Weak Bisimilarity with Infinite-State Systems can be
Decided in Polynomial Time

Antonin Kutera! and Richard Mayr+2

1 Faculty of Informatics, Masaryk University, Botanickae6®$0200 Brno, Czech Republic,
tony@fi.muni.cz
2 LFCS, Dept. of Computer Science, Univ. of Edinburgh, JCMB\d& Buildings, Mayfield
Road, Edinburgh EH9 3JZ, Ulbayrri@dcs.ed.ac.uk

Abstract. We prove that weak bisimilarity is decidable in polynomiahé be-
tween BPA and finite-state processes, and between normeaiPtnite-state
processes. To the best of our knowledge, these are the fiysigmial algorithms
for weak bisimilarity with infinite-state systems.

1 Introduction

Recently, a lot of attention has been devoted to the studyeoiddbility and com-
plexity of verification problems for infinite-state systefi2§, 11, 5]. We consider the
problem of weak bisimilarity between certain infinite-starocesses and finite-state
ones. The motivation is that the intended behaviour of age®s often easy to specify
(by a finite-state system), but a ‘real’ implementation cantain components which
are essentially infinite-state (e.g. counters, bufferBe @im is to check if the finite-
state specification and the infinite-state implementatiersamantically equivalent, i.e.
weakly bisimilar.

We concentrate on the classes of infinite-state procesd$emble by the syntax
of BPA (Basic Process Algebra) and normed BPP (Basic PhRiteesses) systems.
BPA processes can be seen as simple sequential prograris (Hadinary operator of
sequential composition). They have recently been usedite pooblems of dataflow
analysis in optimising compilers [12]. BPP model simplegtlet systems (due to the
binary operator of parallel composition). A processx@mediff at every reachable
state it can terminate via a finite sequence of computat&tepk.

The state of the art. Baeten, Bergstra, and Klop [1] proved thsitong bisimilarity

[29] is decidable for normed BPA processes. Simpler proafgtbeen given later in
[18,13], and there is even a polynomial-time algorithm [T3je decidability result has
later been extended to the class of all (not necessarily edyBPA processes in [9], but
the best known algorithm is doubly exponential [4]. Decitigbof strong bisimilarity

for BPP processes has been established in [8], but the @igohias non-elementary
complexity. However, there is a polynomial-time algoritfonthe subclass of normed
BPP [16]. Strong bisimilarity between normed BPA and noriB&® is also decidable

* Supported by a Research Fellowship granted by the AlexamieHumboldt Foundation and
by a Post-Doc grant GER No. 201/98/P046.
** This work was partly supported by a DAAD Post-Doc grant.

[7]. This result even holds for parallel compositions of med BPA and normed BPP
processes [20].

For weak bisimilarity, much less is known. Semidecidapitif weak bisimilarity
for BPP is due to [10]. In [14] it is shown that weak bisimitstris decidable for those
BPA and BPP processes which are ‘totally normed’ (a procetsgally normed if it can
terminate at any moment via a finite sequence of computdtsteps, but at least one
of those steps must be ‘visible’, i.e. non-internal). Datittity of weak bisimilarity for
general BPA and BPP is open; those problems might be deeidaini they are surely
intractable (assumin® # NP)—for BPP we have\/P-hardness, and for BPA even
PSPACE-hardness [30].

The situation is dramatically different if we consider wdaikimilarity between
certain infinite-state processes and finite-state one24hifis shown that weak bisi-
milarity between BPP and finite-state processes is de@dalhore general result has
recently been obtained in [19], where it is shown that masjnuilation-like equiva-
lences (including the strong and weak ones) are decidableeba PAD and finite-state
processes. The class PAD strictly subsumes not only BPA d@1e| But also PA [2]
and pushdown processes. This result is obtained by a gaeerattion to the model-
checking problem for the simple branching-time temporgiddeF. As the model-
checking problem foEF is hard (for example, it is known to beSPA CE-complete for
BPP [24] andPSPACE-hard for BPA [25]), this does not yield an efficient algorith

Our contribution. We show that weak (and hence also strong) bisimilarity iscdate
in polynomial time between BPA and finite-state processes keetween normed BPP
and finite-state processes. Due to the aforementioned éssdasults for the ‘symmet-
ric case’ (when we compare two BPA or two (hormed) BPP pragsse know that
our results cannot be extended in this direction. To the difestir knowledge, these are
the first polynomial algorithms for weak bisimilarity withfinite-state systems. More-
over, the algorithm for BPA is the first example of an efficidetision procedure for
a class ofunnormednfinite-state systems (the polynomial algorithms for stydisi-
milarity of [15, 16] only work for normed subclasses of BPAdaBPP, respectively).
It should also be noted thatmulation equivalencbetween BPA/BPP and finite-state
systems is coV'P-hard [22].

The basic scheme of our constructions for BPA and normed BB&epses is the
same. The main idea is that weak bisimilarity between BPA¢wmed BPP) processes
and finite-state ones can be generated from a finite base ainckttiain infinite subsets
of BPA and BPP state-space can be ‘symbolically’ describefirtite automata and
context-free grammars, respectively. A more detailedtiotuis given in Section 3. As
weak bisimilarity is not a congruence w.r.t. sequencing (Section 3), we propose its
natural refinement called termination-sensitive bisintyawhich is a congruence and
which is also decidable between BPA and finite-state presdasspolynomial time.

