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Abstract. We consider two-player stochastic games over real-time probabilistic
processes where the winning objective is specified by a timed automaton. The
goal of player � is to play in such a way that the play (a timed word) is accepted
by the timed automaton with probability one. Player ^ aims at the opposite. We
prove that whenever player � has a winning strategy, then she also has a strategy
that can be specified by a timed automaton. The strategy automaton reads the
history of a play, and the decisions taken by the strategy depend only on the
region of the resulting configuration. We also give an exponential-time algorithm
which computes a winning timed automaton strategy if it exists.

1 Introduction

In this paper, we study stochastic real-time games (SRTGs) which are obtained as a nat-
ural game-theoretic extension of generalized semi-Markov processes (GSMP) [13, 20,
21] or real-time probabilistic processes (RTP) [2]. Intuitively, all of these formalisms
model systems which react to certain events, such as message receipts, subsystem fail-
ures, timeouts, etc. A common characteristic of all events is that they are delayed (it
takes some time before an initiated event actually occurs) and concurrent (there can
be several previously initiated events that are currently awaited). For example, if two
messages e and e′ are sent, it takes some (random) time before they arrive, and one can
specify, or approximate, the densities fe, fe′ of their arrival times. When e arrives (say,
after 20 time units), the system reacts to this event by changing its state, and awaits e′

in a new state. The arrival time of e′ in the new state is measured from zero again, and
its density fe′ |20 is obtained from fe′ by incorporating the condition that e′ is delayed for
at least 20 time units. That is, fe′ |20(x) = fe(x + 20)/

∫ ∞
20 fe(y) dy. Note that if the delays

of all events are exponentially distributed, then fe = fe|b for every b ∈ R≥0, and thus we
obtain continuous-time Markov chains (see, e.g., [17]) and continuous-time stochastic
games [10, 18] as restricted forms of RTPs and SRTGs, respectively.

Intuitively, a SRTG is a finite graph (see Fig. 1) with three types of nodes—states
(drawn as large circles), controls, where each control can be either internal or adver-
sarial (drawn as boxes and diamonds, respectively), and actions (drawn as small filled
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Fig. 1. An example of a stochastic real-time game

circles). In each state s, there is a finite subset E(s) of events scheduled in s (the events
scheduled in s are those which are “awaited” in a given state; the other events are dis-
abled. Each state s can react to every event of E(s) by entering a designated control c,
where player � or player ^ chooses some of the available actions. Each action is as-
sociated with a fixed probability distribution over states. In general, both players can
use randomized strategies, which means that they do not necessarily select just a sin-
gle action but a probability distribution over the available actions, which is multiplied
with the distributions associated to actions. Then, the next state is chosen randomly
according to the constructed probability distribution, and the play goes on. Whenever
a new state s′ is entered from a previous state s along a play, each event scheduled in
s′ is assigned a new delay which is chosen randomly according to the corresponding
(conditional) density. The state s′ then “reacts” to the event with the least delay (under
the assumptions adopted in this paper, the probability of assigning the same delay to
different events is zero).

Our contribution. In this work we consider SRTGs with deterministic timed au-
tomata (DTA) objectives. Intuitively, a timed automaton “observes” a play of a given
SRTG and checks that certain timing constraints are satisfied. A simple example of a
property that can be encoded by a DTA is “whenever a new request is generated, it is ei-
ther serviced within the next 10 time units, or the system eventually enters a safe state”.
In this case, we want to setup the internal controls so that the above property holds for
almost all plays, no matter what decisions are taken in adversarial controls. Hence, the
aim of player � is to maximize the probability that a play is accepted by a given timed
automaton, while player ^ aims at the opposite. By applying the result of [14], we ob-
tain that SRTGs with DTA objectives have a value, i.e., supσ infπ Pσ,π = infπ supσ Pσ,π,
where σ and π range over all strategies of player � and player ^, and Pσ,π is the prob-
ability of all plays satisfying a given DTA objective. This immediately raises the ques-
tion whether the players have optimal strategies which guarantee the equilibrium value
against every strategy of the opponent. We show that the answer is negative. Then, we
concentrate on the qualitative variant of the problem, which is perhaps most interest-
ing from the practical point of view. An almost-sure winning strategy for player � is a
strategy such that for every strategy of player ^, the probability of all plays satisfying a
given DTA objective is equal to one. The main result of this paper is the following: We



show that if player � has some almost-sure winning strategy, then she also has a DTA
almost-sure winning strategy, which can be encoded by a deterministic timed automa-
ton A constructible in exponential time. The automaton A reads the history of a play,
and the decision taken by the corresponding DTA strategy depends only on the region
of the resulting configuration entered byA.

Our constructions and proofs are combinations of standard techniques (used for
timed automata and finite-state games) and some new non-trivial observations that are
specific for the considered model of SRTGs. We also adapt some ideas presented in [2]
(in particular, we use the concept of δ-separation).

