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Abstract. We present recent results about the long-run average prop-
erties of probabilistic vector additions systems with states (pVASS). In-
terestingly, for probabilistic pVASS with two or more counters, long-run
average properties may take several different values with positive prob-
ability even if the underlying state space is strongly connected. This
contradics the previous results about stochastic Petri nets established in
80s. For pVASS with three or more counters, it may even happen that the
long-run average properties are undefined (i.e., the corresponding limits
do not exist) for almost all runs, and this phenomenon is stable under
small perturbations in transition probabilities. On the other hand, one
can effectively approximate eligible values of long-run average properties
and the corresponding probabilities for some sublasses of pVASS. These
results are based on new exponential tail bounds achieved by designing
and analyzing appropriate martingales. The paper focuses on explaining
the main underlying ideas.

1 Introduction

Probabilistic vector addition systems with states (pVASS) are a stochastic ex-
tension of ordinary VASS obtained by assigning a positive integer weight to every
rule. Every pVASS determines an infinite-state Markov chain where the states
are pVASS configurations and the probability of a transition generated by a rule
with weight ` is equal to `/T , where T is the total weight of all enabled rules.
A closely related model of stochastic Petri nets (SPN) has been studied since
early 80s [10, 2] and the discrete-time variant of SPN is expressively equivalent
to pVASS.

In this paper we give a summary of recent results about the long-run average
properties of runs in pVASS achieved in [5, 4]. We show that long-run average
properties may take several different values with positive probability even if the
state-space of a given pVASS is strongly connected. It may even happen that
these properties are undefined (i.e., the corresponding limits do not exist) for
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Fig. 1. An example of a two-dimensional pVASS.

almost all runs. These results contradict the corresponding claims about SPNs
published in 80s (see Section 2 for more comments). On the other hand, we show
that long-run average properties of runs in one-counter pVASS are defined al-
most surely and can be approximated up to an arbitrarily small relative error in
polynomial time. This result is obtained by applying several deep observations
about one-counter probabilistic automata that were achieved only recently. Fur-
ther, we show that long-run average properties of runs in two-counter pVASS
can also be effectively approximated under some technical (and effectively check-
able) assumption about the underlying pVASS which prohibits some phenomena
related to (possible) null-recurrency of the analyzed Markov chains.

2 Preliminaries

We use Z, N, N+, and R to denote the set of all integers, non-negative integers,
positive integers, and real numbers, respectively. We assume familiarity with
basic notions of probability theory (probability space, random variable, expected
value, etc.). In particular, Markov chains are formally understood as pairs of
the form M = (S, → ), where S is a finite or countably infinite set of states and
→ ⊆ S×(0, 1]×S is a transition relation such that for every s ∈ S we have that∑
s
x→t x is equal to one. Every state s ∈ S determines the associated probability

space over all runs (infinite paths) initiated in s in the standard way.

2.1 Probabilistic Vector Addition Systems with States

A probabilistic Vector Addition System with States (pVASS) with d ≥ 1 counters
is a finite directed graph whose edges are labeled by pairs κ, `, where κ ∈ Zd is
a vector of counter updates and ` ∈ N is a weight. A simple example of a two-
counter pVASS is shown in Fig. 1. Formally, a pVASS is a triple A = (Q, γ,W ),
where Q is a finite set of control states, γ ⊆ Q× Zd ×Q is a set of rules, and
W : γ → N+ is a weight assignment. In the following, we write p

κ→ q to denote
that (p, κ, q) ∈ γ, and p

κ,`−→ q to denote that (p, κ, q) ∈ γ and W ((p, κ, q)) = `.
A configuration of a pVASS A is a pair pvvv where p ∈ Q is the current control

state and vvv ∈ Nd is the vector of current counter values. A rule p
κ→ q is enabled

in a configuration pvvv iff vvv + κ ∈ Nd, i.e., the counters remain non-negative



when applying the counter change κ to vvv. The semantics of A is defined by its
associated infinite-state Markov chain MA whose states are the configurations
of A and pvvv

x→ quuu if there is a rule p
κ→ q with weight ` enabled in pvvv such that

uuu = vvv + κ and x = `/T , where T is the total weight of all rules enabled in pvvv. If
there is no rule enabled in pvvv, then pvvv has only one outgoing transition pvvv

1→ pvvv.
For example, if A is the pVASS of Fig. 1, then r(3, 0)

1/3−→ p(3, 1).

