
Fundamenta Informaticae xx (yy) 1–14 1

IOS Press

On the Controller Synthesis for Finite-State Markov Decision
Processes∗

Antonı́n Kučera C

Faculty of Informatics

Masaryk University

Botanická 68a, 60200 Brno, Czech Republic

kucera@fi.muni.cz

Oldřich Stražovský
Faculty of Informatics

Masaryk University

Botanická 68a, 60200 Brno, Czech Republic

strazovsky@fi.muni.cz

Abstract. We study the problem of effective controller synthesis for finite-state Markov decision
processes (MDPs) and the class of properties definable in the logic PCTL extended with long-run
average propositions. We show that the existence of such a controller is decidable, and we give
an algorithm which computes the controller if it exists. We also address the issue of “controller
robustness”, i.e., the problem whether there is a controller which still guarantees the satisfaction of
a given property when the probabilities in the considered MDP slightly deviate from their original
values. From a practical point of view, this is an important aspect since the probabilities are often
determined empirically and hence they are inherently imprecise. We show that the existence of
robust controllers is also decidable, and that such controllers are effectively computable if they exist.

Keywords: controller synthesis, Markov decision process, PCTL

∗The work is supported by the research center Institute for Theoretical Computer Science (ITI), project No. 1M0545.
CCorresponding author

2 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

1. Introduction

The controller synthesis problem is one of the fundamental research topics in the area of system design.
Loosely speaking, the task is to modify or limit some parts of a given system so that a given property is
satisfied. The controller synthesis problem is well understood for discrete systems [17], and the scope of
this study has recently been extended also to timed systems [3, 8] and probabilistic systems [2].

In this paper, we concentrate on a class of probabilistic systems that can be modelled by finite-state
Markov decision processes [14]. Intuitively, Markov decision processes (MDPs) are finite-state systems
where each state has several outgoing transitions leading to probability distributions over states. Thus,
Markov decision processes combine the paradigms of non-deterministic/probabilistic choice, and this
combination turns out to be very useful in system modelling. Quantitative properties of MDPs can
be defined only after resolving nondeterminism by assigning probabilities to the individual transitions.
Similarly as in [2], we distinguish among four natural types of strategies for resolving nondeterminism,
depending on whether

• the transition is chosen deterministically (D) or randomly (R);

• the choice does or does not depend on the sequence of previously visited states (Markovian (M)
and history-dependent (H) strategies, respectively).

Thus, one obtains the four basic classes of MD, HD, MR, and HR strategies. In addition, we assume
that the states of a given MDP are split into two disjoint subsets of controllable and environmental states,
depending on whether the nondeterminism is resolved by a controller or by the environment, respectively.
Hence, in our setting, the controller synthesis problem is specified by choosing the type of strategy for
the controller and environment, and the class of properties that are to be achieved. The task is to find,
for a given MDP and a given property, a controller strategy such that the property is satisfied for every
strategy of the environment. In [2], it was shown that this problem is NP-complete for MD strategies and
PCTL properties, and elementary for HD strategies and LTL properties.

For linear-time properties, the problem of finding a suitable controller strategy can also be formulated
in terms of stochastic games on graphs [18]. The controller and environment act as two players who
resolve the non-deterministic choice in controllable and environmental states, resp., and thus produce a
“play”. The winning conditions are defined as certain properties of the produced play. In many cases,
it turns out that the optimal strategies for both players are memoryless (i.e., Markovian in our terms).
However, in the case of branching-time properties that are considered in this paper, optimal strategies
do not necessarily exist, and even if they do exist, they are not necessarily memoryless (in fact, the four
types of strategies mentioned above form a strict hierarchy [2]).

Our contribution: In this paper we consider the controller synthesis problem for MR strategies and
the class of properties definable in the logic PCTL extended with long-run average propositions defined
in the style of [7]. The resulting logic is denoted PCTL+LAP. The long-run average propositions allow
to specify long-run average properties such as the average service time, the average frequency of visits
to a distinguished subset of states, etc. In the logic PCTL+LAP, one can express properties such as:

• the probability that the average service time for a request does not exceed 20 seconds is at least
98%;

• the system terminates with probability at least 80%, and at least 98% of runs have the property that
the percentage of time spent in “dangerous” states does not exceed 3%.

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 3

The practical relevance of PCTL+LAP properties is obvious.

