
Weak Bisimilarity with Infinite-State Systems can be
Decided in Polynomial Time
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Abstract. We prove that weak bisimilarity is decidable in polynomial time be-
tween BPA and finite-state processes, and between normed BPPand finite-state
processes. To the best of our knowledge, these are the first polynomial algorithms
for weak bisimilarity with infinite-state systems.

1 Introduction

Recently, a lot of attention has been devoted to the study of decidability and com-
plexity of verification problems for infinite-state systems[27, 11, 5]. We consider the
problem of weak bisimilarity between certain infinite-state processes and finite-state
ones. The motivation is that the intended behaviour of a process is often easy to specify
(by a finite-state system), but a ‘real’ implementation can contain components which
are essentially infinite-state (e.g. counters, buffers). The aim is to check if the finite-
state specification and the infinite-state implementation are semantically equivalent, i.e.
weakly bisimilar.

We concentrate on the classes of infinite-state processes definable by the syntax
of BPA (Basic Process Algebra) and normed BPP (Basic Parallel Processes) systems.
BPA processes can be seen as simple sequential programs (dueto the binary operator of
sequential composition). They have recently been used to solve problems of dataflow
analysis in optimising compilers [12]. BPP model simple parallel systems (due to the
binary operator of parallel composition). A process isnormediff at every reachable
state it can terminate via a finite sequence of computationalsteps.

The state of the art. Baeten, Bergstra, and Klop [1] proved thatstrong bisimilarity
[29] is decidable for normed BPA processes. Simpler proofs have been given later in
[18, 13], and there is even a polynomial-time algorithm [15]. The decidability result has
later been extended to the class of all (not necessarily normed) BPA processes in [9], but
the best known algorithm is doubly exponential [4]. Decidability of strong bisimilarity
for BPP processes has been established in [8], but the algorithm has non-elementary
complexity. However, there is a polynomial-time algorithmfor the subclass of normed
BPP [16]. Strong bisimilarity between normed BPA and normedBPP is also decidable

⋆ Supported by a Research Fellowship granted by the Alexandervon Humboldt Foundation and
by a Post-Doc grant GǍCR No. 201/98/P046.

⋆⋆ This work was partly supported by a DAAD Post-Doc grant.



[7]. This result even holds for parallel compositions of normed BPA and normed BPP
processes [20].

For weak bisimilarity, much less is known. Semidecidability of weak bisimilarity
for BPP is due to [10]. In [14] it is shown that weak bisimilarity is decidable for those
BPA and BPP processes which are ‘totally normed’ (a process is totally normed if it can
terminate at any moment via a finite sequence of computational steps, but at least one
of those steps must be ‘visible’, i.e. non-internal). Decidability of weak bisimilarity for
general BPA and BPP is open; those problems might be decidable, but they are surely
intractable (assumingP 6= NP)—for BPP we haveNP-hardness, and for BPA even
PSPACE -hardness [30].

The situation is dramatically different if we consider weakbisimilarity between
certain infinite-state processes and finite-state ones. In [24] it is shown that weak bisi-
milarity between BPP and finite-state processes is decidable. A more general result has
recently been obtained in [19], where it is shown that many bisimulation-like equiva-
lences (including the strong and weak ones) are decidable between PAD and finite-state
processes. The class PAD strictly subsumes not only BPA and BPP, but also PA [2]
and pushdown processes. This result is obtained by a generalreduction to the model-
checking problem for the simple branching-time temporal logic EF. As the model-
checking problem forEF is hard (for example, it is known to bePSPACE -complete for
BPP [24] andPSPACE -hard for BPA [25]), this does not yield an efficient algorithm.

Our contribution. We show that weak (and hence also strong) bisimilarity is decidable
in polynomial time between BPA and finite-state processes, and between normed BPP
and finite-state processes. Due to the aforementioned hardness results for the ‘symmet-
ric case’ (when we compare two BPA or two (normed) BPP processes) we know that
our results cannot be extended in this direction. To the bestof our knowledge, these are
the first polynomial algorithms for weak bisimilarity with infinite-state systems. More-
over, the algorithm for BPA is the first example of an efficientdecision procedure for
a class ofunnormedinfinite-state systems (the polynomial algorithms for strong bisi-
milarity of [15, 16] only work for normed subclasses of BPA and BPP, respectively).
It should also be noted thatsimulation equivalencebetween BPA/BPP and finite-state
systems is co-NP-hard [22].

The basic scheme of our constructions for BPA and normed BPP processes is the
same. The main idea is that weak bisimilarity between BPA (ornormed BPP) processes
and finite-state ones can be generated from a finite base and that certain infinite subsets
of BPA and BPP state-space can be ‘symbolically’ described by finite automata and
context-free grammars, respectively. A more detailed intuition is given in Section 3. As
weak bisimilarity is not a congruence w.r.t. sequencing (see Section 3), we propose its
natural refinement called termination-sensitive bisimilarity which is a congruence and
which is also decidable between BPA and finite-state processes in polynomial time.

2 Definitions

We use process rewrite systems [23] as a formal model for processes. LetAct =
{a, b, c, . . .} andConst = {X, Y, Z, . . .} be disjoint countably infinite sets ofactions
andprocess constants, respectively. The class ofprocess expressionsE is defined by



E ::= ε | X | E‖E | E.E, whereX ∈ Const andε is a special constant that denotes
the empty expression. Intuitively, ‘.’ is sequential composition and ‘‖’ is parallel com-
position. We do not distinguish between expressions related by structural congruence
which is given by the following laws: ‘.’ and ‘‖’ are associative, ‘‖’ is commutative,
and ‘ε’ is a unit for ‘.’ and ‘‖’.