2.2 Patterns and Pattern Frequencies

Let A = (Q, γ,W ) be a pVASS, and let PatA be the set of all patterns of A,
i.e., pairs of the form pα where p ∈ Q and α ∈ {0,+}d. To every configuration
pvvv we associate the pattern pα such that αi = + iff vvvi > 0. Thus, every run
w = p0vvv0, p1vvv1, p2vvv2, . . . in the Markov chainMA determines the unique sequence
of patterns p0α0, p1α1, p2α2, . . . For every n ≥ 1, let Fn(w) : PatA → R be
the pattern frequency vector computed for the first n configurations of w, i.e.,
Fn(w)(pα) = #n

pα(w)/n, where #n
pα(w) is the total number of all 0 ≤ j < n such

that pjαj = pα. The limit pattern frequency vector, denoted by F(w), is defined
by F(w) = limn→∞ Fn(w). If this limit does not exist, we put F(w) = ⊥.

Note that F is a random variable over Run(pvvv). The very basic questions
about F include the following:

– Do we have that P[F=⊥] = 0 ?
– Is F a discrete random variable?
– If so, is the set of values taken by F with positive probability finite?
– Can we compute these values and the associated probabilities?

Since the set of rules enabled in a configuration pvvv is fully determined by the
associated pattern pα, the frequency of patterns also determines the frequency
of rules. More precisely, almost all runs that share the same pattern frequency
also share the same frequency of rules performed along these runs, and the rule
frequency is easily computable from the pattern frequency.

The above problems have been studied already in 80s for a closely related
model of stochastic Petri nets (SPN). In [8], Section IV.B, is stated that if the
state-space of a given SPN (with arbitrarily many unbounded places) is strongly
connected, then the firing process is ergodic. In the setting of discrete-time prob-
abilistic Petri nets, this means that for almost all runs, the limit frequency of
transitions performed along a run is defined and takes the same value. This result
is closely related to the questions formulated above. Unfortunately, this claim
is invalid. In Fig. 2, there is an example of a SPN (with weighted transitions)
with two counters (places) and strongly connected state space where the limit
frequency of transitions takes two eligible values (each with probability 1/2). In-
tuitively, if both places/counters are positive, then both of them have a tendency
to decrease, i.e., a configuration where one of the counters is empty is reached
almost surely. When we reach a configuration where, e.g., the first place/counter
is zero and the second place/counter is positive, then the second place/counter
starts to increase, i.e., it never becomes zero again with some positive proba-
bility. The first place/counter stays zero for most of the time, because when it
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Fig. 2. A discrete-time SPN N .

becomes positive, it is immediately emptied with a very large probability. This
means that the frequency of firing t2 will be much higher than the frequency of
firing t1. When we reach a configuration where the first place/counter is positive
and the second place/counter is zero, the situation is symmetric, i.e., the fre-
quency of firing t1 becomes much higher than the frequency of firing t2. Further,
almost every run eventually behaves according to one of these two scenarios, and
therefore there are two limit frequencies of transitions, each of which is taken
with probability 1/2. This possibility of reversing the “global” trend of the coun-
ters after hitting zero in some counter was not considered in [8]. Further, there
exists a three-counter pVASS A with strongly connected state-space where the
limit frequency of transitions is undefined for almost all runs, and this property
is preserved for all ε-perturbations in transition weights for some fixed ε > 0
(see [4]). So, we must unfortunately conclude that the results of [8] are invalid
for fundamental reasons.

In the next sections, we briefly summarize the results of [4] about pattern
frequency vector in pVASS of dimension one and two. From now on, we assume
that

– every counter is changed at most by one when performing a single rule, i.e.,
the vector of counter updates ranges over {−1, 0, 1}d;

– for every pair of control states p, q, there is at most one rule of the form
p
κ→ q.

These assumptions are not restrictive, but they have some impact on complexity,
particularly when the counter updates are encoded in binary.

3 Pattern Frequency in One-Counter pVASS

For one-counter pVASS, we have the following result [4]:

Theorem 1. Let p(1) be an initial configuration of a one-counter pVASS A.
Then

– P[F=⊥] = 0;



– F is a discrete random variable;
– there are at most 2|Q|−1 pairwise different vectors F such that P(F=F ) > 0;
– these vectors and the associated probabilities can be approximated up to an

arbitrarily small relative error ε > 0 in polynomial time.

Since pattern frequencies and the associated probabilities may take irrational
values, they cannot be computed precisely in general; in this sense, Theorem 1
is the best result achievable.

