
Controller Synthesis and Verification for Markov
Decision Processes with Qualitative

Branching Time Objectives?

Tomáš Brázdil, Vojtěch Forejt, and Antonı́n Kučera

Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic.
{brazdil,forejt,kucera}@fi.muni.cz

Abstract. We show that the controller synthesis and verification problems for
Markov decision processes with qualitative PECTL∗ objectives are 2-EXPTIME
complete. More precisely, the algorithms are polynomial in the size of a given
Markov decision process and doubly exponential in the size of a given qualitative
PECTL∗ formula. Moreover, we show that if a given qualitative PECTL∗ objec-
tive is achievable by some strategy, then it is also achievable by an effectively
constructible one-counter strategy, where the associated complexity bounds are
essentially the same as above. For the fragment of qualitative PCTL objectives,
we obtain EXPTIME completeness and the algorithms are only singly exponen-
tial in the size of the formula.

1 Introduction

A Markov decision process (MDP) [16, 11] is a finite directed graph G =

(V, E, (V�,V©),Prob) where the vertices of V are partitioned into non-deterministic
and stochastic subsets (denoted V� and V©, resp.), E ⊆ V×V is a set of edges, and
Prob assigns a fixed probability to every edge (s, s′) ∈ E where s ∈ V© so that∑

(s,s′)∈E Prob(s, s′) = 1 for every fixed s ∈ V©. Without restrictions, we assume that
each vertex has at least one and at most two outgoing edges.

MDPs are used as a generic model for discrete systems where one can make deci-
sions (by selecting successors in non-deterministic vertices) whose outcomes are un-
certain (this is modeled by stochastic vertices). The application area of MDPs includes
such diverse fields as ecology, chemistry, or economics. In this paper, we focus on more
recent applications of MDPs in the area of computer systems (see, e.g., [18]). Here,
non-deterministic vertices are used to model the environment, unpredictable users, pro-
cess scheduler, etc. Stochastic vertices model stochastic features such as coin-tossing in
randomized algorithms, bit-flips and other hardware errors whose probability is known
empirically, probability distribution on input events, etc. There are two main problems
studied in this area:
• Controller synthesis. The task is to construct a “controller” which selects appropriate

successors at non-deterministic vertices so that a certain objective is achieved.

? Supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0545.

• Verification. Here, we wonder whether a given objective is achieved for all “adver-
saries” that control the non-deterministic vertices. In other words, we want to know
whether a given system behaves correctly in all environments, under all interleavings
produced by a scheduler, etc.

Both “controller” and “adversary” are mathematically captured by the notion of strat-
egy, i.e., a function which to every computational history vs ∈ V∗V� ending in a non-
deterministic vertex assigns a probability distribution over the set of outgoing edges
of s. General strategies are also referred to as HR strategies because the decision de-
pends on the history of the current computation (H) and it is randomized (R). Strategies
that always return a Dirac distribution are deterministic (D), and strategies which de-
pend just on the currently visited vertex are memoryless (M). Thus, one can distinguish
among HR, HD, MD, and MR strategies.

Since the original application field of MDPs was mainly economics and perfor-
mance evaluation, there is a rich and mature mathematical theory of MDPs with dis-
counted and limit-average objectives [16, 11]. In the context of computer systems, one
is usually interested in objectives related to safety, liveness, fairness, etc. , and these
can be naturally formalized as temporal properties. In particular, the subclass of linear-
time properties (such as Büchi, parity, Rabin, Street, or Muller properties) is relatively
well understood even in a more general framework of simple stochastic games [12,
19, 8, 6]. Another class of temporal objectives studied in the literature are linear-time
multi-objectives [10, 7], which are Boolean combinations of linear-time objectives.

In this paper, we deal with a more general class of temporal properties that are spec-
ified as formulae of probabilistic branching-time logics PCTL, PCTL∗, and PECTL∗

[13]. These logics are obtained from their non-probabilistic counterparts CTL, CTL∗,
and ECTL∗ (see, e.g., [9, 17]) by replacing the universal and existential path quantifiers
with the probabilistic operatorP./%, where % is a rational constant and ./ is a comparison
such as ≤ or >. Intuitively, the formulaP./%ϕ says “the probability of all runs that satisfy
ϕ is ./-related to %”. If the bound % is restricted just to 0 and 1, we obtain the qualitative
fragment of a given logic. Controller synthesis for MDPs with branching-time objec-
tives has been considered in [1] where it is shown that strategies for fairly simple qual-
itative PCTL objectives may require memory and/or randomization. Hence, the classes
of MD, MR, HD, and HR strategies (see above) form a strict hierarchy. Moreover, in the
same paper it is also proved that the controller synthesis problem for PCTL objectives
is NP-complete for the subclass of MD strategies. A trivial consequence of this result is
coNP-completeness of the verification problem for PCTL objectives and MD strategies.
In [15], the subclass of MR strategies is examined, and it is proved that the controller
synthesis problem for PCTL objectives and MR strategies is in PSPACE (the same
holds for the verification problem). Some results about history-dependent strategies are
presented in [3], where it is shown that controller synthesis for PCTL objectives and
HD (and also HR) strategies is highly undecidable (in fact, this problem is complete for
the Σ1

1 level of the analytical hierarchy). In [3], it is also demonstrated that the controller
synthesis and verification problems are EXPTIME-complete for HD/HR strategies and
the fragment of PCTL that contains only the qualitative connectives P=1F , P=1G, and
P>0F . Moreover, it is shown that strategies for this type of objectives require only finite
memory, and can be effectively constructed in exponential time. This study is continued

in [4] where the memory requirements for objectives of various fragments of qualitative
PCTL are classified in a systematic way.