The controller synthesis problem for PCTL+LAP properties and MD strategies is trivially reducible
to the satisfaction problem for finite-state Markov chains and PCTL+LAP properties. This is because
there are only finitely many MD strategies for a given MDP, and hence one can try out all possibilities.
For MR strategies, a more sophisticated approach is required because the total number of MR strategies
is infinite (and in fact not countable). This is overcome by encoding the existence of a MR-controller
in (R,+,∗,≤), first-order theory of the reals, which is known to be decidable [16]. The encoding is not
simple and includes several subtle tricks. Nevertheless, the size of the resulting formula is polynomial in
the size of a given MDP and a given PCTL+LAP property, and the number of quantifier alternations is
fixed. Hence, we obtain the EXPTIME upper complexity bound by applying the result of [9].

Another problem addressed in this paper is controller robustness [13]. Since the probabilities of
events that are modelled in MDPs are often evaluated empirically, they are inherently imprecise. Hence,
it is important to know whether the constructed controller still works if the probabilities in the considered
MDP slightly deviate from their original values. We say that a controller is ε-robust if the property in
question is still satisfied when probability distributions in the considered MDP change at most by ε in
each component (here we do not allow for changing the probabilities from zero to non-zero (and vice
versa), because this corresponds to changing from “impossible” to “possible”). Similarly, we can also
wonder whether the constructed controller is “fragile” in the sense that it stops working if the computed
strategy changes a little bit. We say that a controller is δ-free if every other controller obtained by
changing the strategy by at most δ is again a correct controller. We show that the problem whether there
is an ε-robust and δ-free controller for given MDP, PCTL+LAP property, and ε,δ≥ 0, is in EXPTIME.
Moreover, we give an algorithm which effectively estimates the maximal achievable level of controller
robustness for given MDP and PCTL+LAP property (i.e., we show how to compute the maximal ε, up
to a given precision, such that there is an ε-robust controller for given MDP and PCTL+LAP property).
Finally, we show how to construct an ε-robust controller for a given MDP and PCTL+LAP property,
provided that an ε-robust and δ-free controller exists and δ > 0.

This paper is a full and revised version of a previously published conference paper [11].

2. Basic Definitions

In the rest of this paper, we use Z, N, R, and R≥0 to denote the sets of integers, positive integers, real
numbers, and non-negative real numbers, respectively.

We start by recalling basic notions of probability theory. A σ-field over a set X is a set F ⊆ 2X that
includes X and is closed under complement and countable union. A measurable space is a pair (X ,F)
where X is a set called sample space and F is a σ-field over X . A measurable space (X ,F) is called dis-
crete if F = 2X . A probability measure over a measurable space (X ,F) is a function P : F →R≥0 such
that, for each countable collection {Xi}i∈I of pairwise disjoint elements of F , P (

S
i∈I Xi) = ∑i∈I P (Xi),

and moreover P (X) = 1. A probability space is a triple (X ,F ,P) where (X ,F) is a measurable space
and P is a probability measure over (X ,F). A probability measure over a discrete measurable space
is called a discrete measure. We also refer to discrete measures as distributions. The set of all discrete
measures over a measurable space (X ,2X) is denoted Disc(X).

4 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

2.1. Markov decision processes.

A Markov decision process (MDP) M is a triple (S,Act,P) where S is a finite or countably infinite set of
states, Act is a finite set of actions, and P : S×Act×S→ [0,1] is a (total) probabilistic function such that
for every s ∈ S and every a ∈ Act we have that ∑t∈S P(s,a, t) ∈ {0,1}. We say that a ∈ Act is enabled in
s ∈ S if ∑t∈S P(s,a, t) = 1. The set of all actions that are enabled in a given s ∈ S is denoted Act(s). For
technical convenience, we assume that each state s ∈ S has at least one enabled action. We say that M is
finite if S is finite. A path in M is a nonempty finite or infinite alternating sequence of states and actions
π = s1a1s2a2 . . .an−1sn or π = s1a1s2a2 . . . such that P(si,ai,si+1) > 0 for all 1≤ i < n or i∈N, resp. The
length (i.e., the number of actions) of a given π is denoted |π|, where |π| = ∞ if π is infinite. For every
1 ≤ i ≤ |π|+1, the symbol π(i) denotes the i-th state of π (which is si). A run is an infinite path. The
sets of all finite paths and all runs of M are denoted FPath and Run, respectively. Sometimes we write
FPathM and RunM if M is not clear from the context. Similarly, the sets of all finite paths and runs that
start in a given s ∈ S are denoted FPath(s) and Run(s), respectively. For finite paths, last(π) = π(|π|+1)
denotes the last state of π.

For the rest of this section, we fix a MDP M = (S,Act,P).

2.2. Strategies, adversaries, and policies for MDPs.

Let S0 ⊆ S be nonempty subset of controllable states. The states of S \S0 are environmental. A strategy
is a function D that resolves nondeterminism for the controllable states of M . We distinguish among
four basic types of strategies for (M ,S0), according to whether they are deterministic (D) or randomized
(R), and Markovian (M) or history-dependent (H).

