).

— pisunsatisfiable ifé, (0) ~ P, for the stateP, of F. Indeeds,,(0) can performits
< move only by going to some (arbitrary]l). If ¢ is unsatisfiable, then (¢) =
false for each such(l), hence all® successors of,, (0) are weakly bisimilar to
A (see above), henee (0) =~ P,. If ¢ is satisfiable, then there is a moyg(0) =
r(1) for somel such that(¢) = true, hencer(l) ~ A andr(l) % A. Therefore,
P, cannot match the,,(0) = r(1) move and thus,,(0) # P».

— o is satisfiable iffs,(0) ~ P, for the stateP; of F. It is checked in the same
way as above. Here we use the assumptiongtiatot a tautology, i.es,(0) can
always choose an assignment which makdsalse (i.e.,s,,(0) can always match
the transitionP; = A). O

The main reason why we could not extend the hardness resdtte higher complex-
ity class (e.g.PSPACE) is that there is no apparent way how to implement a ‘stepwise
guessing’ of Boolean variables which would allow to encaalg,, the @F problem;
each such attempt resulted in an exponential blow-up in timeber of control states.
However, we can still re-use our technique to prove the Wahg:

Theorem 2. The problem of strong bisimilarity between processes ofammter nets
is co-NP-hard.

Proof. We use a similar construction as in the proof of Theorem le®G& formulap

in CNF, we construct two one-counter nétS V' and their processeg0),3(0) such
that ¢ is unsatisfiable iffs(0) ~ 5(0). The net\ is just a slight modification of the
net,, of Theorem 1 — we only rename attlabels toc. A key observation is that
v is unsatisfiable iff after each sequence of transitions effithmc*a (i.e., after each
choice of an assignment) there is-&ransition to a state which can only emit an infinite
sequence of actions without a possibility to terminate (i.e., at leas¢ @lause is false
for any assignment). The ndf is a ‘copy’ of A/ but we also add a new control state

g and transitiongl = ¢I, 71 LR qI whereT is a ‘twin’ of the stater of AV,,. We put
s ands to be the corresponding twins of the stateof N,,. Now we can easily check
that is unsatisfiable ifs(0) ~ 5(0) — the crucial argumentis stated above. O

3 Efficient Algorithms

In this section we design an algorithm which decides weaknilerity between pro-
cesses of OC-automata and finite-state processes. As edp#et algorithm requires



exponential time in the worst case. However, it works ragféciently for many (and
we believe that almost all) ‘practical’ instances. It alsorks for strong bisimilarity
where it needs only polynomial time.

Let7 = (S, ¥, —) be a transition system. For eactk N, we define the relation
~; inductively as follows=y= S x S; ands ~,, t iff s ~; t and for eachs = s’
there is some = t' such thats’ ~; ¢/, and vice versa. (The; relations are also
used to relate states of different transition systems; &lsqnwe consider two transition
systems to be a single one by taking their disjoint union.) &gorithm relies on the
following theorem established in [7]:

Theorem 3. LetG = (G, X, —) be a (general) transition system atid= (F, X', —)
a finite-state system. We say that a state G is goodw.r.t. i € Ny iff thereisf € F
such thaty =; f; g isbadw.rt.iff g is not good w.r.ts.

Letg € G, f € F,andk = |F|. It holds thaty ~ f iff g ~;, f and each state which
is reachable frony is good w.r.t k.

For the rest of this section we fix a one-counter automatos (Q,{I,Z}, X, d) of
sizen, and a finite-state systeffi = (F, X', —) of sizem.

To decide weak bisimilarity between procespés of A and f of F, it suffices
(by Theorem 3) to find out ib(i) ~,, f and whethep(i) can reach a state which is
bad w.r.t.m. We do that by constructing a constansuch that for each statgj) of
T4 wherej > (4m + 1)z we have tha(j) =, ¢(j — z). In other words, each state
of 74 is (up to=,,,) represented by another (and effectively constructilibtesvhose
counter value is bounded kym + 1)z. Then we convert this ‘initial part’ o4 to
a finite-state systenft 4, and construct thez,,, relation between states gf4 and F.
The question ifp(i) ~,,, f is then easy to answer (we look if the representant(of
within F 4 is related withf by =,,,). The question ip(i) can reach a state which is bad
w.r.t. m still requires some development—we observe that stateshvate bad w.r.tn
are ‘regularly distributed’ ir74 and construct a description of that distribution (which
is ‘read’ from F4) in a form of a finite-state automatok which recognizes all bad
states. Then we use an algorithm of [4] which constructs ffehan automaton\1t’
recognizing the set of all states which can reach a stateggnémed by M, and look
whether M’ acceptsp(i). All procedures we use are polynomial in the sizeof.
Hence, it is only the size of which can make the problem computationally hard. The
construction ofz can require exponential time; however, we give an algoritiimch
efficiently (i.e., in polynomial time) computes a reliablgper bound” for z.