Our contribution. In this paper we solve the controller synthesis and verifica-
tion problems for all qualitative PCTL and qualitative PECTL∗ objectives and history-
dependent (i.e., HR and HD) strategies. For the sake of simplicity, we first unify HR
and HD strategies into a single notion of history-dependent combined (HC) strategy.
Let G = (V, E, (V�,V©),Prob) be a MDP and let (VD,VR) be a partitioning of V� into
the subsets of Dirac and randomizing vertices. A HC strategy is a HR strategy σ such
that σ(vs) is a Dirac distribution for every vs ∈ V∗VD. Hence, HC strategies coincide
with HR and HD strategies when VD = ∅ and VD = V�, respectively. Nevertheless, our
solution covers also the cases when ∅ , VD , V�. Now we can formulate the main
result of this paper.

Theorem 1. Let G = (V, E, (V�,V©),Prob) be a MDP, (VD,VR) a partitioning of V�,
and ϕ a qualitative PECTL∗ formula.
• The problem whether there is a HC strategy that achieves the objective ϕ is

2-EXPTIME-complete. More precisely, the problem is solvable in time which is poly-
nomial in |G| and doubly exponential in |ϕ|. Since qualitative PECTL∗ objectives are
closed under negation, the same complexity results hold for the verification problem.
• If the objective ϕ is achievable by some HC strategy, then it is also achievable by

a one-counter strategy (see Definition 3). Moreover, the corresponding one-counter
automaton can effectively be constructed in time which is polynomial in |V |, doubly
exponential in |ϕ|, and singly exponential in bp, where bp is the number of bits of
precision for the constants employed by Prob.
• In the special case when ϕ is a qualitative PCTL formula, the controller synthesis

problem is EXPTIME-complete and the algorithms are only singly exponential in
the size of the formula.

This result gives a substantial generalization of the partial results discussed above and
solves some of the major open questions formulated in these papers. In some sense, it
complements the undecidability result for quantitative PCTL objectives given in [3].

The principal difficulty which requires new ideas and insights is that strategies for
qualitative branching-time objectives need infinite memory in general. In Section 3 we
give examples demonstrating this fact. Another difference from the previous work is
that the precise values of probabilities that are employed by a given strategy do influence
the (in)validity of qualitative PECTL∗ objectives. This is very different from qualitative
linear-time (multi-)objectives whose (in)validity depends just on the information what
edges have zero/positive probability.

Due to space constraints, we could not include all technical definitions and proofs.
These can be found in the full version of this paper [5].

2 Definitions

In this section we recall basic definitions that are needed for understanding key results
of this paper. For reader’s convenience, we also repeat the definitions that appeared
already in Section 1.

In the rest of this paper, N, N0, Q, and R denote the set of positive integers, non-
negative integers, rational numbers, and real numbers, respectively. We also use the
standard notation for intervals of real numbers, writing, e.g., (0, 1] to denote the set
{x ∈ R | 0 < x ≤ 1}.

The set of all finite words over a given alphabet Σ is denoted Σ∗, and the set of all
infinite words over Σ is denoted Σω. Given two sets K ⊆ Σ∗ and L ⊆ Σ∗∪Σω, we use K·L
(or just KL) to denote the concatenation of K and L, i.e., KL = {ww′ | w ∈ K,w′ ∈ L}.
We also use Σ+ to denote the set Σ∗ r {ε} where ε is the empty word. The length of a
given w ∈ Σ∗∪Σω is denoted length(w), where the length of an infinite word is ω. Given
a word (finite or infinite) over Σ, the individual letters of w are denoted w(0),w(1),

A probability distribution over a finite or countably infinite set X is a function
f : X → [0, 1] such that

∑
x∈X f (x) = 1. A probability distribution is Dirac if it as-

signs 1 to exactly one element. A σ-field over a set Ω is a set F ⊆ 2Ω that includes
Ω and is closed under complement and countable union. A probability space is a triple
(Ω,F ,P) where Ω is a set called sample space, F is a σ-field over Ω whose elements
are called events, and P : F → [0, 1] is a probability measure such that, for each count-
able collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and

moreover P(Ω)=1.