2 Definitions

We use process rewrite systems [23] as a formal model foregems. Letdct =
{a,b,c,...} and Const = {X,Y, Z, ...} be disjoint countably infinite sets aktions
andprocess constantsespectively. The class @irocess expressior is defined by

E = ¢| X | E|F | E.E, whereX € Const ande is a special constant that denotes
the empty expression. Intuitively, is sequential composition andis parallel com-
position. We do not distinguish between expressions relayestructural congruence
which is given by the following laws:.” and ‘||’ are associative,||" is commutative,
and ¢'is a unitfor ‘. and ‘||".

A process rewrite systef@3] is specified by a finite set ofiles A which have the
form E % F, whereE, F € £ anda € Act. Const(A) andAct(A) denote the sets of
process constants and actions which are used in the ruldsmfspectively (note that
these sets are finite). Each process rewrite systemefines a unique transition system
where states are process expressions Geist(A), Act(A) is the set of labels, and
transitions are determined by and the following inference rules (remember tHgis
commutative):

(ES5F)eA ESFE ESFE
ELF EF%FEF E|F S E'|F
We extend the notatioR = F to elements ofict* in the standard way? is reachable
from B if E % F for somew € Act*.

Sequentialand parallel expressions are those process expressions which do not
contain the ||" and the '’ operator, respectively. Finite-state, BPA, and BPP syste
are subclasses of process rewrite systems obtained bygettitain restrictions on
the form of the rules. Finite-state, BPA, and BPP allow onkirggle constant on the
left-hand side of rules, and a single constant, sequemnjeiession, and parallel expres-
sion on the right-hand side, respectively. The set of stitestransition system which
is generated by a finite-state, BPA, or BPP procdsis restricted toConst(A), the
set of all sequential expressions ov@snst(A), or the set of all parallel expressions
over Const(A), respectively. A constank € Const(A) is normediff X = & for
somew € Act*. A process is normed, iff all constants of its underlyingteysA are
normed.

The semantical equivalence we are interested in havedd bisimilarity[26]. This
relation distinguishes between ‘observable’ and ‘intEmaves (computational steps);
the internal moves are modelled by a special action whickimoted +' by convention.

In what follows we consider process expressions @verst(A) whereA is some fixed
process rewrite system.

Definition 1. The extended transition relation®’ is defined byE 2 F iff either
E=Fanda=r,0rE ESE TR for somei, j € Ng, E', E"” € £. A binary
relation R over process expressions isageak bisimulationiff whenever(E, F) € R
then for everyn € Act: if E % E' then there isF & F’ s.it. (E',F') € R and if
F % F'thenthereist = E’'s.t.(E', F') € R. Processed, F are weakly bisimilag
written £/ = F, iff there is a weak bisimulation relating them.

Let I" be a finite-state system withstatesf, g € Const(I"). Itis easy to show that
the problem whethef ~ g is decidable irO(n?) time. For example, we can compute
the ‘%’ relation of I" and then start to refin€onst (I") x Const(I") in a number of steps
until it ‘stabilises’ w.r.t.=. We note that the use of some advanced techniques (see e.g.

[28]) could probably decrease the mentioned upper boundeber, the complexity of
the algorithms which are designed in this paper is a bit wgsgen if we could decide
the problemf = g in constant time), hence we do not try to improve this bound.

Sometimes we also consider weak bisimilarity between mseeodifferentpro-
cess rewrite systems, sayandI'. Formally, A andI" can be considered assingle
system by taking their disjoint union.

3 BPA Processes

Let £ be a BPA process with the underlying systein F' a finite-state process with
the underlying systent” s.t. Const(A) N Const(I') = (. We assume (w.l.o.g.) that
E € Const(A); moreover, we also assume that for Al € Const(I"), a € Act s.t.

f # gora # 7 we have thatff = ¢gimpliesf % g € I'. If those %’ transitions are
missing inl", we can add them safely—it does notinfluence our complestigmtions,
as we always consider the worst case wtighas all possible transitions (we do not
want to add new transitions of the forfh = f, because then our proof for weak
bisimilarity would not immediately work for terminatioressitive bisimilarity which is
designed at the end of this section).

In this section, we use upper-case lett&, . . . to denote elements @fonst(A),
and lower-case letterf g, . . . to denote elements dfonst(I"). Greek lettersy, 3, . ..
are used to denote elements@inst(A)*. The size ofA is denoted by:, and the size
of I" by m (we measure the complexity of our algorithm(im m)).

The setConst(A) can be divided into two disjoint subsetsrafrmedandunnormed
constants (remember that € Const(A) is normed iff X % & for somew € Act™).
The set of all normed constants dfis denotedVormed(A). In our constructions we
also use processes of the fornf; they should be seen as BPA processes with the un-
derlying systemA U I".

