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Antonín Kǔcera?1 and Javier Esparza??21 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,tony@fi.muni.cz2 Institut für Informatik, Technische Universität München,Arcisstr. 21, D-80290 München,
Germany,esparza@in.tum.de

Abstract. We study the following problem: Given a transition systemT and its
quotientT=� under an equivalence�, which are the setsL, L0 of Hennessy-
Milner formulae such that: if' 2 L andT satisfies', thenT=� satisfies'; if' 2 L0 andT=� satisfies', thenT satisfies'.

1 Introduction

In the equivalence approach to formal verification, the specification and the implemen-
tation of a system are typically formalised as transition systemsS andI, and the in-
formal statement ‘the implementation satisfies the specification’ is formalized as ‘S is
equivalent toI ’. In the modal logic approach, the specification is a modal formula',
and the statement is formalised as ‘I is a model of'’.

In a seminal paper [7], Hennessy and Milner proved that bisimulation equivalence
admits amodal characterization: Two (finitely branching) processes are bisimilar if and
only if they satisfy exactly the same formulae of Hennessy-Milner logic. This result was
later extended to the modal�-calculus, a much more powerful logic strictly containing
many other logics, like CTL, CTL�, and LTL. This showed that it was possible to link
two different approaches to formal verification, based on equivalences and modal logics,
respectively.

Modal characterizations play an important rôle in practice: Given a very large, or
even infinite, transition systemT , we would like to obtain a smaller, or at least simpler,
transition systemT 0 which satisfies the specification if and only ifT does. If the spec-
ification belongs to a set of formulaeL characterizing an equivalence�, then we can
safely take anyT 0 satisfyingT � T 0.

An interesting possibility is to takeT 0 as thequotientT=� of T under�, whose
states are the equivalence classes of the states ofT , and whose transitions are given by[s] a! [t] only if s a! t. This works for all equivalences in van Glabbeek’s spectrum [18]
because they satisfyT � T=� (as proved in [13]). Quotients are particularly interesting
for bisimulation equivalence for practical reasons, of which we give justtwo. First, in
this caseT=� can be very efficiently computed for finite transition systems, as shown
in [16]. Second, for some classes of real-time and hybrid systems [2, 8], the quotient? Supported by a Research Fellowship granted by the Alexandervon Humboldt Foundation and
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under bisimulation of an infinite transition system can be proved to befinite; this makes
automatic verification possible, at least in principle.T=� is guaranteed to satisfy a property ofL if and only if T does, but maybe this
holds for other properties as well? We study this question (in a slightly refined form)
within the framework of Hennessy-Milner logic, for arbitrary equivalences. Given a
set of formulae characterizing�, our results determine the setsL0;L00 � L such thatT=� satisfies' 2 L0 if T does, andT satisfies' 2 L00 if T=� does. As we shall see,L0 \ L00 = L; the additional formulae ofL0;L00 which do not belong toL can be used
by efficient verification semi-algorithms (which produceyes/no/don’t knowanswers) –
if we want to find out whetherT satisfies some' 2 L0 [ L00, we can first check ifT=�
satisfies'; if it is the case and' 2 L00, we can conclude thatT satisfies'. If T=� does
not satisfy' and' 2 L0, we conclude thatT does not satisfy'. In the other cases we
‘don’t know’.

The paper is organized as follows. Section 2 contains preliminary definitions. In
Section 3.1, as a warm-up, we determine the setL0 preserved byany transition systemT 0 satisfyingT � T 0. In Section 3.2, the core of the paper, we determine the setL0
preserved by the quotientT=�. In Section 4 we apply our results to the equivalences in
van Glabbeek’s hierarchy. Section 5 contains conclusions and comments on relatedand
future work.

2 Definitions

LetAct = fa; b; c; : : : g be a countably infinite set ofatomic actions(which is fixed for
the rest of this paper).

Definition 1. A transition system (T.S.) is a tripleT = (S;A;!) whereS is a set
of states, A � Act , and!� S � A � S is a transition relation. We say thatT is
finitely-branchingiff for everys 2 S, a 2 A the setft j s a! tg is finite.Processesare
understood as (being associated with) states in finitely-branchingtransition systems.

In the rest of this paper we only consider finitely-branching T.S. (this restriction is harm-
less from the ‘practical’ point of view, but it has important ‘theoretical’ consequences
as it, e.g., allows to prevent the use of infinite conjunctions in ourfuture constructions).

As usual, we writes a! t instead of(s; a; t) 2! and we extend this notation to
elements ofA� in a standard way. A statet is reachablefrom a states iff s w! t for
somew 2 A�. If s is a state ofT , thenT (s) denotes the transition system(S0;A;!0)
whereS0 = ft 2 S j s w! tg for somew 2 A�, and!0 is the induced restriction of!. The set of actions which is used in the underlying transition system of a processp
is denoted byAct(p) (sometimes we work with processes whose associated transition
system has not been explicitly defined). Properties which have been originally defined
for transition systems are often also used for processes; in that case we always mean
that the underlying transition system has the property (for example,we can speak about
the set of states and actions of a given process).