• A MD-strategy is a function D : S0→ Act such that D(s) ∈ Act(s) for all states s ∈ S0.

• A MR-strategy is a function D : S0→Disc(Act) such that D(s) ∈Disc(Act(s)) for all states s ∈ S0.

• A HD-strategy is a function D : FPath→ Act such that D(π) ∈ Act(last(π)) for all finite paths
π ∈ FPath where last(π) ∈ S0, otherwise D(π) =⊥.

• A HR-strategy is a function D : FPath→ Disc(Act) such that D(π) ∈ Disc(Act(last(π))) for all
finite paths π ∈ FPath where last(π) ∈ S0, otherwise D(π) =⊥.

MD, MR, HD, and HR adversaries are defined in the same way as strategies of the corresponding type;
the only difference is that adversaries range over environmental states. A policy is a pair H = (D,E)
where D is a strategy and E an adversary. Slightly abusing notation, we write H(s) to denote either D(s)
or E(s), depending on whether s ∈ S0 or not, respectively.

2.3. Markov chains induced by policies.

A Markov chain is a MDP with only one action, i.e., without nondeterminism. Formally, a Markov chain
is a pair C = (S,P) where (S,{a},P) is a MDP. The (only) action a can safely be omitted, and so the
probabilistic function is restricted to the set S× S, and a path in C is a (finite or infinite) sequence of
states s1s2s3

Each π ∈ FPathC determines a basic cylinder Run(π) which consists of all runs that start with π. To
every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ-field generated by all

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 5

basic cylinders Run(π) where π starts with s (i.e., π(1) = s), and P : F → [0,1] is the unique probability
measure such that P (Run(π)) = Π

|π|
i=1P(π(i),π(i+1)) (if |π|= 0, we put P (Run(π)) = 1).

Let M = (S,Act,P) be a MDP. Each policy H for M induces a Markov chain CH = (SH ,PH) in the
following way:

• If H is a Markovian (MD or MR) policy, then SH = S.

• If H is a history-dependent (HD or HR) policy, then SH = FPathM .

The function PH is determined as follows:

• If H is a MD-policy, then PH(si,s j) = P(si,H(si),s j).

• If H is a MR-policy, then PH(si,s j) = ∑a∈Act(si) µ(a) ·P(si,a,s j) where µ = H(si).

• If H is a HD-policy, then PH(π,π′) = P(last(π),H(π),s) if π′ = πH(π)s, and PH(π,π′) = 0 other-
wise.

• If H is a HR-policy, then PH(π,π′) = µ(a) · P(last(π),a,s) where µ = H(π), if π′ = πas, and
PH(π,π′) = 0 otherwise.

2.4. The logics PCTL and PCTL+LAP.

Let Ap = {p,q, . . .} be a countably infinite set of atomic propositions. The syntax of PCTL state and
path formulae is given by the following abstract syntax equations:

Φ ::= tt | p | ¬Φ | Φ1∧Φ2 | P onρ
ϕ

ϕ ::= X Φ | Φ1 U Φ2

Here p ranges over Ap, ρ ∈ [0,1], and on ∈ {≤,<,≥,>}.
Let C = (S,P) be a Markov chain, and ν : Ap→ 2S be a valuation. The semantics of PCTL is defined

below. State formulae are interpreted over S, and path formulae are interpreted over Run.

s |=ν tt
s |=ν p iff s ∈ ν(p)
s |=ν ¬Φ iff s 6|=ν Φ

s |=ν Φ1∧Φ2 iff s |=ν Φ1 and s |=ν Φ2
s |=ν P onρϕ iff P ({π∈Run(s) | π |=ν ϕ}) on ρ

π |=ν X Φ iff π(2) |=ν Φ

π |=ν Φ1 U Φ2 iff there is j ≥ 1 such that π(j) |=ν Φ2 and π(i) |=ν Φ1 for all 1≤ i < j

The logic PCTL+LAP is obtained by extending PCTL with long-run average propositions (in the style
of [7]). Intuitively, we aim at modelling systems which repeatedly service certain requests, and we are
interested in measuring the average costs of servicing a request along an infinite run. The states where
the individual services start are identified by (the validity of) a dedicated atomic proposition, and each
service corresponds to a finite path between two consecutive occurrences of a marked state.

6 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

Definition 2.1. A long-run average proposition is a pair [p, f] where p is an atomic proposition and
f : S→ R≥0 a reward function that assigns to each s ∈ S a reward f (s).

