
Regularity is Decidable for Normed PAProcesses in Polynomial TimeAntonín Ku£erae-mail: tony@fi.muni.czFaculty of Informatics, Masaryk UniversityBotanická 68a, 60200 BrnoCzech RepublicAbstract. A process � is regular if it is bisimilar to a process �0 with�nitely many states. We prove that regularity of normed PA processes isdecidable and we present a practically usable polynomial-time algorithm.Moreover, if the tested normed PA process � is regular then the process�0 can be e�ectively constructed. It implies decidability of bisimulationequivalence for any pair of processes such that one process of this pair isa normed PA process and the other process has �nitely many states.1 IntroductionWe consider the problem of deciding regularity of normed PA processes. A pro-cess � is regular if there is a process �0 with �nitely many states such that� � �0. Finite-state processes have been intensively studied in the last decades(see e.g. [16]). Almost all interesting properties are decidable for �nite-state pro-cesses. Moreover, designed algorithms are practically usable.This is no more true if one moves to process classes which contain also pro-cesses with in�nitely many states (up to bisimilarity). Some problems can remaindecidable�for example, bisimilarity is known to be decidable for BPA (see [1,5, 8, 9, 7]) and BPP (see [6]) processes. The same problem becomes undecidablefor labelled Petri nets (see [10]). But even if a given property is decidable, thealgorithm is usually not interesting from the practical point of view due to itscomplexity. Before running a complex algorithm, it is a good idea to ask whetherthe process we are dealing with can be replaced with some equivalent (bisimilar)process with �nitely many states. If so, we can usually run a much more e�-cient algorithm. Natural questions are, whether the regularity is decidable for agiven class of processes and whether the equivalent �nite-state process can bee�ectively constructed.Mauw and Mulder showed in [15] that �regularity� of BPA processes is decid-able. The quotes are important here because Mauw and Mulder used the wordregularity in a di�erent sense�a BPA process is �regular� if each of its variablesdenotes a regular process. This notion is thus strongly dependent on BPA syn-tax. It is not clear how to de�ne �regularity� e.g. for Petri nets. However, with ahelp of this result one can easily conclude that regularity is decidable for normed

BPA processes (see [13]). A similar result holds for normed BPP processes (see[13]). Both algorithms are polynomial and easy to implement.A recent result of Esparza and Jan£ar [11] says that regularity is decidablefor labelled Petri nets. The algorithm is obtained by a combination of two semi-decidability results and hence there are no complexity estimations. Furthermore,Burkart, Caucal and Ste�en showed in [4] that regularity is decidable for all BPAprocesses.An interesting related problem is decidability of various behavioural equiva-lences and preorders for pairs of processes such that one process of this pair isregular. For example, Jan£ar and Moller proved in [12] that bisimilarity is de-cidable for a pair of labelled Petri nets provided one net of this pair is bounded(regular). The same result holds for trace equivalence and simulation equivalence.In this paper we prove that regularity is decidable for normed PA processes.PA processes appeared as a natural subclass of ACP processes (see [2]). It isstrictly greater than the union of normed BPP and normed BPA processes andit is incomparable with the class of labelled Petri nets. Our regularity test fornormed PA processes is of polynomial time complexity. Moreover, if the testednormed PA process is regular then we can also construct a bisimilar �nite-stateprocess�and therefore we can also decide bisimilarity for pairs of processessuch that one process of this pair is a normed PA process and the other has�nitely many states. The problem of decidability of bisimulation equivalence for(normed) PA processes is open, hence this result can be seen as the �rst smallstep towards the solution.2 Basic de�nitions2.1 PA processesLet Act = fa; b; c; : : :g be a countably in�nite set of atomic actions. Let Var =fX;Y; Z; : : :g be a countably in�nite set of variables such that Var \ Act = ;.The class of recursive PA expressions is de�ned by the following abstract syntaxequations: EPA ::= a j X j EPA:EPA j EPAkEPA j EPATEPA j EPA +EPAHere a ranges over Act and X ranges over Var . The symbol Act� denotes theset of all �nite strings over Act.As usual, we restrict our attention to guarded expressions. A PA expressionE is guarded if every variable occurence in E is within the scope of an atomicaction.A guarded PA process is de�ned by a �nite family � of recursive processequations � = fXi def= Ei j 1 � i � ngwhere Xi are distinct elements of Var and Ei are guarded PA expressions, con-taining variables from fX1; : : : ; Xng. The set of variables which appear in � isdenoted by Var(�).

