A Logical Viewpoint on Process-Algebraic Quotients

Antonin KuBera! and Javier Esparz&?

! Faculty of Informatics, Masaryk University, Botanicka 688200 Brno, Czech Republic,
tony@fi.muni.cz
2 |nstitut fir Informatik, Technische Universitat Miinchekrcisstr. 21, D-80290 Miinchen,
Germanyesparza@in.tum.de

Abstract. We study the following problem: Given a transition systgénand its
quotient 7/~ under an equivalence,, which are the set£, £’ of Hennessy-
Milner formulae such that: ifp € £ and7 satisfiesp, thenT/~ satisfiesy; if
¢ € L' and T/~ satisfiesp, thenT satisfiesy.

1 Introduction

In the equivalence approach to formal verification, the specification and fieriman-
tation of a system are typically formalised as transition syst§nasdZ, and the in-
formal statement ‘the implementation satisfies the specification’ is faethbs S is
equivalent taZ’. In the modal logic approach, the specification is a modal formuyla
and the statement is formalised dsi$ a model ofy'.

In a seminal paper [7], Hennessy and Milner proved that bisimulation alguive
admits amodal characterizationiTwo (finitely branching) processes are bisimilar if and
only if they satisfy exactly the same formulae of Hennessy-Milndclathis result was
later extended to the modaicalculus, a much more powerful logic strictly containing
many other logics, like CTL, CTt, and LTL. This showed that it was possible to link
two different approaches to formal verification, based on equivalences and iwgida] |
respectively.

Modal characterizations play an important r6le in practice: Given a very large, or
even infinite, transition systeffi, we would like to obtain a smaller, or at least simpler,
transition systeny”’ which satisfies the specification if and onlyJifdoes. If the spec-
ification belongs to a set of formula® characterizing an equivaleneg then we can
safely take any/” satisfying7 ~ 7.

An interesting possibility is to tak@’ as thequotient7/~ of 7 under~, whose
states are the equivalence classes of the statésafd whose transitions are given by
[s] 5 [t] onlyif s % t. This works for all equivalences in van Glabbeek’s spectrum [18]
because they satisfy ~ T/~ (as proved in [13]). Quotients are particularly interesting
for bisimulation equivalence for practical reasons, of which we givetjust First, in
this caseT/~ can be very efficiently computed for finite transition systems, as shown
in [16]. Second, for some classes of real-time and hybrid systems, the&8hjuotient
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under bisimulation of an infinite transition system can be proved fanlie; this makes
automatic verification possible, at least in principle.

T/~ is guaranteed to satisfy a property6fif and only if 7 does, but maybe this
holds for other properties as well? We study this question (in athligefined form)
within the framework of Hennessy-Milner logic, for arbitrary equarates. Given a
set of formulae characterizing, our results determine the sef§ £ > £ such that
T/~ satisfiesp € L' if T does, and” satisfiesp € L£" if T/~ does. As we shall see,
L'n L" = £; the additional formulae of’, £ which do not belong t& can be used
by efficient verification semi-algorithms (which produges/no/don’t knovanswers) —
if we want to find out whethef satisfies some € £’ U £, we can first check if /~
satisfiesy; if it is the case ang € £", we can conclude that satisfiesy. If 7/~ does
not satisfyy andy € £', we conclude thal” does not satisfy. In the other cases we
‘don’t know’.

The paper is organized as follows. Section 2 contains preliminary defigitio
Section 3.1, as a warm-up, we determine the3qireserved bynytransition system
T' satisfying7T ~ T'. In Section 3.2, the core of the paper, we determine th&'’set
preserved by the quotiefff/~. In Section 4 we apply our results to the equivalences in
van Glabbeek’s hierarchy. Section 5 contains conclusions and comments onaekhted
future work.

2 Definitions

Let Act = {a,b,c, ...} be a countably infinite set @tomic actiongwhich is fixed for
the rest of this paper).

Definition 1. A transition system (T.S.) is a triple = (S, A,—) whereS is a set
of states A C Act,and— C S x A x S is atransition relationWe say thaf/ is
finitely-branchingff for everys € S, a € A the set{t | s - t} is finite. Processeare
understood as (being associated with) states in finitely-brandnamgition systems.

Inthe rest of this paper we only consider finitely-branching T.Ss (#striction is harm-
less from the ‘practical’ point of view, but it has important ‘theocati consequences
asit, e.g., allows to prevent the use of infinite conjunctions irfature constructions).
As usual, we writes % ¢ instead of(s,a,t) € — and we extend this notation to
elements of4* in a standard way. A stateis reachablefrom a states iff s — ¢ for
somew € A*. If sis a state off, then7 (s) denotes the transition systeii’, A, —')
whereS' = {t € S| s = t} for somew € A*, and—' is the induced restriction of
—. The set of actions which is used in the underlying transition sysfesrpooces®
is denoted byAct(p) (sometimes we work with processes whose associated transition
system has not been explicitly defined). Properties which have beenaliygiefined
for transition systems are often also used for processes; in that case ayes ahgan
that the underlying transition system has the property (for examwglean speak about
the set of states and actions of a given process).