Definition 1 (Markov Chain). A Markov chain is a triple M = (S , → ,Prob) where S
is a finite or countably infinite set of states, → ⊆ S ×S is a transition relation, and Prob
is a function which to each transition s→ t of M assigns its probability Prob(s→ t) ∈
(0, 1] so that for every s ∈ S we have

∑
s→t Prob(s→ t) = 1 (as usual, we write s x

→ t
instead of Prob(s→ t) = x).

A path in M is a finite or infinite word w ∈ S + ∪ S ω such that w(i−1)→w(i) for every
1 ≤ i < length(w). A run in M is an infinite path in M. The set of all runs that start with
a given finite path w is denoted Run[M](w). When M is clear from the context, we write
Run(w) instead of Run[M](w).

When defining the semantics of probabilistic logics (see below), we need to mea-
sure the probability of certain sets of runs. Formally, to every s ∈ S we associate the
probability space (Run(s),F ,P) where F is the σ-field generated by all basic cylin-
ders Run(w) where w is a finite path starting with s, and P : F → [0, 1] is the unique
probability measure such that P(Run(w)) = Π

length(w)−1
i=1 xi where w(i−1) xi→w(i) for ev-

ery 1 ≤ i < length(w). If length(w) = 1, we put P(Run(w)) = 1. Hence, only certain
subsets of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets
that are guaranteed to be in F .

Definition 2 (Markov Decision Process). A Markov decision process (MDP) is a finite
directed graph G = (V, E, (V�,V©),Prob) where the vertices of V are partitioned into
non-deterministic and stochastic subsets (denoted V� and V©, resp.), E ⊆ V×V is a
set of edges, and Prob assigns a fixed positive probability to every edge (s, s′) ∈ E
where s ∈ V© so that

∑
(s,s′)∈E Prob(s, s′) = 1 for every fixed s ∈ V©. For technical

convenience, we require that each vertex has at least one and at most two outgoing
edges.

Let G = (V, E, (V�,V©),Prob) be a MDP. A strategy is a function which to every
vs ∈ V∗V� assigns a probability distribution over the set of outgoing edges of s. Each

strategy σ determines a unique Markov chain Gσ where states are finite paths in G
and vs x

→ vss′ iff either s is stochastic, (s, s′) ∈ E, and Prob((s, s′)) = x, or s is non-
deterministic, (s, s′) ∈ E, and x is the probability of (s, s′) chosen by σ(vs). General
strategies are also called HR strategies, because they are history-dependent (H) and
randomized (R). We say that σ is memoryless (M) if σ(vs) depends just on the last ver-
tex s, and deterministic if σ(vs) is a Dirac distribution. Thus, we obtain the classes of
HR, HD, MR, and MD strategies. For the sake of clarity and uniformity of our presen-
tation, we also introduce the notion of history-dependent combined (HC) strategy. Here
we assume that the non-deterministic vertices of V� are split into two disjoint subsets
VD and VR of Dirac and randomizing vertices. A HC strategy is a HR strategy σ such
that σ(vs) is a Dirac distribution for every vs ∈ V∗VD. Hence, in the special case when
VD = ∅ (or VD = V�), every HC strategy is a HD strategy (or a HR strategy). A special
type of history-dependent strategies are finite-memory (F) strategies. A finite-memory
strategy σ is specified by a deterministic finite-state automatonA over the input alpha-
bet V (see, e.g., [14]), where σ(vs) depends just on the control state entered byA after
reading the word vs. In this paper we also consider one-counter strategies which are
specified by one-counter automata.

Definition 3 (One counter automaton). A one counter automaton is a tuple C =

(Q, Σ, qin, δ
=0, δ>0) where Q is a finite set of control states, Σ is a finite input alpha-

bet, qin ∈ Q is the initial state, and δ=0 : Q×Σ → Q×{0, 1}, δ>0 : Q×Σ → Q×{0, 1,−1}
are transition functions. The set of configurations of C is Q×N0. For every u ∈ Σ+ we
define a binary relation u

7→ over configurations inductively as follows:
• for all a ∈ Σ we put (q, c) a

7→ (q′, c + i) iff either c = 0 and δ=0(q, a) = (q′, i), or c > 0
and δ>0(q, a) = (q′, i);
• (q, c) au

7→ (q′, c′) iff there is (q′′, c′′) such that (q, c) a
7→ (q′′, c′′) and (q′′, c′′) u

7→ (q′, c′).
For every u ∈ Σ+, let qu ∈ Q and cu ∈ N0 be the unique elements such that
(qin, 0) u

7→ (qu, cu).

Let G = (V, E, (V�,V©),Prob) be a MDP and (VD,VR) a partitioning of V�. A
one-counter strategy is a HC strategy σ for which there is a one-counter automaton
C = (Q,V, qin, δ

=0, δ>0) and a constant k ∈ N such that
• for every vs ∈ V∗VD, σ(vs) is a Dirac distribution that depends only on qvs and the

information whether cvs is zero or not;
• for every vs ∈ V∗VR such that s has two outgoing edges, σ(vs) is either a Dirac

distribution or a distribution that assigns k−cvs to one edge, and 1 − k−cvs to the other
edge. The choice depends solely on qvs.