The variable X1 plays a special role (X1 is sometimes called �the leadingvariable�)�it is a root of a labelled transition system, de�ned by the process �and following rules:a a! � E a! E0E:F a! E0:F E a! E0E + F a! E0 F a! F 0E + F a! F 0E a! E0EkF a! E0kF F a! F 0EkF a! EkF 0 E a! E0ETF a! E0kF E a! E0X a! E0 (X def= E 2 �)The symbol � denotes the empty expression with usual conventions: �kE = E,Ek� = E, �:E = E, �TE = E and ET� = E. Nodes of the transition systemgenerated by � are PA expressions, which are often called states of �, or just�states� when � is understood from the context. We also de�ne the relationw!* where w 2 Act� as the re�exive and transitive closure of a! (we often writeE !� F instead of E w!* F if w is irrelevant). Given two states E;F , we saythat F is reachable from E, if E !� F . States of � which are reachable fromX1 are said to be reachable.Bisimulation The equivalence between process expressions (states) we are in-terested in here is bisimilarity [17], de�ned as follows:De�nition 1 A binary relation R over process expressions is a bisimulation ifwhenever (E;F) 2 R then for each a 2 Act� if E a! E0, then F a! F 0 for some F 0 such that (E0; F 0) 2 R� if F a! F 0, then E a! E0 for some E0 such that (E0; F 0) 2 RProcesses � and �0 are bisimilar, written � � �0, if their leading variables arerelated by some bisimulation.Normed processes An important subclass of PA processes can be obtained byan extra restriction of normedness. A variable X 2 Var(�) is normed if there isw 2 Act� such that X w!* �. In that case we de�ne the norm of X , written [X],to be the length of the shortest such w. Thus [X] = minflength(w) j X w!* �g.A process � is normed, if all variables of Var(�) are normed. The norm of � isthen de�ned to be the norm of X1.A normal form for PA processes Before we present a normal form for PAprocesses, we need to introduce the set of VPA expressions de�ned inductivelyas follows:1. The empty expression � is a VPA expression.2. Each variable X 2 Var is a VPA expression.3. If �; � are nonempty VPA expressions, then �:�, �k� and �T� are VPAexpressions.

4. Each VPA expression can be constructed using the rules 1, 2 and 3 in a �nitenumber of steps.We use Greek letters �; �; : : : to range over VPA expressions. The set of VPAexpressions which contain only variables from Var(�), where � is a PA pro-cess, is denoted VPA(�). Finally, the set of variables which appear in a VPAexpression � is denoted Var(�).De�nition 2 A PA process � is said to be in normal form if all its equationsare of the form Xi def= niXj=1 aij�ijwhere 1 � i � n, ni 2 N , aij 2 Act and �ij 2 VPA(�). Moreover, we alsorequire that for each Xi, 1 � i � n there is a reachable state � 2 VPA(�) suchthat Xi 2 Var(�).Any PA process can be e�ectively presented in normal form (see [3]). From nowon we assume that all PA processes we are working with are presented in normalform. This justi�es also the assumption that all reachable states of a PA process� are elements of VPA(�).2.2 Regular processesThe main question considered in this paper is whether regularity of normed PAprocesses is decidable. The next de�nition explains what is meant by the notionof regularity.De�nition 3 A process � is regular if there is a process �0 with �nitely manystates such that � � �0.It is easy to see that a process is regular i� it can reach only �nitely many statesup to bisimilarity. In [16] it is shown that regular processes can be representedin the following normal form:De�nition 4 A regular process � is said to be in normal form if all its equationsare of the form Xi def= niXj=1 aijXijwhere 1 � i � n, ni 2 N , aij 2 Act and Xij 2 Var(�).Thus a process � is regular i� there is a regular process �0 in normal formsuch that � � �0. In the next section we show that regularity of normed PAprocesses is decidable. Moreover, if a given normed PA process � is regular thenthe process �0 can be e�ectively constructed.Lemma 5 A process � is not regular i� there is an in�nite path X1 = �0 a0!�1 a1! �2 a2! � � � such that �i 6� �j for i 6= j.Proof. It can be found e.g. in [13].