The reward assigned to a given s ∈ S corresponds to some costs which are “paid” when s is visited. For
example, f (s) can be the expected average time spent in s, the amount of allocated memory, or simply
a binary indicator specifying whether s is “good” or “bad”. The proposition p is valid in exactly those
states where a new service starts. Note that in this setup, a new service starts immediately after finishing
the previous service. This is not a real restriction, because the states which precede/follow the actual
service can be assigned zero reward.

The syntax of PCTL+LAP formulae is obtained by modifying the syntax of PCTL path formulae as
follows:

ϕ ::= X Φ | Φ1 U Φ2 | ξ

ξ ::= [p, f]≈b | ¬ξ | ξ1∧ξ2

Here [p, f] ranges over long-run average propositions, b ∈ R≥0, and ≈ ∈ {≤,<,≥,>}.
Let C = (S,P) be a Markov chain, [p, f] a long-run average proposition, and ν : Ap→ 2S a valuation.

Let π ∈ Run be a run along which p holds infinitely often, and let π(i1),π(i2), . . . be the sequence of all
states in π where p holds. Let π[j] denote the subword π(i j−1 +1), · · · ,π(i j) of π, where i0 = 0. Hence,
π[j] is the subword of π consisting of all states in between the j−1th state satisfying p (not included)
and the jth state satisfying p (included). Intuitively, π[j] corresponds to the jth service. Slightly abusing
notation, we use f (π[j]) to denote the total reward accumulated in π[j], i.e., f (π[j]) = ∑

i j
k=i j−1+1 f (π(k)).

Now we define the average reward per service in π (with respect to [p, f]) as follows:

A[p, f](π) =

 limn→∞

∑
n
j=1 f (π[j])

n if the limit exists;

⊥ otherwise.

If a given π ∈ Run contains only finitely many states satisfying p, we put A[p, f](π) =⊥. Now we define

π |=ν [p, f]≈b iff A[p, f](π) 6=⊥ and A[p, f](π)≈ b

The semantics of negation and conjunction of long-run average propositions is defined in the expected
way.

3. Controller Synthesis

In this section we examine the controller synthesis problem for finite MDPs, PCTL+LAP properties, and
MR policies.

Since the probabilities used in MDPs are often evaluated empirically (and hence inherently impre-
cise), it is important to analyze the extent to which a given result about a given MDP is “robust” in the
sense that its validity is not influenced by small probability fluctuations. This is formalized in our next
definitions:

Definition 3.1. Let M = (S,Act,P) be a MDP, and let ε ∈ [0,1]. We say that a MDP M ′ = (S,Act,P′)
is an ε-perturbation of M if for all (s,a, t) ∈ S×Act×S the following two conditions are satisfied:

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 7

• P(s,a, t) = 0 iff P′(s,a, t) = 0,

• |P(s,a, t)−P′(s,a, t)| ≤ ε.

Note that Definition 3.1 also applies to Markov chains.

Definition 3.2. Let M = (S,Act,P) be a MDP, ε ∈ [0,1], si ∈ S, and Prop some property of si. We say
that Prop is ε-robust if for every MDP M ′ which is an ε-perturbation of M we have that if si |= Prop in
M , then si |= Prop in M ′.

Examples of 1-robust properties are qualitative LTL and qualitative PCTL properties of states in finite
Markov chains, whose (in)validity depends just on the “topology” of a given chain [6]. On the other
hand, the property of “being bisimilar to a given state” (here we consider the probabilistic bisimilarity of
[15, 12]) is generally 0-robust, because even a very small change in probability distribution can spoil the
bisimilarity relation.

In a similar fashion we also define a δ-perturbation of a randomized strategy.

Definition 3.3. Let M = (S,Act,P) be a MDP, S0 ⊆ S a nonempty set of controllable states, D a ran-
domized (i.e., MR or HR) strategy, and δ ∈ [0,1]. We say that a strategy D′ is a δ-perturbation of D if D′

is of the same type as D and for all a ∈ Act:

• MR case: for all s ∈ S0: |D(s)(a)−D′(s)(a)| ≤ δ and D(s)(a) = 0⇔ D′(s)(a) = 0

• HR case: for all π ∈ FPath where last(π) ∈ S0: |D(π)(a)−D′(π)(a)| ≤ δ and D(π)(a) = 0⇔
D′(π)(a) = 0

Let M = (S,Act,P) be a MDP, S0 ⊆ S a nonempty set of controllable states, si ∈ S, and Prop some
property of si. Let T ∈ {MD,MR,HD,HR}. A T -controller for M and Prop is a T -strategy D such that
si |= Prop in C(D,E) for every T -adversary E. We say that the controller D is

• ε-robust for a given ε ∈ [0,1] if the property “D is a controller for M and Prop” is ε-robust. In
other words, D is a valid controller for Prop even if the probabilities in M slightly change (at most
by ε).