Intuition: Our proof can be divided into two parts: first we show that treatpst weak
bisimulation between processesffandI” is finitely representable. There is a finite
relation B of size O(nm?) (calledbisimulation baspsuch that each pair of weakly
bisimilar processes can be generated from that base (aigeehfirst used by Caucal
[6]). Then we show that the bisimulation base can be compiatgalynomial time.
To do that, we take a sufficiently large relatiGrwhich surely subsumes the base and
‘refine’ it (this refinement technique has been used in [1], TBe size ofG is still
O(nm?), and each step of the refinement procedure possibly deletes sf the el-
ements ofG. If nothing is deleted, we have found the base (hence we nestst
O(nm?) steps). The refinement step is formally introduced in Defini¢ (we com-
pute theexpansiorof the currently computed approximation of the base). tivelly, a
pair of processes belongs to the expansion iff for ekamove of one component there
is a2 move of the other component s.t. the resulting pair of prsgesan be generated
from the current approximation &f. We have to overcome two fundamental problems:

1. The set of pairs which can be generated fi®gand its approximations) is infinite.

2. The set of states which are reachable from a given BPA staire =’ move is
infinite.

We employ a ‘symbolic’ technique to represent those infinées (similar to the one
used in [3]), taking advantage of the fact that they have glan{regular) structure
which can be encoded by finite-state automata (see Theorerd 4)aThis allows to
compute the expansion in polynomial time.

Definition 2. A relation K is fundamentailff it is a subset of

((Normed(A) - Const(I")) x Const(I")) U (Const(A) x Const(I")) U
(({e} U Const(I")) x Const(I))

Note that the size of any fundamental relatiorié» m?). The greatest fundamental
relation is denoted by. Thebisimulation basdor A and I", denotedB, is defined
as follows:B = {(Yf,9) |Yf ~ g, Y € Normed(A)} U {(X,9)| X = g} U
{(f,9) | F=g} UA{leg)]e~g}

As weak bisimilarity is a left congruence w.r.t. sequentaiposition, we can ‘gener-
ate’ from B new pairs of weakly bisimilar processes by substitutioms(ivorth noting
that weak bisimilarity is\ota right congruence w.r.t. sequencing—to see this, it sisfice
todefineX - X, Y D¢, Z 5 Z. NowX =Y, butXZ % Y Z). This generation
procedure can be defined for any fundamental relation asaisll

Definition 3. Let K be a fundamental relation. Thdosureof K, denotedCi(K), is
the least relationV/ which satisfies the following conditions:

KCM

if (f,g9) € Kand(a, f) € M, then(a,g) € M

if (f,9) € K and(ah, f) € M, then(ah,g) € M

if Yf,g) € Kand(a, f) € M,then(Ya,g) € M

if Yf,g) € Kand(ah, f) € M,then(Yah,g) € M

if (o, g) € M and« contains an unnormed constant, thers, g), (afh,g) € M
for everyg € Const(A)* andh € Const(I).

2

Note thatCI(K) contains elements of just two forms(e, g) and (af, g). Clearly
CUK) =2, Cl(K)"whereCl(K)" = K andCI(K)"*! consists ofCl(K)’ and the
pairs which can be immediately derived fraffi(K)* by the rules 2—6 of Definition 3.

Although the closure of a fundamental relation can be irdinis structure is in
some sense regular. This fact is precisely formulated ifidt@ving theorem:

Theorem 1. Let K be a fundamental relation. For eagh € Const(I") there is a
finite-state automatom, of sizeO(n m?) constructible inO(n m?) time s.t.L(A,) =

{a|(a,9) € CUK)}U{af [(af,9) € CI(K)}

Proof. We construct a regular grammar of si2én m?) which generates the mentioned
language. LeGG, = (N, X, §,g) where

— N={f|f€ Const(I'}U{U}
— X = Const(A) U Const(I")
— ¢ is defined as follows:
e for each(e, h) € K we add the rulé — «.
o foreach(f,h) € K we add the ruled — f, h — f.

e foreach(Y f,h) € K we add the rulegé — Y f, h — Y f.

e for each(X,h) € K we add the rulds — X and if X is unnormed, then we
also add the rulé — XU.

e foreachX € Const(A), f € Const(I") we add the rule¥/ — XU,U — X,
U— f.

A proof thatG, indeed generates the mentioned language is routine. Nowawslate
G4 t0 A, (see e.g. [17]). Note that the size df is essentially the same as the size of
Gy, Ay is non-deterministic and can containules. 0

As an immediate consequence of the previous theorem wenahtai the membership
to CI(K) for any fundamental relatioK is easily decidable in polynomial time. An-
other property ofCI(K) is specified in the lemma below.

Lemma 1. Let (af,g) € CI(K). If (Bh, f) € CI(K), then also(afh,g) € CI(K).
Similarly, if (3, f) € CI(K), then also(ag, g) € CI(K).

The importance of the bisimulation base is clarified by tHefgang theorem. It says
that Cl(B) subsumes the greatest weak bisimulation between proagfsdeand .

Theorem 2. Forall «, f, g we havex = ¢ iff (o, g) € CI(B),andaf = giff (af,g) €
Cl(B).

Proof. The ‘if’ part is obvious in both cases, #contains only weakly bisimilar pairs
and all the rules of Definition 3 produce pairs which are agadakly bisimilar. The
‘only if’ part can, in both cases, be easily proved by indocton the length oé (we
just show the first proof; the second one is similar).

— a=ce.Then(e, g) € B, hence(e, g) € CI(B).

— «a =Y. If Y is unnormed, the ~ g and(Y, g) € B. By the rule 6 of Def-
inition 3 we obtain(Y 3,g) € CI(B). If Y is normed, thei¥’ 3 = 3 for some
w € Act* andg must be able to match the sequencéy someg = ¢’ s.t.
B =~ ¢'. By substitution we now obtain thafg’ ~ g. Clearly (Y¢',g) € B, and
(8,9') € CI(B) by induction hypothesis. Hence, g) € CI(B) due to the rule 4
of Definition 3. O

The next definition formalises one step of the ‘refinementedure’ which is applied
to G to computes.