Definition 2. Let 771 = (51,41, —1), T2 = (S2, Aa, —2) be transition systems. A
(total) functionf : S; — S, is ahomomorphisnfrom7; to 75 iff Vs, t € S1,a € Act :
S _a)l t— f(S) i)g f(t)



Definition 3. A renamingis an (arbitrary) injective function : Act — Act. For
every transition systeri = (5, 4, —) we define the-renamedransition systems

r(T) = (S,r(A), ') wheres 5/t iff s % ¢ andr(a) = b.

2.1 Process descriptions

In this section we briefly introduce and motivate the problem which isickered in
this paper.

Transition systems are widely accepted as a convenient model of concurrent and
distributed systems. A lot of verification problems (safety, livenetgs) can be thus re-
duced to certain properties of processes (states). A major difficulty istpeactice we
often meet systems which have a very large (or even infinite) state-spaceirAlidea
how to decrease computational costs of formal verification is to replace ajgiveess
with some ‘equivalent’ and smaller one (which can be then seen as its ‘desthipt

In this paper we consider two types of process descriptisasepresentations and
~-characterizations), which are determined by a ch@seness equivalence (by a
‘process equivalence’ we mean an arbitrary equivalence on the class of all processes,
i.e., states in finitely-branching T.S.).

Definition 4. Let ~ be a process equivalence. A process a ~-representationf a
processs iff s ~ t.

Definition 5. Let~ be a process equivalence. Thecharacterizatioof a process of
atransition systenl = (5, A, —) is the processs] of T/~ = (S/~, A, —) whereS/~
is the set of all--classes of5 (the class containing is denoted bys]) and+— is the
least relation satisfying = ¢t = [s] + [t].

Observe that the--characterization of is essentially the quotient of under~. We

use the word ‘characterization’ because for every ‘reasonable’ process eqoésalen
(see Lemma 6) we have that~ [s] for each process; hence, thev-characterization

of s describes not only the behaviour ©fas~-representations of do), but also the
behaviour of all reachable states%fi.e., it characterizeghe whole state-space ef
More precisely, for every stateof the process there is an equivalent statg of the
procesgs]. Therefore, we intuitively expect that-characterizations should be more
robust than~-representations. This intuition is confirmed by main theorems of Sec-
tion 3. Also note that the same process can have many differeapresentations, but

its ~-characterization is unique.

Definition 6. Let P be a property of processes, a process equivalence. We say that
Pis

— preservedby ~-representations (ox-characterizations) iff wheneveis a ~-rep-
resentation (or the--characterization) ok ands satisfiesP, thent satisfiesP;

— reflectedby ~-representations (or-characterizations) iff wheneveris a ~-rep-
resentation (or the--characterization) ot andt satisfiesP, thens satisfiesP.

An immediate consequence of the previous definition is the following



Lemma 1. Let ~ a process equivalence. A propeiyis preserved by--representa-
tions (or ~-characterizations) ift-P is reflected by~-representations (or-charac-
terizations).

The question considered in this paper is what properties expresshdmimessy-Milner
logic (see the next section) are preserved and reflected-tgpresentations and-
characterizations for a given process equivalenceée., to what extent are the two
kinds of process descriptions ‘robust’ for a given As we shall see, we can give a
complete classification of those properties if the equivalencatisfies certain (ab-
stractly formulated) conditions. Intuitively, we put more and mmstrictions on~
which allow us to prove more and more things; as we shall see in Sectalhtdose
restrictions are ‘reasonable’ in the sense that (almost) all existmggtudied) process
equivalences satisfy them. See Section 4 for details.

2.2 Hennessy-Milner Logic

Formulae of Hennessy-Milner (H.M.) logic have the following &pn(a ranges over
Act):

pu=tt|pAp|op|{a)p

Thedenotation¢] of a formulay on a transition systerfi = (S, A, —) is defined as
follows:

[tt] =
o AT = [l N[¥]
[=¢] = S =[]

[aye] ={se€S|FHtecS:sBtnte[e]}

Instead ofs € [¢] we usually writes = ¢. The other boolean connectives are intro-
duced in a standard way; we also deffife= —tt and[a]y = —(a)—¢. Thedepthof a
formulay, denoteddepth(ap), is defined inductively by

depth(tt) =

depth(go/\w) max{depth(y), depth ()},
depth(—p) = depth(p),

depth({a)p) = 1 + depth(p).

The set of actions which are used in a formplia denoted by ct(y) (note thatdci(p)
is always finite).