A process rewrite system[23] is specified by a finite set ofrules∆ which have the
form E

a
→ F , whereE, F ∈ E anda ∈ Act . Const(∆) andAct(∆) denote the sets of

process constants and actions which are used in the rules of∆, respectively (note that
these sets are finite). Each process rewrite system∆ defines a unique transition system
where states are process expressions overConst(∆), Act(∆) is the set of labels, and
transitions are determined by∆ and the following inference rules (remember that ‘‖’ is
commutative):

(E
a
→ F ) ∈ ∆

E
a
→ F

E
a
→ E′

E.F
a
→ E′.F

E
a
→ E′

E‖F
a
→ E′‖F

We extend the notationE
a
→ F to elements ofAct∗ in the standard way.F is reachable

from E if E
w
→ F for somew ∈ Act∗.

Sequentialand parallel expressions are those process expressions which do not
contain the ‘‖’ and the ‘.’ operator, respectively. Finite-state, BPA, and BPP systems
are subclasses of process rewrite systems obtained by putting certain restrictions on
the form of the rules. Finite-state, BPA, and BPP allow only asingle constant on the
left-hand side of rules, and a single constant, sequential expression, and parallel expres-
sion on the right-hand side, respectively. The set of statesof a transition system which
is generated by a finite-state, BPA, or BPP process∆ is restricted toConst(∆), the
set of all sequential expressions overConst(∆), or the set of all parallel expressions
over Const(∆), respectively. A constantX ∈ Const(∆) is normediff X

w
→ ε for

somew ∈ Act∗. A process is normed, iff all constants of its underlying system∆ are
normed.

The semantical equivalence we are interested in here isweak bisimilarity[26]. This
relation distinguishes between ‘observable’ and ‘internal’ moves (computational steps);
the internal moves are modelled by a special action which is denoted ‘τ ’ by convention.
In what follows we consider process expressions overConst(∆) where∆ is some fixed
process rewrite system.

Definition 1. The extended transition relation‘
a
⇒’ is defined byE

a
⇒ F iff either

E = F anda = τ , or E
τ i

→ E′ a
→ E′′ τ j

→ F for somei, j ∈ IN0, E′, E′′ ∈ E . A binary
relation R over process expressions is aweak bisimulationiff whenever(E, F ) ∈ R

then for everya ∈ Act : if E
a
→ E′ then there isF

a
⇒ F ′ s.t. (E′, F ′) ∈ R and if

F
a
→ F ′ then there isE

a
⇒ E′ s.t.(E′, F ′) ∈ R. ProcessesE, F areweakly bisimilar,

writtenE ≈ F , iff there is a weak bisimulation relating them.

Let Γ be a finite-state system withn states,f, g ∈ Const(Γ ). It is easy to show that
the problem whetherf ≈ g is decidable inO(n3) time. For example, we can compute
the ‘

a
⇒’ relation ofΓ and then start to refineConst(Γ )×Const(Γ ) in a number of steps

until it ‘stabilises’ w.r.t.
a
⇒. We note that the use of some advanced techniques (see e.g.



[28]) could probably decrease the mentioned upper bound; however, the complexity of
the algorithms which are designed in this paper is a bit worse(even if we could decide
the problemf ≈ g in constant time), hence we do not try to improve this bound.

Sometimes we also consider weak bisimilarity between processes ofdifferentpro-
cess rewrite systems, say∆ andΓ . Formally,∆ andΓ can be considered as asingle
system by taking their disjoint union.

3 BPA Processes

Let E be a BPA process with the underlying system∆, F a finite-state process with
the underlying systemΓ s.t. Const(∆) ∩ Const(Γ ) = ∅. We assume (w.l.o.g.) that
E ∈ Const(∆); moreover, we also assume that for allf, g ∈ Const(Γ ), a ∈ Act s.t.
f 6= g or a 6= τ we have thatf

a
⇒ g impliesf

a
→ g ∈ Γ . If those ‘

a
→’ transitions are

missing inΓ , we can add them safely—it does not influence our complexity estimations,
as we always consider the worst case whenΓ has all possible transitions (we do not
want to add new transitions of the formf

τ
→ f , because then our proof for weak

bisimilarity would not immediately work for termination-sensitive bisimilarity which is
designed at the end of this section).

In this section, we use upper-case lettersX, Y, . . . to denote elements ofConst(∆),
and lower-case lettersf, g, . . . to denote elements ofConst(Γ ). Greek lettersα, β, . . .

are used to denote elements ofConst(∆)∗. The size of∆ is denoted byn, and the size
of Γ by m (we measure the complexity of our algorithm in(n, m)).

The setConst(∆) can be divided into two disjoint subsets ofnormedandunnormed
constants (remember thatX ∈ Const(∆) is normed iffX

w
→ ε for somew ∈ Act∗).

The set of all normed constants of∆ is denotedNormed(∆). In our constructions we
also use processes of the formαf ; they should be seen as BPA processes with the un-
derlying system∆ ∪ Γ .