Intuitively, the only difference between proces$gs), p(j), wherei # j, is the
way how they can access the ‘zero level’. As long as the couateains positive, each
process can ‘mimic’ moves of the other process by enteriag#ime control state and
performing the same operation on the counter. Observettbatiunter can be generally
decremented by an unbounded value in a sigglstep (due to an unbounded number
of r-transitions). The next definitions and lemmata reveal @iafyperiodicity in the
structure of74 which shows that decrementing the counter ‘too much’ in énetep
is not the thing which allows to demonstrate a possible difiee betweep(i), p(y).

For eachl € N, we define a family of binary relationss;, a € X, over the set of
states of74 as follows:p(i) =; q(4) iff there is a sequence of transitions frgift) to
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q(j) which forms one=-" move and the counter value remains greater or efjunsll
states which appear in the sequence (inclugifigandq(s)).

Definition 1. We define a functiostep 4 : Q — 2% by step 4(p) = {q € Q | p(2) =1

q(1)}-

Since the reachability problem for one-counter automatd @ven for pushdown au-
tomata) is inP, the functionstep 4 is effectively constructible in polynomial time. As
the out-going transitions of a statéi) for < > 0 do not depend on the actual valuei pf
for eachi € N we have thay € step 4(p) iff p(i 4+ 1) = q(i).

We extendstep 4 to subsets o) by step 4 (M) = U, step 4(p). Foreaclp € Q
we now define the sequencg inductively as followsC, (1) = {p} andC,(i + 1) =
step 4(Cp(4)). The next lemma is easy to prove by a straightforward indnaini.

Lemma 1. Forall p € Q andi, j € N we have thay € C,(j) iff p(i + ) = q(3).

Another simple observation is that the sequefigas (for everyp € @) of the form
Cp = ap B, Whereay, 3, are finite sequences of pairwise different subsetg (due to
the assumption that the elementsgfand 3, are pairwise different we also have that
a,p andpg, areuniqué. Note thats, can also consist of just one eleméniVe define
the prefixandperiod of p, denotedpre(p) andper(p), to be the length ofy, and 3,
respectively. Now we put

z = max{pre(p) | p € Q} - lem{per(p) | p € Q}

wherelem(M) denotes the least common multiply of elementdbfAs we shall see,
max{pre(p) | p € Q} is alwaysO(n?). Howeverlecm{per(p) | p € Q} can beexpo-
nentialin n (for example, examine the naf, constructed in the proof of Theorem 1).
As we already mentioned, the sizez0i the only thing which can make the considered
problem hard. Hence, we obtain a kind of ‘characterizatwiall hard instances—
OC-automata which are presented in hard instances mushinamiany ‘decreasing
T-cycles’ of an incomparable length. Also observe that thestrmiction ofz can re-
quire exponential time, becauger(p) for a givenp can be exponential in (in the end

of this section we show how to compute a reasonable upperch@dar = efficiently).
The following lemma is immediate:

Lemma 2. Forall p € Q andi > z we have thaC,, (i) = Cp(i + 2).

The next three lemmata provide a crucial observation abbmistructure of74 and
precisely formulate the intuition that ‘decreasing the e too much in one step
does not help’. Proofs can be found in [10].

Lemma 3. Forall p € Q andj € N it holds that

— ifthere is a sequence oftransitions fromp(j +2z) to (some) (1) which decreases
the counter tgj at some point, thep(j + z) = ¢(1);

— if there is a sequence oftransitions fronp(j + z) to (some); (1) which decreases
the counter tgj at some point, thep(j + 2z) = ¢(1);



Lemma 4. Forall p € Q andj € N it holds that

— ifthere is a sequence of transitions forming ofg move fromp(j +4z) to (some)
q(1) which decreases the counterat some point, thep(j + 32) = ¢(1);

— if there is a sequence of transitions forming o&e move fromp(j + 3z) to (some)
q(1) which decreases the counteriat some point, thep(j + 4z) = q(1);

Lemmab. Letp € Q andk € Ny. For eache > (4k + 1)z we have thap(c) =y
p(c— 2).

Now we are almost in a position to prove the first main theordrthis section. It
remains to extend our equipment with the following tool:

Definition 2. Let? = (Q, I, X, ) be a pushdown automatont = (S, I,v, F) a

nondeterministic finite-state automaton (note that theitrgdphabet ofM is the stack
alphabet ofP), andInit : Q — S atotal function. A processga of P is recognizedy

the pair (M, Init) iff 4(Init(p),a) N F # 0 where¥ is the natural extension of to

elements of x I'*.

The next theorem is taken from [4].

Theorem4. Let P = (Q, I, X,)) be a pushdown automatont = (S,I,v,F)

a finite-state automaton, anthit : Q — S a total function. LetV be the set of
processes recognized oy, Init). Then one can effectively construct an automaton
M = (S, F)intimeO(|§] - |S|?) such that M’, Init) recognizes the set

Pre*(N) = {q8 | ¢8 —" pa for somepa € N}
of all predecessors a¥.