Definition 4. Let K be a fundamental relation. We say that a p@¥, ¢) of K expands
in K iff the following two conditions hold:

— for eachX % o there is somg = ¢’ s.t.(a, ¢') € CI(K)
— for eachg % ¢’ there is someX & a s.t.(a,¢’) € CI(K)

The expansion of a pair of the for(¥ f, g), (f, 9), (¢,9) in K is defined in the same
way—for each-%’ move of the left component there must be sofemove of the
right component such that the resulting pair of processdsrigs to CI(K), and vice

versa (note that = ¢). The set of all pairs of¢ which expand inK is denoted by
Ezp(K).

The notion of expansion is in some sense ‘compatible’ with dlefinition of weak
bisimulation. This intuition is formalised in the follongnemma.

Lemma 2. Let K be a fundamental relation s.Ezp(K) = K. ThenCI(K) is a weak
bisimulation.

Proof. We prove that every paifa, g), (af,g) of CI(K)* has the property that for

each %’

move of one component there is &' move of the other component s.t. the

resulting pair of processes belongsti K') (we consider just pairs of the forfa.f, g);
the other case is similar). By induction én

— ¢ =0.Then(af,g) € K; asK = Ezp(K), the claim follows directly from the
definitions.
— Induction step.Let (af, g) € CI(K)**t. There are three possibilities:
I. Thereisam s.t.(af, h) € CI(K)?, (h,g) € K.

Let of % ~f (note thata can be empty; in this case we have to consider
moves of the formy % f’. Itis done in a similar way as below). A& f, h) €
CI(K)*, we can use the induction hypothesis and conclude thatigkré h’
s.t.(vf, /') € CI(K). We distinguish two cases:

1)a = 7 andh’ = h. Then(vf,h) € CI(K) and as(h,g) € K, we obtain
(vf,9) € CI(K) due to Lemma 1. Henggcan use the move = g.

2)a # T orh # k. Then there is a transitioh — &’ (see the beginning of
this section) and a&:, g) € K, by induction hypothesis we know that there is
someg = ¢’ s.t.(h',¢') € CI(K). Hence(vf,g') € CI(K) due to Lemma 1.
Now letg % ¢'. As (h,g) € K, thereish = h’ s.t.(h,g') € CI(K). We
distinguish two possibilities again:

1) a = 7 andh’ = h. Thenaf can use the movef = af; we have(h,g') €
Cl(K) and(af,h) € CI(K), hence alsda.f, ¢') € CI(K).

2)a #7orh #h'. Thenh % 1/ and agaf, h) € CI(K)*, thereisaf = ~f
(oraf 2 f';itis handled in the same way) s(t.f, ') € CI(K). Hence also
(vf,¢') € CI(K) by Lemma 1.

. a=Ypandthereigs.t.(Yh,g) € K, (Bf,h) € Cl(K)".

LetYBf % ~Bf. As (Yh,g) € K, we can use induction hypothesis and
conclude that there ig = ¢’ s.t. (vh, ¢') € CI(K). As (Bf,h) € CI(K), we
obtain(v3f,¢') € CI(K) by Lemma 1.

Letg % ¢'. As (Y'h,g) € K, by induction hypothesis we know th&th can
match the moveg - ¢’; there are two possibilities:

1) Yh 2 yh st (yh,g') € CI(K). Then alsoY 3f = ~3f. As (Bf,h) €
Cl(K), we immediately havéysf, ¢') € CI(K) as required.

2)Yh = st (W,g') € CI(K). The transitiony’h = k' can be ‘decom-
posed’ intoYh = h, h & W wherex = aAy =70rz =7 Ay = a. If
y = 7 andh/ = h, we are done immediately because thés = 3 and as
(h,g"), (B,h) € CI(K), we also havés3, ¢') € CI(K) as needed. If # 7
or i’ # h, there is a transition % h'. As (3f,h) € CI(K)’, due to induc-
tion hypothesis we know that there is somig¢ = ~f (or 5f = f'; this is

handled in the same way) withy f, 1) € CI(K). ClearlyY3f = ~f. As
(W,g"), (vf,h') € CI(K), we also havéy f,¢') € CI(K).
ll. o = B3y whereg contains an unnormed constant dndg) € CI(K)®.

Leta % o/. Theno! = dyand3 % 6. As (8,g) € CI(K)?, there isg = ¢’
s.t. (6,¢") € CI(K) due to the induction hypothesis. Cleadycontains an
unnormed constant, hen¢&y, ¢’) € CI(K) by the last rule of Definition 3.
Letg % ¢'. As(B3,9) € CI(K), there is3 = § s.t.(5,¢') € CI(K) and§
contains an unnormed constant. Hencés §v and(dv, ¢’') € CI(K) due to
the last rule of Definition 3. O

The notion of expansion allows to approximaiein the following way: B = g,
Bitt = Ezp(B*). A proof of the next theorem is now easy to complete.

Theorem 3. There is aj € IN, bounded by (n m?), such that3’ = B/*. Moreover,
Bi = B.

In other words 3 can be obtained fror§ in O(nm?) refinement steps which corre-
spond to the construction of the expansion. The only thingkwvkemains to be shown
is that Ezp(K) is effectively constructible in polynomial time. To do thate employ
a ‘'symbolic’ technique which allows to represent infinitdsets of BPA state-space in
an elegant and succinct way.