Definition 2. Let T1 = (S1;A1;!1), T2 = (S2;A2;!2) be transition systems. A
(total) functionf : S1 ! S2 is ahomomorphismfromT1 to T2 iff 8s; t 2 S1; a 2 Act :s a!1 t =) f(s) a!2 f(t).



Definition 3. A renamingis an (arbitrary) injective functionr : Act ! Act . For
every transition systemT = (S;A;!) we define ther-renamedtransition systemsr(T ) = (S; r(A);!0) wheres b!0 t iff s a! t andr(a) = b.
2.1 Process descriptions

In this section we briefly introduce and motivate the problem which is considered in
this paper.

Transition systems are widely accepted as a convenient model of concurrent and
distributed systems. A lot of verification problems (safety, liveness,etc.) can be thus re-
duced to certain properties of processes (states). A major difficulty is that in practice we
often meet systems which have a very large (or even infinite) state-space. A natural idea
how to decrease computational costs of formal verification is to replace a givenprocess
with some ‘equivalent’ and smaller one (which can be then seen as its ‘description’).

In this paper we consider two types of process descriptions (�-representations and�-characterizations), which are determined by a chosenprocess equivalence� (by a
‘process equivalence’ we mean an arbitrary equivalence on the class of all processes,
i.e., states in finitely-branching T.S.).

Definition 4. Let� be a process equivalence. A processt is a�-representationof a
processs iff s � t.
Definition 5. Let� be a process equivalence. The�-characterizationof a processs of
a transition systemT = (S;A;!) is the process[s] of T=� = (S=�;A; 7!) whereS=�
is the set of all�-classes ofS (the class containings is denoted by[s]) and 7! is the
least relation satisfyings a! t =) [s] a7! [t].
Observe that the�-characterization ofs is essentially the quotient ofs under�. We
use the word ‘characterization’ because for every ‘reasonable’ process equivalence�
(see Lemma 6) we have thats � [s] for each processs; hence, the�-characterization
of s describes not only the behaviour ofs (as�-representations ofs do), but also the
behaviour of all reachable states ofs, i.e., it characterizesthe whole state-space ofs.
More precisely, for every statet of the processs there is an equivalent state[t] of the
process[s]. Therefore, we intuitively expect that�-characterizations should be more
robust than�-representations. This intuition is confirmed by main theorems of Sec-
tion 3. Also note that the same process can have many different�-representations, but
its�-characterization is unique.

Definition 6. LetP be a property of processes,� a process equivalence. We say thatP is

– preservedby�-representations (or�-characterizations) iff whenevert is a�-rep-
resentation (or the�-characterization) ofs ands satisfiesP , thent satisfiesP ;

– reflectedby�-representations (or�-characterizations) iff whenevert is a�-rep-
resentation (or the�-characterization) ofs andt satisfiesP , thens satisfiesP .

An immediate consequence of the previous definition is the following:



Lemma 1. Let� a process equivalence. A propertyP is preserved by�-representa-
tions (or�-characterizations) iff:P is reflected by�-representations (or�-charac-
terizations).

The question considered in this paper is what properties expressible inHennessy-Milner
logic (see the next section) are preserved and reflected by�-representations and�-
characterizations for a given process equivalence�, i.e., to what extent are the two
kinds of process descriptions ‘robust’ for a given�. As we shall see, we can give a
complete classification of those properties if the equivalence� satisfies certain (ab-
stractly formulated) conditions. Intuitively, we put more and morerestrictions on�
which allow us to prove more and more things; as we shall see in Section 4, all those
restrictions are ‘reasonable’ in the sense that (almost) all existing (i.e., studied) process
equivalences satisfy them. See Section 4 for details.

2.2 Hennessy-Milner Logic

Formulae of Hennessy-Milner (H.M.) logic have the following syntax (a ranges overAct): ' ::= tt j ' ^ ' j :' j hai'
Thedenotation[[']] of a formula' on a transition systemT = (S;A;!) is defined as
follows: [[tt]] = S[[' ^  ]] = [[']] \ [[ ]][[:']] = S � [[']][[hai']] = fs 2 S j 9t 2 S : s a! t ^ t 2 [[']]g
Instead ofs 2 [[']] we usually writes j= '. The other boolean connectives are intro-
duced in a standard way; we also defineff � :tt and[a]' � :hai:'. Thedepthof a
formula', denoteddepth('), is defined inductively by

– depth(tt) = 0,
– depth(' ^  ) = maxfdepth('); depth( )g,
– depth(:') = depth('),
– depth(hai') = 1 + depth(').

The set of actions which are used in a formula' is denoted byAct(') (note thatAct(')
is always finite).

Definition 7. Let A � Act . A Tree overA is any directed binary tree with rootr
whose edges are labelled by elements ofA satisfying the following condition: ifp; q
are a-successors of a nodes, wherea 2 A, then the subtrees rooted byp; q are not
isomorphic.Tree-processesare associated with roots of Trees (we do not distinguish
between Trees and Tree-processes in the rest of this paper). Note that for everyk 2 IN0
and every finiteA � Act there are only finitely many Trees overA whose depth is at
mostk (up to isomorphism). We denote this finite set of representatives byTree(A)k .