A proof of Theorem 1 is not too complicated, but it builds on several deep
results that have been established only recently. As a running example, consider
the simple one-counter pVASS of Fig. 3 (top), where p(1) is the initial configu-
ration. The first important step in the proof of Theorem 1 is to classify the runs
initiated in p(1) according to their footprints. A footprint of a run w initiated in
p(1) is obtained from w by deleting all intermediate configurations in all maxi-
mal subpaths that start in a configuration with counter equal to one, end in a
configuration with counter equal to zero, and the counter stays positive in all
intermediate configurations (here, the first/last configurations of a finite path
are not considered as intermediate). For example, let w be a run of the form

p(1), p(2), r(2), r(1), s(1), s(0), r(0), s(0), s(1), r(1), s(1), r(1), r(0), . . .

Then the footprint of w starts with the underlined configurations

p(1), s(0), r(0), s(0), s(1), r(0), . . .

Note that a configuration q(`), where ` > 1, is preserved in the footprint of w iff
all configurations after q(`) have positive counter value. Further, for all p, q ∈ Q,
let

– [p↓q] be the probability of all runs that start with a finite path from p(1) to
q(0) where the counter stays positive in all intermediate configurations;

– [p↑] = 1−
∑
q∈Q[p↓q].

Almost every footprint can be seen as a run in a finite-state Markov chain XA
where the set of states is {q0, q1, q↑ | q ∈ Q} and the transitions are determined
as follows:

– p0
x→ q` in XA if x > 0 and p(0)

x→ q(`) in MA;
– p1

x→ q0 in XA if x = [p↓q] > 0;
– p1

x→ p↑ in XA if x = [p↑] > 0;
– p↑

1→ p↑.

The structure of XA for the one-counter pVASS of Fig. 3 (top) is shown in
Fig. 3 (down). In particular, note that since r↑ = s↑ = 0, there are no transitions
r1→ r↑ and s1→ s↑ in XA.

For almost all runs w initiated in p(1), the footprint of w determines a
run in XA initiated in p1 in the natural way. In particular, if w contains only
finitely many configurations with zero counter, then the footprint of w takes
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Fig. 3. A one-counter pVASS A (top) and its associated finite-state Markov chain XA
(down).

the form u, s(0), r(1), v, where s(0) is the last configuration of w with zero
counter and r(1), v is an infinite suffix of w. This footprint corresponds to a
run u, s(0), r(1), r↑, r↑, . . . of XA. In general, it may also happen that the foot-
print of w cannot be interpreted as a run in XA, but the total probability of all
such w is equal to zero. As a concrete example, consider the run

p(1), r(1), s(0), s(1), s(2), s(3), s(4), . . .

in MA where the counter never reaches zero after the third configuration. The
footprint of this run cannot be seen as a run in XA (note that the infinite
sequence p1, s0, s1, s↑, s↑, s↑, . . . is not a run in XA).

Since almost every run in MA initiated in p(1) determines a run in XA (via
its footprint), we obtain that almost every run in MA initiated in p(1) visits
a bottom strongly connected component (BSCC) of XA. Formally, for every
BSCC B of XA we define Run(p(1), B) as the set of all runs w in MA initiated
in p(1) such that the footprint of w determines a run in XA that visits B. One is
tempted to expect that almost all runs of Run(p(1), B) share the same pattern
frequency vector. This is true if (the underlying graph of) A has at most one
diverging BSCC. To explain this, let us fix a BSCC D of A and define a Markov
chain D = (D, → ) such that s

x→ t in D iff s
κ,`−→ t and x = `/Ts, where Ts is the



sum of the weights of all outgoing rules of s in A. Further, we define the trend
of D as follows:

td =
∑
s∈D

µD(s) ·
∑
s
κ,`−→t

`/Ts · κ (1)

Here, µD is the invariant distribution of D. Intuitively, the trend tD corresponds
to the expected change of the counter value per transition (mean payoff) in D
when the counter updates are interpreted as payoffs. If tD is positive/negative,
then the counter has a tendency to increase/decrease. If tD = 0, the situation
is more subtle. One possibility is that the counter can never be emptied to zero
when it reaches a sufficiently high value (in this case, we say that D is bounded).
The other possibility is that the counter can always be emptied, but then the
frequency of visits to a configuration with zero counter is equal to zero almost
surely. We say that D is diverging if either tD > 0, or tD = 0 and D is bounded.
For the one-counter pVASS of Fig. 3, we have that the BSCC {q} is diverging,
because its trend is positive. The other BSCC {r, s} is not diverging, because its
trend is negative.

