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Abstract. We consider a class of infinite-state Markov decision processes
generated by stateless pushdown automata. This class corresponds to 1 1

2
-

player games over graphs generated by BPA systems or (equivalently) 1-exit
recursive state machines. An extended reachability objective is specified by
two sets S and T of safe and terminal stack configurations, where the
membership to S and T depends just on the top-of-the-stack symbol. The
question is whether there is a suitable strategy such that the probability of
hitting a terminal configuration by a path leading only through safe config-
urations is equal to (or different from) a given x ∈ {0, 1}. We show that the
qualitative extended reachability problem is decidable in polynomial time,
and that the set of all configurations for which there is a winning strategy
is effectively regular. More precisely, this set can be represented by a deter-
ministic finite-state automaton with a fixed number of control states. This
result is a generalization of a recent theorem by Etessami & Yannakakis
which says that the qualitative termination for 1-exit RMDPs (which ex-
actly correspond to our 1 1

2
-player BPA games) is decidable in polynomial

time. Interestingly, the properties of winning strategies for the extended
reachability objectives are quite different from the ones for termination,
and new observations are needed to obtain the result. As an application,
we derive the EXPTIME-completeness of the model-checking problem for
1 1

2
-player BPA games and qualitative PCTL formulae.

1 Introduction

1 1
2 -player games (or Markov decision processes) are a fundamental model in the

area of system design and control optimization [11, 8]. Formally, a 1 1
2 -player game

G is a directed graph where the vertices are split into two disjoint subsets V2 and
V©. For every v ∈ V©, there is a fixed probability distribution over the set of its
outgoing transitions. A play is initiated by putting a token on some vertex. The
token is then moved from vertex to vertex by one “real” player 2 (controller) and
one “virtual” player © (stochastic environment), who are responsible for selecting
outgoing transitions in the vertices of V2 and V©, respectively. Player © does not
make a real choice, but selects his next move randomly according to the fixed prob-
ability distribution over the outgoing transitions. A strategy specifies how player 2
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should play. In general, a strategy may or may not depend on the history of a
play (we say that a strategy is history-dependent (H) or memoryless (M)), and the
transitions may be chosen deterministically or randomly (deterministic (D) and
randomized (R) strategies). In the case of randomized strategies, player 2 chooses
a probability distribution on the set of outgoing transitions. Note that deterministic
strategies can be seen as restricted randomized strategies, where one of the out-
going transitions has probability 1. Each strategy σ determines a unique Markov
chain G(σ) where the states are finite paths in G, and wu → wuu′ with probability
x iff (u, u′) is a transition in the game and x is the probability chosen by player 2,
or the fixed probability of the transition (u, u′) when u ∈ V©. A winning objective
for player 2 is some property of Markov chains that is to be achieved. A win-
ning strategy is a strategy that achieves the objective. In the context of “classical”
MDP theory, winning objectives are typically related to long-time characteristics
such as the expected total reward, the expected reward per transition, etc. [11,
8]. In the context of formal verification, winning objectives are often specified as
formulae of suitable temporal logics and their probabilistic variants such as PCTL
or PCTL∗ [9]. For games with finitely many vertices, the corresponding decision
algorithms have been designed [9, 2, 1] and also implemented in verifications tools
such as PRISM (see, e.g., [10]). Recently, the scope of this study has been extended
to a class of infinite-state games generated by recursive state machines (RSM) [6,
7]. Intuitively, a RSM is a finite collection of finite-state automata which can call
each other in a recursive fashion, maintaining the (unbounded) stack of activation
records. RSM are semantically equivalent to pushdown automata (PDA), and there
are effective linear-time translations between the two models. A given RSM can
be encoded in PDA syntax by storing the collection of finite-state automata in the
control unit, and the recursive calls/returns are modeled by pushing/popping sym-
bols onto/from the stack. An important subclass of RSM are 1-exit RSM, where
each finite-state automaton in the collection terminates in exactly one state. This
means that no information can be returned back to the caller. In PDA terms, this
means that whenever a given stack symbol X is popped from the stack, the same
control state pX is entered. Hence, the finite-state control unit can be encoded
directly into the stack alphabet and simulated in top-of-the-stack symbol. Thus,
1-exit RSM can effectively be represented as stateless PDA, which are also denoted
BPA in the context of concurrency theory.

Now we briefly summarize some of the results presented in [6, 7]. To be able to
give a clear comparison with our work, we reformulate these results in PDA/BPA
terminology. A termination objective is specified by two control states p, q and one
stack symbol X of a given PDA. The task of player 2 is to maximize/minimize
the probability of hitting qε from pX (each “head” rY in a given PDA is ei-
ther probabilistic or non-deterministic; transitions from probabilistic heads are
chosen randomly according to a fixed distribution, while the transitions from non-
deterministic heads can be chosen by player 2). In the case of BPA, there are no
control states and the termination objective is specified simply by the stack symbol
which is to be removed.