Before presenting the definition of the logic PECTL∗, we need to recall the notion of
Büchi automaton. Our definition of Büchi automaton is somewhat nonstandard in the
sense that we consider only special alphabets of the form 2{1,...,n} and the symbols as-
signed to transitions in the automaton are interpreted in a special way. These differences
are not fundamental but technically convenient.

Definition 4 (Büchi automaton). A Büchi automaton of arity n ∈ N is a tuple
B = (Q, qin, δ, A), where Q is a finite set of control states, qin ∈ Q is the initial state,
δ : Q×2{1,...,n} → 2Q is a transition function, and A ⊆ Q is a set of accepting states. A

given infinite word w over the alphabet 2{1,...,n} is accepted by B if there is an accept-
ing computation for w, i.e., an infinite sequence of states q0, q1, . . . such that q0 = qin,
q j ∈ A for infinitely many j ∈ N0, and for all i ∈ N0 there is αi ∈ 2{1,...,n} such that
qi+1 ∈ δ(qi, αi) and αi ⊆ w(i). The set of all infinite words accepted byB is denoted L(B).

Let Ap = {a, b, c, . . .} be a countably infinite set of atomic propositions. The syntax of
PECTL∗ formulae is defined by the following abstract syntax equation:

ϕ ::= a | ¬a | P./%B(ϕ1, . . . , ϕn)

Here a ranges over Ap, ./ is a comparison (i.e., ./ ∈ {<, >,≤,≥,=}), % is a rational con-
stant, n ∈ N, and the B in B(ϕ1, . . . , ϕn) is a Büchi automaton of arity n. The qualitative
fragment of PECTL∗ is obtained by restricting % to 0 and 1. For simplicity, from now
on we write B./%(ϕ1, . . . , ϕn) instead of P./%B(ϕ1, . . . , ϕn).

Let M = (S , → ,Prob) be a Markov chain, and let η : S → 2Ap be a valuation.
The validity of PECTL∗ formulae in the states of M is defined inductively as follows:
s |=η a iff a ∈ η(s), s |=η ¬a iff a < η(s), and

s |=η B./%(ϕ1, . . . , ϕn) iff P({w ∈ Run(s) | w[ϕ1, . . . , ϕn] ∈ L(B)}) ./ %

Here w[ϕ1, . . . , ϕn] is the infinite word over the alphabet 2{1,...,n} where w[ϕ1, . . . , ϕn](i)
is the set of all 1 ≤ j ≤ n such that w(i) |=η ϕ j. Let us note that the set of runs
{w ∈ Run(s) | w[ϕ1, . . . , ϕn] ∈ L(B)} is indeed P-measurable in the above introduced
probability space (Run(s),F ,P), and hence the definition of PECTL∗ semantics makes
sense for all PECTL∗ formulae. In the rest of this paper, we often write s |= ϕ instead
of s |=η ϕ when η is clear from the context.

The syntax of PECTL∗ is rather terse and does not include conventional temporal
operators such asG andF . This is convenient for our purposes (proofs become simpler),
but the intuition about the actual expressiveness of PECTL∗ and its sublogics is lost. As
a little compensation, we show how to encode conjunction, disjunction, and temporal
connectives G, F , U and X (the negation of ϕ corresponds to B=0

∧ (ϕ, ϕ)).
BG BFB∧ B∨ BU BX

{1} ∅

{1}

∅

{1, 2}

∅

{1},{2}

∅ {1}

{2}

∅

∅ {1}

∅

For example, the formula ϕ1∧F
=1ϕ2 is then a shortcut for B=1

∧ (ϕ1,B
=1
F

(ϕ2)), and in our
examples we stick to this simpler notation. The PCTL fragment of PECTL∗ is obtained
by restricting the syntax to ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | X

./%ϕ | ϕ1U
./% ϕ2.

We also write a⇒ ϕ instead of ¬a ∨ ϕ.

3 The Result

As we have already noted, qualitative PECTL∗ formulae are closed under negation,
and hence it suffices to consider only the controller synthesis problem (a solution for
the verification problem is then obtained as a trivial corollary). Formally, the controller
synthesis problem for qualitative PECTL∗ objectives and HC strategies is specified as
follows:

Problem: Controller synthesis for qualitative PECTL∗ objectives and HC strategies.
Instance: A MDP G = (V, E, (V�,V©),Prob), a partition (VD,VR) of V�, sin ∈ V , η :

V → 2Ap, and a qualitative PECTL∗ formula ϕ. (The η is extended to all
vs ∈ V∗V by stipulating η(vs) = η(s).)

Question: Is there a HC strategy σ such that sin |=
η ϕ in Gσ ?