Intuition: Our proof can be divided into two parts: first we show that the greatest weak
bisimulation between processes of∆ andΓ is finitely representable. There is a finite
relationB of sizeO(n m2) (calledbisimulation base) such that each pair of weakly
bisimilar processes can be generated from that base (a technique first used by Caucal
[6]). Then we show that the bisimulation base can be computedin polynomial time.
To do that, we take a sufficiently large relationG which surely subsumes the base and
‘refine’ it (this refinement technique has been used in [15, 16]). The size ofG is still
O(n m2), and each step of the refinement procedure possibly deletes some of the el-
ements ofG. If nothing is deleted, we have found the base (hence we need at most
O(n m2) steps). The refinement step is formally introduced in Definition 4 (we com-
pute theexpansionof the currently computed approximation of the base). Intuitively, a
pair of processes belongs to the expansion iff for each

a
→ move of one component there

is a
a
⇒ move of the other component s.t. the resulting pair of processes can be generated

from the current approximation ofB. We have to overcome two fundamental problems:

1. The set of pairs which can be generated fromB (and its approximations) is infinite.
2. The set of states which are reachable from a given BPA statein one ‘

a
⇒’ move is

infinite.



We employ a ‘symbolic’ technique to represent those infinitesets (similar to the one
used in [3]), taking advantage of the fact that they have a simple (regular) structure
which can be encoded by finite-state automata (see Theorem 1 and 4). This allows to
compute the expansion in polynomial time.

Definition 2. A relationK is fundamentaliff it is a subset of

((Normed(∆) · Const(Γ )) × Const(Γ )) ∪ (Const(∆) × Const(Γ )) ∪
(({ε} ∪Const(Γ )) × Const(Γ ))

Note that the size of any fundamental relation isO(n m2). The greatest fundamental
relation is denoted byG. Thebisimulation basefor ∆ and Γ , denotedB, is defined
as follows:B = {(Y f, g) | Y f ≈ g, Y ∈ Normed(∆)} ∪ {(X, g) | X ≈ g} ∪
{(f, g) | f ≈ g} ∪ {(ε, g) | ε ≈ g}.

As weak bisimilarity is a left congruence w.r.t. sequentialcomposition, we can ‘gener-
ate’ fromB new pairs of weakly bisimilar processes by substitution (itis worth noting
that weak bisimilarity isnota right congruence w.r.t. sequencing—to see this, it suffices
to defineX

τ
→ X, Y

τ
→ ε, Z

a
→ Z. Now X ≈ Y , butXZ 6≈ Y Z). This generation

procedure can be defined for any fundamental relation as follows:

Definition 3. Let K be a fundamental relation. Theclosureof K, denotedCl (K), is
the least relationM which satisfies the following conditions:

1. K ⊆ M

2. if (f, g) ∈ K and(α, f) ∈ M , then(α, g) ∈ M

3. if (f, g) ∈ K and(αh, f) ∈ M , then(αh, g) ∈ M

4. if (Y f, g) ∈ K and(α, f) ∈ M , then(Y α, g) ∈ M

5. if (Y f, g) ∈ K and(αh, f) ∈ M , then(Y αh, g) ∈ M

6. if (α, g) ∈ M andα contains an unnormed constant, then(αβ, g), (αβh, g) ∈ M

for everyβ ∈ Const(∆)∗ andh ∈ Const(Γ ).

Note thatCl(K) contains elements of just two forms –(α, g) and (αf, g). Clearly
Cl(K) =

⋃∞

i=0 Cl(K)i whereCl (K)0 = K andCl(K)i+1 consists ofCl(K)i and the
pairs which can be immediately derived fromCl (K)i by the rules 2–6 of Definition 3.

Although the closure of a fundamental relation can be infinite, its structure is in
some sense regular. This fact is precisely formulated in thefollowing theorem:

Theorem 1. Let K be a fundamental relation. For eachg ∈ Const(Γ ) there is a
finite-state automatonAg of sizeO(n m2) constructible inO(n m2) time s.t.L(Ag) =
{α | (α, g) ∈ Cl (K)} ∪ {αf | (αf, g) ∈ Cl (K)}

Proof. We construct a regular grammar of sizeO(n m2) which generates the mentioned
language. LetGg = (N, Σ, δ, g) where

– N = {f | f ∈ Const(Γ )} ∪ {U}
– Σ = Const(∆) ∪Const(Γ )
– δ is defined as follows:

• for each(ε, h) ∈ K we add the ruleh → ε.
• for each(f, h) ∈ K we add the rulesh → f , h → f .



• for each(Y f, h) ∈ K we add the rulesh → Y f, h → Y f .
• for each(X, h) ∈ K we add the ruleh → X and if X is unnormed, then we

also add the ruleh → XU .
• for eachX ∈ Const(∆), f ∈ Const(Γ ) we add the rulesU → XU , U → X ,

U → f .

A proof thatGg indeed generates the mentioned language is routine. Now we translate
Gg to Ag (see e.g. [17]). Note that the size ofAg is essentially the same as the size of
Gg; Ag is non-deterministic and can containε-rules. ⊓⊔

As an immediate consequence of the previous theorem we obtain that the membership
to Cl(K) for any fundamental relationK is easily decidable in polynomial time. An-
other property ofCl (K) is specified in the lemma below.

Lemma 1. Let (αf, g) ∈ Cl(K). If (βh, f) ∈ Cl (K), then also(αβh, g) ∈ Cl(K).
Similarly, if (β, f) ∈ Cl(K), then also(αβ, g) ∈ Cl(K).

The importance of the bisimulation base is clarified by the following theorem. It says
thatCl (B) subsumes the greatest weak bisimulation between processesof ∆ andΓ .

Theorem 2. For all α, f, g we haveα ≈ g iff (α, g) ∈ Cl(B), andαf ≈ g iff (αf, g) ∈
Cl(B).

Proof. The ‘if’ part is obvious in both cases, asB contains only weakly bisimilar pairs
and all the rules of Definition 3 produce pairs which are againweakly bisimilar. The
‘only if’ part can, in both cases, be easily proved by induction on the length ofα (we
just show the first proof; the second one is similar).