Let us suppose that A has at most one diverging BSCC, and let B be a BSCC
of XA. If B = {q↑} for some q ∈ Q, then almost all runs of Run(p(1), {q↑}) share
the same pattern frequency vector F where F (s(+)) = µD(s) for all s ∈ D, and
F (pat) = 0 for all of the remaining patterns pat . In the example of Fig. 3, we
have that almost all runs of Run(p(1), {q↑}) and Run(p(1), {p↑}) share the same
pattern frequency vector F such that F (q(+)) = 1. Now let B be a BSCC of
XA which is not of the form {q↑}. As an example, consider the following BSCC
of the chain XA given in Fig. 3:

r1
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For all r1, s0 ∈ B and all t ∈ S, let

– E〈r↓s〉 be the conditional expected length of a path from r(1) to s(0) under
the condition that s(0) is reached from r(1) via a finite path where the
counter stays positive in all configurations preceding s(0);

– E#t〈r↓s〉 be the conditional expected number of visits to a configuration
with control state t along a path from r(1) to s(0) (where the visit to s(0)
does not count) under the condition that s(0) is reached from r(1) via a finite
path where the counter stays positive in all configurations preceding s(0);

If some E〈r↓s〉 is infinite, then the frequency of visits to configurations with zero
counter is equal to zero for almost all runs of Run(p(1), B). Further, there is a
non-bounded BSCC D of A with zero trend such that r ∈ D, and one can easily



show that almost all runs of Run(p(1), B) share the same pattern frequency
vector F where F (s(+)) = µD(s) for all s ∈ D, and F (pat) = 0 for all of the
remaining patterns pat .

Now suppose that all E〈r↓s〉 are finite (which implies that all E#t〈r↓s〉 are
also finite). Recall that every transition of XA represents a finite subpath of a
run in MA. The expected length of a subpath represented by a transition of B
is given by

E[L] =
∑
s0∈B

µB(s0) · 1 +
∑
r1∈B

µB(r1) ·
∑
r1

x→s0

x · E〈r↓s〉

where µB is the invariant distribution of B. Similarly, we can define the expected
number of visits to a configuration t(k), where k > 0, along a subpath represented
by a transition of B by

E[t(+)] =
∑
r1∈B

µ(r1) ·
∑
r1

x→s0

x · E#t〈r↓s〉 .

The expected number of visits to a configuration t(0) along a subpath represented
by a transition of B (where the last configuration of a subpath does not count)
is given by E[t(0)] = µB(t0). It follows that almost all runs of Run(p(1), B)
share the same pattern frequency vector F where

F (t(+)) =
E[t(+)]

E[L]
, F (t(0)) =

E[t(0)]

E[L]

for all t ∈ S.

To sum up, for each BSCC B of XA we need to approximate the probability of
Run(p(1), B) and the associated pattern frequency vector up to a given relative
error ε > 0. To achieve that, we need to approximate the following numbers up
to a sufficient relative precision, which is determined by a straightforward error
propagation analysis:

– the probabilities of the form [p↓q] and [p↑];
– the conditional expectations E〈r↓s〉 and E#t〈r↓s〉

The algorithms that approximate the above values are non-trivial and have been
obtained only recently. More detailed comments are given in the next subsec-
tions.

Finally, let us note that the genarel case when A has more than one diverging
BSCC does not cause any major difficulties; for each diverging BSCC D, we
construct a one-counter pVASS AD where the other diverging BSCCs of A are
modified so that their trend becomes negative. The analysis of A is thus reduced
to the analysis of several one-counter pVASS where the above discussed method
applies.



3.1 Approximating [p↓q] and [p↑]
In this subsection we briefly indicate how to approximate the probabilities of
the form [p↓q] and [p↑] up to a given relative error ε > 0.

Let xmin be the least positive transition probability in MA. It is easy to show

that if [p↓q] > 0, then [p↓q] > x
|Q|3
min (one can easily bound the length of a path

from p(1) to q(0)). Hence, it suffices to show how to approximate [p↓q] up to a
given absolute error ε > 0.