• ε-robust and δ-free for given ε,δ ∈ [0,1] if every D′ which is a δ-perturbation of D is an ε-robust
controller for M and Prop.

In the rest of this section we consider the problem of MR-controller synthesis for a given MDP M =
(S,Act,P), a set of controllable states S0 ⊆ S, a state si ∈ S, a PCTL+LAP formula ϕ, and a valuation ν.
For notation simplification, we do not list these elements in our theorems explicitly, although they are
always a part of a problem instance.

Theorem 3.1. Let ε,δ ∈ [0,1]. The problem whether there is an ε-robust and δ-free MR-controller is in
EXPTIME.

8 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

Proof:
We construct a closed formula of (R,∗,+,≤) which is valid iff an ε-robust and δ-free MR-controller
exists. The formula has the following structure:

∃D ∀D′ (D′ is a δ-pert. of D)⇒
(
∀E ∀P′ (P′ is a ε-pert. of P)⇒

(
∃Y (Y is consistent ∧Y si

ϕ =1)
))

Intuitively, the formula says “there is an MR-strategy D such that for every strategy D′ which is a
δ-perturbation of D, every adversary E, and every ε-perturbation of M with probabilities P′, there is
a consistent validity assumption Y (which declares each subformula of ϕ to be either true or false in
every state of S) such that Y sets the formula ϕ to true in the state si”. Now we describe these parts in
greater detail.

Let X s
a ,X

′s
a be fresh first-order variables for all s ∈ S0 and a ∈ Act(s). These variables are used to

encode the strategies D,D′. Intuitively, X s
a and X ′sa carry the probability of choosing the action a in the

state s in D and D′, respectively. The

∃D ∀D′ (D′ δ-pert. of D)

part can then be implemented as follows:

∃{X s
a | s ∈ S0,a ∈ Act(s)} :

^
X s

a

(0≤ X s
a ≤ 1)∧

^
s∈S0

(∑
a∈Act(s)

X s
a = 1) ∧

∀{X ′sa | s ∈ S0,a ∈ Act(s)} :
(^

X ′sa

(0≤ X ′sa ≤ 1)∧
^

s∈S0

(∑
a∈Act(s)

X ′sa = 1)∧^
X s

a

((X s
a = 0⇔ X ′sa = 0)∧ (|X s

a−X ′sa | ≤ δ))

Similarly,

• for all s ∈ S \ S0 and a ∈ Act(s) we fix fresh first-order variables X ′sa that encode the adversary E
(from a certain point on, we do not need to distinguish between the probabilities chosen by D′ and
E);

• for all s, t ∈ S and a ∈ Act(s) we fix a fresh variable Ps,t
a that encodes the corresponding probability

of P′;

• for every φ ∈ cl(ϕ) (here cl(ϕ) is the set of all subformulae of ϕ) and every s ∈ S we fix a variable
Y s

φ
that carries either 1 or 0, depending on whether s satisfies φ or not, respectively. As we shall

see, the value of Y s
φ

is first “guessed” and then “verified”.

The ∀E ∀P′ (P′ ε-pert. of P)⇒ (∃Y (Y is consistent ∧Y si
ϕ =1)) part can now be implemented as follows:

∀{X ′sa | s ∈ S\S0,a ∈ Act(s)} :
^
X ′sa

(0≤ X ′sa ≤ 1)∧
^

s∈S\S0

(∑
a∈Act(s)

X ′sa = 1) ⇒

∀{Ps,t
a | s, t ∈ S,a ∈ Act(s)} :^

Ps,t
a

((P(s,a, t) = 0⇔ Ps,t
a = 0)∧ (|P(s,a, t)−Ps,t

a | ≤ ε))⇒

∃{Y s
φ | φ ∈ cl(ϕ),s ∈ S} :^

Y s
φ

((Y s
φ = 0∨Y s

φ = 1)∧ (Y s
φ = 1⇔ ψ

s
φ))∧ (Y si

ϕ = 1)

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 9

The tricky part of the construction is the formula ψs
φ
, which is defined inductively on the structure of

φ. Intuitively, ψs
φ

says that s satisfies φ, where we assume that this has already been achieved for all
subformulae of φ (hence, by justifying all steps in our inductive definition we also yield a correctness
proof for our construction):

• φ≡ p. If s ∈ ν(p), then ψs
φ
≡ tt, otherwise ψs

φ
≡ ¬tt.