– α = ε. Then(ε, g) ∈ B, hence(ε, g) ∈ Cl(B).
– α = Y β. If Y is unnormed, thenY ≈ g and(Y, g) ∈ B. By the rule 6 of Def-

inition 3 we obtain(Y β, g) ∈ Cl (B). If Y is normed, thenY β
w
→ β for some

w ∈ Act∗ and g must be able to match the sequencew by someg
w
⇒ g′ s.t.

β ≈ g′. By substitution we now obtain thatY g′ ≈ g. Clearly(Y g′, g) ∈ B, and
(β, g′) ∈ Cl (B) by induction hypothesis. Hence(α, g) ∈ Cl(B) due to the rule 4
of Definition 3. ⊓⊔

The next definition formalises one step of the ‘refinement procedure’ which is applied
to G to computeB.

Definition 4. LetK be a fundamental relation. We say that a pair(X, g) of K expands
in K iff the following two conditions hold:

– for eachX
a
→ α there is someg

a
⇒ g′ s.t.(α, g′) ∈ Cl(K)

– for eachg
a
→ g′ there is someX

a
⇒ α s.t.(α, g′) ∈ Cl(K)

The expansion of a pair of the form(Y f, g), (f, g), (ε, g) in K is defined in the same
way—for each ‘

a
→’ move of the left component there must be some ‘

a
⇒’ move of the

right component such that the resulting pair of processes belongs toCl(K), and vice
versa (note thatε

τ
⇒ ε). The set of all pairs ofK which expand inK is denoted by

Exp(K).



The notion of expansion is in some sense ‘compatible’ with the definition of weak
bisimulation. This intuition is formalised in the following lemma.

Lemma 2. LetK be a fundamental relation s.t.Exp(K) = K. ThenCl(K) is a weak
bisimulation.

Proof. We prove that every pair(α, g), (αf, g) of Cl(K)i has the property that for
each ‘

a
→’ move of one component there is a ‘

a
⇒’ move of the other component s.t. the

resulting pair of processes belongs toCl(K) (we consider just pairs of the form(αf, g);
the other case is similar). By induction oni.

– i = 0. Then(αf, g) ∈ K; asK = Exp(K), the claim follows directly from the
definitions.

– Induction step.Let (αf, g) ∈ Cl(K)i+1. There are three possibilities:
I. There is anh s.t.(αf, h) ∈ Cl (K)i, (h, g) ∈ K.

Let αf
a
→ γf (note thatα can be empty; in this case we have to consider

moves of the formf
a
→ f ′. It is done in a similar way as below). As(αf, h) ∈

Cl (K)i, we can use the induction hypothesis and conclude that thereis h
a
⇒ h′

s.t.(γf, h′) ∈ Cl(K). We distinguish two cases:
1) a = τ andh′ = h. Then(γf, h) ∈ Cl (K) and as(h, g) ∈ K, we obtain
(γf, g) ∈ Cl (K) due to Lemma 1. Henceg can use the moveg

τ
⇒ g.

2) a 6= τ or h 6= h′. Then there is a transitionh
a
→ h′ (see the beginning of

this section) and as(h, g) ∈ K, by induction hypothesis we know that there is
someg

a
⇒ g′ s.t.(h′, g′) ∈ Cl(K). Hence,(γf, g′) ∈ Cl(K) due to Lemma 1.

Now let g
a
→ g′. As (h, g) ∈ K, there ish

a
⇒ h′ s.t. (h′, g′) ∈ Cl(K). We

distinguish two possibilities again:
1) a = τ andh′ = h. Thenαf can use the moveαf

τ
⇒ αf ; we have(h, g′) ∈

Cl (K) and(αf, h) ∈ Cl(K), hence also(αf, g′) ∈ Cl(K).
2) a 6= τ or h 6= h′. Thenh

a
→ h′ and as(αf, h) ∈ Cl (K)i, there isαf

a
⇒ γf

(or αf
a
⇒ f ′; it is handled in the same way) s.t.(γf, h′) ∈ Cl(K). Hence also

(γf, g′) ∈ Cl(K) by Lemma 1.
II. α = Y β and there ish s.t.(Y h, g) ∈ K, (βf, h) ∈ Cl(K)i.

Let Y βf
a
→ γβf . As (Y h, g) ∈ K, we can use induction hypothesis and

conclude that there isg
a
⇒ g′ s.t.(γh, g′) ∈ Cl (K). As (βf, h) ∈ Cl(K), we

obtain(γβf, g′) ∈ Cl (K) by Lemma 1.
Let g

a
→ g′. As (Y h, g) ∈ K, by induction hypothesis we know thatY h can

match the moveg
a
→ g′; there are two possibilities:

1) Y h
a
⇒ γh s.t. (γh, g′) ∈ Cl(K). Then alsoY βf

a
⇒ γβf . As (βf, h) ∈

Cl (K), we immediately have(γβf, g′) ∈ Cl(K) as required.

2) Y h
a
⇒ h′ s.t. (h′, g′) ∈ Cl(K). The transitionY h

a
⇒ h′ can be ‘decom-

posed’ intoY h
x
⇒ h, h

y
⇒ h′ wherex = a ∧ y = τ or x = τ ∧ y = a. If

y = τ andh′ = h, we are done immediately because thenY β
a
⇒ β and as

(h, g′), (β, h) ∈ Cl(K), we also have(β, g′) ∈ Cl(K) as needed. Ify 6= τ

or h′ 6= h, there is a transitionh
y
→ h′. As (βf, h) ∈ Cl (K)i, due to induc-

tion hypothesis we know that there is someβf
y
⇒ γf (or βf

y
⇒ f ′; this is



handled in the same way) with(γf, h′) ∈ Cl(K). Clearly Y βf
a
⇒ γf . As

(h′, g′), (γf, h′) ∈ Cl(K), we also have(γf, g′) ∈ Cl(K).
III. α = βγ whereβ contains an unnormed constant and(β, g) ∈ Cl(K)i.