It is a standard result that for every processs there is a TreeTs overAct(s) (possibly
of infinite depth) such thats andTs satisfy exactly the same H.M. formulae (cf. [15]).
One can also easily prove the following:

Lemma 2. Formulae';  of H.M. logic are equivalent iff they agree on every element
ofTree(A)k whereA = Act(') [ Act( ) andk = maxfdepth('); depth( )g.
For every renamingr and a H.M. formula' we define the formular(') which is ob-
tained from' by substituting eachhai with hr(a)i.
Lemma 3. For every processs, renamingr, and H.M. formula' we have thats j= '
iff r(s) j= r(').
In the next section we also need the following tools:

Definition 8. Let' be a H.M. formula,s a process. For a given occurrence of a sub-
formula in ' we define itsdiamond-depth, denotedd( ), to be the number ofhbi-
modalities which have the occurrence of in their scope. The set of all actions which
are used in those modalities is denoted byAd( ). Finally, we useRs( ) to denote the
set of all states which are reachable froms via a sequence of (exactly)d( ) transitions
whose actions are contained inAd( ).
Lemma 4. Let' be a H.M. formula. Let'0 be the formula obtained from' by substi-
tuting (given occurrences of) its subformulae 1; : : : ;  n by H.M. formulae�1; : : : ; �n,
respectively. Lets be a process such thats j= ' and for alli 2 f1; : : : ; ng, s0 2 Rs( i)
one of the following conditions holds:

1. s0 j=  i () s0 j= �i
2. s0 j= �i and the occurrence of i in ' is not within the scope of any negation.

Thens j= '0.
3 The classification

In this section we give a complete classification of H.M. properties whichare pre-
served/reflected by�-representations and�-characterizations for certain classes of pro-
cess equivalences which satisfy some (abstractly formulated) conditions. From the very
beginning, we restrict ourselves to those equivalences which have amodal characteri-
zation.

Definition 9. Let� be a process equivalence. We say that� has amodal characteriza-
tion iff there is a setH of H.M. formulae s.t. for all processess; t we have thats � t iffs andt satisfy exactly the same formulae ofH.

Observe that the same equivalence can have many different modal characterizations.
Sometimes we also use the following notation (wheres is a process):HA := f' j ' 2H^Act(') � Ag,HkA := f' j ' 2 HA^depth(') � kg,H(s) := f' j ' 2 H^s j='g, andHA(s) := f' j ' 2 HA ^ s j= 'g. Note that ifA is finite, thenHkA contains
only finitely many pairwise nonequivalent formulae. In that case we can thusconsiderHkA to be afiniteset.



3.1 H.M. properties preserved by�-representations

Theorem 1. LetH be a modal characterization of a process equivalence�. Then every
formula # which is a boolean combination of formulae fromH is preserved by�-
representations.

The previous theorem is in fact a trivial consequence of Definition 9. Nowwe would
like to prove a kind of ‘completeness’ result saying that nothing else(except for formu-
lae which are equivalent to boolean combinations of formulae fromH) is preserved by�-representations. However, this property doesnot hold for an arbitrary modal charac-
terizationH; it is demonstrated by the following counterexample:

Example 1.Let� be defined as follows:s � t iff a 2 Act(s) \ Act(t), or Act(s) =Act(t). LetM = f(A1;A2) j A1;A2 are finite, nonempty, and disjoint subsets ofActg.
The equivalence� has a modal characterizationH = fhaitt _ ( ^b2A1hbitt ^ ^c2A2 :hcitt) j (A1;A2) 2Mg
Now observe that the formulahaitt is preserved by�-representations, but it is not
equivalent to any boolean combination of formulae fromH.

However, a simple assumption aboutHwhich is formulated in the next definition makes
a completeness proof possible.

Definition 10. We say that a modal characterizationH of a process equivalence� is
well-formediff whenever' 2 H andhai is an occurrence of a subformula in', then
also'0 2 H where'0 is obtained from' by substituting the occurrence ofhai withff.

As we shall see in Section 4, all ‘real’ process equivalences which have a modal charac-
terization also have a well-formed modal characterization. An important (andnaturally-
looking) property of process equivalences which have a well-formed modalcharacteri-
zation is presented in the following lemma:

Lemma 5. Let� be a process equivalence having a well-formed modal characteriza-
tion �. LetA � Act , k 2 IN0. For all T; T 0 2 Tree(A)k we have thatT � T 0 iff T
andT 0 satisfy exactly the same formulae ofHkA.

Proof. The ‘)’ direction is obvious. Now if suffices to realize that ifT andT 0 are
distinguished by some' 2 H, then they are also distinguished by the formula'0 2 HkA
which is obtained form' by substituting every occurrence of a subformulahai , which
is within the scope ofk otherhbi-modalities or wherea 62 A, with ff. The formulae'
and'0 agree on every element ofTree(A)k , because the occurrences of subformulae
in ' which have been substituted byff during the construction of'0 are evaluated to
false anyway. ut
Theorem 2. Let� be a process equivalence having a well-formed modal characteri-
zationH. Then every formula' of H.M. logic which is preserved by�-representations
is equivalent to a boolean combination of formulae fromH.