3 Decidability of regularity for normed PA processes3.1 The inheritance treeLet � be a normed PA process. The aim of the following de�nition is to describeall variables in a state � 2 VPA(�) which can potentially emit an action:De�nition 6 Let � be a normed PA process. For each � 2 VPA(�) we de�nethe set FIRE (�) in the following way:FIRE (�) =8>><>>:; if � = �fXg if � = XFIRE (�1) if � = �1:�2 or � = �1T�2FIRE (�1) [FIRE (�2) if � = �1k�2The following function is needed in some proofs of this section:De�nition 7 The function Length : VPA! N[f0g returns for each � 2 VPAthe number of variables contained in �, distinguishing multiple occurence of thesame variable.Lemma 8 Let � be a normed PA process, � 2 VPA(�). Then for each X 2Var(�) there is � 2 VPA(�) such that �!� � and X 2 FIRE(�).The following concept stands behind many constructions of this paper:De�nition 9 For each � 2 VPA we de�ne the set Tail(�) � Var in the follow-ing way:Tail (�) =8<:fXg if � = X; if � = � or � = �k where � 6= � 6= Tail ()�Var(�) if � = �: or � = �T where � 6= � 6= Remark 10 The set Tail (�) provides two important pieces of information:1. If X 2 Var(�) such that X 62 Tail(�), then there is �0 such that � !� �0,X 2 FIRE (�0) and Length(�0) � 2.2. If X 2 Tail(�), then the only occurence of X in � can become active (i.e. Xcan emit an action) after all other variables disappear.De�nition 11 Let � be a normed PA process. A variable X 2 Var(�) isgrowing if there is � 2 VPA(�) such that X !� �, X 2 FIRE(�) andLength(�) � 2.Lemma 12 Let � be a normed PA process. The problem whether Var(�) con-tains a growing variable is decidable in polynomial time.Proof. We de�ne the binary relation GROW on Var(�) in the following way:

(X;Y) 2 GROW def() 9� 2 VPA(�) such that X !� � whereLength(�) � 2 and Y 2 FIRE (�):Clearly Var(�) contains a growing variable i� there is X 2 Var(�) such that(X;X) 2 GROW . We show that the relation GROW can be e�ectively con-structed in polynomial time. We need two auxiliary binary relations on Var(�):X ; Y def() there is a summand a� in the de�ning equation for X in �such that Length(�) � 2, Y 2 Var(�) and Y 62 Tail(�)X ,! Y def() there is a summand a� in the de�ning equation for X in �such that Y 2 Var(�).It is easy to prove that GROW =,!� :; : ,!� where ,!� denotes the re�exiveand transitive closure of ,!. Moreover, the composition ,!� : ; : ,!� can beconstructed in polynomial time.Let� be a normed PA process. If� is not regular then there is (due to Lemma 5)an in�nite path P of the form X1 = �0 a0! �1 a1! �2 a2! � � � such that �i 6� �jfor i 6= j. To be able to examine properties of P in a detail, we de�ne for Pthe corresponding inheritance tree, denoted ITP . The aim of this constructionis to describe the relationship between variables which are located in successivestates of P . The way how ITP is constructed is similar to the construction of aderivation tree for a word w 2 L(G) where L(G) is a language generated by acontext-free grammar G. We start with an example which shows how ITP looksfor a given pre�x of P .Example 13 Let � be a normed