Let α
a
→ α′. Thenα′ = δγ andβ

a
→ δ. As (β, g) ∈ Cl(K)i, there isg

a
⇒ g′

s.t. (δ, g′) ∈ Cl (K) due to the induction hypothesis. Clearlyδ contains an
unnormed constant, hence(δγ, g′) ∈ Cl(K) by the last rule of Definition 3.
Let g

a
→ g′. As (β, g) ∈ Cl(K)i, there isβ

a
⇒ δ s.t. (δ, g′) ∈ Cl (K) andδ

contains an unnormed constant. Henceα
a
⇒ δγ and(δγ, g′) ∈ Cl(K) due to

the last rule of Definition 3. ⊓⊔

The notion of expansion allows to approximateB in the following way:B0 = G,
Bi+1 = Exp(Bi). A proof of the next theorem is now easy to complete.

Theorem 3. There is aj ∈ IN, bounded byO(n m2), such thatBj = Bj+1. Moreover,
Bj = B.

In other words,B can be obtained fromG in O(n m2) refinement steps which corre-
spond to the construction of the expansion. The only thing which remains to be shown
is thatExp(K) is effectively constructible in polynomial time. To do that, we employ
a ‘symbolic’ technique which allows to represent infinite subsets of BPA state-space in
an elegant and succinct way.

Theorem 4. For all X ∈ Const(∆), a ∈ Act(∆) there is a finite-state automaton
A(X,a) of sizeO(n2) constructible inO(n2) time s.t.L(A(X,a)) = {α | X

a
⇒ α}

Proof. We define a left-linear grammarG(X,a) of sizeO(n2) which generates the men-
tioned language. This grammar can be converted toA(X,a) by a standard algorithm
known from automata theory (see e.g. [17]). Note that the size ofA(X,a) is essentially
the same as the size ofG(X,a). First, let us realize that we can compute inO(n2) time

the setsMτ andMa consisting of allY ∈ Const(∆) s.t.Y
τ
⇒ ε andY

a
⇒ ε, respec-

tively. Let G(X,a) = (N, Σ, δ, S) where

– N = {Y a, Y τ | Y ∈ Const(∆)} ∪ {S}. Intuitively, the index indicates whether
the action ‘a’ has already been emitted.

– Σ = Const(∆)
– δ is defined as follows:

• we add the ruleS → Xa to δ, and ifX
a
⇒ ε then we also add the ruleS → ε.

• for every transitionY
a
→ Z1. · · · .Zk of ∆ and everyi s.t.1 ≤ i ≤ k we test

whetherZj
τ
⇒ ε for every0 ≤ j < i. If this is the case, we add toδ the rules

Y a → Zi · · ·Zk, Y a → Zτ
i Zi+1 · · ·Zk

• for every transitionY
τ
→ Z1. · · · .Zk of ∆ and everyi s.t.1 ≤ i ≤ k we do the

following:
∗ we test whetherZj

τ
⇒ ε for every0 ≤ j < i. If this is the case, we add to

δ the rules

Y a → Za
i Zi+1 · · ·Zk, Y τ → Zτ

i Zi+1 · · ·Zk, Y τ → Zi · · ·Zk



∗ we test whether there is at < i such thatZt
a
⇒ ε andZj

τ
⇒ ε for every

0 ≤ j < i, j 6= t. If this is the case, we add toδ the rules

Y a → Zτ
i Zi+1 · · ·Zk, Y a → Zi · · ·Zk

The fact thatG(X,a) generates the mentioned language is intuitively clear and aformal
proof of that is easy. The size ofG(X,a) isO(n2), as∆ containsO(n) basic transitions
of lengthO(n). ⊓⊔

The crucial part of our algorithm (the ‘refinement step’) is presented in the proof of
the next theorem. Our complexity analysis is based on the following facts: LetA =
(Q, Σ, δ, q0, F ) be a non-deterministic automaton withε-rules, and lett be the total
number of states and transitions ofA.

– The problem whether a givenw ∈ Σ∗ belongs toL(A) is decidable inO(|w| · t)
time.

– The problem whetherL(A) = ∅ is decidable inO(t) time.

Theorem 5. LetK be a fundamental relation. The relationExp(K) can be effectively
constructed inO(n4 m5) time.

Proof. First we construct the automataAg of Theorem 1 for everyg ∈ Const(Γ ). This
takesO(n m3) time. Then we construct the automataA(X,a) of Theorem 4 for allX, a.
This takesO(n4) time. Furthermore, we also compute the set of all pairs of theform
(f, g), (ε, g) which belong toCl (K). It can be done inO(m2) time. Now we show that
for each pair ofK we can decide inO(n3 m3) time whether this pair expands inK.

The pairs of the form(f, g) and (ε, g) are easy to handle; there are at mostm

statesf ′ s.t. f
a
→ f ′, and at mostm statesg′ with g

a
⇒ g′, hence we need to check

only O(m2) pairs to verify the first (and consequently also the second) condition of
Definition 4. Each such pair can be checked in constant time, because the set of all
pairs(f, g), (ε, g) which belong toCl(K) has been already computed at the beginning.