Definition 7. Let A C Act. A Treeover A is any directed binary tree with roat
whose edges are labelled by elementsdofatisfying the following condition: if, ¢

are a-successors of a node wherea € A, then the subtrees rooted Ipyq are not
isomorphic.Tree-processeare associated with roots of Trees (we do not distinguish
between Trees and Tree-processes in the rest of this paper). Note theefpkec INg

and every finited C Act there are only finitely many Trees ovdrwhose depth is at
mostk (up to isomorphism). We denote this finite set of representativdsday.A); .



It is a standard result that for every procedbere is a Tred’s over Act(s) (possibly
of infinite depth) such that andT satisfy exactly the same H.M. formulae (cf. [15]).
One can also easily prove the following:

Lemma 2. Formulaey, ¢ of H.M. logic are equivalent iff they agree on every element
of Tree(A), whereAd = Act(p) U Act(y) andk = max{depth(p), depth(1)}.

For every renaming and a H.M. formulay we define the formula(y) which is ob-
tained fromy by substituting eacka) with (r(a)).

Lemma 3. For every process, renamingr, and H.M. formulay we have that |= ¢
iff r(s) = r(p).
In the next section we also need the following tools:

Definition 8. Let ¢ be a H.M. formula;s a process. For a given occurrence of a sub-
formulay in ¢ we define itdliamond-depthdenotedi(v), to be the number ofb)-
modalities which have the occurrenceyofn their scope. The set of all actions which
are used in those modalities is denotedAy(v). Finally, we useR s (¢) to denote the
set of all states which are reachable framia a sequence of (exactlg}i)) transitions
whose actions are contained iy (v).

Lemma 4. Lety be a H.M. formula. Let’ be the formula obtained from by substi-
tuting (given occurrences of) its subformulag, . . ., ¢, by H.M. formula€y, . . ., &,,
respectively. Let be a process such that= g andforalli € {1,...,n},s" € Rs(¢);)
one of the following conditions holds:

LY==

2. s’ | & and the occurrence af; in ¢ is not within the scope of any negation.

Thens = ¢'.

3 The classification

In this section we give a complete classification of H.M. properties whirehpre-
served/reflected by-representations and-characterizations for certain classes of pro-
cess equivalences which satisfy some (abstractly formulated) conditiams tke very
beginning, we restrict ourselves to those equivalences which haaglal characteri-
zation

Definition 9. Let~ be a process equivalence. We say thdtas amodal characteriza-
tion iff there is a sef{ of H.M. formulae s.t. for all processast we have that ~ t iff
s andt satisfy exactly the same formulaeof

Observe that the same equivalence can have many different modal characterizations
Sometimes we also use the following notation (wheiga processyH 4 := {¢ | ¢ €
HAAct(p) C A}, HY = {0 | ¢ € Handepth(p) < k}, H(s) = {p|p € HAs

o}, andHa(s) := {¢ | ¢ € Ha A s |= p}. Note that if A is finite, then?¥ contains

only finitely many pairwise nonequivalent formulae. In that case we cancibnsider

H*, to be dfinite set.



3.1 H.M. properties preserved by~-representations

Theorem 1. Let’H be a modal characterization of a process equivalenc&hen every
formula ) which is a boolean combination of formulae frokhis preserved by~-
representations.

The previous theorem is in fact a trivial consequence of Definition 9. Wewvould
like to prove a kind of ‘completeness’ result saying that nothing @seept for formu-
lae which are equivalent to boolean combinations of formulae s preserved by
~-representations. However, this property doeshold for an arbitrary modal charac-
terization; it is demonstrated by the following counterexample:

Example 1.Let ~ be defined as follows: ~ ¢ iff a € Act(s) N Act(t), or Act(s) =
Act(t). Let M = {(A1, A2) | A1, As are finite, nonempty, and disjoint subsetsdef }.
The equivalence- has a modal characterization

H={(@tt Vv (N @Bt A A\ ~(o)tt) | (A, A) € M}

beAq cEAs

Now observe that the formul@)tt is preserved by--representations, but it is not
equivalent to any boolean combination of formulae friim

However, a simple assumption ab@itvhich is formulated in the next definition makes
a completeness proof possible.

Definition 10. We say that a modal characterizati@h of a process equivalence is
well-formediff wheneverp € H and(a)« is an occurrence of a subformula in then
alsoy’ € H wherey' is obtained fromp by substituting the occurrence @f)«) with

ff

As we shall see in Section 4, all ‘real’ process equivalences which have a magatech
terization also have a well-formed modal characterization. An importani(atudally-
looking) property of process equivalences which have a well-formed nobadaicteri-
zation is presented in the following lemma:

Lemma 5. Let ~ be a process equivalence having a well-formed modal characteriza-
tion ~. LetA C Act, k € INo. Forall T, T’ € Tree(A); we have thaf’ ~ T" iff T
andT"’ satisfy exactly the same formulaeféf;.