Related work. Continuous-time (semi)Markov chains are a classical and deeply
studied model with a mature mathematical theory (see, e.g., [17, 19]). Continuous-
time Markov decision processes (CTMDPs) [7, 5, 16] combine probabilistic and non-
deterministic choice, but all events are required to be exponentially distributed. Two
player games over continuous-time Markov chains were considered only recently [10,
18]. Timed automata [3] were originally introduced as a non-stochastic model with
time. Probabilistic semantics of timed automata was proposed in [4, 6], and a more gen-
eral model of stochastic games over timed automata was considered in [9]. In this paper
we build mainly on the previous work about GSMPs [13, 20, 21] and RTPs [2, 1] and
interpret timed automata as a model-independent specification language which can ex-
press important properties of timed systems. This view is adopted also in [12] where
continuous-time Markov chains are checked against timed-automata specifications.

Let us note that our technical treatment of events is somewhat different from the one
used for GSMPs and RTPs. Intuitively, in GSMPs (and RTPs), each event is assigned its
delay only when it is newly scheduled, and this delay is just updated when moving from
state to state (by subtracting the elapsed time) until the event happens or it is disabled.
For example, if two messages e and e′ are sent, both of them are assigned randomly
chosen delays de and de′ . The smaller of the two delays (say de) triggers a transition
to the next state, where the delay of de′ is updated by subtracting de. Since the current
delays of all events are explicitly recorded in the state-space of GSMPs and RTPs, this
formalism cannot be directly extended to perfect-information games (the players would
“see” the delays assigned to events, i.e., they would know what is going to happen in the
future). In our model of SRTGs, we always assign a new random delay to all events that
are scheduled in a given control state, but we adjust the corresponding densities (from
a “probabilistic” point of view, this approach is equivalent to the one used for GSMPs
and RTPs).

Due to space constraints, most of the proofs are omitted and can be found in a full
version of this paper [11].

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, real numbers, pos-
itive real numbers, and non-negative real numbers are denoted by N, N0, R, R>0, and
R≥0, respectively.

Let A be a finite or countably infinite set. A probability distribution on A is a func-
tion f : A → R≥0 such that

∑
a∈A f (a) = 1. We say that f is rational if f (a) is rational



for every a ∈ A. The set of all distributions on A is denoted by D(A). A σ-field over a
set Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement and countable
union. A measurable space is a pair (Ω,F ) where Ω is a set called sample space and F
is a σ-field over Ω whose elements are called measurable sets. A probability measure
over a measurable space (Ω,F ) is a functionP : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F ,P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and more-

over P(Ω) = 1. A probability space is a triple (Ω,F ,P), where (Ω,F ) is a measurable
space and P is a probability measure over (Ω,F ). We say that a property A ⊆ Ω holds
for almost all elements of a measurable set Y if P(Y) > 0, A∩Y ∈ F , and P(A | Y) = 1.

Let us note that all of the integrals used in this paper should be understood as
Lebesgue integrals, although we use Riemann-like notation.

2.1 Stochastic real-time games

Let E be a finite set of events, which are independent of each other. To every e ∈ E we
associate its lower bound `e ∈ N0, upper bound ue ∈ N ∪ {∞}, and a density function
fe : R → R which is positive on (`e, ue) such that

∫ ue

`e
fe(x) dx = 1. Further, for every

b ∈ R≥0 we also define the conditional density function fe|b : R→ R as follows:

fe|b(x) =
fe(x + b)[∫ ue

b fe(y) dy
]
,0

Here [·],0 : R→ R is a function which for a given x returns either x or 1 depending on
whether x , 0 or not, respectively. The function fe defines the density of delaying the
event e, i.e., for every time t ∈ R≥0, the probability of delaying e for at most t is equal to∫ t

0 fe(x) dx. Note that the integral
∫ t

0 fe|b(x) dx is equal to the conditional probability of
delaying e for at most b + t under the condition that e is delayed for at least b. Since all
events are mutually independent, for every subset E′ ⊆ E we have that the conditional
probability of delaying all events in E′ for at least b + t under the condition that all
events in E′ are delayed for at least b is equal to

∏
e∈E′
∫ ∞

t fe|b(x) dx.

Definition 1. A stochastic real-time game (SRTG) is a tuple G =

(S , E,C�,C^,Act, F, A, µ0) where S is a finite set of states, E : S → 2E assigns
to each s ∈ S the set of events scheduled to occur in s, C� and C^ are finite disjoint
sets of controls of player � and player ^, Act ⊆ D(S ) is a finite set of actions, F is a
flow function which to every pair (s, e), where s ∈ S and e ∈ E(s), assigns a control of
C� ∪C^, A : C� ∪C^ → 2Act assigns to each control c a non-empty finite set of actions
enabled at c, and µ0 ∈ D(S ) is an initial distribution.

A stamp is an element (s, t, e) of S × R>0 × E where e ∈ E(s). A (computational)
history of G is a finite sequence h = (s0, t0, e0), . . . , (sn, tn, en) of stamps. Intuitively, ti
is the time spent in si while waiting for some of the events scheduled in si, and ei is
the event that triggered a transition to the next state si+1. A strategy of player �, where
� ∈ {�,^}, is a measurable function which to every history (s0, t0, e0), . . . , (sn, tn, en)
such that F(sn, en) = c ∈ C� assigns a probability distribution over the set A(c) of
actions that are enabled at c. The set of all strategies of player � and player ^ are
denoted by Σ and Π , respectively.