Proof. Let' be a formula preserved by�-representations,k = depth('),A = Act(')
(note thatA is finite). For everyT 2 Tree(A)k we construct the formula T � ^%2HkAT j=% % ^ ^%2HkAT 6j=% :%
Now let  � _T2Tree(A)kT j='  T
We show that' and are equivalent. To do that, it suffices to show that' and agree
on everyT1 2 Tree(A)k (see Lemma 2).

– Let T1 2 Tree(A)k s.t.T1 j= '. AsT1 j=  T1 , we also haveT1 j=  .
– Let T1 2 Tree(A)k s.t.T1 j=  . Then there isT2 2 Tree(A)k s.t.T2 j= ' andT1 j=  T2 . As T1 j=  T2 , the TreesT1; T2 satisfy exactly the same formulae ofHkA. Hence,T1 � T2 due to Lemma 5. As' is preserved by�-representations,T1

is a�-representation ofT2, andT2 j= ', we also haveT1 j= '. ut
Theorem 1 and 2 give a complete classification of those H.M. properties which are
preserved and reflected (see Lemma 1) by�-representations for a process equivalence� which has a well-formed modal characterizationH.

3.2 H.M. properties preserved by�-characterizations

Now we establish analogous results for�-characterizations. As we shall see, this prob-
lem is more complicated.

The first difficulty has been indicated already in Section 2.1 – it does not have too
much sense to speak about�-characterizations if we are not guaranteed thats � [s] for
every processs. Unfortunately, thereareprocess equivalences (even with a well-formed
modal characterization) which do not satisfy this basic requirement.

Example 2.Let� be defined as follows:s � t iff for eachw 2 Act� s.t.length(w) = 2
we have thats w! s0 for somes0 iff t w! t0 for somet0. The equivalence� has a well-
formed modal characterizationH = fhaihbitt j a; b 2 Actg [ fhaiff j a 2 Actg [ fffg
Now let s be a process wheres a! t; s b! u; u c! v, andt; u; v do not have any other
transitions. Thent � u � v, hence[s] ac! [v], and therefores 6� [s].
However, there is a simple (and reasonable) condition which guarantees whatwe need.

Definition 11. Let � be a process equivalence. We say that� has aclosedmodal
characterization iff it has a modal characterizationHwhich is closed under subformula
(i.e., whenever' 2 H and is a subformula of', then 2 H).



A closed modal characterization is a particular case of afiltration. The next lemma
is a well-known result of modal logic, stating that a model and its quotient through a
filtration agree on every formula of the filtration [4]. We include a proof for the sake of
completeness .

Lemma 6. Let� be a process equivalence having a closed modal characterization.
Thens � [s] for every processs.
Proof. LetH be a closed modal characterization of�. We prove that for every' 2 H
and every processs we haves j= ' () [s] j= ' (i.e.,s � [s]). By induction on the
structure of'.

– ' � tt. Immediate.
– ' � : . Then 2 H ands j=  () [s] j=  by induction hypotheses. Hence

alsos j= : () [s] j= : as required.
– ' �  ^ �. Then ; � 2 H. If  ^ � distinguishes betweens and[s], then or� distinguishes between the two processes as well; we obtain a contradictionwith

induction hypotheses.
– ' � hai .� ()) Let s j= hai . Then there is somet such thats a! t andt j=  . Therefore,[s] a7! [t] and as 2 H, we can use induction hypothesis to conclude[t] j=  .

Hence,[s] j= hai .� (() Let [s] j= hai . Then[s] a7! [t] for some[t] s.t. [t] j= '. By Definition 5
there ares0; t0 such thats � s0, t � t0, ands0 a! t0. As [t] = [t0], we have[t0] j= and hencet0 j=  by induction hypotheses. Therefore,s0 j= hai . Ass � s0
andhai 2 H, we also haves j= hai as needed (remember that formulae ofH cannot distinguish between equivalent processes by Definition 9). ut

According to our intuition presented in Section 2.1,�-characterizations should be more
robust then�-representations, i.e., they should preserve more properties. The following
definition gives a ‘syntactical template’ which allows to construct such properties.

Definition 12. LetS be a set of H.M. formulae. The set ofdiamondformulae overS,
denotedD(S), is defined by the following abstract syntax equation:' ::= # j ' ^ ' j ' _ ' j hai'
Herea ranges overAct , and# ranges over boolean combinations of formulae fromS.
The setB(S) of boxformulae overS is defined in the same way, but we use[a]-modality
instead ofhai.
Theorem 3. Let� be a process equivalence having a closed modal characterizationH. Then every formula ofD(H) is preserved by�-characterizations.

Proof. Let' 2 D(H). By induction on the structure of':

– ' � #. It suffices to realize that# is preserved by�-representations (Theorem 2)
and every�-characterization is also a�-representation (Lemma 6).



– ' � '1 ^ '2, or' � '1 _ '2 where'1; '2 are preserved. Immediate.
– ' � hai'1 where'1 is preserved. Letp be an arbitrary process s.t.p j= hai'1.