Theorem 4. For all X € Const(A), a € Act(A) there is a finite-state automaton
A(x,q) Of sizeO(n?) constructible inO(n?) time s.tL(A(x o)) = {a | X = o}

Proof. We define a left-linear grammat, x) of sizeO(n?) which generates the men-
tioned language. This grammar can be converteditg .y by a standard algorithm
known from automata theory (see e.g. [17]). Note that the sfz4 x) is essentially
the same as the size 6f x,). First, let us realize that we can computen?) time
the setsM, and M, consisting of ally’ € Const(A) s.t.Y = ¢ andY = ¢, respec-
tively. LetG x) = (N, X, 9, S) where

- N={Y" Y™ |Y € Const(A)} U{S}. Intuitively, the index indicates whether
the action &’ has already been emitted.
— X = Const(A)
— 4 is defined as follows:
e we add the rule&s — X®to ¢, and if X = ¢ then we also add the rul¢ — ¢.
e for every transitionl’ % Z,.---.Z; of A and everyi s.t.1 < i < k we test
whetherZ; = ¢ for every0 < j < i. If this is the case, we add tothe rules
Y Zi Ty, YO ZT Zin - T,
e for every transitio” = Z;.---.Z; of Aand everyi s.t.1 < i < k we do the
following:
* we test whetheZ; = ¢ for every0 < j < i. If this is the case, we add to
6 the rules
Y 281 Ty YT = LT Dy T, YT = Zi- - 7,

x we test whether there ista< i such thatZ; = ¢ andZ; = ¢ for every
0 <j<i,j#t. Ifthisis the case, we add tothe rules

YO = ZT 20 Ly, YO = 2o 2y,

The fact thatZ x) generates the mentioned language is intuitively clear dodwaal
proof of that is easy. The size 6f x ,) is O(n?), asA containsO(n) basic transitions
of lengthO(n). O

The crucial part of our algorithm (the ‘refinement step’) iregented in the proof of
the next theorem. Our complexity analysis is based on tHewalg facts: LetA =
(Q, X, 0,q0, F) be a non-deterministic automaton witkrules, and let be the total
number of states and transitions.4f

— The problem whether a givan € X* belongs toL(.A) is decidable inO(|w| - t)
time.
— The problem whethek (A) = () is decidable irO(t) time.

Theorem 5. Let K be a fundamental relation. The relatidtxp(K) can be effectively
constructed iO(n* m®) time.

Proof. First we construct the automath, of Theorem 1 for every € Const(I"). This
takesO(n m?) time. Then we construct the automatay ,) of Theorem 4 for allX, a.
This takesO(n*) time. Furthermore, we also compute the set of all pairs ofdne
(f,9), (¢, 9) which belong toCI(K). It can be done i¥(m?) time. Now we show that
for each pair ofK” we can decide it (n m?) time whether this pair expands is.

The pairs of the form(f,g) and (e, g) are easy to handle; there are at most
statesf’ s.t. f = f/, and at mosin statesg’ with ¢ = ¢/, hence we need to check
only O(m?) pairs to verify the first (and consequently also the secoodylition of
Definition 4. Each such pair can be checked in constant tiraealse the set of all
pairs(f, g), (e, g) which belong toCI(K) has been already computed at the beginning.

Now let us consider a pair of the forfl, g). First we need to verify that for each
Y % athere is somg = h s.t.(a, h) € CI(K). This requiresD(nm) tests whether
a € L(Ap). As the length ofa is O(n) and the size of4;, is O(nm?), each such
test can be done i®(n? m?) time, hence we nee@(n® m?) time in total. As for the
second condition of Definition 4, we need to find out whethergfachg = h there
is someX = a s.t (a,h) € CI(K). To do that, we simply test the emptiness of
L(A(x,a)) N L(Ap). The size of the product automatonc¥n® m?) and we need to
perform onlyO(m) such tests, hence the tinin? m?) suffices.

Pairs of the formY f, ¢g) are handled in a similar way; the first condition of Def-
inition 4 is again no problem, as we are interested only in‘thé moves of the left
component. Now leg % ¢’. An existence of a ‘good% move ofY f can be verified
by testing whether one of the following conditions holds:

- L(Axy,a) - {f} N L(Agy) is nonempty.
- Y & candthere is somg = f's.t.(f',¢') € CI(K).
- Y = cand there is somg = f's.t.(f',¢') € CI(K).

All those conditions can be checkeddn? m?) time (the required analysis has been
in fact done above). A% containsO(nm?) pairs, the total time which is needed to
computeEzp(K) is O(n* m®). O

As the BPA proces#’ (introduced at the beginning of this section) is an elemdnt o
Const(A), we have thal? ~ F iff (E, F)) € B. To compute3, we have to perform
the computation of the expansid(n m?) times (see Theorem 3). This gives us the
following main theorem:

Theorem 6. Weak bisimilarity is decidable between BPA and finite-spabeesses in
O(n®m7) time.

The fact that weak bisimilarity is not a congruence w.rdusential composition is rather
unpleasant; any equivalence which is to be considered asviieural’ should have this
property. We propose a solution to this problem by desigaimgtural refinement of
weak bisimilarity calledermination-sensitive bisimilarityThis relation distinguishes
between the following ‘basic phenomenons’ of sequencing:

— successful terminatioof the process which is currently being executed. The system
can then continue to execute the next process in the queue.