In [6, 7], it has been shown that optimal minimizing/maximizing strategies in
general 1 1

2 -player PDA games with termination objectives do not always exist, and
that the problem whether there is a strategy such that termination is achieved
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with probability 1 is undecidable. The situation is different for 1 1
2 -player BPA

games, where the optimal minimizing/maximizing strategies do exist, and can be
constructed so that they depend only on top-of-the-stack symbol of a given config-
uration. Hence, the optimal strategies are stackless, memoryless, and deterministic
(SMD). Furthermore, the corresponding minimal/maximal termination probabili-
ties are expressible as the least solution of an effectively constructible system of
non-linear recursive equations. Since the least solution of this system can effectively
be expressed in first-order theory of the reals, this entails the decidability of the
quantitative termination problem, i.e., the question whether the minimal/maximal
achievable termination probability is bounded by a given constant. For the qualita-
tive subcase (i.e., the problem whether the minimal/maximal achievable termina-
tion probability is equal to one), polynomial-time algorithms have been designed.
On the other hand, in [6] it was noted that model-checking 1 1

2 -player BPA games
against qualitative LTL objectives is already undecidable.

Our contribution: In this paper we consider 1 1
2 -player BPA games with ex-

tended reachability objectives (EROs). An ERO is specified by two sets of safe and
terminal stack symbols. A configuration is safe/terminal iff its top-of-the-stack
symbol is safe/terminal. A run w satisfies a given ERO iff w visits a terminal con-
figuration and all configurations preceding this visit are safe. The goal of player 2

is to minimize/maximize the probability of all runs satisfying a given ERO. Note
that termination objectives can easily be encoded as EROs (this may require a new
bottom-of-the-stack symbol). However, the properties of EROs are surprisingly dif-
ferent from the ones of termination objectives (in contrast, methods for termination
can easily be extended to EROs for fully probabilistic PDA [4]). We show that op-
timal maximizing strategies may not exist at all, and even if they do exist, they
are not necessarily SMD. The optimal minimizing strategies are guaranteed to ex-
ist, but are not necessarily SMD. The method of expressing the minimal/maximal
termination probability by a system of non-linear equations used in [6] cannot be
easily extended to EROs, and the reasons seem to be fundamental.

At the core of our paper are results about qualitative EROs. We show that the
sets of all configurations for which there exists a strategy such that the probability
of all runs satisfying a given ERO is equal to zero (equal to one, larger than zero,
less than one, resp.) are regular and the corresponding finite-state automata can
be constructed in polynomial time. In our algorithms, we use the results about
qualitative termination as “black boxes” and concentrate on problems that are
specific to EROs. We note that the subcase “equal to one”, and particularly the
subcase “less than one”, require non-trivial methods and observations.

As an application, we design an exponential-time model-checking algorithm for
1 1

2 -player BPA games and the qualitative fragment of the logic PCTL. More pre-
cisely, our algorithm is polynomial in the size of a given BPA and exponential
in the size of a given formula (hence, the algorithm becomes polynomial for each
fixed formula). Since there is a matching EXPTIME lower bound [3], we yield
the EXPTIME-completeness of the problem. As a consequence we also obtain
the EXPTIME-completeness of the model-checking problem for fully probabilis-
tic BPA and qualitative PCTL (fully probabilistic BPA correspond to a subclass
of 1 1

2 -player BPA games where all heads are probabilistic). This problem has been
studied in [4, 3], but the best known upper complexity bound was EXPSPACE.
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Finally, let us note that since model-checking 1 1
2 -player BPA games against quali-

tative LTL properties is already undecidable [6], our result cannot be extended to
the qualitative fragment of PCTL∗.

2 Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational num-
bers, real numbers, and non-negative real numbers are denoted N, N0, Q, R, and
R≥0, respectively.

We start by recalling basic notions of probability theory. Let A be a finite or
countably infinite set. A probability distribution on A is a function f : A → [0, 1]
such that

∑
a∈A f(a) = 1. A distribution f is rational if f(a) ∈ Q for every a ∈ A,

positive if f(a) > 0 for every a ∈ A, and Dirac if f(a) = 1 for some a ∈ A. The set
of all distributions on A is denoted D(A).

A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under
complement and countable union. A measurable space is a pair (X,F) where X is
a set called sample space and F is a σ-field over X. A probability measure over a
measurable space (X,F) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi),

and moreover P(X) = 1. A probabilistic space is a triple (X,F ,P) where (X,F) is
a measurable space and P is a probability measure over (X,F).