The vector of all probabilities of the form [p↓q] is the least solution (in

[0, 1]|Q|
2

) of a simple system of recursive non-linear equations constructed as
follows:

[p↓q] =
∑

p(1)
x→q(0)

x +
∑

p(1)
x→t(1)

x · [t↓q] +
∑

p(1)
x→t(2)

x ·
∑
s

[t↓s] · [s↓r]

These equations are intuitive, and can be seen as a special case of the equations
designed for a more general model of probabilistic pushdown automata [6, 7].
A solution to this system (even for pPDA) can be approximated by a decom-
posed Newton method [7] which produces one bit of precision per iteration after
exponentially many initial iterations [9]. For one-counter pVASS, this method
produces one bit of precision per iteration after polynomially many iterations.
By implementing a careful rounding, a polynomial time approximation algorithm
for [p↓q] was designed in [11].

Since [p↑] = 1 −
∑
q∈Q[p↓q], we can easily approximate [p↑] up to an ar-

bitrarily small absolute error in polynomial time. To approximate [p↑] up to a
given relative error, we need to establish a reasonably large lower bound for a
positive [p↑]. Such a bound was obtained in [3] by designing and analyzing an
appropriate martingale. More precisely, in [3] it was shown that if [p↑] > 0, then
one of the following possibilities holds:

– There is q ∈ Q such that [q↑] = 1 and p(1) can reach a configuration q(k)

for some k > 0. In this case, [p↑] ≥ x|Q|
2

min .
– There is a BSCC D of A such that tD > 0 and

[p↑] ≥ x
4|Q|2
min · t3D

7000 · |Q|3
.

3.2 Approximating E〈r↓s〉 and E#t〈r↓s〉
The conditional expectations of the form E〈r↓s〉 satisfy a simple system of linear
recursive equations constructed in the following way:

E〈q↓r〉 =
∑

q(1)
x→r(0)

x

[q↓r]
+

∑
q(1)

x→t(1)

x · [t↓r]
[q↓r]

· (1 + E〈t↓r〉)

+
∑

q(1)
x→t(2)

x ·
∑
s

[t↓s] · [s↓r]
[q↓r]

· (1 + E〈t↓s〉+ E〈s↓r〉)



The only problem is that the coefficients are fractions of probabilities of the
form [p↓q], which may take irrational values and cannot be computed precisely
in general. Still, we can approximate these coefficients up to an arbitrarily small
relative error in polynomial time by applying the results of the previous subsec-
tion. Hence, the very core of the problem is to determine a sufficient precision
for these coefficients such that the approximated linear system still has a unique
solution which approximates the vector of conditional expectations up to a given
relative error. This was achieved in [3] by developing an upper bound on E〈r↓s〉,
which was then used to analyze the condition number of the matrix of the linear
system.

The same method is applicable also to E#t〈r↓s〉 (the system of linear equa-
tion presented above must be slightly modified).

4 Pattern Frequency in Two-Counter pVASS

The analysis of pattern frequencies in two-counter pVASS imposes new diffi-
culties that cannot be solved by the methods presented in Section 3. Still, the
results achieved for one-counter pVASS are indispensable, because in certain sit-
uations, one of the two counters becomes “irrelevant”, and then we proceed by
constructing and analyzing an appropriate one-counter pVASS.

The results achieved in [4] for two-counter pVASS are formulated in the next
theorem.

Theorem 2. Let pvvv be an initial configuration of a stable two-counter
pVASS A. Then

– P[F=⊥] = 0;
– F is a discrete random variable;
– there are only finitely many vectors F such that P(F=F ) > 0;
– these vectors and the associated probabilities can be effectively approximated

up to an arbitrarily small absolute/relative error ε > 0.

The condition of stability (explained below) can be checked in exponential time
and guarantees that certain infinite-state Markov chains that are used to analyze
the pattern frequencies of A are not null-recurrent.

Let p(1, 1) be an initial configuration of A, and let A1 and A2 be one-counter
pVASS obtained from A by preserving the first and the second counter, and
abstracting the other counter into a payoff which is assigned to the respective
rule of A1 and A2, respectively. The analysis of runs initiated in p(1, 1) must
take into account the cases when one or both counters become bounded, one
or both counters cannot be emptied to zero anymore, etc. For simplicity, let us
assume that

(1) the set of all configurations reachable from p(1, 1) is a strongly connected
component of MA, and for every k ∈ N there is a configuration reachable
from p(1, 1) where both counters are larger than k;
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(2) the set of all configuration reachable from p(1) in A1 and A2 is infinite and
forms a strongly connected component of MA1

and MA2
, respectively.