Then there isp a! p0 s.t. p0 j= '1. By definition of�-characterization we have[p] a7! [p0]. Moreover,[p0] j= '1 as'1 is preserved. Hence,[p] j= hai'1 as needed.ut
In order to prove the corresponding completeness result, we need some additional as-
sumptions about� andH.

Definition 13. Let� be a process equivalence. We say that� has agoodmodal char-
acterization iff it has a closed modal characterizationH which satisfies the following
conditions:

– if ' 2 H, then alsohai' 2 H for everya 2 Act ;
– if ' 2 H, then alsor(') 2 H for every renamingr;
– if hai is an occurrence of a subformula in', then also'0; '00 2 H where'0 and'00 are the formulae obtained from' by substituting the occurrence ofhai withtt andff, respectively;
– if ' 2 H and: is a subformula of', then also:� 2 H for every subformula�

of ;
– there are processess; t such thatAct(s) [ Act(t) is finite andH(s) � H(t).

The requirements of Definition 13 look strange at first glance. In fact, thefirst four of
them only eliminate a lot of ‘unnatural’ process equivalences from our considerations.
The last requirement is also no problem, because the majority of ‘real’ process equiv-
alences are defined as kernels of certain preorders, and one can always find processess; t such thats is ‘strictly less’ thant in the preorder.

Now we present a sequence of technical lemmas which are then used to prove the
last main theorem of our paper.

Lemma 7. LetH be a good modal characterization of a process equivalence�. For
everyn 2 IN and every finiteA � Act there are processesp1; � � � ; pn such thatAct(pi)
is finite,Act(pi) \ A = ;, andH(pi) � H(pi+1) for each1 � i < n.

Proof. Let s and t be processes such thatH(s) � H(t). We can safely assume that(Act(s) [ Act(t)) \ A = ;, because otherwise we can consider processesr(s); r(t)
for an appropriate renamingr (observe thatH(r(s)) � H(r(t)) due to Lemma 3 and
Definition 13). Let� 2 H be a formula such thatt j= � ands 6j= �. Let a1; � � � ; an be

fresh (unused) actions. The processpi has (exactly) the following transitions:pi aj! s
for every1 � j < i � n, andpi aj! t for every1 � i � j � n. We prove thatH(pi) � H(pi+1) for each1 � i < n. First, note thathaii� 2 H, pi j= haii�, andpi+1 6j= haii�. It remains to prove that for every' 2 H such thatpi+1 j= 'we also havepi j= '. The formula' can be viewed as a boolean combination of formulae of the formhai . We show that for each suchhai we have thatpi+1 j= hai () pi j= hai , orpi j= hai andhai is not within the scope of any negation in'. It clearly suffices to
concludepi j= '. We distinguish two possibilities:



– pi+1 j= hai . As  2 H andH(s) � H(t), we also havepi j= hai (see the
construction ofpi above).

– pi+1 6j= hai . If pi 6j= hai , we are done immediately. Ifpi j= hai , then neces-
sarily a = ai; we obtain thatt j=  ands 6j=  . If the formulahai is within the
scope of some negation in', we obtain: 2 H. As s j= : andt 6j= : , we
have a contradiction withH(s) � H(t). ut

Lemma 8. Let� be a process equivalence having a closed modal characterizationH.
Lets; t be processes such that for everya 2 Act we have

Ss a!s0 H(s0) = St a!t0 H(t0).
Thens � t.
Proof. We show that for every' 2 H we haves j= ' iff t j= '. By induction on the
structure of'.

– ' � tt. Immediate.
– ' �  ^ �. Suppose that ^ � distinguishes betweens and t. Then ; � 2 H

and at least one of those formulae must distinguish betweens andt; we obtain a
contradiction with induction hypotheses.

– ' � : . The same as above.
– ' � hai . Suppose, e.g.,s j= hai andt 6j= hai . Then 2 H, 2 Ss a!s0 H(s0),

and 62 St a!t0 H(t0), a contradiction. ut
Lemma 9. Let� be a process equivalence having a good modal characterizationH.
LetA be a finite subset ofAct , k 2 IN0. LetT1; T2 2 Tree(A)k s.t. there is a homo-
morphismf from T2 to T1 which preserves�. Then the TreesT1; T2 can be extended
(by adding some new states and transitions) in such a way that the obtained transition
systemsT 01; T 02 satisfy the following:

– the homomorphismf can be extended to a homomorphismf 0 fromT 02 to T 01 which
also preserves�,

– for every H.M. formula' s.t.Act(') � Awe haveT 02 j= ' iff T2 j= ' andT 01 j= '
iff T1 j= ',

– the ‘old’ states ofT 01 (i.e., the ones which have not been added toT1 during the
extension procedure) are pairwise nonequivalent w.r.t.�.

Proof. First we describe the extension ofT1 which yields the systemT 01. This extension
is then ‘propagated’ back toT2 via the homomorphismf—each states of T2 is extended
in the same way as the statef(s) of T1. Finally, we show that the three requirements of
our lemma are satisfied.