Theorem 5. The problem of weak bisimilarity between proceggesof A and f of F
is decidable inO(n? m5 23 (i + 1)) timel

Proof. By Theorem 3, we need to find out whethg§) ~,, f and whethep(i) can
reach a state which is bad w.rt. Due to Lemma 5 we know that the set of all states of
T4 up to=,,, can be represented by the subset of statég,ofthere the counter value
is at most(4m + 1)z. Formally, we first define the functidfi : (Q x Ny) — (Q x Np)

as follows (wherdg, j) is just another notation fay(5)):

(g,7) ifj < (@m+1)z
B({g,7)) =} {g,(4m + 1)z) if j > (4m + 1)z and(j mod z) = 0;
(g,4mz + (j mod 2)) if j > (4m + 1)z and(j mod z) # 0.

An immediate consequence of Lemma 5 is that forgat @@ andj € Ny we have
q(j) =m B(q(j)). Now we define a finite-state systefiy = (F4, X, —) whereF 4 is
the image of5 (i.e., Fly = {q(j) | ¢ € Q,0 < j < (dm+1)z}), X' is the set of actions

! Note that we need a non-constant time even in the particake wheri = 0 (the problem is
still DP-hard). That is why we writei‘+ 1'.



of A, and— is the least relation satisfying the followingifk) = s(1) is a transition
of T4, thenB(r(k)) <= B(s(l)). Observe thaf 4 is actually the ‘initial part’ of7;
the only difference is that all up-going transitions of etaait leve(4m + 1)z are ‘bent’
down to the correspondirg,,-equivalent states at levéinz + 1. Note that for each
q(j) we still have that(j) ~,, B(q(j)) (whenB(q(j)) is seen as a state Gf4). The
number of states af 4 is O(nm z); moreover, the number of out-going transitions at
each ‘level’ ofT4 is O(n), hence the size of> is O(n m z), which means that the total
size of F 4 is alsoO(nm z).

Now, let us realize that if we have a finite-state system @ &iit takesO(t?) time
to compute the associated- relation (for each state and actioru we need?(t) time
to compute the sgtr | s = r}). Therefore, we nee@(n® m? 2%) time to construct the
extended transition relations fdf4 and 7. To compute thex,,, relation between the
states ofF 4 and.F, we defineR® = F 4 x F', andR**! = Exp(R?) where the function
Ezp : (F4 x F) — (Fa x F) refines its argument according to the definitionrgf
—apair(r(j), g) belongs toEzp(R) iff it belongs toR and for each4’ move of one
component there is a corresponding’ move of the other component such that the
resulting pair of states belongs®& Clearly, for each paifr(j), g) of F.4 x F we have
thatr(j) ~,, g iff (r(j),g) € R™. It remains to clarify the time costs. The function
Exp is computedn times. Each timeQ(nm? z) pairs are examined. For each such
pair we have to check the membershipHop(R). This takes onlyO(nm? z) time,
because the extended transition relations have alreadydmeputed. To sum up, we
needO(n3 m® z3) time in total.

To check ifp(i) =, f, we simply lookif(B(p(i), f)) € R™. It remains to find out
whethermp(i) can reach a staigj) which is bad w.r.tm. Observe thag(j) is bad w.r.t.
m iff the stateB(q(j)) of F.4 is bad w.r.tm. Therefore, we can easily construct a finite-
state automatoM and a functionit such that the paitM, Init) recognizes the set of
all bad states of 4 — we putM = (S, {I, Z},~, {fin}) whereS = {fin} U{p(i) | p €
Q@,0 < i < (4m + 1)z} andy is the least transition function satisfying the following:

—pi+1)ey(p(),)forallpe Q,0<i< (dm+ 1)z
— p(dmz+1) € y(p((4m + 1)z),I) for eachp € Q;
— if a statep(i) of F 4 is bad, therfin € v(p(i), Z).

The functionInit is defined bylnit(p) = p(0) for all p € Q. Note thatM has
O(nm z) states. Now we compute the automateti of Theorem 4 (it take® (n? m z)
time) and check if M’, Init) recognize®(i). This can be done iD(nm z (i + 1))
time becausé\’ has the same set of states/es

We see thaO(n®m® 23 (i + 1)) time suffices for all of the aforementioned proce-
dures. O

Our algorithm also works for strong bisimilarity in the folling way: If we are to
decide strong bisimilarity betweer(i) and f, we first rename al--transitions ofA
andF with some (fresh) action (it does not change anything from the point of view
of strong bisimilarity, because here thetransitions are treated as ‘ordinary’ ones).
As there are na-transitions anymore, there is no difference between gteond weak
bisimilarity, hence we can use the designed algorithm. Alsgerve that if there are no
7's thenz = 1, so we can conclude:



Corollary 1. The problem of strong bisimilarity between procegsg$ of .4 and f of
FisinP.

As we already mentioned, the constructionzofan take exponential time. Now we
show how to compute a rather tight upper boufidor z in polynomial time. The
associated lemmata and proofs can be found in [10].

Theorem 6. We say thap € @ is self-embeddingff p € C,(¢) for somei > 2. Let
us defineZ = (|QJ? +1Q|) - lem{per(p) | p € Q is self-embedding. ThenZ can be
computed in time which is polynomialin Moreoverz < Z.
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