Proof. The ‘=’ direction is obvious. Now if suffices to realize that# and T’ are
distinguished by some € 7, then they are also distinguished by the formgfla #H*,
which is obtained fornp by substituting every occurrence of a subformialg), which

is within the scope ok other(b)-modalities or where ¢ A, with ££. The formulagp
and¢' agree on every element Giree(A);, because the occurrences of subformulae
in ¢ which have been substituted I8¢ during the construction of’ are evaluated to
false anyway. |

Theorem 2. Let ~ be a process equivalence having a well-formed modal characteri-
zation’H. Then every formula of H.M. logic which is preserved by-representations
is equivalent to a boolean combination of formulae fréim



Proof. Lety be aformula preserved by-representationg, = depth(p), A = Act(p)
(note thatA is finite). For everyT' € Tree(A); we construct the formula

br= Nen A e
0EHY 0EHY
Tl=e T~

Now let

Y = \V Y
T€e Tree(A)r
TEe

We show thatp and are equivalent. To do that, it suffices to show thatndi agree
oneveryT| € Tree(A), (see Lemma 2).

— LetTy € Tree(A), st.Ty = . AsTy = o7, we also havdy = 1.

— LetTy € Tree(A), s.t. Ty |= ¢. Then there igly € Tree(A)r, s.t.T> = ¢ and
T, E ¢mr,. AsT) = ¢r,, the TreesTy, T, satisfy exactly the same formulae of
#H%.HenceT; ~ T, due to Lemma5. Ag is preserved by--representationd;
is a~-representation dfy, andT = ¢, we also havd E . O

Theorem 1 and 2 give a complete classification of those H.M. propertieshvetne
preserved and reflected (see Lemma 1) bkepresentations for a process equivalence
~ which has a well-formed modal characterizatin

3.2 H.M. properties preserved by~-characterizations

Now we establish analogous results feicharacterizations. As we shall see, this prob-
lem is more complicated.

The first difficulty has been indicated already in Section 2.1 — it does net toav
much sense to speak abeutcharacterizations if we are not guaranteed that[s] for
every process. Unfortunately, therare process equivalences (even with a well-formed
modal characterization) which do not satisfy this basic requirement.

Example 2.Let~ be defined as follows: ~ t iff for eachw € Act™ s.t.length(w) = 2
we have that = s’ for somes’ iff ¢+ — t' for somet’. The equivalence- has a well-
formed modal characterization

H = {{a)(b)tt | a,b € Act} U {{a)ff | a € Act} U{ff}

Now let s be a process whereS ¢, s LA u,u — v, andt, u, v do not have any other
transitions. Them ~ u ~ v, hencgs] 2% [v], and therefore « [s].

However, there is a simple (and reasonable) condition which guaranteewehatd.

Definition 11. Let ~ be a process equivalence. We say thahas aclosedmodal
characterization iff it has a modal characterizatidhwhich is closed under subformula
(i.e., whenevep € H andv is a subformula of, theny € H).



A closed modal characterization is a particular casefdfration. The next lemma
is a well-known result of modal logic, stating that a model and its ignbthrough a
filtration agree on every formula of the filtration [4]. We includeragf for the sake of
completeness.

Lemma 6. Let ~ be a process equivalence having a closed modal characterization.
Thens ~ [s] for every process.

Proof. Let H be a closed modal characterization~afWe prove that for every € H
and every processwe haves |= ¢ <= [s] |= ¢ (i.e.,s ~ [s]). By induction on the
structure ofp.

— ¢ = tt. Immediate.
— ¢ = —). Theny € H ands |= ¢ <= [s] |= ¢ by induction hypotheses. Hence
alsos = ¢ <= [s] = — as required.
— ¢ =9 A& Theny, & € H. If b A € distinguishes betweenand|s], theny) or
¢ distinguishes between the two processes as well; we obtain a contradlidtion
induction hypotheses.
- ¢ = (a)¥.
e (=) Lets |= (a)y. Then there is somesuch thas = ¢ andt = . Therefore,
[s] ¥% [t] and asp € H, we can use induction hypothesis to concliifie= ).
Hence|s] = (a)%.
o (<) Let[s] = (a)e. Then[s] ¥ [t] for some[t] s.t.[t] |= ¢. By Definition 5
there ares’, ¢’ such thak ~ s',t ~ t/, ands’ = t'. As[t] = [t'], we havet'] |=
v and hence’ |= ¢ by induction hypotheses. Therefosé = (a)1). Ass ~ s’
and(a)y € H, we also have |= (a)y> as needed (remember that formulae of
H cannot distinguish between equivalent processes by Definition 9). O

According to our intuition presented in Section 2tcharacterizations should be more
robust then--representations, i.e., they should preserve more properties. lldweify
definition gives a ‘syntactical template’ which allows to construct suchegnttes.

Definition 12. LetS be a set of H.M. formulae. The set diamondformulae oversS,
denotedD(S), is defined by the following abstract syntax equation:

pu=9oApleVe|{a)y

Herea ranges overdct, andd ranges over boolean combinations of formulae fi&m
The sef3(S) of boxformulae ovesS is defined in the same way, but we {igemodality
instead of(a).