Let n be the number of states ofT1, and letm be the number of those statest of T1
for which there is a states of T2 such thatf(s) = t. Let p1; : : : ; pn be processes over
a finiteA0 � Act such thatH(p1) � H(p2) � � � � � H(pn) andA \ A0 = ;. Such
processes must exist by Lemma 7. Now we take an arbitrary bijectionb from the set of
states ofT1 to f1; : : : ; ng satisfying the following conditions:

– if t = f(s) for some states of T2, thenb(t) � m,
– if there is a (nonempty) path fromt to t0 in T2, thenb(t) > b(t0).



Now we add toT1 all states ofp1; : : : ; pn, and for each statet of T1 and each transitionpb(s) a! q we add the transitiont a! q (i.e., the statet has the same set ofa-successors
aspb(s) for everya 2 A0 after the modification). The described extension ofT1 is now
‘propagated’ toT2 in the above indicated way, yielding the systemT 02.

As A \ A0 = ;, the new transitions which have been added toT1 andT2 cannot
influence the (in)validity of any H.M. formula' s.t.Act(') � A. Hence, the second
requirement of our lemma is satisfied. Moreover, it is easy to see that the third require-
ment is satisfied as well, because the ‘old’ states ofT 01 now satisfy pairwise different
subsets ofHA0 . It remains to show that the first requirement is also valid.

The homomorphismf 0 is defined as a ‘natural’ extension off – it agrees withf on
the ‘old’ states ofT 01, and behaves like an identity function on the ‘new’ ones. Observe
that if s is a ‘new’ state ofT 02, then the transition systemsT 02(s) andT 01(f 0(s)) are the
same (isomorphic). Hence,f 0 trivially preserves� on all ‘new’ states ofT 02. To prove
thats � f 0(s) for every ‘old’ states of T 02, we first need to show the following auxiliary
lemma: lets1; : : : ; sj be ‘old’ states ofT 02, t an ‘old’ state ofT 01 such that

– there is no states of T 02 such thatf 0(s) = t,
– HA(t) � Sji=1HA(si).

ThenH(t) � Sji=1H(si).
A proof of the auxiliary lemma:Let ' 2 H such thatt j= '. We show thatsi j= '
for some1 � i � j. First we construct a formula'0 2 HA from ' in the following
way (recall the notions introduced in Definition 8): every occurence of a subformulahai in ', a 2 A0, which is not within the scope of anyhbi-modality, whereb 2 A0, is
substituted by

– tt if t j= hai or there is somet0 2 Rt(hai ) such thatt0 j= hai ,
– ff otherwise.

Clearly'0 2 HA (see Definition 13). We prove thatt j= '0, (i.e.,'0 2 HA(t)) by
showing that the assumptions of Lemma 4 are satisfied for' and the above defined
substitution. Lethai be a formula whose occurence has been substituted in' to obtain'0. First, let us realize that every state ofRt(hai ) is an ‘old’ one, becauseAd(hai ) �A (see above). We can distinguish two possibilities:

– the occurence ofhai has been substituted bytt. Then there are two subcases:� t j= hai . Remember that each ‘old’ stateq of T 01 has the same set ofa-
successors aspb(q) for everya 2 A0. Hence,pb(t) j= hai becauset j= hai .
Furthermore, for everyt0 2 Rt(hai ) we haveH(pb(t)) � H(pb(t0)) (see the
definition ofb above). Therefore,pb(t0) j= hai and thus we gett0 j= hai . In
other words, for everyt0 2 Rt(hai ) we obtaint0 j= tt() t0 j= hai .� there ist0 2 Rt(hai ) such thatt0 j= hai . First, if hai is satisfied by
everystate ofRt(hai ), we are done immediately. Otherwise, there ist00 2Rt(hai ) such thatt00 6j= hai . Now it suffices to show that the occurrence ofhai in ' cannot be within the scope of any negation (see the second condi-
tion of Lemma 4). Suppose the converse. As' 2 H andH is a good modal
characterization, we know that bothhai and:hai 2 H. As the processes



t0 andt00 have the samea-successors as the processespb(t0) andpb(t00), respec-
tively, we obtainpb(t0) j= hai andpb(t00) 6j= hai , hence alsopb(t0) 6j= :hai 
andpb(t00) j= :hai . Therefore, it cannot be thatH(pb(t0)) � H(pb(t00)) orH(pb(t00)) � H(pb(t0)), a contradiction.

– the occurence ofhai has been substituted byff. Thent0 6j= hai for eacht0 2Rt(hai ), and we are done immediately.

Now we know that'0 2 HA(t), hence there must be somesi such thatsi j= '0. We
prove thatsi j= ', again by applying Lemma 4 (observe that' can be obtained from'0 by a substitution which is ‘inverse’ to the previously considered one). We show that
the assumptions of Lemma 4 are satisfied also for'0 and the ‘inverse’ substitution,
distinguishing two possibilities:

– a given occurence oftt is substituted ‘back’ tohai . It means that we previously
hadt j= hai or t0 j= hai for somet0 2 Rt(hai ). AsH(pb(f 0(s))) � H(pb(v))
for every ‘old’ states of T 02 and every ‘old’ statev of T 01 which is reachable fromt (see the definition ofb and the construction ofT 02), we can conclude thathai is
satisfied byeach‘old’ state ofT 02 (in particular, by all states ofRsi(tt)).