• φ≡ ¬φ′. Then ψs
φ
≡ (Y s

φ′ = 0).

• φ≡ φ1∧φ2. Then ψs
φ
≡ (Y s

φ1
= 1)∧ (Y s

φ2
= 1).

• φ≡ P onρX φ′. Then ψs
φ
≡
(

∑a∈Act(s),t∈S X ′sa ·P
s,t
a ·Y t

φ′

)
on ρ.

The case when φ≡ P onρφ1 U φ2 is slightly more complicated. The probabilities {Zr | r ∈ S}, where Zr is
the probability that a run initiated in r satisfies the path formula φ1 U φ2, form the least solution (in the
interval [0,1]) of a system of recursive linear equations constructed as follows (where Zr should be seen
as “unknowns”; cf. [10, 6]):

• if Y r
φ2

= 1, we put Zr = 1;

• if Y r
φ1

= 0 and Y r
φ2

= 0, we put Zr = 0;

• if Y r
φ1

= 1 and Y r
φ2

= 0, we put Zr =
(

∑a∈Act(s),t∈S X ′ra ·P
r,t
a ·Zt

)
.

So, the formula ψs
φ

for the case when φ≡ P∼ρφ1 U φ2 looks as follows:

∃{Zr | r ∈ S} :
^
r∈S

(0≤ Zr ≤ 1) ∧ {Zr} is a solution ∧ Zsonρ ∧(
∀{Z′r | r ∈ S} : (

^
r∈S

(0≤ Z′r ≤ 1)∧{Z′r} is a solution)⇒ (
^
r∈S

Zr ≤ Z′r)
)

Here “{Zr} is a solution” means that the variables {Zr} satisfy the above system of recursive linear
equations, which can be easily encoded in (R,+,∗,≤).

Finally, we analyze the most complicated case when φ ≡ P onρ[p, f]≈b. In order to check long-run
average propositions, we need to analyze the structure of the Markov chain induced by the current values
of the X ′ra variables and find bottom strongly connected components (BSCC) of this chain.

We start by computing the probabilities Probt
r of reaching the state t from the state r. The set

{Probt
r | r, t ∈ S} forms the least solution (in the interval [0,1]) of the following system of recursive

linear equations, where Probt
r should be interpreted as “unknowns”:

• if r = t, we put Probt
r = 1;

• if r 6= t, we put Probt
r = ∑u∈S

(
∑a∈Act(r) X ′ra ·P

r,u
a

)
·Probt

u.

So, the formula which “computes” all Probt
r looks as follows:

10 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

∃{Probt
r | r, t ∈ S} :

^
r,t∈S

(0≤ Probt
r ≤ 1)∧{Probt

r} is a solution ∧(
∀{Prob′tr | r, t ∈ S} : (

^
r,t∈S

(0≤ Prob′tr ≤ 1)∧{Prob′tr} is a solution)⇒

(
^

r,t∈S

Probt
r ≤ Prob′tr)

)
Now we introduce predicates SCCr,t and BSCCr, where SCCr,t means that r, t are in the same strongly
connected component, and BSCCr means that r is in a bottom strongly connected component.

SCCr,t ::= Probt
r > 0∧Probr

t > 0

BSCCr ::=
^
t∈S

(Probt
r > 0⇒ Probr

t > 0)

The next step is to compute the (unique) invariant distribution for each BSCC. Recall that the invariant
distribution in a finite strongly connected Markov chain is the (unique) vector Inv of numbers from [0,1]
such that the sum of all components in Inv is equal to 1 and Inv∗T = Inv where T is the transition matrix
of the considered Markov chain.

For each BSCC (represented by a given t ∈ S), the following formula “computes” its unique invariant
distribution {Invt

r | r, t ∈ S}. More precisely, Invt
r is either zero (if r does not belong to the BSCC rep-

resented by t), or equals the value of the invariant distribution in r (otherwise). We also need to ensure
that the representative t is chosen uniquely, i.e., the values of all Invt ′

r , where t ′ is in the same SCC as t,
is zero:

∃{Invt
r | r, t ∈ S} :^

r,t∈S

(
(0≤ Invt

r ≤ 1)∧ ((¬BSCCr ∨¬BSCCt ∨¬SCCr,t)⇒ Invt
r = 0)

∧ ((BSCCr ∧BSCCt ∧SCCr,t)⇒
Invt

r = ∑
u∈S

(Invt
u · ∑

a∈Act(u)
X ′ua ·Pu,r

a))
)
∧^

t∈S

(
BSCCt ⇒

(
∑
r∈S

Invt
r = 1∧

^
t ′∈S,t ′ 6=t

(SCCt,t ′ ⇒∑
r∈S

Invt ′
r = 0)