Theorem 3. Let ~ be a process equivalence having a closed modal characterization
‘H. Then every formula dP(#) is preserved by--characterizations.

Proof. Lety € D(H). By induction on the structure of:

— i = 4. It suffices to realize thal is preserved by--representations (Theorem 2)
and every~-characterization is alsoa-representation (Lemma 6).



— =1 Apa, OFrp = 1 V s Wherepy, o are preserved. Immediate.

— ¢ = (a)y1 Whereyp; is preserved. Lep be an arbitrary process spt.= (a); .
Then there i % p' s.t.p' |= 1. By definition of ~-characterization we have
[p] ¥ [p']. Moreover[p'] = o1 asyp; is preserved. Hency] |= (a)p: as needed.

O

In order to prove the corresponding completeness result, we need soitieradids-
sumptions about and#.

Definition 13. Let~ be a process equivalence. We say thdtas agoodmodal char-
acterization iff it has a closed modal characterizatitihwhich satisfies the following
conditions:

— if ¢ € H, then also(a)p € H for everya € Act;

— if ¢ € H, then alsar(y) € H for every renaming;

— if (a)%) is an occurrence of a subformula jn then alsoy’, " € H wherey' and
¢'" are the formulae obtained from by substituting the occurrence ¢f)y with
tt and ff, respectively;

— if ¢ € H and—) is a subformula of, then also-¢ € H for every subformulg
of ;

— there are processes ¢ such thatAct(s) U Act(t) is finite andH(s) C H(t).

The requirements of Definition 13 look strange at first glance. In facffittstefour of
them only eliminate a lot of ‘unnatural’ process equivalences from ouriderations.
The last requirement is also no problem, because the majority of ‘realepsoequiv-
alences are defined as kernels of certain preorders, and one can always find processes
s, t such that is ‘strictly less’ thart in the preorder.

Now we present a sequence of technical lemmas which are then used to prove the
last main theorem of our paper.

Lemma 7. Let H be a good modal characterization of a process equivalencEor
everyn € IN and every finited C Act there are processas, - - - , p,, such thatdct(p;)
is finite, Act(p;) N A = 0, andH(p;) D H(pi+1) foreachl <i < n.

Proof. Let s andt be processes such that(s) c H(t). We can safely assume that
(Act(s) U Act(t)) N A = ), because otherwise we can consider procesggsr (t)
for an appropriate renaming(observe that{(r(s)) C H(r(t)) due to Lemma 3 and
Definition 13). Let¢ € H be a formula such that= ¢ ands (= €. Letay, -+ ,a, be
fresh (unused) actions. The procgsas (exactly) the following transitiong; X
for everyl < j < i < n, andp; ¢ for everyl < i < j < n. We prove that
H(p;) D H(piy1) for eachl < i < n. First, note thata;)¢ € H, p; E (a;)¢, and
pit1 [ (a;)€. Itremains to prove that for evegy € #H such thap;1 = ¢ we also have
pi E ¢. The formulap can be viewed as a boolean combination of formulae of the form
(a)y. We show that for each sucgh)y we have thap;; = (a)y <= p; = (a)y, or

p; = {a)y and(a) is not within the scope of any negationyn It clearly suffices to
concludep; = . We distinguish two possibilities:



— pit1 = (a). Asyp € H andH(s) C H(t), we also havey; = (a)y (see the
construction op; above).

— pit1 [ (a)y. If p; £ (a)y), we are done immediately. §f; |= (a)v, then neces-
sarily a = a;; we obtain that |= ¢ ands [~ . If the formula(a)« is within the
scope of some negation in, we obtain—y € H. Ass = — andt £ —), we
have a contradiction with{ (s) C H(¢). O

Lemma 8. Let~ be a process equivalence having a closed modal characterization
Lets, ¢ be processes such that for every Act we haveJ_ o, , H(s') = U, a, H(t').
Thens ~ t.

Proof. We show that for every € H we haves |= ¢ iff t = ¢. By induction on the
structure ofp.

— p = tt. Immediate.

— ¢ = ¢ A £ Suppose that A ¢ distinguishes betweenandt. Theniy, & € H
and at least one of those formulae must distinguish betwesrd¢; we obtain a
contradiction with induction hypotheses.

— ¢ = ). The same as above.

— ¢ = (a)1). Suppose, e.gs,|= (a)y andt = (a)p. Themp € H,¢ € U, o, H(s'),
andy ¢ U, ,, H(t'), a contradiction. O

Lemma 9. Let ~ be a process equivalence having a good modal characterizafion
Let A be a finite subset alct, k € INg. LetTy,T» € Tree(A); s.t. there is a homo-
morphismf from T, to T} which preserves-. Then the Tree%},T> can be extended
(by adding some new states and transitions) in such a way lieadlbtained transition
systemd, T, satisfy the following:

— the homomorphisryi can be extended to a homomorphighirom T to 7] which
also preserves-,

— for every H.M. formulap s.t. Act(p) C Awe havely = piff Th |= p andT] = ¢
iff T1 |= @,

— the ‘old’ states ofT] (i.e., the ones which have not been added'taluring the
extension procedure) are pairwise nonequivalent wu.t.