PA process given by the following set of equa-tions:f X def= b + a(Y:(ZkY)); Y def= c + b(Y:Z:X); Z def= a + a((ZkY):X) gLet P = X a! Y:(ZkY) c! ZkY a! ((ZkY):X)kY b! ((ZkY):X)k(Y:Z:X) � � �.If we draw a fragment of ITP , we get the following picture:X}}{{{{ �� !!CCCCY Z�� Y��Zvvnnnnnnnnn}}{{{{ �� Y��Z�� Y�� X��� Y�� ��@@@ ((PPPPPPPPPZ Y X Y Z X�Nodes of ITP are labelled with variables of Var(�). The state �i; i 2 N [f0gof P corresponds to the set of nodes in ITP which have the distance i from the

root of ITP (the root itself has the distance 0). This set of nodes is called the ithLevel of ITP . Each transition �i ai! �i+1 is due to a single variable A 2 Var(�i)and a transition A ai! where the expression ai is a summand in the de�ningequation for A in � (see De�nition 2). Moreover, �i+1 can be obtained from�i by replacing one occurence of A with (here we must distinguish betweenmultiple occurence of the variable A within the state �i). We call the variableA the active variable of �i and the transition A ai! the step of �i. The nodesof ITP which correspond to active variables are called active. Each active nodeis placed within a box in the previous example.Nodes and edges of ITP are de�ned inductively�we de�ne all nodes in theLevel i+1 together with their labels, using the nodes from the Level i. Moreover,we also de�ne all edges between nodes in these two levels.1. i=0: There is just one node N in the Level 0 � the root, labelled X1.2. induction step: Let us suppose that nodes of Level i have been alreadyde�ned. For each node U from Level i we de�ne its immediate successors.There are two possibilities:� U is not active: Then U has just one immediate successor whose labelis the same as the label of U .� U is active: Let A ai! be the step of �i and let n = Length(). Thenode U (whose label is A) has n immediate successors (if n = 0 then U isa leaf). The label of the lth immediate successor of U is the lth variablefrom , reading from left to right. Here l ranges from 1 to n. As wecannot a�ord to lose the information about the structure of completely,we distinguish the case when Tail () = fBg where B 2 Var(�). Thenwe say, that the last successor of U is a tail of U . In the example above,tails are marked with a black dot.A node of ITP which has at least two immediate successors is called a branchingnode. Branching nodes are especially important because their labels are potentialcandidates to be growing. This is the basic idea which stands behind the notionof the Allow set.De�nition 14 For each node U of ITP we de�ne the set Allow (U) � Var(�)in the following way:� If U is the root of ITP , then Allow (U) = Var(�).� If U is an immediate successor of a node V , then� If V is not branching, then Allow (U) = Allow (V).� If V is branching and U is not a tail of V, then Allow (U) = Allow (V)�fLabel(V)g.� If V is branching and U is a tail of V , then Allow (U) = Allow (V).The next lemma explains what is the relationship between a node U and the setAllow (U):Lemma 15 Let U be a node of ITP . If Label(U) 62 Allow (U) then Label(U) isa growing variable.