)
∨(

∑
r∈S

Invt
r = 0∧

_
t ′∈S,t ′ 6=t

(SCCt,t ′ ∧∑
r∈S

Invt ′
r = 1)

))
According to ergodic theorem, almost all runs (i.e., with probability one) end up in some BSCC, and
then “behave” according to the corresponding invariant distribution (i.e., the “percentage of visits” to
each state is given by the invariant distribution). From this one can deduce that the average reward per
service is the same for almost all runs that hit a given BSCC. Hence, for each t ∈ S we can “compute” a
value Rewt which is equal to 1 iff

• t represents some BSCC and

• at least one state in this BSCC satisfies p (and hence p is satisfied infinitely often in almost all runs
that hit this BSCC) and

• the average reward per service associated with this BSCC is “good” with respect to the long-run
average proposition [p, f]≈b.

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 11

Note that the average reward per service can be computed as the ratio between the average reward per
state and the percentage of visits to states where the service starts. Thus, we obtain the formula

∃{Rewt | t ∈ S} :
^
t∈S

(Rewt = 0∨Rewt = 1)∧(
Rewt = 1⇔

(
∑
r∈S

Invt
r ·Y r

p > 0
)
∧

(
∑r∈S Invt

r · f (r)
∑r∈S Invt

r ·Y r
p
≈ b

))
Finally, the formula ψs

φ
“checks” whether the “good” BSCCs are reachable with a suitable probability:

ψs
φ

::=
(

∑
t∈S

Probt
s ·Rewt

)
on ρ

Although the whole construction is technically complicated, none of the above considered subcases leads
to an exponential blowup. Hence, we can conclude that the size of the resulting formula is polynomial
in the size of our instance. Moreover, a closer look reveals that the quantifiers are alternated only to a
fixed depth. Hence, our theorem follows by applying the result of [9], which says that every fragment
of (R,+,∗,≤) where the alternation depth of quantifiers is bounded by a fixed constant is decidable in
exponential time. ut

The technique used in the proof of Theorem 3.1 can easily be adapted to prove the following:

Theorem 3.2. For every ε ∈ [0,1], if there is an ε-robust MR-controller which is δ-free for some δ > 0,
then an ε-robust MR-controller is effectively constructible.

Proof:
First, realize that the problem whether there is an ε-robust MR-controller which is δ-free for some δ > 0
is in EXPTIME. We use the formula constructed in the proof of Theorem 3.1, where the constant δ

is now treated as first-order variable, and the whole formula is prefixed by “∃δ > 0”. If the answer is
positive (i.e., there is a controller with a non-zero freedom), one can effectively find some δ′ for which
there is an ε-robust and δ′-free controller by trying smaller and smaller δ′. As soon as we have such a δ′,
there are only finitely many candidates for a suitable MR-strategy D. Intuitively, we divide the interval
[0,1] into finitely many pieces of length δ′, and from each such subinterval we test only one value. This
suffices because the controller we are looking for is δ′-free. More precisely, we successively try to set
each of the variables {X s

a} to values{
n

|Act(s)|
+mδ

′ where n,m ∈ Z,0≤ n≤ |Act(s)|,−
⌈

1
δ′

⌉
≤ m≤

⌈
1
δ′

⌉}
so that 0 ≤ X s

a ≤ 1 and ∑a∈Act(s) X s
a = 1 for each s ∈ S. For each choice we check if it works (using the

formula of Theorem 3.1 where the {X s
a} variables are replaced with their chosen values and δ is set to

zero). One of these finitely many options is guaranteed to work, and hence a controller is eventually
found. ut

Similarly, we can also approximate the maximal ε for which there is an ε-robust MR-controller (this
maximal ε is denoted εm):

12 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

Theorem 3.3. For a given θ > 0, one can effectively compute a rational number κ such that |κ−εm| ≤ θ.

Proof:
For every i ∈ N, we inductively define κi ∈ R≥0 as follows:

• κ1 = 1
2

• κi+1 =

{
κi + 1

2i+1 if there is a κi-robust and 0-free MR controller;
κi− 1

2i+1 otherwise.

Note that the definition of κi is effective due to Theorem 3.1. It is easy to verify (by induction on i) that
|κi− εm| ≤ 1

2i for every i ∈ N. Hence, we can safely put κ = κdlog2 θe. ut

Since our algorithm for computing an ε-robust MR-controller works only if there is at least one such
controller with a non-zero freedom, it makes sense to ask what is the maximal ε for which there is an
ε-robust MR-controller with a non-zero freedom. Let us denote this maximal ε by ε′m.