Proof. First we describe the extension®f which yields the systefi. This extension
is then ‘propagated’ back @, via the homomorphisnfi—each state of 75 is extended
in the same way as the statés) of 7. Finally, we show that the three requirements of
our lemma are satisfied.

Letn be the number of states 8%, and letm be the number of those statiesf T}
for which there is a state of T, such thatf(s) = ¢. Letpy,...,p, be processes over
afinite A" C Act such thatt{(p:) D H(p2) D --- D H(p,) and AN A" = (. Such
processes must exist by Lemma 7. Now we take an arbitrary bijelcfimm the set of
states of} to {1,...,n} satisfying the following conditions:

— if t = f(s) for some state of Ty, thenb(t) < m,
— if there is a (honempty) path fromto ¢’ in T, thenb(t) > b(t').



Now we add tdl; all states of,, ..., p,, and for each stateof 77 and each transition
Dh(s) 5 ¢ we add the transitioh = ¢ (i.e., the state has the same set afsuccessors
aspy () for everya € A’ after the modification). The described extensiofi’pfs now
‘propagated’ tdl’» in the above indicated way, yielding the systéin

As AN A" = (, the new transitions which have been adde@t@ndT, cannot
influence the (in)validity of any H.M. formule s.t. Act(¢) C A. Hence, the second
requirement of our lemma is satisfied. Moreover, it is easy to see thatitedfuire-
ment is satisfied as well, because the ‘old’ state$;johow satisfy pairwise different
subsets of{ 4 . It remains to show that the first requirement is also valid.

The homomorphisnf’ is defined as a ‘natural’ extension 6f- it agrees withf on
the ‘old’ states off}/, and behaves like an identity function on the ‘new’ ones. Observe
that if s is a ‘new’ state ofT;, then the transition systend3 (s) andT (f'(s)) are the
same (isomorphic). Hencé, trivially preserves~ on all ‘new’ states off;. To prove
thats ~ f'(s) for every ‘old’ states of T, we first need to show the following auxiliary
lemma: letsy, . . ., s; be ‘old’ states off;, ¢ an ‘old’ state ofI; such that

— there is no state of 73 such thatf'(s) = t,
= Halt) C Uiz, Halsi).

ThenH(t) C UL, H(ss).

A proof of the auxiliary lemmalet ¢ € # such that | ¢. We show that; = ¢
for somel < i < j. First we construct a formula’ € H 4 from ¢ in the following
way (recall the notions introduced in Definition 8): every occurence oftéosmula
(a)y in ¢, a € A', which is not within the scope of any)-modality, whereh € A', is
substituted by

— tt if t = (a)y orthereis somé& € R;({(a)®) such that’ = (a)v,
— ff otherwise.

Clearly ¢’ € H 4 (see Definition 13). We prove that= ¢/, (i.e.,¢’ € Ha(t)) by
showing that the assumptions of Lemma 4 are satisfied>fand the above defined
substitution. Le{a)+ be a formula whose occurence has been substituteddrbtain
¢ . First, let us realize that every statefof({a)v) is an ‘old’ one, becausd,((a)t)) C

A (see above). We can distinguish two possibilities:

— the occurence ofa)y has been substituted ky. Then there are two subcases:

e t = (a)y. Remember that each ‘old’ stateof 7| has the same set af
successors 38, for everya € A'. Hencepyy) = (a)y because |= (a)y.
Furthermore, for every € R;({a)y) we havet (py)) C H(ps)) (See the
definition ofb above). Therefores, /) = (a)y and thus we gett = (a)v. In
other words, for every € R;({a)y) we obtaint’ = tt <= t' = (a).

e there ist’ € R;({a)y) such thatt' |= (a)y. First, if (a)y is satisfied by
everystate ofR;({(a)v), we are done immediately. Otherwise, there'ise
R+ ({ayp) such that” [~ (a). Now it suffices to show that the occurrence of
(a)® in ¢ cannot be within the scope of any negation (see the second condi-
tion of Lemma 4). Suppose the converse.;A€ #H and? is a good modal
characterization, we know that both)y) and—(a)y € . As the processes



t'" andt" have the same-successors as the procesggs) andp; ), respec-
tively, we obtainp, ;) = (a)y andpyy # (a)i, hence als@y ) [# —(a)y
andp, ) |= —(a)ip. Therefore, it cannot be that (p,)) C H(pyr)) OF
H(pyery) C H(py)), @ contradiction.
— the occurence ofa)y has been substituted . Thent' = (a)y for eacht’ €
R:({a)1)), and we are done immediately.