Let (σ, π) ∈ Σ × Π . The corresponding play of G is initiated in some s0 ∈ S (with
probability µ0(s0)). Then, each event e ∈ E(s0) is assigned a randomly chosen delay
d0

e ∈ R>0 according to the density fe (note that fe = fe|0). Let t0 = min{d0
e | e ∈

E(s0)} be the minimal delay of all events scheduled in s0, and let trigger0 be the set
of all e ∈ E(s0) such that d0

e = t0. The event e0 which “triggers” a transition to the
next state is the least element of trigger0 w.r.t. some fixed linear ordering ≤ (note that
the probability of assigning the same delay to different events is zero, and hence the
choice of ≤ is irrelevant; we need this ordering just to make our semantics well defined).
The event e0 determines a control c = F(s0, e0), where the responsible player makes a
decision according to her strategy τ, i.e., selects a distribution τ(h) over A(c) where
h = (s0, t0, e0) is the current history. Hence, the next state s1 is chosen with probability∑
µ∈A(c) τ(h)(µ) · µ(s1). In s1, we assign a randomly chosen delay d1

e to every e ∈ E(s1)
according to the conditional density fe|b, where b is determined as follows: If e was
scheduled in the previous state s0 and e , e0, then b = t0; otherwise b = 0. The event
e1 is the least event (w.r.t. ≤) with the minimal delay t1 = min{d1

e | e ∈ E(s1)}. The next
state s2 is chosen randomly by combining the strategy of the respective player with the
corresponding actions. In general, after entering a state si, every e ∈ E(si) is assigned a
randomly chosen delay di

e according to the conditional density fe|b where b is the total
waiting time for e accumulated in the history of the play.

To formalize the intuition given above, we define a suitable probability space
(Play,F ,Pσ,π

h
) over the set Play of all infinite sequences of stamps, where h is a

history of steps “performed previously” (the technical convenience of h becomes ap-
parent later in Section 3; the definition given below is perhaps easier to understand
in the special case when h is empty). For the rest of this section, we fix a history
h = (s0, t0, e0), . . . , (sn, tn, en) where n ∈ N0 ∪ {−1}. If n = −1, then h is empty. A
template is a finite sequence of the form B = (sn+1, In+1, en+1), . . . , (sn+m, In+m, en+m)
such that m ≥ 1, ei ∈ E(si), and Ii is an interval in R>0 for every n + 1 ≤ i ≤ n + m.
Each such B determines the corresponding cylinder Play(B) ⊆ Play consisting of all
sequences of the form (sn+1, tn+1, en+1), . . . , (sn+m, tn+m, en+m), . . . where ti ∈ Ii for all
n + 1 ≤ i ≤ n + m. The σ-field F is the Borel σ-field generated by all cylinders. For
each cylinder Play(B), the probability Pσ,π

h
(Play(B)) is defined in the way described be-

low. Then, Pσ,π
h

is extended to F (in the unique way) by applying the extension theorem
(see, e.g., [8]).

It remains to show how to define the probability Pσ,π
h

(Play(B)) of a given cylin-
der Play(B), where B = (sn+1, In+1, en+1), . . . , (sn+m, In+m, en+m). We put Pσ,π

h
(Play(B)) =

Tn+1, where the expression Ti is defined inductively for all n + 1 ≤ i ≤ n + m + 1 as
follows:

Ti =


∫

Ii
Statei ·Wini · Ti+1 dti if n + 1 ≤ i ≤ n + m;

1 if i = n + m + 1.

Observe that Tn+1 is an expression with m nested integrals. Further, note that when
constructing Ti+1, we already have t0, . . . , ti at our disposal (each ti is either fixed in h,
or it is a variable used in some of the preceding integrals).

The subterm Statei corresponds to the probability that si is chosen as the next state,
assuming that the current history is (s0, t0, e0), . . . , (si−1, ti−1, ei−1). Hence, we define



• Staten+1 = µ0(sn+1) if h is empty, otherwise Staten+1 =
∑
µ∈A(c) τ(h)(µ) · µ(sn+1), where

c = F(sn, en), and τ is either σ or π, depending on whether c ∈ C� or c ∈ C^,
respectively.
• Statei =

∑
µ∈A(c) τ(h′)(µ) · µ(si), where n+1 < i ≤ n+m, c = F(si−1, ei−1), h′ =

(s0, t0, e0), . . . , (si−1, ti−1, ei−1), and τ is either σ or π, depending on whether c ∈ C� or
c ∈ C^, respectively.

The most complicated part is the definition of Wini which intuitively corresponds to the
probability that the event ei “wins” the competition among the events scheduled in si.

In order to define Wini, we have to overcome a technical obstacle that the events
scheduled in si might have been scheduled also in the preceding states. For each e ∈
E(si), let K(e, i) be the minimal index such that 0 ≤ K(e, i) ≤ i and for all K(e, i) ≤ j < i
we have that e ∈ E(s j) and e , e j. We put b(e, i) = tK(e,i) + · · · + ti−1. Intuitively, b(e, i) is
the total waiting time for e accumulated in the history of the play. Note that if K(e, i) = i,
then the defining sum of b(e, i) is empty and hence equal to zero. We put

Wini = fei |b(ei,i)(ti) ·
∏

e∈E(si)
e,ei

∫ ∞
ti

fe|b(e,i)(x) dx.