Now we prove the �rst main theorem of this paper:Theorem 16 A normed PA process � is regular i� Var(�) does not containany growing variable.Proof.()) : Let X 2 Var(�) be a growing variable. We show that � can reach in-�nitely many pairwise non-bisimilar states. To do this, it su�ces to show thatfor any k 2 N there is a reachable state � 2 VPA(�) such that [�] � k (bisimilarprocesses must have the same norm). As X is growing, there is 2 VPA(�) suchthat X !� , X 2 FIRE () and Length() � 2. Moreover, there is a reachablestate �1 2 VPA(�) such that X 2 FIRE (�1) (it follows from the De�nition 2and Lemma 8). Thus �1 !� �2 where �2 is obtained from �1 by replacing one oc-curence of X with . As X 2 FIRE (�1), each variable from FIRE () belongs toFIRE (�2)�hence X 2 FIRE (�2). Moreover, Length(�2) > Length(�1) becauseLength() � 2. As X 2 FIRE (�2), we can repeat this construction producing�3 and so on. As Length(�i) > Length(�j) for each i > j, the state �k has theproperty Length(�k) � k, thus [�k] � k.(() : This part of the proof is more complicated. The basic scheme is similar tothe method which was used by Mauw and Mulder in [15] and can be describedin the following way: We need to show that if � is not regular then there is agrowing variable X 2 Var(�). As � is not regular, there is (due to Lemma 5)an in�nite path P of the form X1 = �0 a0! �1 a1! �2 a2! � � � such that �i 6� �jfor i 6= j. We show that if Var(�) does not contain any growing variable, thenthere are i 6= j such that �i � �j . It contradicts the assumption above�henceVar(�) contains at least one growing variable.Let ITP be the inheritance tree for the path P . To complete the proof weneed to divide ITP into more manageable units called blocks.Levels of ITP which contain just one node are called delimiters of ITP . Ablock of ITP is a subgraph S of ITP composed of:1. all nodes and edges between two successive delimiters i and j where i < j.The only node of Level i is called the opening node of S and the only node ofLevel j is called the closing node of S. Out-going edges of the closing nodeand in-going edges of the opening node are not a part of S.2. all nodes below the delimiter i (including Level i), if there is no delimiter jwith j > i. The only node of Level i is called the opening node of S. In-goingedges of the opening node are not a part of S.As Level 0 is a delimiter of ITP , we can view ITP as a vertical sequence ofblocks.The width of ITP is de�ned to be the least n 2 N such that the cardinalityof ith Level of ITP is less or equal n for each i 2 N [f0g. If there is no such n,we de�ne the width of ITP to be 1.Similarly, if S is a block of ITP , the width of S is the least n 2 N such thatthe cardinality of each Level which is a part of S is less or equal n. If there is nosuch n, we de�ne the width of S to be 1.

Furthermore, we de�ne the branching degree of ITP to be the least n 2 Nsuch that each node U of ITP has at most n immediate successors. The branchingdegree of ITP is always �nite (it actually depends only on��letM be the set ofall VPA expressions, which appear in de�ning equations of � (see De�nition 2).The branching degree of ITP is then at most maxfLength(�) j � 2 Mg). Wedenote the branching degree of ITP by D in the rest of this proof.Each node U of ITP de�nes its associated subtree, rooted by U . This subtreeis denoted Subtree(U). Although the notions of block, width, branching node,tail, etc. were originally de�ned for ITP , they can be used also for any Subtree(U)of ITP in an obvious way.We prove that if Var(�) does not contain any growing variable, then foreach node U of ITP the Subtree(U) has the width at most Dn�1, where n =card(Allow(U)).We proceed by induction on n = card(Allow(U)): First, if Var(�) does notcontain any growing variable, then Subtree(U) does not contain any node U withAllow(U) = ;. This is due to Lemma 15�clearly Label(U) 62 ;, thus Label(U)would be a growing variable. Hence n is at least 1.1. n=1: Let Allow(U) = fXg. We show that Subtree(U) does not containany branching node. Let us assume the opposite. Then there is a branchingnode V in Subtree(U) with Allow(V) = fXg, thus Label(V) = X . As Vis branching, at least one immediate successor V 0 of V has the propertyAllow(V 0) = Allow(V) � fLabel(V)g = ;. Hence Label(V 