Now we know thaty’ € H 4(t), hence there must be somgsuch thats; = ¢'. We
prove thats; = ¢, again by applying Lemma 4 (observe tiatan be obtained from
' by a substitution which is ‘inverse’ to the previously considerad)oWe show that
the assumptions of Lemma 4 are satisfied alsofoand the ‘inverse’ substitution,
distinguishing two possibilities:

— agiven occurence dft is substituted ‘back’ tda). It means that we previously
hadt = (a)y ort' |= (a)y for somet’ € R;((a)v). ASH(py(s(s))) D H(Po(v))
for every ‘old’ states of T; and every ‘old’ state of 7| which is reachable from
t (see the definition of and the construction df;), we can conclude thdt)« is
satisfied byeach'old’ state ofT; (in particular, by all states dR, (tt)).

— agiven occurence dff is substituted ‘back’ tda)«. If {(a)« is not satisfied by any
state ofR,, (££), we done immediately. We show that if there is sofhe R, (££)
such thats’ |= (a)1, then the occurence dff in ¢’ cannot be within the scope of
any negation. Suppose the converse. Then there is an occurrénge af  which
is within the scope of some negation, hengg) belong toH. Ast E —(a)y
andH (py)) C H(ps(s(s))) (S€€ above), we hawé = —=(a)y, a contradiction.

Now we can continue with the main proof. We show that for each ‘old’ stai&T;
we have that ~ f'(s). We proceed by induction on the depth of the subtree which is
rooted bys in T, (denoted byi).

— d = 0. Thens is a leaf inT5, hence the transition systerfi§(s) andT} (f'(s)) are
isomorphic. Hence, we trivially hawe~ f'(s).

— Induction step: We prove thatJ ., H(s') = Uf,(s)gt?[(t) for eacha € Act
(hences ~ f'(s') by Lemma 8). Ifa € A’, the equality holds trivially because
s and f'(s) have the same set afsuccessors. Now let € A. By induction hy-
potheses we know th&t(s') = H(f'(s')) for eacha-successos’ of s. To finish
the proof, we need to show that for eacisuccessot of f'(s) for which there is
no stateg of 7; with f'(q) = t we have tha#{(t) C |J, ., H(s'). However, it
can be easily achieved with a help of the auxiliary lemma which has been proved
above; all we need is to show thats(t) C U, o, H.a(s'). Suppose it is not the
case, i.e., there is sonfec H 4 such that = ¢ ands’ [~ o for eacha-successor
s’ of s. Hence(a)¥ € Ha, s = (a)9, andf(s) = (a)d; it contradicts the fact that
the homomorphisnf preserves-. 0

Theorem 4. Let~ be a process equivalence having a good modal characterization
Then every formula which is preserved dycharacterizations is equivalent to some
formula of D(H).



Proof. Let ¢ be a formula preserved by-characterizationsy = depth(yp), A =
Act(p). For everyT' € Tree(A);, we define the formula by induction on the depth
of T

— if the depth ofT" is 0, thenyr = tt,
— if the depth ofT is j + 1, r is the root ofT, andr =3 s1,---,r =3 s, are the
outgoing arcs of, then

n
vr= N e n N\ e A Nars,
ottt i1

Tl=e Tl#~e

whereT (s;) is the sub-Tree df rooted bys;.
Let

Y = Vo ovr
T€e Tree(A)w
TEe

We prove that, ¢ are equivalent by showing that they agree on e@gr¢ Tree(A)..

— LetTy € Tree(A) s.t. Ty = ¢. AsTy = ¢p,, we immediately havé |= .

— LetT) € Tree(A), s.t. Ty |E 9. Then there isly € Tree(A), with To = ¢
andT) = ¢r,. We need to prove théf, = ¢. Suppose the converse, i.&;, =
—p. Let ri, 75 be the roots ofl'y, Ts, respectively. First we show that there is a
homomorphisny from 75 to T; s.t. for every node of 75 we havef(s) = Y7 (s)-
The homomorphisnf is defined by induction on the distancesdrom r,.

e s =ry. Thenf(ry) = r; (remembefl} = ¢¥r,).
e sisthej successor of wheret = sq,--- ,t 23 s,, are the outgoing arcs of
t. The formulayr(;) looks as follows:

n
Yray = /\ o N /\ -0 A /\(%’WT(si)
cert cent =1
T(t)=o T(t)#o

whered is the distance of fromr,. Let f(t) = q. Asq = ¢r(;) (by induction
hypotheses), there is somes ¢’ s.t.q' = Yr(s;). We putf(s) = ¢'.
Observe thatf also preserves- because for every nodeof 7T, we have that
and f(s) satisfy exactly the same formulae Hl’j(d (d is the distance of from
ry). Now we can apply Lemma 9—the Tre€s, 7> can be extended to transition
systemdly, T4 in such a way that the ‘old’ states @f are pairwise nonequivalent,
v is still valid (invalid) in 72 (r1), and the homomorphisifican be extended to a
homomorphisny’ which still preserves-. Let us define a transition systefm =
(S, AU A" U {b}, =) where
¢ S is adisjoint union of the sets of statesifandT;,
e A'isthe set of ‘new’ actions dfy, T (cf. the proof of Lemma 9% ¢ AU A’
is a fresh action,