Markov chains. A Markov chain is a triple M = (M,→,Prob) where M is a
finite or countably infinite set of states, → ⊆ M ×M is a transition relation such
that for every s ∈ M there is some transition s → t, and Prob is a function which
to each s ∈ M assigns a positive probability distribution over the set of its outgoing
transitions.

In the rest of this paper we also write s
x→ t instead of Prob(s → t) = x. A path

in M is a finite or infinite sequence w = s0, s1, · · · of states such that si → si+1

for every i. We also use w(i) to denote the state si of w, and wi to denote the
path si, si+1, · · · (by writing w(i) = s or wi we implicitly impose the condition
that the length of w is at least i + 1). A run is an infinite path. The sets of all
finite paths and all runs of M are denoted FPath(M) and Run(M), respectively.
Similarly, the sets of all finite paths and runs that start in a given s ∈ M are
denoted FPath(M, s) and Run(M, s), respectively.

Each w ∈ FPath(M) determines a basic cylinder Run(M, w) which consists
of all runs that start with w. To every s ∈ M we associate the probabilistic
space (Run(M, s),F ,P) where F is the σ-field generated by all basic cylinders
Run(M, w) where w starts with s, and P : F → [0, 1] is the unique probability
function such that P(Run(M, w)) = Πm−1

i=0 xi where w = s0, · · · , sm and si
xi→ si+1

for every 0 ≤ i < m (if m = 0, we put P(Run(M, w)) = 1).
For all S, T ⊆ M and s ∈ M , we define the sets

– Run(M, s, S U T ) = {w ∈ Run(M, s) | ∃j ≥ 0 : w(j) ∈ T ∧ ∀i < j : w(i) ∈ S}
– Run(M, s,FT ) = {w ∈ Run(M, s) | ∃j ≥ 0 : w(j) ∈ T}
– Run(M, s,¬FT ) = {w ∈ Run(M, s) | ∀j ≥ 0 : w(j) 6∈ T}
– Run(M, s,X S) = {w ∈ Run(M, s) | w(1) ∈ S}
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Games, strategies, and objectives. A 1 1
2 -player game (or Markov decision pro-

cess) is a tuple G = (V,E, (V2, V©),Prob) where V is a finite or countably infinite
set of vertices, E ⊆ V × V is a set of transitions, (V2, V©) is a partition of V , and
Prob is a probability assignment which to each v ∈ V© assigns a positive proba-
bility distribution on the set of its outgoing transitions. For technical convenience,
we assume that each vertex has at least one outgoing transition. We say that G is
finitely-branching if for each v ∈ V there are only finitely many u ∈ V such that
(v, u) ∈ E.

The game is played by a player 2 who selects the moves in the V2 vertices, and
a “virtual” player © who selects the moves in the V© vertices according to the
corresponding probability distribution.

A strategy for player 2 is a function σ which to each wv ∈ V ∗V2 assigns a
probability distribution on the set of outgoing transitions of v. We say that a
strategy σ is memoryless (M) if σ(wv) depends just on the last vertex v, and
deterministic (D) if σ(wv) is a Dirac distribution for each wv ∈ V ∗V2. Strategies
that are not necessarily memoryless are called history-dependent (H), and strategies
that are not necessarily deterministic are called randomized (R). Hence, we can
define the following four classes of strategies: MD, MR, HD, and HR, where MD ⊆
HD ⊆ HR and MD ⊆ MR ⊆ HR, but MR and HD are incomparable.

Remark 1. Each MD strategy σ determines a unique function fσ : V2 → V . Con-
versely, each function f : V2 → V such that (v, f(v)) ∈ E for every v ∈ V2

determines a unique MD strategy σf .

Each strategy σ for player 2 determines a unique play of the game G, which is a
Markov chain G(σ) where V + is the set of states, and wu

x→ wuu′ iff (u, u′) ∈ E
and one of the following conditions holds:

– u ∈ V© and Prob(u, u′) = x;
– u ∈ V2 and σ(wu) assigns x to (u, u′).

For every w ∈ Run(G(σ)) and every i ∈ N0, we define w[i] to be the last vertex of
w(i) (realize that w(i) is a finite sequence of vertices of the game G).

The logic PCTL. The logic PCTL, the probabilistic extension of CTL, was in-
troduced by Hansson & Jonsson in [9]. Let Ap = {p, q, . . . } be a countably infinite
set of atomic propositions. The syntax of PCTL formulae is given by the following
abstract syntax equation:

Φ ::= p | Φ1∧Φ2 | ¬Φ | X 1% Φ | Φ1 U 1% Φ2

Here p ∈ Ap, % ∈ [0, 1], and 1 ∈ {≤, <,≥, >, =, 6=}.
Let G = (V,E, (V2, V©),Prob) be a 1 1

2 -player game, and let ν : Ap → 2V be a
valuation. The semantics of PCTL is defined below.