Our solution of the problem (see Theorem 1) is based on one central idea underpinned
by many technically involved observations which “make it work”. Roughly speaking,
a given objective ϕ is first split into finitely many “sub-objectives” ϕ1, . . . , ϕn that are
achievable by effectively constructible finite-memory strategies σ1, . . . , σn. Then, the
finite-memory strategies σ1, . . . , σn are combined into a single one-counter strategy σ
that achieves the original objective ϕ.

Let us illustrate this idea on a concrete example. Consider the MDP G of the fol-
lowing figure, where sin is Dirac.

G:

sin

a, b
`a, b

u
a, b

d

a, b

r1

a

r2

b

3
4

1
4

1
4

3
4

Gσ:
sin

a, b
u

a, b
r1

a a, b
u

a, b
r1

a a, b
u

a, b
r1

a

`

a, b
`

a, b
`

a, b

a, b
d

a, b
r2

b a, b
d

a, b
r2

b a, b
d

a, b
r2

b

`

a, b
`

a, b
`

a, b

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

W1

W2

The winning objective is the formula ϕ ≡ ϕa ∧ ϕb, where ϕa ≡ G
=1(a⇒ G>0a) and

ϕb ≡ G
=1(b⇒ G>0b). The validity of a, b in the vertices of G is also indicated in the

figure. In this case, the “sub-objectives” are the formulae ϕa and ϕb, that are achiev-
able by memoryless strategies σu and σd that always select the transitions sin→ u and
sin→ d, respectively. Obviously, sin |= ϕa, sin 6|= ϕb in Gσu , and similarly sin |= ϕb,
sin 6|= ϕa in Gσd . Hence, none of these two strategies achieves the objective ϕ (in fact,
one can easily show that ϕ is not achievable by any finite-memory strategy). Now we
show how to combine the strategies σu and σd into a single one-counter strategy σ such
that sin |= ϕ in Gσ.

Let us start with an informal description of the strategy σ. During the whole play,
the mode of σ is either σu or σd, which means that σ makes the same decision as σu

or σd, respectively. Initially, the mode of σ is σu, and the counter is initialized to 1. If
(and only if) the counter reaches zero, the current mode is switched to the other mode,
and the counter is set to 1 again. This keeps happening ad infinitum. During the play,
the counter is modified as follows: each visit to ` decrements the counter, and each visit
to r1 or r2 increments the counter.

Obviously, σ is a one-counter strategy. However, it is not so obvious why it works.
The structure of the play Gσ is indicated in the figure above, where the initial state is
labeled sin (the actual graph of Gσ is an infinite tree obtained by unfolding the graph
shown in the figure). The play Gσ closely resembles an “infinite sequence” W1,W2, . . .
of one-dimensional random walks. In each Wi, the probability of going right is 3

4 , the
probability of going left is 1

4 , and whenever the “left end” is entered (i.e., the counter

becomes zero), the next random walk Wi+1 in the sequence is started. All Wi, where
i is odd/even, correspond to the σu/σd mode. In the above figure, only W1 and W2
are shown, and their “left ends” are indicated by double circles. By applying standard
results about one-dimensional random walks, we can conclude that for every state s of
every Wi that is not a “left end”, the probability of reaching the “left end” of Wi from s
is strictly less than one. Now it suffices to realize the following:

– Let s be a state of Wi, where i is odd. Then s |= G>0a in Gσ. This is because all
states of Wi satisfy a, and the probability of reaching the “left end” of Wi from s is
strictly less than one. For the same reason, all states of Wi, where i is even, satisfy
the formula G>0b.

– Let s be a state of Wi, where i is odd, such that s |= b. Then s |= G>0b. This is
because there is a finite path to a state s′ in Wi+1 along which b holds (this path
leads through the “left end” of Wi). Since s′ |= G>0b (as justified in the previous
item), we obtain that s |= G>0b. For the same reason, for every state s of every Wi

such that i is even and s |= a we have that s |= G>0a.

Both claims can easily be verified by inspecting the figure on the previous page. Hence,
sin |= ϕ in Gσ as needed.

The main idea of “combining” the constructed finite-memory strategies σ1, . . . , σn

into a single one-counter strategy σ is illustrated quite well by the above example. One
basically “rotates” among the strategies σ1, . . . , σn ad infinitum. Of course, some issues
are (over)simplified in this example. In particular,

– in general, the “sub-objectives” do not correspond to subformulae of ϕ. They de-
pend both on a given ϕ and a given G;

– the events counted in the counter are not just individual visits to selected vertices;
– the individual random walks obtained by “rotating” the modes σ1, . . . , σn do not

form an infinite sequence but an infinite tree;
– in the previous example, the only way how to leave a given Wi is to pass through its

“left end”. In general, each state of a given Wi can have a transition which “leaves”
Wi. However, these transitions have progressively smaller and smaller probabilities
so that the probability of “staying within” Wi remains positive.

Note that the last item explains why the definition of one-counter strategy admits the
use of “exponentially small” probabilities that depend on the current counter value (the
one-counter strategy defined in the above example only tested the counter for zero). To
demonstrate that the use of “exponentially small” probabilities is unavoidable, consider
the MDP Ĝ of the following figure, where ŝin is randomizing.