2.2 Deterministic timed automata

Let X be a finite set of clocks. A valuation is a function ν : X → R≥0. For every
valuation ν and every subset X ⊆ X of clocks, we use ν[X := 0] to denote the unique
valuation such that ν[X := 0](x) = 0 for all x ∈ X, and ν[X := 0](x) = ν(x) for all
x ∈ X r X. Further, for every valuation ν and every δ ∈ R≥0, the symbol ν + δ denotes
the unique valuation such that (ν + δ)(x) = ν(x) + δ for all x ∈ X.

A clock constraint (or guard) is a finite conjunction of basic constraints of the form
x ./ c, where x ∈ X, ./ ∈ {<,≤, >,≥}, and c ∈ N0. For every valuation ν and every
clock constraint g we have that ν either does or does not satisfy g, written ν |= g or
ν 6|= g, respectively (the satisfaction relation is defined in the expected way). Sometimes
we slightly abuse our notation and identify a guard g with the set of all valuations that
satisfy g (for example, we write g∩g′). The set of all guards overX is denoted by B(X).

Definition 2. A deterministic timed automaton (DTA) is a tuple A =

(Q, Σ,X,−→, q0,T ), where Q is a nonempty finite set of locations, Σ is a finite
alphabet, X is a finite set of clocks, q0 ∈ Q is an initial location, T ⊆ Q is a set of
target locations, and −→ ⊆ Q × Σ × B(X) × 2X × Q is an edge relation such that for all
q ∈ Q and a ∈ Σ we have the following:

1. the guards are deterministic, i.e., for all edges of the form (q, a, g1, X1, q1) and
(q, a, g2, X2, q2) such that g1 ∩ g2 , ∅ we have that g1 = g2, X1 = X2, and q1 = q2;

2. the guards are total, i.e., for all q ∈ Q, a ∈ Σ, and every valuation ν there is an
edge (q, a, g, X, q′) such that ν |= g.

A configuration of A is a pair (q, ν), where q ∈ Q and ν is a valuation. An infinite
timed word is an infinite sequence w = c0c1c2 . . . where each ci is either a letter of
Σ or a positive real number denoting a time stamp (note that letters and time stamps



are not required to alternate in w). The run of A on w is the unique infinite sequence
(q0, ν0) c0 (q1, ν1) c1 . . . such that q0 is the initial location of A, ν0 = 0, and for each
i ∈ N0 we have that
• if ci is a time stamp t ∈ R≥0, then qi+1 = qi and νi+1 = νi + t,
• if ci is an input letter a ∈ Σ, then there is a unique edge (qi, a, g, X, q) such that νi |= g,

and we require that qi+1 = q and νi+1 = νi[X := 0].
We say that w is accepted byA if the run ofA on w visits a configuration (q, ν) where
q ∈ T . Without restrictions, we may assume that each q ∈ T is absorbing, i.e., all of the
outgoing edges of q lead back to q.

In this paper, we use DTA for two different purposes. Firstly, DTA are used
as a generic specification language for properties of timed systems. In this case,
a given DTA is constructed so that it accepts the set of all “correct” runs (timed
words) of a given timed system. Formally, for a fixed SRTG G with a set of states
S , a finite set Ap of atomic propositions and a labeling L : S → 2Ap, every play
% = (s0, t0, e0), (s1, t1, e1), . . . of G determines a unique infinite timed word Ap(%) =

L(s0) t0 L(s1) t1 . . . . A DTA A with alphabet 2Ap then either accepts Ap(%) or not. In-
tuitively, the automaton A encodes some desirable property of plays, and the aim of
player � and player^ is to maximize and minimize the probability of all plays accepted
by A, respectively. We denote Play(A) ⊆ Play the set of all plays % such that Ap(%) is
accepted by A. Note that the DTA does not read any information about the events that
occurred. However, one can easily encode the information about the last event into the
subsequent state by considering copies se of each state s for every event e.

Secondly, we use DTA to encode strategies in stochastic real-time games. Here,
the constructed DTA “observes” the history of a play, and the decisions taken by
the corresponding strategy depend only on the resulting configuration (q, ν). Ac-
tually, we require that the decision depends only on the region of (q, ν) (see [3]
or Section 3.1), which makes DTA strategies finitely representable. Formally, ev-
ery history h = (s0, t0, e0) · · · (sn, tn, en) of G can be seen as a (finite) timed word
s0, t0, e0, · · · , sn, tn, en, where the states and events are seen as letters, and the delays
are seen as time stamps. We define DTA strategies as follows.

Definition 3. A DTA strategy is a strategy τ such that there is a DTA A with alpha-
bet S ∪ E satisfying the following: for every history h we have that τ(h) is a rational
distribution which depends only on the region of (q, ν), where (q, ν) is the configuration
entered byA after reading the word h.

3 Results

For the rest of the paper, we fix an SRTGG = (S , E,C�,C^,Act, F, A, µ0), a finite set Ap
of atomic propositions, a labeling L : S → 2Ap, and a DTAA = (Q, 2Ap,X,−→, q0,T ).

As observed in [14], the determinacy result for Blackwell games [15] implies de-
terminacy of a large class of stochastic games. This abstract class includes the games
studied in this paper, and thus we obtain the following:
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Fig. 2. Player � does not have an optimal strategy.