Theorem 3.4. For a given θ > 0, one can effectively compute a rational number κ such that |κ−ε′m| ≤ θ.

Proof:
We use the proof of Theorem 3.3 where the definition of κi is slightly modified. In the inductive step
we ask whether there is a κi-robust and δ-free MR controller for some δ > 0. Note that the definition of
κi is again effective, because the above question can be decided by modifying the formula constructed
in the proof of Theorem 3.1 by considering δ as first-order variable and prefixing the whole formula by
“∃δ > 0”. ut

4. Conclusions

The controller synthesis problem studied in this paper can also be formulated in terms of games [17, 5].
MDPs where the set of states is split into controllable and environmental subsets correspond to 2 1

2 -player
games, and the considered controller synthesis problem corresponds to the synthesis of a winning MR-
strategy for Player I where the winning objective is specified by a PCTL+LAP property. Recently,
2 1

2 -player games with PCTL winning objectives have been studied in greater depth in [4]. In particular,
in [4] it has been shown that

• the existence of a winning HD or HR strategy in 1 1
2 -player games (these games correspond to

MDPs where all states are controllable) with PCTL winning objectives is highly undecidable.
Hence, the results presented in this paper cannot be extended to history-dependent strategies.

• The existence of a winning MR strategy for Player I in 2 1
2 -player games with qualitative PCTL

objectives is a Σ2 = NPNP complete problem (the qualitative fragment of PCTL is obtained by
restricting the form of the probabilistic operator to P on0 and P on1). Of course, the Σ2 lower com-
plexity bound carries over to PCTL+LAP properties.

A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes 13

Another extension of the presented results is [1], where the authors consider the model-checking problem
for stochastic game logic (SGL) interpreted over multi-player stochastic games. The logic SGL subsumes
PCTL and PCTL∗ (but not PCTL+LAP) and can also express typical game properties such as “players
A,B have a strategy such that for every strategy of player C, players D,E can react (i.e., have a strategy)
so that a certain property is achieved”. This is a generalization of our setting where we only have
two players. In [1], it is shown that the model-checking problem for SGL over finite-state multi-player
stochastic games with respect to MR strategies is PSPACE-hard and solvable in exponential space.

References
[1] C. Baier, T. Brázdil, M. Größer, and A. Kučera. Stochastic game logic. In Proceedings of 4th Int. Conf. on

Quantitative Evaluation of Systems (QEST’07). IEEE Computer Society Press, 2007.

[2] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for probabilistic systems.
In Proceedings of IFIP TCS’2004, pages 493–506. Kluwer, 2004.

[3] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observability. In Proceedings
of CAV 2003, volume 2725 of Lecture Notes in Computer Science, pages 180–192. Springer, 2003.

[4] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Stochastic games with branching-time winning objectives.
In Proceedings of LICS 2006, pages 349–358. IEEE Computer Society Press, 2006.

[5] K. Chatterjee and T. Henzinger. Semiperfect-information games. In Proceedings of FST&TCS 2005, volume
3821 of Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

[6] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal of the Association
for Computing Machinery, 42(4):857–907, 1995.

[7] L. de Alfaro. How to specify and verify the long-run average behavior of probabilistic systems. In Proceed-
ings of LICS’98, pages 454–465. IEEE Computer Society Press, 1998.

[8] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise in timed
games. In Proceedings of CONCUR 2003, volume 2761 of Lecture Notes in Computer Science, pages 144–
158. Springer, 2003.

[9] D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic Computation, 5(1–2):65–108,
1988.

[10] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing,
6:512–535, 1994.

[11] A. Kučera and O. Stražovský. On the controller synthesis for finite-state Markov decision processes. In Pro-
ceedings of FST&TCS 2005, volume 3821 of Lecture Notes in Computer Science, pages 541–552. Springer,
2005.

[12] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94(1):1–
28, 1991.

[13] A. Nilim and L. El Ghaoui. Robustness in Markov decision problems with uncertain transition matrices. In
Proceedings of NIPS 2003. MIT Press, 2003.

[14] M.L. Puterman. Markov Decision Processes. Wiley, 1994.

[15] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Comput-
ing, 2(2):250–273, 1995.

14 A. Kučera, O. Stražovský / Controller Synthesis for Finite-State Markov Decision Processes

[16] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of California Press, Berkeley,
1951.

[17] W. Thomas. Infinite games and verification. In Proceedings of CAV 2003, volume 2725 of Lecture Notes in
Computer Science, pages 58–64. Springer, 2003.

[18] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer Science,
158(1–2):343–359, 1996.