Now let us consider a pair of the form(Y, g). First we need to verify that for each
Y

a
→ α there is someg

a
⇒ h s.t.(α, h) ∈ Cl (K). This requiresO(n m) tests whether

α ∈ L(Ah). As the length ofα is O(n) and the size ofAh is O(n m2), each such
test can be done inO(n2 m2) time, hence we needO(n3 m3) time in total. As for the
second condition of Definition 4, we need to find out whether for eachg

a
→ h there

is someX
a
⇒ α s.t. (α, h) ∈ Cl(K). To do that, we simply test the emptiness of

L(A(X,a)) ∩ L(Ah). The size of the product automaton isO(n3 m2) and we need to
perform onlyO(m) such tests, hence the timeO(n3 m3) suffices.

Pairs of the form(Y f, g) are handled in a similar way; the first condition of Def-
inition 4 is again no problem, as we are interested only in the‘

a
→’ moves of the left

component. Now letg
a
→ g′. An existence of a ‘good’

a
⇒ move ofY f can be verified

by testing whether one of the following conditions holds:

– L(A(Y,a)) · {f} ∩ L(Ag′) is nonempty.

– Y
a
⇒ ε and there is somef

τ
⇒ f ′ s.t.(f ′, g′) ∈ Cl(K).

– Y
τ
⇒ ε and there is somef

a
⇒ f ′ s.t.(f ′, g′) ∈ Cl(K).



All those conditions can be checked inO(n3 m3) time (the required analysis has been
in fact done above). AsK containsO(n m2) pairs, the total time which is needed to
computeExp(K) isO(n4 m5). ⊓⊔

As the BPA processE (introduced at the beginning of this section) is an element of
Const(∆), we have thatE ≈ F iff (E, F ) ∈ B. To computeB, we have to perform
the computation of the expansionO(n m2) times (see Theorem 3). This gives us the
following main theorem:

Theorem 6. Weak bisimilarity is decidable between BPA and finite-stateprocesses in
O(n5 m7) time.

The fact that weak bisimilarity is not a congruence w.r.t. sequential composition is rather
unpleasant; any equivalence which is to be considered as ‘behavioural’ should have this
property. We propose a solution to this problem by designinga natural refinement of
weak bisimilarity calledtermination-sensitive bisimilarity. This relation distinguishes
between the following ‘basic phenomenons’ of sequencing:

– successful terminationof the process which is currently being executed. The system
can then continue to execute the next process in the queue.

– unsuccessful terminationof the executed process (deadlock). This models a severe
error which causes the whole system to ‘get stuck’.

– entering an infinite internal loop(livelock).

Termination-sensitive bisimilarity is a congruence w.r.t. sequencing, and it is also de-
cidable between BPA and finite state processes in polynomialtime. It can be proved by
adapting the proof for weak bisimilarity. Formal definitions and proofs are omitted due
to the lack of space—see [21] for details.

4 Normed BPP Processes

In this section we prove that weak bisimilarity is decidablein polynomial time between
normed BPP and finite-state processes. The basic structure of our proof is similar to the
one for BPA. The key is that the weak bisimulation problem canbe decomposed into
problems about the single constants and their interaction with each other. In particular,
a normed BPP process is finite w.r.t. weak bisimilarity iff every single reachable process
constant is finite w.r.t. weak bisimilarity. This does not hold for general BPP and thus
our construction does not carry over to general BPP.

Even for normed BPP, we have to solve some additional problems. The bisimulation
base and its closure are simpler due to the normedness assumption, but the ‘symbolic’
representation of BPP state-space is more problematic (seebelow). The set of states
which are reachable from a given BPP state in one ‘

a
⇒’ move is no longer regular, but

it can be in some sense represented by a CF-grammar. In our algorithm we use the facts
that emptiness of a CF language is decidable in polynomial time, and that CF languages
are closed under intersection with regular languages. Mostproofs in this section are
omitted due to the lack of space. See [21] for details.



Let E be a BPP process andF a finite-state process with the underlying systems
∆ and Γ , respectively. We can assume w.l.o.g. thatE ∈ Const(∆). Elements of
Const(∆) are denoted byX, Y, Z, . . ., elements ofConst(Γ ) by f, g, h, . . . The set
of all parallel expressions overConst(∆) is denoted byConst(∆)⊗ and its elements
by Greek lettersα, β, . . . The size of∆ is denoted byn, and the size ofΓ by m.

In our constructions we represent certain subsets ofConst(∆)⊗ by finite automata
and CF grammars. The problem is that elements ofConst(∆)⊗ are considered mod-
ulo commutativity; however, finite automata and CF grammarsof course distinguish
between different ‘permutations’ of the same word. As the classes of regular and CF
languages are not closed under permutation, this problem isimportant. As we want to
clarify the distinction betweenα and its possible ‘linear representations’, we define for
eachα the setLin(α) as follows:

Lin(X1‖ · · · ‖Xk) = {Xp(1) · · ·Xp(k) | p is a permutation of the set{1, · · · , k}}

For example,Lin(X‖Y ‖Z) = {XY Z, XZY, Y XZ, Y ZX, ZXY, ZY X}. We also
assume that eachLin(α) contains some (unique) element calledcanonical formof
Lin(α). It is not important how the canonical form is chosen; we needit just to make
some constructions deterministic (for example, we can fix some linear order on process
constants and let the canonical form ofLin(α) be the sorted order of constants ofα).