Note that Assumption (1) implies that the graph of A is strongly connected. An
example of a two-counter pVASS satisfying these assumptions is given in Fig. 4.
Now we define

– the global trend t = (t1, t2), where ti is the trend of Ai as defined by Equa-
tion (1) where D = Q (recall that the graph of Ai is strongly connected);

– the expected payoff τi of a run initiated in a configuration of Ai reachable
from p(1). Since the set of all configurations reachable from p(1) in Ai is
strongly connected, it is not hard to show that τi is independent of the
initial configuration and the mean payoff of a given run is equal to τi almost
surely.

Intuitively, the global trend t specifies the average change of the counter val-
ues per transition if both counters are abstracted into payoffs. Note that if t is
positive in both components, then almost all runs initiated in p(1, 1) “diverge”,
i.e., both counters remain positive from certain point on (here we need Assump-
tion (1)). This means that almost all runs initiated in p(1, 1) share the same
pattern frequency vector F where F (q(+,+)) = µA and F (pat) = 0 for all of
the remaining patterns pat (here µA is the invariant distribution of A; see the
definition of µD in Equation (1) and recall that A is strongly connected).

Now suppose that t2 is negative, and consider a configuration q(k, 0) reach-
able from p(1, 1), where k is “large”. Obviously, a run initiated in q(k, 0) hits a
configuration of the form q′(k′, 0) without visiting a configuration with zero in
the first counter with very high probability. Further, if τ2 > 0, then k′ is larger
than k “on average”. Hence, the runs initiated in q(k, 0) will have a tendency to
“diverge along the x-axis”. If τ2 < 0, then k′ is smaller than k on average, and
the runs initiated in q(k, 0) will be moving towards the y-axis. A symmetric ob-
servation can be made when t1 is negative. Hence, if both t1 and t2 are negative,
we can distinguish three possibilities:



– τ1 > 0 and τ2 > 0. Then, almost all runs initiated in p(1, 1) will eventually
diverge either along the x-axis or along the y-axis. That is, one of the counters
eventually becomes irrelevant almost surely, and the pattern frequencies for
A can be determined from the ones for A1 and A2 (since A1 and A2 are one-
counter pVASS, we can apply the results of Section 3). The SPN of Fig. 2 is
one concrete example of this scenario.

– τ1 < 0 and τ2 > 0. Then almost all runs initiated in p(1, 1) will eventually
diverge along the x-axis. The case when τ1 > 0 and τ2 < 0 is symmetric.

– τ1 < 0 and τ2 < 0. In this case, there is a computable m such that the
set of all configurations of the form q(k, 0) and q(0, k), where q ∈ Q and
k ≤ m, is a finite eager attractor. That is, this set of configurations is visited
infinitely often by almost all runs initiated in p(1, 1), and the probability
of revisiting this set in ` transitions decays (sub)exponentially in `. The
pattern frequencies for the runs initiated in p(1, 1) can be analyzed be generic
methods for systems with a finite eager attractor developed in [1].

The cases when t1, t2, τ1, or τ2 is equal to zero are disregarded in [4], because
the behaviour of A , A1, or A2 can then exhibit strange effects caused by (pos-
sible) null recurrency of the underlying Markov chains, which requires different
analytical methods (the stability condition in Theorem 2 requires that t1, t2, τ1,
and τ2 are non-zero). We have not discussed the case when t1 is negative and
t2 positive (or vice versa), because the underlying analysis is similar to the one
presented above.

To capture the above explained intuition precisely, we need to develop an
explicit lower bound for the probability of “diverging along the x-axis from a
configuration q(k, 0)” when τ2 > 0, examine the expected value of the second
counter when hitting the y-axis by a run initiated in q(k, 0) when τ2 < 0, etc.
These bounds are established in [4] by generalizing the martingales designed in
[3] for one-counter pVASS.

5 Future Research

One open problem is to extend Theorem 2 so that it also covers two-counter
pVASS that are not necessarily stable. Since one can easily construct a (non-
stable) two-counter pVASS such that P(F=F ) > 0 for infinitely many pairwise
different vectors F , and there even exists a (non-stable) two-counter pVASS such
that P(F=⊥) = 1, this task does not seem trivial.

Another challenge is to design algorithms for the analysis of long-run aver-
age properties in reasonably large subclasses of multi-dimensional pVASS. Such
algorithms might be obtained by generalizing the ideas used for two-counter
pVASS.
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