. .. b
e — contains all transitions of{ andT,; moreover, we also have, — ro,

r1 —b) 1, andr2 —b> 1.
The newb-transitions have been added just to makeeachable from,. Observe
that we still haver; ~ rq, r; = -, andrs |= p. AsT; can be ‘embedded’ int®]
by f’, the~-characterization of the processof T is the same (up to isomorphism)

as the~-characterization of the processof T with one additional are, LN ri.
As the ‘old’ states ofl| (see Lemma 9) are pairwise non-equivalent w-r.tand
possible identification of the ‘new’ states @f in the ~-characterization of
cannot influence (in)validity of any H.M. formula whose set of actiensointained
in A, we can conclude that is not satisfied by the procegs] of T|/~. Hence,
¢ is not satisfied by the proceBs| = [ra] of T/~ either. Asyp is satisfied by the
process, of 7, we can conclude that is not preserved by.-characterizations,
and we have a contradiction. O

Theorem 3 and 4 together say that a H.M. propéttis preserved (reflected) by-
characterizations, where is a process equivalence having a good modal characteriza-
tion H, iff P is equivalent to some diamond formula (or box formula — see Lemma 1)
overH.

4 Applications

Our abstract results can be applied to many concrete process equivalences waich hav
been deeply studied in concurrency theory. A nice overview and comparisaurchf
equivalences has been presented in [18]; existing equivalences (eleven ian®tah)

dered w.r.t. their coarseness and a kind of modal characterization is given foofeach
them (unfortunately, not a good one in the sense of Definition 1@jeder, those char-
acterizations can be easily modified so that they become good (there are twhasep

— see below). Due to the lack of space, we present a good modal characteriztion on
for traceequivalence.

Definition 14. The set oftracesof a process, denotedT’r(s), is defined by
Tr(s) = {w € Act* | 3t such thats =% ¢}
We say that, ¢ aretrace equivalentwrittens =; ¢, iff Tr(s) = Tr(¢).
A good modal characterizatidH for trace equivalence is given by
@ == tt | £ ] (a)p

wherea ranges overct. Let s, t be processes with transitiors™ s', t = t', ¢ Ly g
(and no other transitions). Obvioush(s) C H ().

To see that even an infinite-state process can have a very smedpresentation
and=;-characterization, consider the procgess Fig. 1. The procesg is a—=;-repre-
sentation of, and the processis the=;-characterization gf. According to our results,



Fig. 1. An infinite-state process having finite;-representation ané;-characterization

the formula(a)—(a)tt which is satisfied by is not generally preserved by;-repre-
sentations, but it is preserved by-characterizations. Indeed, we havg (a)—(a)tt,
whiler |= (a)—(a)tt.

An interesting related problem is whether a given infinite-state statepsdas for
a given~ any finite~-representation, and whether #scharacterization is finite. It is
also known as theegularity andstrong regularityproblem (see also [13]). Some de-
cidability results for various equivalences and various classes of infitdte-processes
have already been established [3,12,9, 10, 14], but this area still es@taiumber of
open problems.

The only equivalences of [18] which do not have a good modal characterizaon
bisimilarity [17] and completed trace equivalence. Bisimilarity is nateal’ problem,
in fact (only the last requirement of Definition 13 cannot be satisfied)pdaicharac-
terization of bisimilarity is formed byll H.M. formulae, and thereforeachH.M. for-
mula is trivially preserved and reflected byrepresentations and-characterizations.
As for completed trace equivalence, the problem is that this equivalencegegiiim-
ple infinite conjuction, or a generalizéd modality (which can be phrased ‘after any
action”), which are not at disposal.

5 Related and future work

In the context of process theory, modal characterizations were introdudeernessy
and Milner in their seminal paper [7]. The paper provides characterizationisiof b
mulation, simulation, and trace equivalence as full, conjunction-freenagation-free
Hennessy-Milner logic, respectively. The result stating that bisinaraquivalence is
also characterized by the modakalculus seems to be folklore. In [18], van Glabbeek
introduces the equivalences of his hierarchy by means of sets of formulastytea
close to modal characterizations.

In [11], Kaivola and Valmari determine weakest equivalences preserving certain
fragments of linear time temporal logic. In [6], Goltz, Kuiper, and Pencre#tysthe
equivalences characterized by various logics in a partial order setting.

An interesting open problem is whether it is possible to give a aimclassification
for some richer (more expressive) logic. Also, we are not sufficieatttyuainted with
work on modal logic outside of computer science (or before computerceienas
born). Work on filtrations [4] or partial isomorphisms [5] shdhlelp us to simplify and
streamline our proofs.
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