Proposition 1. Let h be a history of G. Then

sup
σ∈Σ

inf
π∈Π
P
σ,π
h

(Play(A)) = inf
π∈Π

sup
σ∈Σ
P
σ,π
h

(Play(A))

The value of G (with respect to h), denoted by valh, is defined by the above equality.

The existence of valh implies the existence of ε-optimal strategies for both players.
However, note that player � does not necessarily have an optimal strategy which would
achieve the outcome valh or better against every strategy of player ^, even if valh = 1
and C^ = ∅. A simple counterexample is given in Fig. 2. Here fe is the uniform density
on (0, 1) (i.e., fe(x) = 1 for all x ∈ (0, 1)), Ap = {p0, p1}, L(s0) = p0, L(s1) = p1, and the
only target location is gray. All of the “missing” edges in the depicted DTA (which are
needed to satisfy the requirement that the guards are total) lead to a “garbage” location.
The initial distribution µ0 assigns 1 to s0. Now observe that valh = 1 (where h is the
empty history), because for every ε > 0, player � can “wait” in s0 until e is fired so
that its delay is smaller than ε (this eventually happens with probability 1), and then she
moves to s1. The probability that e is assigned a delay at most 1 − ε in s1 is 1 − ε, and
hence the constructed DFA accepts a play with probability 1−ε. However, player � has
no optimal strategy.

In this paper we consider the existence and effective constructability of almost-sure
winning strategies for player �. Formally, a strategy σ ∈ Σ is almost-sure winning for
a history h if for every strategy π ∈ Π we have that Pσ,π

h
(Play(A)) = 1. We show the

following:

Theorem 1. Let h be a history. If player � has (some) almost-sure winning strategy for
h, then she also has a DTA almost-sure winning strategy for h. The existence of a DTA
almost-sure winning strategy for h is decidable in exponential time, and if it exists, it
can be constructed in exponential time.

A proof of Theorem 1 is not immediate and requires several steps. First, in Section 3.1
we construct a product gameGA ofG andA and show thatGA can be examined instead
of G and A. The existence of a DTA almost-sure winning strategy in GA is analyzed
in Section 3.2. Finally, in Section 3.3 we present an algorithm which computes a DTA
almost-sure winning strategy if it exists.

3.1 The product game

Intuitively, the product game of G and A, denoted by GA, is constructed by simulat-
ing the execution of A on-the-fly in G. Waiting times for events and clock valuations



are represented explicitly in the states of GA, and hence the state-space of GA is un-
countable. Still, GA is in many aspects similar to G, and therefore we use a suggestive
notation compatible with the one used for G. To distinguish among the notions related
to G and GA, we consistently use the “p-” prefix. Hence, G has stamps, states, histories,
etc., while GA has p-stamps, p-states, p-histories, etc.

Let n = |E|+ |X|. The clock values ofA and the delays of currently scheduled events
are represented by a p-vector ξ ∈ Rn

≥0. The set of p-states is S ×Q×Rn
≥0, and the sets of

p-controls of player � and player ^ are C� × Q × Rn
≥0 and C^ × Q × Rn

≥0, respectively.
The dynamics of GA is determined as follows. First, we define a p-flow function

FA, which to a given p-stamp (s, q, ξ, t, e) assigns the p-control (c, q′, ξ′), where c =

F(s, e), and q′, ξ′ are determined as follows. Let (q, L(s), g, X, q′) be the unique edge
of A such that the guard g is satisfied by the clock valuation stored in ξ + t. We put
ξ′ = (ξ +s t)[(e ∪ X) := 0]. The operator “+s t” adds t to all clocks stored in ξ and to all
events scheduled in s, and (e ∪ X) := 0 resets all clocks of X to zero and assigns zero
delay to e. Second, we define the set of p-actions. For every p-control (c, q, ξ) and an
action a ∈ A(c), there is a corresponding p-action which to a given p-state (s′, q, ξ′),
where ξ′ = ξ[(E \ E(s′)) := 0], assigns the probability a(s′).

A p-stamp is an element (s, q, ξ, t, e) of S × Q × Rn
≥0 × R>0 × E. Now we define

p-histories and p-plays as sequences of p-stamps. In the game G we allowed arbitrary
sequences of stamps, whereas in the product game we need the automaton part of the
product to be consistent with the game part. We say that a p-stamp x1 = (s1, q1, ξ1, t1, e1)
is consistent with a p-stamp x0 = (s0, q0, ξ0, t0, e0) if the image of x0 under the p-flow
function is a p-control (c, q1, ξ

′) such that ξ1 = ξ′[A := 0] where A is the set of actions
not enabled in s1.

A p-history is a finite sequence of p-stamps p = x0 . . . xn such that xi is
consistent with xi+1 for all 0 ≤ i < n. A p-play is an infinite sequence of
p-stamps x0x1 . . . where each finite prefix x0 . . . xi is a p-history. Each p-history
p = (s0, q0, ξ0, t0, e0), . . . , (sn, qn, ξn, tn, en) can be mapped to a unique history H(p) =

(s0, t0, e0), . . . , (sn, tn, en). Note that H is in fact a bijection, because each history in-
duces a unique finite execution of the DTA A and the consistency condition reflects
this unique execution. By the last p-control of a p-history p we denote the image of the
last p-stamp of p under the p-flow function.