Ĝ:
ŝin

a, b
`

b

r

a

Ĝσ:
ŝin

a, b
`

b

r

a a, b
`

b

r

a a, b
`

b

r

a
1
4

1 − 1
4

1
16

1 − 1
16

1
64

1 − 1
64

Let ϕ̂ ≡ G>0(a ∧ (b ⇒ G>0b)). We claim that every HC strategy κ which achieves
the objective ϕ̂ must satisfy the following: Let K be the set of all probabilities that are
assigned to the edge ŝin→ ` in the play Ĝκ. Then all elements of K are positive and
inf(K) = 0, otherwise the formula ϕ̂ ≡ G>0(a ∧ (b ⇒ G>0b)) would not hold. Hence,

κ must inevitably assign “smaller and smaller” positive probability to the edge ŝin→ `.
This is achievable by a one-counter strategy σ̂ where σ̂(vŝin) assigns 4−c(vŝin) to ŝin → `
and 1− 4−c(vŝin) to ŝin → r, where c(vŝin) is the number of occurrences of ŝin in vŝin. The
play Ĝσ̂ is also shown in the above figure. It is easy to see that ŝin |= G

>0(a∧(b⇒ G>0b))
in Ĝσ̂.
A Formal Proof of the Result. Due to space constraints, we cannot give a full proof
of Theorem 1 (it can be found in [5]). Here we only outline the structure of our proof,
identify the milestones, and try to “map” the vague notions introduced earlier to precise
technical definitions. Roughly speaking, our proof has two major phases.

(1) The controller synthesis problem for qualitative PECTL∗ objectives and HC strate-
gies is reduced to the controller synthesis problem for “consistency objectives” and
HC strategies. The “consistency objectives” are technically simpler than PECTL∗

objectives, and they in fact represent the very core of the whole problem.
(2) The controller synthesis problem for consistency objectives and HC strategies is

solved.

The most important insights are concentrated in Phase (2). Our complexity results are
based on a careful analysis of the individual steps which constitute Phase (1) and (2).
Since all of our constructions are effective, one can also effectively construct the strategy
for the original PECTL∗ objective by taking the strategy for the constructed consistency
objective and modifying it accordingly.

We start by a formal definition of consistency objectives. First, we need to recall the
notion of a deterministic Muller automaton, which is a tuple M = (Q, Σ, δ, A) where
Q is a finite set of control states, Σ is a finite alphabet, δ : Q × Σ → Q is a transition
function (which is extended to the elements of Q×Σ∗ in the standard way), and A ⊆ 2Q is
a set of accepting sets. A computation ofM on w ∈ Σω initiated in q ∈ Q is the (unique)
infinite sequence of control states γ = q0, q1, . . . such that q0 = q and δ(qi,w(i)) = qi+1
for all i ∈ N0. A computation γ is accepting if inf(γ) ∈ A, where inf(γ) is the set of all
control states that occur infinitely often in γ.

Definition 5 (Consistency objective). Let G = (V, E, (V�,V©),Prob) be a MDP,
sin ∈ V an initial vertex, and (VD,VR) a partition of V�. A consistency objective is a
triple (M, (Q>0,Q=1), L), whereM = (Q,V, δ, A) is a deterministic Muller automaton
over the alphabet V, (Q>0,Q=1) is a partition of Q s.t. for all q ∈ Q>0, q′ ∈ Q=1 and
w ∈ V∗ we have that δ(q,w) ∈ Q>0 and δ(q′,w) ∈ Q=1, and L : V → 2Q is a labeling.

Let σ be a HC strategy, and let Gsin
σ be the play Gσ restricted to states that are

reachable from sin in Gσ. For every state vs of Gsin
σ and every q ∈ Q, let Acc(vs, q)

be the set of all runs v0s0, v1s1, . . . initiated in vs such that for every i ∈ N0 we
have that δ(q, s0 · · · si) ∈ L(si+1) and the computation of M on s0s1 · · · initiated
in q is accepting. For every comparison ./ and every rational constant %, we write
vs |=σ Acc./%(q) if P(Acc(vs, q)) ./ % in Gσ. A HC strategy σ achieves the consistency
objective (M, (Q>0,Q=1), L) if for every state vs ∈ V∗V of the play Gsin

σ , every q ∈ Q,
and every ./% ∈ {=1, >0} we have that if q ∈ Q./% ∩ L(s), then vs |= Acc./%(q).
Phase (1). Let G = (V, E, (V�,V©),Prob) be a MDP, (VD,VR) a partition of V�, sin ∈ V ,
η : V → 2Ap a valuation, and ϕ a qualitative PECTL∗ formula. We construct a MDP

G′ = (V ′, E′, (V ′�,V
′
©

),Prob′), a partitioning (V ′D,V
′
R), a vertex s′in ∈ V , and a consis-

tency objective (M, (Q>0,Q=1), L) such that the existence of a HC strategy σ where
sin |=