– a given occurence offf is substituted ‘back’ tohai . If hai is not satisfied by any
state ofRsi(ff), we done immediately. We show that if there is somes0 2 Rsi(ff)
such thats0 j= hai , then the occurence offf in '0 cannot be within the scope of
any negation. Suppose the converse. Then there is an occurrence ofhai in 'which
is within the scope of some negation, hence:hai belong toH. As t j= :hai 
andH(pb(t)) � H(pb(f 0(s0))) (see above), we haves0 j= :hai , a contradiction.

Now we can continue with the main proof. We show that for each ‘old’ states of T 02
we have thats � f 0(s). We proceed by induction on the depth of the subtree which is
rooted bys in T2 (denoted byd).

– d = 0: Thens is a leaf inT2, hence the transition systemsT 02(s) andT 01(f 0(s)) are
isomorphic. Hence, we trivially haves � f 0(s).

– Induction step: We prove that
Ss a!s0 H(s0) = Sf 0(s) a!tH(t) for eacha 2 Act

(hences � f 0(s0) by Lemma 8). Ifa 2 A0, the equality holds trivially becauses andf 0(s) have the same set ofa-successors. Now leta 2 A. By induction hy-
potheses we know thatH(s0) = H(f 0(s0)) for eacha-successors0 of s. To finish
the proof, we need to show that for eacha-successort of f 0(s) for which there is
no stateq of T 02 with f 0(q) = t we have thatH(t) � Ss a!s0 H(s0). However, it
can be easily achieved with a help of the auxiliary lemma which has been proved
above; all we need is to show thatHA(t) � Ss a!s0 HA(s0). Suppose it is not the
case, i.e., there is some# 2 HA such thatt j= # ands0 6j= # for eacha-successors0 of s. Hencehai# 2 HA, s 6j= hai#, andf(s) j= hai#; it contradicts the fact that
the homomorphismf preserves�. ut

Theorem 4. Let� be a process equivalence having a good modal characterizationH.
Then every formula which is preserved by�-characterizations is equivalent to some
formula ofD(H).



Proof. Let ' be a formula preserved by�-characterizations,k = depth('), A =Act('). For everyT 2 Tree(A)k we define the formula T by induction on the depth
of T :

– if the depth ofT is 0, then T � tt,
– if the depth ofT is j + 1, r is the root ofT , andr a1! s1; � � � ; r an! sn are the

outgoing arcs ofr, then T � ^%2Hj+1AT j=% % ^ ^%2Hj+1AT 6j=% :% ^ n̂i=1haii T (si)
whereT (si) is the sub-Tree ofT rooted bysi.

Let  � _T2Tree(A)kT j='  T
We prove that';  are equivalent by showing that they agree on everyT1 2 Tree(A)k .

– Let T1 2 Tree(A)k s.t.T1 j= '. AsT1 j=  T1 , we immediately haveT1 j=  .
– Let T1 2 Tree(A)k s.t. T1 j=  . Then there isT2 2 Tree(A)k with T2 j= '

andT1 j=  T2 . We need to prove thatT1 j= '. Suppose the converse, i.e.,T1 j=:'. Let r1; r2 be the roots ofT1; T2, respectively. First we show that there is a
homomorphismf fromT2 to T1 s.t. for every nodes of T2 we havef(s) j=  T (s).
The homomorphismf is defined by induction on the distance ofs from r2.� s = r2. Thenf(r2) = r1 (rememberT1 j=  T2 ).� s is thejth successor oft wheret a1! s1; � � � ; t an! sn are the outgoing arcs oft. The formula T (t) looks as follows: T (t) � ^%2Hk�dAT (t)j=% % ^ ^%2Hk�dAT (t)6j=% :% ^ n̂i=1haii T (si)

whered is the distance oft from r2. Let f(t) = q. As q j=  T (t) (by induction

hypotheses), there is someq aj! q0 s.t.q0 j=  T (sj ). We putf(s) = q0.
Observe thatf also preserves� because for every nodes of T2 we have thats
andf(s) satisfy exactly the same formulae ofHk�dA (d is the distance ofs fromr2). Now we can apply Lemma 9—the TreesT1; T2 can be extended to transition
systemsT 01; T 02 in such a way that the ‘old’ states ofT 01 are pairwise nonequivalent,' is still valid (invalid) in r2 (r1), and the homomorphismf can be extended to a
homomorphismf 0 which still preserves�. Let us define a transition systemT =(S;A [ A0 [ fbg;!) where� S is a disjoint union of the sets of states ofT 01 andT 02,� A0 is the set of ‘new’ actions ofT 01; T 02 (cf. the proof of Lemma 9),b 62 A [A0

is a fresh action,



� ! contains all transitions ofT 01 andT 02; moreover, we also haver2 b! r2,r1 b! r1, andr2 b! r1.
The newb-transitions have been added just to maker1 reachable fromr2. Observe
that we still haver1 � r2, r1 j= :', andr2 j= '. AsT 02 can be ‘embedded’ intoT 01
byf 0, the�-characterization of the processr2 of T is the same (up to isomorphism)