0) is a growingvariable and we have a contradiction. As Subtree(U) does not contain anybranching node, the width of Subtree(U) is 1 = Dn�1.2. induction step: Let card(Allow(U)) = n. We prove that each block ofSubtree(U) has the width at most Dn�1. Let S be a block of Subtree(U)and let V be its opening node. Clearly card(Allow(V)) � n. If V has nosuccessors then the width of S is 1. If V is not branching then the onlyimmediate succesor of V is a closing node of S, thus the width of S equals1. If V is branching, there are two possibilities:� V does not have a tail. Then each immediate successor V 0 of V has theproperty card(Allow(V 0)) � n � 1. By induction hypothesis, the widthof Subtree(V 0) is at most Dn�2. As V can have at most D immediatesuccessors, the width of Subtree(V) is at most D:Dn�2 = Dn�1. Thusthe width of S is also at most Dn�1.� V has a tail T . Each immediate successor V 0 of V which is di�erentfrom T has the property card(Allow(V 0)) � n � 1. Hence we can usethe induction hypothesis for each such V 0. The only problem is the nodeT . We show, that if T has a branching successor T 0 then the node T 0 iseither the closing node of the block S or it is a successor of the closingnode of the block S�hence the block S can have the width at most(D � 1):Dn�2 + 1.Suppose that T has a branching successor T 0. Branching nodes are alwaysactive�thus T has at least one active successor. Let W be the activesuccessor of T which has the least distance from T . The node T 0 is

clearly either the node W (if W is branching), or a successor of W . Weshow, that the node W is the closing node of the block S. But it followsdirectly from the de�nition of the tail (see Remark 10)�as W is active,there are no successors of V in the level of W except the node W itself.We have just proved that if Var(�) does not contain any growing variable thenthe width of ITP is at most Dcard(Var(�))�1. Hence each element �i of P hasthe property Length(�i) � Dcard(Var(�))�1. As Var(�) is �nite, there are only�nitely many VPA(�) expressions whose Length is at most Dcard(Var(�))�1.Therefore there are i; j 2 N [f0g, i 6= j, such that �i = �j and thus �i � �j .3.2 A construction of the process �0 in normal formIn this section we show that if a given normed PA process � is regular, then �can be e�ectively transformed into a regular process �0 in normal form such that� � �0. Due to the lack of space we describe the algorithm just informally�butwe provide a concrete example which should explain how it works. All detailscan be found in [14]. In order to simplify the construction, we identify severalVPA expressions by the structural congruence:De�nition 17 Let � be the smallest congruence relation over VPA expressionssuch that the following laws hold: associativity for sequential composition andassociativity and commutativity for parallel composition.The algorithm is based on the following fact:Lemma 18 A normed PA process � is regular i� � can reach only �nitelymany states up to �.The algorithm �nds all reachable states � 2 VPA(�) of � up to �. For eachsuch � a new variable and a new de�ning equation is added to �0. The de�ningequation is obtained by unfolding ��we apply the CCS expansion law (see [16])and the right distribution law (see [2]) in a suitable order. Resulting expression isof the formPni=1 ai�i where n 2 N , ai 2 Act and �i 2 VPA(�). Each �i is nowreplaced with a single variable�either with an old one (if some VPA expressionwhich is structurally congruent to �i was already unfolded) or with a freshvariable. We repeat the whole construction for each newly added variable andthe corresponding VPA expression. As each VPA expression which is unfoldedis a reachable state of �, the algorithm has to terminate (due to Lemma 18).Example 19 Let � be a normed PA process de�ned as follows:f X def= b + a(Y kZ):X; Y def= c + a(Zk(Z:Z)); Z def= c g