Definition 5. A relation K is fundamentaliff it is a subset of(Const(∆) ∪ {ε}) ×
Const(Γ ). The greatest fundamental relation is denoted byG. Thebisimulation base
for ∆ andΓ , denotedB, is defined as follows:

B = {(X, f) | X ≈ f} ∪ {(ε, f) | ε ≈ f}

Definition 6. Let K be a fundamental relation. Theclosureof K, denotedCl (K), is
the least relationM which satisfies

1. K ⊆ M

2. if (X, g) ∈ K, (β, h) ∈ M , andf ≈ g‖h, then(β‖X, f) ∈ M

3. if (ε, g) ∈ K, (β, h) ∈ M , andf ≈ g‖h, then(β, f) ∈ M

The family of Cl(K)i approximations is defined in the same way as in the previous
section.

Lemma 3. Let (α, f) ∈ Cl (K), (β, g) ∈ Cl(K), f‖g ≈ h. Then(α‖β, h) ∈ Cl (K).

Again, the closure of the bisimulation base is the greatest weak bisimulation between
processes of∆ andΓ .

Theorem 7. Let α ∈ Const(∆)⊗, f ∈ Const(Γ ). We have thatα ≈ f iff (α, f) ∈
Cl(B).

The closure of any fundamental relation can in some sense be represented by a finite-
state automaton, as stated in the next theorem.



Theorem 8. LetK be a fundamental relation. For eachg ∈ Const(Γ ) there is a finite-
state automatonAg of sizeO(n m) constructible inO(n m) time s.t. the following
conditions hold:

– wheneverAg accepts an element ofLin(α), then(α, g) ∈ Cl(K)
– if (α, g) ∈ Cl(K), thenAg accepts at least one element ofLin(α)

It is important to realize that if(α, g) ∈ Cl(K), thenAg does not necessarily acceptall
elements ofLin(α). Generally,Ag cannot be ‘repaired’ to do so (see the beginning of
this section); however, there is actually no need for such ‘repairs’, becauseAg has the
following nice property:

Lemma 4. LetK be a fundamental relation s.t.B ⊆ K. If α ≈ g, then the automaton
Ag of (the proof of) Theorem 8 constructed forK accepts all elements ofLin(α).

The set of states which are reachable from a givenX ∈ Const(∆) in one ‘
a
⇒’ move is

no longer regular, but it can, in some sense, be represented by a CF grammar.

Theorem 9. For all X ∈ Const(∆), a ∈ Act(∆) there is a context-free grammar
G(X,a) in 3-GNF of sizeO(n4) constructible inO(n4) time s.t. the following two con-
ditions hold:

– if G(X,a) generates an element ofLin(α), thenX
a
⇒ α

– if X
a
⇒ α, thenG(X,a) generates at least one element ofLin(α)

The notion of expansion is defined in a different way (when compared to the one of the
previous section).

Definition 7. LetK be a fundamental relation. We say that a pair(X, f) ∈ K expands
in K iff the following two conditions hold:

– for eachX
a
→ α there is somef

a
⇒ g s.t.α ∈ L(Ag), whereα is the canonical

form ofLin(α).
– for eachf

a
→ g the languageL(Ag) ∩ L(G(X,a)) is non-empty.

A pair (ε, f) ∈ K expands inK iff f
a
→ g impliesa = τ , and for eachf

τ
→ g we have

thatε ∈ L(Ag). The set of all pairs ofK which expand inK is denoted byExp(K).

Theorem 10. Let K be a fundamental relation. The setExp(K) can be computed in
O(n11 m8) time.

Proof. First we compute the automataAg of Theorem 8 for allg ∈ Const(Γ ). This
takesO(n m2) time. Then we compute the grammarsG(X,a) of Theorem 9 for all
X ∈ Const(∆), a ∈ Act . This takesO(n6) time. Now we show that it is decidable in
O(n10 m7) time whether a pair(X, f) of K expands inK.

The first condition of Definition 7 can be checked inO(n3 m2) time, as there are
O(n) transitionsX

a
→ α, O(m) statesg s.t.f

a
⇒ g, and for each such pair(α, g) we

verify whetherα ∈ L(Ag) whereα is the canonical form ofLin(α); this membership
test can be done inO(n2 m) time, as the size ofα isO(n) and the size ofAg isO(n m).



The second condition of Definition 7 is more expensive. To test the emptiness of
L(Ag)∩L(G(X,a)), we first construct a pushdown automatonP which recognises this
language.P hasO(m) control states and its total size isO(n5 m). Furthermore, each
rule pX

a
→ qα of P has the property thatlength(α) ≤ 2, becauseG(X,a) is in 3-

GNF. Now we transform this automaton to an equivalent CF grammar by a well-known
procedure described e.g. in [17]. The size of the resulting grammar isO(n5 m3), and
its emptiness can be thus checked inO(n10 m6) time (cf. [17]). This construction has
to be performedO(m) times, hence we needO(n10 m7) time in total.

Pairs of the form(ε, f) are handled in a similar (but less expensive) way. AsK

containsO(n m) pairs, the computation ofExp(K) takesO(n11 m8) time. ⊓⊔

The previous theorem is actually a straightforward consequence of Definition 7. The
next theorem says thatExpreally does what we need.

Theorem 11. Let K be a fundamental relation s.t.Exp(K) = K. ThenCl(K) is a
weak bisimulation.

Proof. Let (α, f) ∈ Cl(K)i. We prove that for eachα
a
→ β there is somef

a
⇒ g s.t.

(β, g) ∈ Cl(K) and vice versa. By induction oni.