— unsuccessful terminatiaof the executed process (deadlock). This models a severe
error which causes the whole system to ‘get stuck’.

— entering an infinite internal loofivelock).

Termination-sensitive bisimilarity is a congruence wsegquencing, and it is also de-
cidable between BPA and finite state processes in polyndimal It can be proved by
adapting the proof for weak bisimilarity. Formal definitoand proofs are omitted due
to the lack of space—see [21] for details.

4 Normed BPP Processes

In this section we prove that weak bisimilarity is decidablpolynomial time between
normed BPP and finite-state processes. The basic strudtove proof is similar to the
one for BPA. The key is that the weak bisimulation problem bardecomposed into
problems about the single constants and their interactitme@ch other. In particular,
anormed BPP process is finite w.r.t. weak bisimilarity ifegwsingle reachable process
constant is finite w.r.t. weak bisimilarity. This does notchfor general BPP and thus
our construction does not carry over to general BPP.

Even for normed BPP, we have to solve some additional prahl&he bisimulation
base and its closure are simpler due to the normedness assuntyoit the ‘symbolic’
representation of BPP state-space is more problematich@ees). The set of states
which are reachable from a given BPP state in ch&move is no longer regular, but
it can be in some sense represented by a CF-grammar. In auitaig we use the facts
that emptiness of a CF language is decidable in polynonnied tand that CF languages
are closed under intersection with regular languages. Masifs in this section are
omitted due to the lack of space. See [21] for detalils.

Let £ be a BPP process ard a finite-state process with the underlying systems
A and I', respectively. We can assume w.l.o.g. tlate Const(A). Elements of
Const(A) are denoted bX, Y, Z, .. ., elements ofConst(I") by f,g,h,... The set
of all parallel expressions ovéfonst(A) is denoted byConst(A)® and its elements
by Greek lettersy, 3, . .. The size ofA is denoted by, and the size of " by m.

In our constructions we represent certain subsetSwmfst(A)® by finite automata
and CF grammars. The problem is that element§afst(A)® are considered mod-
ulo commutativity; however, finite automata and CF gramnmdirsourse distinguish
between different ‘permutations’ of the same word. As tressés of regular and CF
languages are not closed under permutation, this problémpigrtant. As we want to
clarify the distinction betweea and its possible ‘linear representations’, we define for
eacha the setLin(«) as follows:

Lin(Xq|| - [| X&) = {Xpa) - - Xpr) | pis a permutation of the sétl, - - -, k}}

ForexampleLin(X||Y||Z2) ={XY Z, XZY,YXZ, YZX, ZXY, ZY X }. We also
assume that eachin(a) contains some (unique) element calleahonical formof
Lin(a). It is not important how the canonical form is chosen; we nie@dst to make
some constructions deterministic (for example, we can firestinear order on process
constants and let the canonical formiaf:(«)) be the sorted order of constantsgf

Definition 5. A relation K is fundamentalff it is a subset of(Const(A) U {e}) x
Const(I"). The greatest fundamental relation is denoteddbyr he bisimulation base
for A and I, denoteds, is defined as follows:

B={(X.N)|X~ftu{ef)le~f}

Definition 6. Let K be a fundamental relation. Thdosureof K, denotedCi(K), is
the least relationV/ which satisfies

1. KCM
2. if(X,9) € K, (6,h) € M,andf =~ g|/h, then(5|| X, f) e M
3. if(e,g9) € K, (B,h) € M,andf = g||h, then(s, f) e M

The family of CI(K)? approximations is defined in the same way as in the previous
section.

Lemma 3. Let(a, f) € CI(K), (B,9) € CI(K), f|lg = h. Then(a||3, h) € CI(K).

Again, the closure of the bisimulation base is the greatestkvbisimulation between
processes oft andl".

Theorem 7. Leta € Const(A)®, f € Const(I'). We have thaty ~ f iff (a, f) €
CI(B).

The closure of any fundamental relation can in some sensedresented by a finite-
state automaton, as stated in the next theorem.

Theorem 8. Let K be a fundamental relation. For eaghe Const(I") there is a finite-
state automatomd, of sizeO(nm) constructible inO(nm) time s.t. the following
conditions hold:

— wheneverA, accepts an element dfin(«), then(e, g) € CI(K)
- if (o, g) € CI(K), then A, accepts at least one elementiof («)

Itis important to realize that ife, g) € CI(K), thenA, does not necessarily accepit
elements ofLin(«). Generally,A, cannot be ‘repaired’ to do so (see the beginning of
this section); however, there is actually no need for suepairs’, becausel, has the
following nice property:

Lemma 4. Let K be a fundamental relation s C K. If o = g, then the automaton
A, of (the proof of) Theorem 8 constructed firaccepts all elements dfin(«).

The set of states which are reachable from a gi¥ea Const(A) in one %’ move is
no longer regular, but it can, in some sense, be represept@b grammar.

Theorem 9. For all X € Const(A), a € Act(A) there is a context-free grammar
G(x,q) in 3-GNF of sizeD(n*) constructible inO(n*) time s.t. the following two con-
ditions hold:

— if G(x,.) generates an element 6fn(«), thenX = o
- if X & «, thenG(x ,) generates at least one elementafi(c)

The notion of expansion is defined in a different way (when garad to the one of the
previous section).

Definition 7. Let K be a fundamental relation. We say that a p@¥, /) € K expands
in K iff the following two conditions hold:

— for eachX % a there is somef = g s.t.@ € L(A,), wherea is the canonical
form of Lin(«).