Region relation. Although the state-space of GA is uncountable, we can define a vari-
ant of region relation over p-histories which has a finite index, and then work with
finitely many regions.

For a given x ∈ R≥0, we use frac(x) to denote the fractional part of x, and int(x) to
denote the integral part of x. For x, y ∈ R≥0, we say that x and y agree on integral part
if int(x) = int(y) and neither or both x, y are integers. A relevant bound of a clock x is
the largest constant c that appears in all guards. A relevant bound of an event e is ue if
ue < ∞, and `e otherwise. We say that an element a ∈ E∪X is relevant for ξ if ξ(a) ≤ r
where r is the relevant bound of a. Finally, we put ξ1 ≈ ξ2 if
• for all relevant a ∈ E ∪ X we have that ξ1(a) and ξ2(a) agree on integral parts;
• for all relevant a, b ∈ E ∪ X we have that frac(ξ1(a)) ≤ frac(ξ1(b)) if and only if

frac(ξ2(a)) ≤ frac(ξ2(b)).



The equivalence classes of ≈ are called time areas. Now we can define the promised
region relation ∼ on p-histories. Let p1 and p2 be p-histories such that (c1, q1, ξ1) is the
last p-control of p1 and (c2, q2, ξ2) is the last p-control of p2. We put p1 ∼ p2 iff c1 = c2,
q1 = q2 and ξ1 ≈ ξ2. Note that ∼ is an equivalence with a finite index. The equivalence
classes of ∼ are called regions. A target region is a region that contains such p-histories
whose last p-controls have a target location in the second component. The sets of all
regions and target regions are denoted by R and RT , respectively.

Remark 1. Let us note that the region construction described above can also be applied
to configurations of timed automata, where it coincides with the standard region con-
struction of [3].

Strategies in the product game. Note that every pair of strategies (σ, π) ∈ Σ × Π
defined for the original game G can also be applied in the constructed product game
GA (we just ignore the extra components of p-stamps). By re-using the construction of
Section 2.1, for every p-history p and every pair of strategies (σ, π) ∈ Σ × Π , we define
a probability measure Pσ,πp on the Borel σ-field F over the p-plays in GA (the details
are given in [11]).

For every S ⊆ R, let Reach(S) be the set of all p-plays that visit a region of S
(i.e., some prefix of the p-play belongs to some r ∈ S). We say that a strategy σ ∈ Σ
is almost-sure winning in GA for a p-history p if for every π ∈ Π we have that
P
σ,π
p (Reach(RT )) = 1. The relationship between almost-sure winning strategies inG and
GA is formulated in the next proposition.

Proposition 2. Let σ ∈ Σ and p be a p-history. Then σ is almost-sure winning for p in
GA iff σ is almost-sure winning for H(p) in G.

Another observation about strategies in GA which is heavily used in the next sections
concerns strategies that are constant on regions. Formally, a strategy τ ∈ Σ ∪ Π is
constant on regions if for all p-histories p1 and p2 such that p1 ∼ p2 we have that
τ(p1) = τ(p2).

Proposition 3. Every strategy τ ∈ Σ∪Π which is constant on regions is a DTA strategy.

Proof (Sketch). We transform τ into a DTA AGA whose regions are in one-to-one cor-
respondence with the regions of GA. The automaton AGA reads a sequence of stamps
of G and simulates the behavior of GA. It has a special clock for every clock of A and
every event of E, and uses its locations to store also the current state of the game. The
details are given in [11]. ut

Note that due to Proposition 3, every strategy constant on regions can be effectively
transformed into a DTA strategy.

3.2 Almost-sure winning strategies

In this section, we outline a proof of the following theorem:



Theorem 2. Let p be a p-history. If there is a strategy σ ∈ Σ which is almost-sure
winning in GA for p, then there is a DTA strategy σ∗ ∈ Σ which is almost-sure winning
for p.

Note that due to Proposition 3, it suffices to show that there is an almost-sure winning
strategy in GA for p which is constant on regions.

Observe that if σ ∈ Σ is an almost-sure winning strategy in GA for p, then for
every π ∈ Π the plays of GA may visit only regions from which it is still possible to
visit a target region. Hence, a good candidate for an almost-sure winning DTA strategy
in GA for p is a strategy which never leaves this set of “safe” regions. This motivates
the following definition (in the rest of this section we often write p ∈ S, where p is a
p-history and S a set of regions, to indicate that p ∈

⋃
r∈S r).

Definition 4. A DTA strategy σ ∈ Σ is a candidate on a set of regions S ⊆ R if for
every π ∈ Π and every p-history p ∈ S we have that Pσ,πp (Reach(R \ S)) = 0 and
P
σ,π
p (Reach(RT )) > 0.

In the following, we prove Propositions 4 and 5 that together imply Theorem 2.

Proposition 4. Let σ be an almost-sure winning strategy inGA for a p-history p0. Then
there is a set S ⊆ R and a DTA strategy σ∗ such that p0 ∈ S and σ∗ is a candidate on S.