– i = 0. Then(α, f) ∈ K, and we can distinguish the following two possibilities:
1. α = X

Let X
a
→ β. By Definition 7 there isf

a
⇒ g s.t. β ∈ L(Ag) for someβ ∈

Lin(β). Hence(β, g) ∈ Cl(K) due to the first part of Theorem 8.
Let f

a
→ g. By Definition 7 there is some stringw ∈ L(Ag) ∩ L(G(X,a)).

Let w ∈ Lin(β). We haveX
a
⇒ β due to the first part of Theorem 9, and

(β, g) ∈ Cl(K) due to Theorem 8.
2. α = ε

Let f
a
→ g. Thena = τ andε ∈ L(Ag) by Definition 7. Hence(ε, g) ∈ Cl(K)

due to Theorem 8.
– Induction step.Let (α, f) ∈ Cl(K)i+1. There are two possibilities.

I. α = X‖γ and there arer, s s.t.(X, r) ∈ K, (γ, s) ∈ Cl(K)i, andr‖s ≈ f .
Let X‖α

a
→ β. The action ‘a’ can be emitted either byX or byα. We distin-

guish the two cases.
1) X‖γ

a
→ δ‖γ. As (X, r) ∈ K andX

a
→ δ, there is somer

a
⇒ r′ s.t.(δ, r′) ∈

Cl (K). As r‖s ≈ f andr
a
⇒ r′, there is somef

a
⇒ g s.t.r′‖s ≈ g. To sum up,

we have(δ, r′) ∈ Cl(K), (γ, s) ∈ Cl(K), r′‖s ≈ g, hence(δ‖γ, g) ∈ Cl(K)
due to Lemma 3.
2) X‖γ

a
→ X‖ρ. As (γ, s) ∈ Cl(K)i andγ

a
→ ρ, there iss

a
⇒ s′ s.t.(ρ, s′) ∈

Cl (K). As r‖s ≈ f ands
a
⇒ s′, there isf

a
⇒ g s.t. (r‖s′) ≈ g. Due to

Lemma 3 we obtain(X‖ρ, g) ∈ Cl(K).
Let f

a
→ g. As r‖s ≈ f , there arer

x
⇒ r′, s

y
⇒ s′ wherex = a ∧ y = τ

or x = τ ∧ y = a s.t. r′‖s′ ≈ g. As (X, r) ∈ K, (γ, s) ∈ Cl(K)i, there
areX

x
⇒ δ, γ

y
⇒ ρ s.t. (δ, r′), (ρ, s′) ∈ Cl (K). Clearly X‖γ

a
⇒ δ‖ρ and

(δ‖ρ, g) ∈ Cl (K) due to Lemma 3.
II. (α, r) ∈ Cl (K)i and there is somes s.t.(ε, s) ∈ K andr‖s ≈ f .

The proof can be completed along the same lines as above. ⊓⊔



Now we can approximate (and compute) the bisimulation base in the same way as in
the previous section.

Theorem 12. There is aj ∈ IN, bounded byO(n m), such thatBj = Bj+1. Moreover,
Bj = B.

Theorem 13. Weak bisimilarity between normed BPP and finite-state processes is de-
cidable inO(n12 m9) time.

5 Conclusions

We have proved that weak bisimilarity is decidable between BPA processes and finite-
state processes inO(n5 m7) time, and between normed BPP and finite-state processes
in O(n12 m9) time. It may be possible to improve the algorithm by re-usingpreviously
computed information, for example about sets of reachable states, but the exponents
would still be very high. This is because the whole bisimulation basis is constructed. To
get a more efficient algorithm, one could try to avoid this. Note however, that once we
constructB (for a BPA/nBPP system∆ and a finite-state systemΓ ) and the automaton
Ag of Theorem 1/Theorem 8 (forK = B and someg ∈ Const(Γ )), we can decide
weak bisimilatity between a BPA/nBPP processα over∆ and a processf ∈ Const(Γ )
in timeO(|α|)—it suffices to test whetherAf acceptsα (observe that there is no sub-
stantial difference betweenAf andAg except for the initial state).

The technique of bisimulation bases has also been used for strong bisimilarity in
[15, 16]. However, those bases are different from ours; their design and the way how
they generate ‘new’ bisimilar pairs of processes rely on additional algebraic properties
of strong bisimilarity (which is a full congruence w.r.t. sequencing, allows for unique
decompositions of normed processes w.r.t. sequencing and parallelism, etc.). The main
difficulty of those proofs is to show that the membership in the ‘closure’ of the de-
fined bases is decidable in polynomial time. The main point ofour proofs is the use of
‘symbolic’ representation of infinite subsets of BPA and BPPstate-space.

We would also like to mention that our proofs can be easily adapted to other bi-
simulation-like equivalences, where the notion of ‘bisimulation-like’ equivalence is the
one of [19]. A concrete example is termination-sensitive bisimilarity of Section 3. In-
tuitively, almost every bisimulation-like equivalence has the algebraic properties which
are needed for the construction of the bisimulation base, and the ‘symbolic’ technique
for state-space representation can also be adapted. See [19] for details.

References

1. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages.JACM, 40:653–682, 1993.

2. J.C.M. Baeten and W.P. Weijland.Process Algebra. Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: ap-
plication to model checking. InProceedings of CONCUR’97, volume 1243 ofLNCS, pages
135–150. Springer, 1997.



4. O. Burkart, D. Caucal, and B. Steffen. An elementary decision procedure for arbitrary
context-free processes. InProceedings of MFCS’95, volume 969 ofLNCS, pages 423–433.
Springer, 1995.

5. O. Burkart and J. Esparza. More infinite results.ENTCS, 5, 1997.
6. D. Caucal. Graphes canoniques des graphes algébriques.RAIRO, 24(4):339–352, 1990.
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