— foreachf = g the language.(Ay) N L(G(x,4)) is non-empty.

A pair (¢, f) € K expands inK iff f % gimpliesa = 7, and for eachf = g we have
thate € L(Ay). The set of all pairs of{ which expand i is denoted byEzp(K).

Theorem 10. Let K be a fundamental relation. The sBip(K) can be computed in
O(n'! m?®) time.

Proof. First we compute the automatd, of Theorem 8 for ally € Const(I"). This
takesO(nm?) time. Then we compute the grammakgy ,) of Theorem 9 for all
X € Const(A), a € Act. This takesO(n%) time. Now we show that it is decidable in
O(n'®m7) time whether a paitX, f) of K expands ink.

The first condition of Definition 7 can be checkeddn?® m?) time, as there are
O(n) transitionsX % «a, O(m) statesg s.t. f = g, and for each such pajry, g) we
verify whetherae € L(A,) wherea is the canonical form ofin(«); this membership
test can be done i®(n? m) time, as the size af is O(n) and the size ofd,, is O(nm).

The second condition of Definition 7 is more expensive. To ties emptiness of
L(Ay) N L(G(x,q)), We first construct a pushdown automa@mvhich recognises this
languageP hasO(m) control states and its total sized(n° m). Furthermore, each
rule pX % qa of P has the property thaength(a) < 2, becausér x) is in 3-
GNF. Now we transform this automaton to an equivalent CF gnanby a well-known
procedure described e.g. in [17]. The size of the resultigngnar isO(n® m?3), and
its emptiness can be thus checkedtn!? m®) time (cf. [17]). This construction has
to be performed(m) times, hence we need(n'° m) time in total.

Pairs of the form(e, f) are handled in a similar (but less expensive) way.FAs
containsO(n m) pairs, the computation afzp (K) takesO(n'! m®) time. O

The previous theorem is actually a straightforward consaqe of Definition 7. The
next theorem says th&ixpreally does what we need.

Theorem 11. Let K be a fundamental relation s.Exp(K) = K. ThenCI(K) is a
weak bisimulation.

Proof. Let (o, f) € CI(K)". We prove that for each % §3 there is somg = g s.t.
(8,9) € CI(K) and vice versa. By induction an

— i =0.Then(q, f) € K, and we can distinguish the following two possibilities:
lL.a=X
Let X % 3. By Definition 7 there isf = g s.t.3 € L(A,) for somegj ¢
Lin (). Hence(, g) € CI(K) due to the first part of Theorem 8.
Let f % g. By Definition 7 there is some string € L(Ay) N L(G(x,q))-
Letw € Lin(3). We haveX = 3 due to the first part of Theorem 9, and
(8,9) € CI(K) due to Theorem 8.

2. a=¢
Let f % g. Thena = 7 ande € L(A,) by Definition 7. Hencéz, g) € CI(K)
due to Theorem 8.

— Induction step.Let (a, f) € CI(K)*"L. There are two possibilities.

I. o = X|yandthere are, s s.t.(X,r) € K, (v,s) € CI(K)?, andr||s ~ f.
Let X ||a % 3. The action &’ can be emitted either byX or by o. We distin-
guish the two cases.

1) Xy % §||y. As (X, r) € K andX % §, there is some = 1/ s.t.(5,7) €

CI(K).Asr||s ~ f andr = 1/, there is som¢ = g s.t.7/||s ~ g. To sum up,
we have(d, ') € CI(K), (v, s) € CI(K), '||s =~ g, hence(d|v, g) € CI(K)

due to Lemma 3.

2) X ||y 2 X|p. As (v, 5) € CI(K)" andy % p, thereiss = s’ s.t.(p, s') €

CI(K). Asr|s =~ fands = s, there isf = g s.t.(r||s') ~ g. Due to
Lemma 3 we obtaiiX||p, g) € CI(K).

Letf % g. Asr|ls ~ f, there arer = 7/, 5 = s wherex = a Ay = 7

orz =7Ay=astr|s ~g As(X,r) € K, (v,5) € CI(K)’, there
areX = 6,7 £ pst.(6,7), (p,s) € CI(K). Clearly X|y = 4||p and
(6]lp, g) € CI(K) due to Lemma 3.

Il. (a,7) € CI(K)* and there is somes.t. (s, s) € K andr||s ~ f.

The proof can be completed along the same lines as above. a0

Now we can approximate (and compute) the bisimulation bagkd same way as in
the previous section.

Theorem 12. There is aj € IN, bounded by)(nm), such that3’ = B/*1. Moreover,
B = B.

Theorem 13. Weak bisimilarity between normed BPP and finite-state meesg is de-
cidable inO(n'? m?) time.

5 Conclusions

We have proved that weak bisimilarity is decidable betweBA Brocesses and finite-
state processes i@(n® m”) time, and between normed BPP and finite-state processes
in O(n*2m?) time. It may be possible to improve the algorithm by re-ugingyiously
computed information, for example about sets of reachabkes but the exponents
would still be very high. This is because the whole bisimuolabasis is constructed. To
get a more efficient algorithm, one could try to avoid thist&lbowever, that once we
construct3 (for a BPA/nBPP systerd and a finite-state systei) and the automaton
A, of Theorem 1/Theorem 8 (fak = B and somegy € Const(I")), we can decide
weak bisimilatity between a BPA/nBPP processver A and a procesg € Const(I)

in time O(|a|)—it suffices to test whethed ; acceptsy (observe that there is no sub-
stantial difference between; and.4, except for the initial state).