The process �0 is constructed in the following way:A = X = b + a(Y kZ):X = b + aBB = (Y kZ):X = a(Zk(Z:Z)kZ):X + c(Z:X) + c(Y:X) = aC + cD + cEC = (Zk(Z:Z)kZ):X = c((ZkZkZ):X) + c((Zk(Z:Z)):X) = cF + cGD = Z:X = cX = cAE = Y:X = cX + a((Zk(Z:Z)):X) = cA + aGF = (ZkZkZ):X = c((ZkZ):X) = cHG = (Zk(Z:Z)):X = c(Z:Z:X) + c((ZkZ):X) = cI + cHH = (ZkZ):X = c(Z:X) = cDI = (Z:Z:X) = c(Z:X) = cDUsing this algorithm it is possible to decide bisimilarity for any pair of processes(�1; �2), where�1 is a normed PA process and�2 is a regular process in normalform. First, we check whether �1 is regular. If not, then �1 6� �2. Otherwise,we construct a bisimilar regular process �01 in normal form and check whether�01 � �2.Theorem 20 Bisimilarity is decidable for any pair of processes such that oneprocess of this pair is a normed PA process and the other process is a regularprocess in normal form.4 ConclusionsWe proved that regularity of normed PA processes is decidable in polynomialtime. As our result is constructive, we obtained also decidability of bisimulationequivalence for any pair of processes such that one process of this pair is a normedPA process and the other process is regular.A natural question is whether it is possible to replace the pure merge operator(`k') with another form of parallel composition without the loss of decidabilityof regularity. It can be easily shown that presented results are still valid if wereplace the merge operator with the full parallel operator of CCS (which al-lows synchronisations on complementary actions). However, if we use e.g. theoperator `kA' of CSP (which can force synchronisations), regularity becomesundecidable�see [13] for details.An interesting open problem is whether our result can be extended to theclass of all (not necessarily normed) PA processes. Another related open prob-lem is the decidability of bisimulation equivalence in the class of (normed) PAprocesses.5 AcknowledgementI would like to thank Ivana �erná and Mojmír K°etínský for reading the �rstdraft of this paper. Their comments made this article much more readable.

References1. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equiva-lence for processes generating context-free languages. In Proceedings of PARLE'87,volume 259 of LNCS, pages 93�114. Springer-Verlag, 1987.2. J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in CambridgeTracts in Theoretical Computer Science. Cambridge University Press, 1990.3. A. Bouajjani, R. Echahed, and P. Habermehl. Verifying in�nite state processeswith sequential and parallel composition. In Proceedings of POPL'95, pages 95�106. ACM Press, 1995.4. O. Burkart, D. Caucal, and B. Ste�en. Bisimulation collapse and the processtaxonomy. In Proceedings of CONCUR'96, volume 1119 of LNCS, pages 247�262.Springer-Verlag, 1996.5. D. Caucal. Graphes canoniques de graphes algebriques. Rapport de Recherche872, INRIA, 1988.6. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for all basicparallel processes. In Proceedings of CONCUR'93, volume 715 of LNCS, pages143�157. Springer-Verlag, 1993.7. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidablefor all context-free processes. In Proceedings of CONCUR'92, volume 630 of LNCS,pages 138�147. Springer-Verlag, 1992.8. J.F. Groote. A short proof of the decidability of bisimulation for normed BPAprocesses. IPL, 42:167�171, 1992.9. H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimilarity forcontext-free processes. In Proceedings of LICS'91, pages 376�386. IEEE ComputerSociety Press, 1991.10. P. Jan£ar. Decidability questions for bisimilarity of Petri nets and some relatedproblems. In Proceedings of STACS'94, volume 775 of LNCS, pages 581�592.Springer-Verlag, 1994.11. P. Jan£ar and J. Esparza. Deciding �niteness of Petri nets up to bisimilarity. InProceedings of ICALP'96, volume 1099 of LNCS, pages 478�489. Springer-Verlag,1996.12. P. Jan£ar and F. Moller. Checking regular properties of Petri nets. In Proceedingsof CONCUR'95, volume 962 of LNCS, pages 348�362. Springer-Verlag, 1995.13. A. Ku£era. Deciding regularity in process algebras. BRICS Report Series RS-95-52,Department of Computer Science, University of Aarhus, October 1995.14. A. Ku£era. Regularity is decidable for normed PA processes in polynomial time.Technical report FIMU-RS-96-01, Faculty of Informatics, Masaryk University,1996.15. S. Mauw and H. Mulder. Regularity of BPA-systems is decidable. In Proceedingsof CONCUR'94, volume 836 of LNCS, pages 34�47. Springer-Verlag, 1994.16. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.17. D.M.R. Park. Concurrency and automata on in�nite sequences. In Proceedings 5thGI Conference, volume 104 of LNCS, pages 167�183. Springer-Verlag, 1981.