η ϕ in Gσ implies the existence of a HC strategy π that achieves the objective
(M, (Q>0,Q=1), L) in G′ s

′
in
π , and vice versa. The size of G′ is polynomial in |G| and ex-

ponential in |ϕ|.
The construction is partly based on ideas of [4] and proceeds as follows. First, all

Büchi automata that occur in ϕ are replaced with equivalent deterministic Muller au-
tomata. The resulting formula is further modified so that all probability bounds take
the form “>0” or “=1” (to achieve that, some of the deterministic Muller automata
may be complemented). Thus, we obtain a formula ϕ′. Let M>0 and M=1 be the sets of
all deterministic Muller automata that appear in ϕ′ with the probability bound >0 and
=1, respectively. The automatonM is essentially the disjoint union of all automata in
M>0 and M=1. The sets Q>0 and Q=1 are unions of sets of control states of all Muller
automata in M>0 and M=1, respectively. The tricky part is the construction of G′. In-
tuitively, the MDP G′ is the same as G, but several instances of Muller automata from
M>0∪M=1 are simulated “on the fly”. Moreover, some “guessing” vertices are added so
that a strategy can decide what “subformulae of ϕ′” are to be satisfied in a given vertex.
The structure of G′ itself does not guarantee that the commitments chosen by the strat-
egy are fulfilled. This is done by the automatonM and the condition that vs |= Acc./%(q)
for all q ∈ Q./% ∩ L(s). (Intuitively, this condition says that the play G′ s

′
in
π is “consistent”

with the commitments chosen in the guessing vertices.)
Phase (2). The controller synthesis problem for consistency objectives and HC strate-
gies is solved in three steps:

(a) We solve the special case when the set Q>0 (see Definition 5) is empty.
(b) We solve the special case when the strategy is strictly randomizing (see below),

using the result of (a).
(c) We reduce the general (unrestricted) case to the special case of (b).

Now we describe the three steps in more detail. Let G = (V, E, (V�,V©),Prob) be a
MDP, sin ∈ V an initial vertex, (VD,VR) a partition of V�, and (M, (Q>0,Q=1), L) a
consistency objective, whereM = (Q,V, δ, A).

As for step (a), the key insight is the following observation (the proposition holds
under the non-restrictive assumption that for all s, t ∈ V such that (s, t) ∈ E and for all
p ∈ Q=1 such that p ∈ L(s) we have δ(p, s) ∈ L(t)):

Proposition 1. Let us assume that Q>0 = ∅. Then the objective (M, (Q>0,Q=1), L) is
achievable by some HC strategy iff there is a HC strategy σ such that for every state
vs of Gsin

σ , every p ∈ L(s) ∩ Q=1, and almost all runs v0s0, v1s1, . . . initiated in vs
there are k ∈ N0, q ∈ Q, and X ∈ A such that δ(p, s0 · · · sk−1) = q and almost all
runs v̂0 ŝ0, v̂1 ŝ1, . . . initiated in vk sk satisfy the following conditions: δ(q, ŝ0 · · · ŝ j) ∈ X
for every j ∈ N0, and for every r ∈ X there are infinitely many j ∈ N0 such that
δ(q, ŝ0 · · · ŝ j) = r.

In other words, if Q>0 = ∅, then the objective is achievable by a strategy which simply
“guesses” an appropriate moment and an appropriate X ∈ A, and then it suffices to
verify that the guess was correct, i.e., almost all simulated computations of M visit

only the states of X and each of them is visited infinitely often. This can be effectively
implemented by a qualitative Büchi objective, and hence we can rely on the existing
algorithms (see Section 1). At this point, there is no need for infinite memory.

In step (b), we concentrate on another special case where both Q>0 and Q=1 may
be non-empty, but the set of strategies is restricted to strictly randomizing HC (srHC)
strategies. A srHC strategy is a HC strategy σ such that σ(vs) assigns a positive proba-
bility to all outgoing edges whenever s ∈ VR. This is perhaps the most demanding part
of the whole construction, where we formalize the notion of “sub-objective” mentioned
earlier, invent the technique of “rotating” the finite-memory strategies for the individual
“sub-objectives”, etc. The main technical ingredient is the notion of entry point.

Definition 6. A set X ⊆ V is closed if each s ∈ X has at least one immediate successor
in X, and every s ∈ X which is stochastic or randomizing has all immediate successors
in X. Each closed X determines a sub-MDP G|X which is obtained from G by restricting
the set of vertices to X.

Let X be a closed set. An entry point for X is a pair (s, q) ∈ X ×Q>0 for which there
is a HD strategy ξ in G|X satisfying the following conditions:

1. s |=ξ Acc=1(q);
2. for every state vt of (G|X)s

ξ and every p ∈ L(t) ∩ Q=1 we have that vt |=ξ Acc=1(p);
3. for all states vt of (G|X)s

ξ and all p ∈ L(t) ∩ Q>0 we have the following: if there
is no state of V∗V© reachable from vt in (G|X)s

ξ, then either wt |=ξ Acc=1(p), or
there is a finite path v0t0, . . . , vktk initiated in vt such that tk ∈ VR and tk has two
outgoing edges (tk, r1), (tk, r2) ∈ E such that ξ(vktk) selects the edge (tk, r1) and
δ(p, t0 · · · tk) ∈ L(r2) ∩ Q>0.