The technique of bisimulation bases has also been usedrémmgsbisimilarity in
[15,16]. However, those bases are different from oursy tthesign and the way how
they generate ‘new’ bisimilar pairs of processes rely ontauthl algebraic properties
of strong bisimilarity (which is a full congruence w.r.t.ggeencing, allows for unique
decompositions of normed processes w.r.t. sequencingaatiglism, etc.). The main
difficulty of those proofs is to show that the membership ia ttlosure’ of the de-
fined bases is decidable in polynomial time. The main poimtusfproofs is the use of
‘symbolic’ representation of infinite subsets of BPA and Bie&te-space.

We would also like to mention that our proofs can be easilyptethto other bi-
simulation-like equivalences, where the notion of ‘bisiation-like’ equivalence is the
one of [19]. A concrete example is termination-sensitiv@rbilarity of Section 3. In-
tuitively, almost every bisimulation-like equivalencestthe algebraic properties which
are needed for the construction of the bisimulation base tta@ ‘symbolic’ technique
for state-space representation can also be adapted. Jder[d6tails.

References

1. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidabdft bisimulation equivalence for
processes generating context-free languag&€M, 40:653-682, 1993.

2. J.C.M. Baeten and W.P. Weijland?rocess Algebra Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University PE390.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability ysialof pushdown automata: ap-
plication to model checking. IRroceedings of CONCUR’'9¥olume 1243 of. NCS pages
135-150. Springer, 1997.

~N O o1

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.
28.
20.

30.

. O. Burkart, D. Caucal, and B. Steffen. An elementary deciprocedure for arbitrary
context-free processes. Rroceedings of MFCS’95/0lume 969 olLNCS pages 423-433.
Springer, 1995.

. O. Burkart and J. Esparza. More infinite resuENTCS 5, 1997.

. D. Caucal. Graphes canoniques des graphes algébrigéRQ 24(4):339-352, 1990.

. 1.Cerna, M. Kfetinsky, and A. Kutera. Comparing expiteity of normed BPA and normed
BPP processedcta Informatica 36(3):233—-256, 1999.

. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulatis decidable for all basic parallel
processes. IRroceedings of CONCUR’9%0lume 715 olLNCS pages 143-157. Springer,
1993.

. S. Christensen, H. Hittel, and C. Stirling. Bisimulatiequivalence is decidable for all

context-free processemformation and Computatiqri21:143-148, 1995.

J. Esparza. Petri nets, commutative context-free geasirand basic parallel processes. In

Proceedings of FCT'95/0lume 965 olLNCS pages 221-232. Springer, 1995.

J. Esparza. Decidability of model checking for infirétate concurrent systenicta Infor-

maticg 34:85-107, 1997.

J. Esparza and J. Knop. An automata-theoretic approdaotetprocedural data-flow analy-

sis. InProceedings of FoSSaCS’ 9%lume 1578 oL NCS pages 14-30. Springer, 1999.

J.F. Groote. A short proof of the decidability of bisimtibn for normed BPA processes.

Information Processing Letterd2:167-171, 1992.

Y. Hirshfeld. Bisimulation trees and the decidabilifyx@ak bisimulationsSENTCS5, 1996.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial alithm for deciding bisimilarity of

normed context-free processdsCS 158:143-159, 1996.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial aligom for deciding bisimulation

equivalence of normed basic parallel proces8#SCS 6:251-259, 1996.

J.E. Hopcroft and J.D. Ullmarintroduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.

H. Huttel and C. Stirling. Actions speak louder thandgoProving bisimilarity for context-

free processes. IRroceedings of LICS'Qlpages 376-386. IEEE Computer Society Press,

1991.

P. Jancar, A. Ku€era, and R. Mayr. Deciding bisimalaiike equivalences with finite-state

processes. |RProceedings of ICALP'98volume 1443 ol.LNCS pages 200-211. Springer,

1998.

A. Kutera. On effective decomposability of sequertigthavioursTCS To appear.

A. Kutera and R. Mayr. Weak bisimilarity with infinitéase systems can be decided in

polynomial time. Technical report TUM-19830, Institutrfinformatik, TU-Miinchen, 1998.

A. Kucera and R. Mayr. Simulation preorder on simplecpss algebras. IRroceedings of

ICALP’99, LNCS. Springer, 1999. To apper.

R. Mayr. Process rewrite systenisformation and ComputationTo appear.

R. Mayr. Weak bisimulation and model checking for basi@pel processes. IRroceedings

of FST&TCS’'96volume 1180 oL NCS pages 88-99. Springer, 1996.

R. Mayr. Strict lower bounds for model checking BEENTCS 18, 1998.

R. Milner. Communication and Concurrencirentice-Hall, 1989.

F. Moller. Infinite results. IfProceedings of CONCUR’9&olume 1119 ofLNCS pages

195-216. Springer, 1996.

R. Paige and R. Tarjan. Three partition refinement glgos. SIAM Journal of Computing

16(6):973-989, 1987.

D.M.R. Park. Concurrency and automata on infinite secpgn InProceedingss'” Gl

Conferencevolume 104 olLNCS pages 167-183. Springer, 1981.

J. Stfibrna. Hardness results for weak bisimilasftgimple process algebraENTCS 18,

1998.