Proof (Sketch). We define S as the set of all regions reached with positive probability
in an arbitrary play where player � uses the strategy σ and player ^ uses some π ∈ Π .
For every action a, let p-hista be the set of all p-histories where σ assigns a positive
probability to a. For every region r ∈ S, we denote by Ar the set of all a ∈ Act for which
there is π ∈ Π such that Pσ,πp0

(p-hista ∩ r) > 0.
• Firstly, we show that every DTA strategy σ′ that selects only the actions of Ar in

every r ∈ S has to satisfy Pσ
′,π
p (Reach(R \ S)) = 0 for all π ∈ Π and p ∈ S. To see

this, realize that when we use only the actions of Ar, we do not visit (with positive
probability) any other regions than we did with σ. Hence, we stay in S almost surely.
• Secondly, we prove that from every p-history in S, we can reach a target region with

positive probability. We proceed in several steps.
− Let us fix a region r ∈ S. Realize that then there is a p-history p ∈ r for which σ

is almost-sure winning (since σ is almost-sure winning and for every r ∈ S there
is π ∈ Π such that r is visited with positive probability, there must be a p-history
p ∈ r for which σ is almost-sure winning). In particular, Pσ,πp (Reach(RT )) > 0
for every π ∈ Π . We show how to transform σ into a DTA strategy σ′ such that
P
σ′,π
p (Reach(RT )) > 0.

Let us first consider one-player games, i.e., the situation when C^ = ∅. Then
there must be a sequence of regions r0, . . . , rn visited on the way from p to a target,
selecting some actions a0, . . . , an−1. We fix these actions for the respective regions
(if some region is visited several times, we fix the last action taken) and thus obtain
the desired DTA strategy σ′.

In the general case of two-player games, we have to consider a tree of regions
and actions instead of a single sequence, because every possible behaviour of the
opponent in the first n steps has to be taken into account.



− Then we prove that for every p′ ∈ r we have that Pσ
′,π
p′

(Reach(RT )) > 0 for every
π ∈ Π . For the p-histories p, p′ ∈ r, consider the probability that taking an action
a results in reaching a given region in one step. These probabilities are either both
positive or both zero. This one-step qualitative equivalence is then extended to
arbitrary many steps. Hence, Pσ

′,π
p′

(Reach(RT )) > 0.
− Let us now drop the fixed region r. We need to “stitch” the DTA strategies described

above for each region into one DTA strategy σ∗. We construct σ∗ as follows. In
the first step, we take an arbitrary region reachable with positive probability (e.g.,
the initial one containing p0) and fix the decisions in the regions r0, . . . , rn (where
rn ∈ RT ) discussed above. Let us denote this set of regions by F1. In the second
step, we take an arbitrary region v ∈ S \ F1. Again, we take a sequence of regions
r′0, . . . , r

′
n′ ending in RT ∪ F1. We fix the actions in these regions accordingly and

get a set F2. We repeat this step until Fk = S. In the other regions, σ∗ is defined
arbitrarily requiring only it is constant on each region. ut

Proposition 5. If a DTA strategy σ∗ is a candidate on a set of regions S ⊆ R, then for
every p ∈ S and every π ∈ Π we have that Pσ

∗,π
p (Reach(RT )) = 1.

Note that we are guaranteed that for every p-history in every region in S, the probability
of reaching a target is positive. However, it can be arbitrarily small. Therefore, even if
we pass through these regions infinitely often and never leave them, it is not clear that
we eventually reach a target almost surely. This would be guaranteed if the probabilities
were bounded from below by a positive constant.

Remark 2. If we considered the restricted case of one-player games with bounded inter-
vals and exponentially distributed unbounded events, we can already easily prove that
σ∗ is winning using [3] as follows. Fixing σ∗ resolves all non-determinism and yields a
system of the type considered by [3]. Since we are guaranteed the positive probability
of reaching the target, we may apply Lemma 3 of [3]. However, in the setting of two-
player games, we cannot use this argument directly and some (non-trivial) changes are
required.

p
r

Intuitively, the reason why the probabilities of reaching a target
are generally not bounded from below is that when the frac-
tional parts of the clocks are too close, the probability of reach-
ing a given region may approach zero. The figure on the left
shows the region graph of a system with two clocks and a sin-
gle state. There is also a single event, which is positive on (0, 1)
and its associated clock is not depicted. Now observe that if p
comes closer and closer to the diagonal, the probability that the
(only) event happens in the region r is smaller and smaller.

Nevertheless, we can bound the probabilities if we restrict ourselves to a smaller set
of positions. We define δ-separated parts of regions, where the differences of p-clocks
are at least δ (and hence we are at least δ-away from the boundary of the region) or zero
due to a synchronization of the clocks of the original automaton. Being away from the
boundary by a fixed δ then guarantees that we reach the next region with a probability
bounded from below.



Definition 5. Let δ > 0. We say that a set D ⊆ R≥0 is δ-separated if for every x, y ∈ D
either frac(x) = frac(y) or |frac(x)−frac(y)| > δ. Further, we say that a p-history with the
last p-control (s, q, ξ) is δ-separated if the set {0} ∪ {ξ(a) | a ∈ E∪X, a is relevant for ξ}
is δ-separated.

Now we prove that the probabilities of reaching a target region are bounded from below
if we start in a δ-separated p-history.

Proposition 6. Let σ∗ be a DTA strategy candidate on a set of regions S. For every
δ > 0 there is ε > 0 such that for every δ-separated p-history p ∈ S and every strategy
π we have that Pσ

∗,π
p (Reach(RT )) > ε.