as the�-characterization of the processr1 of T 01 with one additional arcr1 b! r1.
As the ‘old’ states ofT 01 (see Lemma 9) are pairwise non-equivalent w.r.t.�, and
possible identification of the ‘new’ states ofT 01 in the�-characterization ofr1
cannot influence (in)validity of any H.M. formula whose set of actions is contained
in A, we can conclude that' is not satisfied by the process[r1] of T 01=�. Hence,' is not satisfied by the process[r1] = [r2] of T=� either. As' is satisfied by the
processr2 of T , we can conclude that' is not preserved by�-characterizations,
and we have a contradiction. ut

Theorem 3 and 4 together say that a H.M. propertyP is preserved (reflected) by�-
characterizations, where� is a process equivalence having a good modal characteriza-
tionH, iff P is equivalent to some diamond formula (or box formula – see Lemma 1)
overH.

4 Applications

Our abstract results can be applied to many concrete process equivalences which have
been deeply studied in concurrency theory. A nice overview and comparison ofsuch
equivalences has been presented in [18]; existing equivalences (eleven in total)are or-
dered w.r.t. their coarseness and a kind of modal characterization is given for eachof
them (unfortunately, not a good one in the sense of Definition 13). However, those char-
acterizations can be easily modified so that they become good (there are two exceptions
– see below). Due to the lack of space, we present a good modal characterization only
for traceequivalence.

Definition 14. The set oftracesof a processs, denotedTr(s), is defined byTr(s) = fw 2 Act� j 9t such thats w! tg
We say thats; t are trace equivalent, writtens =t t, iff Tr(s) = Tr(t).
A good modal characterizationH for trace equivalence is given by' ::= tt j ff j hai'
wherea ranges overAct . Let s; t be processes with transitionss a! s0, t a! t0, t b! t00
(and no other transitions). ObviouslyH(s) � H(t).

To see that even an infinite-state process can have a very small=t-representation
and=t-characterization, consider the processp of Fig. 1. The processq is a=t-repre-
sentation ofp, and the processr is the=t-characterization ofp. According to our results,
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Fig. 1. An infinite-state process having finite=t-representation and=t-characterization

the formulahai:haitt which is satisfied byp is not generally preserved by=t-repre-
sentations, but it is preserved by=t-characterizations. Indeed, we haveq 6j= hai:haitt,
while r j= hai:haitt.

An interesting related problem is whether a given infinite-state state process has for
a given� any finite�-representation, and whether its�-characterization is finite. It is
also known as theregularity andstrong regularityproblem (see also [13]). Some de-
cidability results for various equivalences and various classes of infinite-state processes
have already been established [3, 12, 9, 10, 14], but this area still contains a number of
open problems.

The only equivalences of [18] which do not have a good modal characterizationare
bisimilarity [17] and completed trace equivalence. Bisimilarity is not a ‘real’ problem,
in fact (only the last requirement of Definition 13 cannot be satisfied); a modal charac-
terization of bisimilarity is formed byall H.M. formulae, and thereforeeachH.M. for-
mula is trivially preserved and reflected by�-representations and�-characterizations.
As for completed trace equivalence, the problem is that this equivalence requires a sim-
ple infinite conjuction, or a generalizedh�i modality (which can be phrased ‘after any
action’), which are not at disposal.

5 Related and future work

In the context of process theory, modal characterizations were introduced byHennessy
and Milner in their seminal paper [7]. The paper provides characterizations of bisi-
mulation, simulation, and trace equivalence as full, conjunction-free, andnegation-free
Hennessy-Milner logic, respectively. The result stating that bisimulation equivalence is
also characterized by the modal�-calculus seems to be folklore. In [18], van Glabbeek
introduces the equivalences of his hierarchy by means of sets of formulae, in astyle
close to modal characterizations.

In [11], Kaivola and Valmari determine weakest equivalences preserving certain
fragments of linear time temporal logic. In [6], Goltz, Kuiper, and Penczek study the
equivalences characterized by various logics in a partial order setting.

An interesting open problem is whether it is possible to give a similar classification
for some richer (more expressive) logic. Also, we are not sufficientlyacquainted with
work on modal logic outside of computer science (or before computer science was
born). Work on filtrations [4] or partial isomorphisms [5] should help us to simplify and
streamline our proofs.
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14. A. Kučera and R. Mayr. Simulation preorder on simple process algebras. InProceedings of
ICALP’99, LNCS. Springer, 1999. To appear.

15. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
16. R. Paige and R. Tarjan. Three partition refinement algorithms.SIAM Journal on Computing,

16(6):973–989, December 1987.
17. D.M.R. Park. Concurrency and automata on infinite sequences. InProceedings5th GI

Conference, volume 104 ofLNCS, pages 167–183. Springer, 1981.
18. R.J. van Glabbeek. The linear time—branching time spectrum. In Proceedings of CON-

CUR’90, volume 458 ofLNCS, pages 278–297. Springer, 1990.