Intuitively, entry points correspond to the finitely many “sub-objectives” discussed ear-
lier. The next step is to show that the set of all entry points for a given closed set X can be
effectively computed in time which is polynomial in |G| and exponential in |Q|. Further,
we show that for each entry point (s, q) one can effectively construct a finite-memory
deterministic strategy ξ(s, q) which has the same properties as the HD strategy ξ of Def-
inition 6 (this is what we meant by “achieving a sub-objective”). Here we use the results
of step (a). Technically, the key observation of step (b) is the following proposition (this
proposition holds under some technical assumptions that are not listed explicitly here).

Proposition 2. The consistency objective (M, (Q>0,Q=1), L) is achievable by a srHC
strategy σ iff there is a closed X ⊆ V such that sin ∈ X and for all s0 ∈ X and
q0 ∈ L(s0) ∩ Q>0 there is finite sequence (s0, q0), . . . , (sn, qn) such that (si, si+1) ∈ E,
qi ∈ L(si) and δ(qi, si) = qi+1 for all 0 ≤ i < n, and (sn, qn) is an entry point for X.

Both directions of the proof require effort, and the “if” part can safely be declared
as difficult. This is where we introduce the counter and “rotate” the ξ(s, q) strategies
for the individual entry points to obtain a srHC strategy that achieves the objective
(M, (Q>0,Q=1), L). This part is highly non-trivial and relies on many subtle observa-
tions. Nevertheless, the whole construction is effective and admits a detailed complexity
analysis.

Step (c) is relatively simple (compared to step (a) and particularly step (b)). The
2-EXPTIME lower bound for qualitative PECTL∗ objectives also requires a proof (the

bound does not follow from the previous work). Here we use a standard technique
for simulating an exponentially bounded alternating Turing machine, employing some
ideas presented in [2]. The EXPTIME lower bound for qualitative PCTL has been
established already in [3].

References

1. C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for prob-
abilistic systems. In Proceedings of IFIP TCS’2004, pp. 493–506. Kluwer, 2004.

2. T. Brázdil, V. Brožek, and V. Forejt. Branching-time model-checking of probabilistic push-
down automata. In Proceedings of INFINITY’2007, pp. 24–33, 2007.

3. T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time win-
ning objectives. In Proceedings of LICS 2006, pp. 349–358. IEEE, 2006.

4. T. Brázdil and V. Forejt. Strategy synthesis for Markov decision processes and branching-
time logics. In Proceedings of CONCUR 2007, vol. 4703 of LNCS, pp. 428–444. Springer,
2007.

5. T. Brázdil, V. Forejt, and A. Kučera. Controller synthesis and verification for Markov deci-
sion processes with qualitative branching time objectives. Technical report FIMU-RS-2008-
05, Faculty of Informatics, Masaryk University, 2008.

6. K. Chatterjee, L. de Alfaro, and T. Henzinger. Trading memory for randomness. In Proceed-
ings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST’04), pp. 206–217. IEEE,
2004.

7. K. Chatterjee, R. Majumdar, and T. Henzinger. Markov decision processes with multiple
objectives. In Proceedings of STACS 2006, vol. 3884 of LNCS, pp. 325–336. Springer, 2006.

8. L. de Alfaro. Quantitative verification and control via the mu-calculus. In Proceedings of
CONCUR 2003, vol. 2761 of LNCS, pp. 102–126. Springer, 2003.

9. E.A. Emerson. Temporal and modal logic. Handbook of TCS, B:995–1072, 1991.
10. K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective model check-

ing of Markov decision processes. In Proceedings of TACAS 2007, vol. 4424 of LNCS, pp.
50–65. Springer, 2007.

11. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1996.
12. E. Grädel. Positional determinacy of infinite games. In Proceedings of STACS 2004, vol.

2996 of LNCS, pp. 4–18. Springer, 2004.
13. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects

of Computing, 6:512–535, 1994.
14. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.
15. A. Kučera and O. Stražovský. On the controller synthesis for finite-state Markov decision

processes. In Proceedings of FST&TCS 2005, vol. 3821 of LNCS, pp. 541–552. Springer,
2005.

16. M.L. Puterman. Markov Decision Processes. Wiley, 1994.
17. C. Stirling. Modal and temporal logics. Handbook of Logic in Comp. Sci., 2:477–563, 1992.
18. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Pro-

ceedings of FOCS’85, pp. 327–338. IEEE, 1985.
19. I. Walukiewicz. A landscape with games in the background. In Proceedings of LICS 2004,

pp. 356–366. IEEE, 2004.