Proof (Sketch). We prove that for every δ > 0 there is ε > 0 such that starting in
a δ-separated p-history, the probability of reaching a target in at most |R| steps is
greater than ε. For this we use the observation that after performing one step from
a δ-separated p-history, we end up (with a probability bounded from below) in a
δ′-separated p-history. This can be generalized to an arbitrary (but fixed) number of
steps. Now it suffices to observe that for every π ∈ Π and a δ-separated p-history p
there is a sequence of regions r1, . . . , rk with k ≤ |R|, such that p ∈ r1, rk ∈ RT , and the
probability of reaching ri+1 from ri in one step using σ∗ and π is positive. ut

Nevertheless, there is a non-zero probability of falling out of safely separated parts of
regions. To finish the proof of Proposition 5, we need to know that we pass through
δ-separated p-histories infinitely often almost surely (since the probability of reaching a
target from δ-separated p-histories is bounded from below by Proposition 6, a target is
eventually visited with probability one). For this, it suffices to prove that we eventually
return to a δ-separated part almost surely. Hence, the following proposition makes our
proof complete.

Proposition 7. There is δ > 0 such that for every DTA strategy σ ∈ Σ and every π ∈ Π ,
a δ-separated p-history is reached almost surely from every p-history p.

Proof (Sketch). We prove that there are n ∈ N, δ > 0, and ε > 0 such that for every
p-history p and every π ∈ Π , the probability of reaching a δ-separated p-history in n
steps is greater than ε. Then, we just iterate the argument. ut

3.3 The algorithm

In this section, we show that the existence of a DTA almost-sure winning strategy is
decidable in exponential time, and we also show how to compute such a strategy if it
exists. Due to Proposition 2, this problem can be equivalently considered in the setting
of the product game GA. Due to Proposition 3, an almost-sure winning DTA strategy
can be constructed as a strategy that is constant on every region of GA. We show that
this problem can be further reduced to the problem of computing wining strategies in
a finite stochastic game GA with reachability objectives induced by the product game
GA. Note that the game GA can be solved by standard methods (e.g., by computing the
attractor of a target set). First, we define the game GA and show how to compute it. The
complexity discussion follows.



The product GA induces a game GA whose vertices are the regions of GA as fol-
lows. Player �, where � ∈ {�,^}, plays in regions (c, q, [ξ]≈) 1 where c ∈ C�. In a
region r = (c, q, [ξ]≈), she chooses an arbitrary action a ∈ A(c) and this action a leads to
a stochastic vertex (r, a) = ((c, q, [ξ]≈), a). From this stochastic vertex there are transi-
tions to all regions r′ = (c′, q′, [ξ′]≈), such that r′ is reachable from all p ∈ r in one step
using action a with some positive probability in the product GA. One of these proba-
bilistic transitions is taken at random according to the uniform distribution. From the
next region the play continues in the same manner. Player � tries to reach the set RT of
target regions (which is the same as in the product game) and player ^ tries to avoid it.
We say that a strategy σ of player � is almost-sure winning for a vertex v if she reaches
RT almost surely when starting from v and playing according to σ.

At first glance, it might seem surprising that we set all probability distributions in
GA as uniform. Note that in different parts of a region r, the probabilities of moving
to r′ are different. However, as noted in the sketch of proof of Proposition 4, they are
all positive or all zero. Since we are interested only in qualitative reachability, this is
sufficient for our purposes.

Moreover, note that since we are interested in non-zero probability behaviour, there
are no transitions to regions which are reachable only with zero probability (such as
when an event occurs at an integral time).

We now prove that the reduction is correct. Observe that a strategy for the product
game GA which is constant on regions induces a unique positional strategy for the
game GA, and vice versa. Slightly abusing the notation, we consider these strategies to
be strategies in both games.

Proposition 8. Let G be a game and A a deterministic timed automaton. For every
p-history p in a region r, we have that
• a positional strategy σ is almost-sure winning for r in GA iff it is almost-sure winning

for p in GA,
• player � has an almost-sure winning strategy for r in GA iff player � has an almost-

sure winning strategy for p in GA.

The algorithm constructs the regions of the product GA and the induced game graph
of the gameGA (see [11]). Since there are exponentially many regions (w.r.t. the number
of clocks and events), the size of GA is exponential in the size of G and A. As we
already noted, two-player stochastic games with qualitative reachability objectives are
easily solvable in polynomial time, and thus we obtain the following:

Theorem 3. Let h be a history. The problem whether player � has a (DTA) almost-sure
winning strategy for h is solvable in time exponential in |G| and |A|, and polynomial in
|h|. A DTA almost-sure winning strategy is computable in exponential time if it exists.

4 Conclusions and Future Work

An interesting question is whether the positive results presented in this paper can be
extended to more general classes of objectives that can be encoded, e.g., by determin-

1 Note that a region is a set of p-histories such that their last p-controls share the same control c,
location q, and equivalence class [ξ]≈. Hence, we can represent a region by a triple (c, q, [ξ]≈).



istic timed automata with ω-regular acceptance conditions. Another open problem are
algorithmic properties of ε-optimal strategies in stochastic real-time games.
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