[[p]]ν = ν(p)
[[Φ1∧Φ2]]

ν = [[Φ1]]
ν ∩ [[Φ2]]

ν

[[¬Φ]]ν = V r [[Φ]]ν

[[X 1%Φ]]ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u,X [[Φ]]ν)) 1 %}
[[Φ1 U 1%Φ2]]

ν = {u ∈ V | ∀σ ∈ HR : P(Run(G(σ), u, [[Φ1]]
ν U [[Φ2]]

ν)) 1 %}
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The F1% and G1% operators are defined in the standard way: F1%Φ stands for
tt U 1% Φ, and G1%Φ stands for tt U b11−% ¬Φ, where 1̂ is <, >, ≤, ≥, =, or 6=,
depending on whether 1 is >, <, ≥, ≤, =, or 6=, respectively.

Various natural fragments of PCTL can be obtained by restricting the PCTL
syntax to certain modal connectives and/or certain operator/number combinations.
The qualitative fragment of PCTL is obtained by restricting the allowed opera-
tor/number combinations to ‘1 0’ and ‘1 1’. Hence, aU <1b∨F>0c is a qualitative
PCTL formula.

BPA games. A 1 1
2 -player BPA game is a tuple ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) where

Γ is a finite stack alphabet, ↪→ ⊆ Γ ×Γ≤2 is a set of rules (where Γ≤2 = {w ∈ Γ ∗ :
|w| ≤ 2}) such that for each X ∈ Γ there is some X ↪→ α, (Γ2, Γ©) is a partition
of Γ , and Prob is a probability assignment which to each X ∈ Γ© assigns a rational
positive probability distribution on the set of all rules of the form X ↪→ α.

Each 1 1
2 -player BPA game ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) determines a unique

1 1
2 -player game G∆ = (Γ ∗, E∆, (Γ2Γ ∗, Γ©Γ ∗ ∪ {ε}),Prob∆) where the transitions

of E∆ are determined as follows: ε → ε, and Xβ → αβ iff X ↪→ α. The probability
assignment Prob∆ is the natural extension of Prob, i.e., Prob∆(Xβ → αβ) =
Prob(X ↪→ α), and Prob∆(ε → ε) = 1. Note that G∆ is finitely branching.

Given a configuration Xα ∈ Γ ∗, we put head(Xα) = X.

3 11
2
-Player BPA Games with Extended Reachability

Objectives

In this section we present several results about 1 1
2 -player BPA games with extended

reachability objectives.

Definition 2. Let G = (V,E, (V2, V©),Prob) be an (arbitrary) 1 1
2 -player game.

An extended reachability objective (ERO) is a pair (S, T ), where S, T ⊆ V are the
subsets of safe and terminal vertices.

Let (S, T ) be an ERO. For every HR strategy σ and every u ∈ V we define the
σ-value of u, denoted Valσ(u), as follows:

Valσ(u) = P(Run(G(σ), u, S U T ))

Furthermore, we define the upper and lower value of u, denoted Val+(u) and
Val−(u), as the sup and inf of the set {Valσ(u) | σ ∈ HR}, respectively.

If the player 2 wants to maximize (or minimize) the value of a certain vertex u,
he uses a maximizing (or minimizing) strategy. An optimal maximizing (or optimal
minimizing) strategy for a vertex u is a strategy σ such that Valσ(u) is equal to
Val+(u) (or to Val−(u), resp.).

It has been shown in [2] that optimal maximizing/minimizing strategies always
exist in 1 1

2 -player games with finitely many vertices; moreover, there are efficiently
constructible optimal maximizing/minimizing MD strategies. This does not hold
for games with infinitely many vertices—one can easily give an example of a game
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with countably many vertices where an optimal minimizing strategy does not exist
for a certain vertex u, and

1 = inf
σ∈MD

{P(Run(G(σ), u, S U T ))} > inf
σ∈HR

{P(Run(G(σ), u, S U T ))} = 0

We are primarily interested in finitely-branching games, where the situation is
somewhat specific. The following proposition gives a full characterization:

Proposition 3. Let G = (V,E, (V2, V©),Prob) be a finitely-branching 1 1
2 -player

game, u ∈ V , and (S, T ) an ERO. Then

(a) there is an optimal minimizing MD strategy for u;
(b) supσ∈MD{P(Run(G(σ), u, S U T ))} = supσ∈HR{P(Run(G(σ), u, S U T ))}
(c) if there is an optimal maximizing HR strategy for u, then there is also an

optimal maximizing MD strategy for u.

Proposition 3 admits the non-existence of an optimal maximizing strategy for
u. This can indeed happen, even for 1 1

2 -player BPA games (see also [6]):

Example 4. Let ∆ = ({X, A,D}, ↪→, ({X}, {A,D}),Prob) be a 1 1
2 -player BPA

game, where
X ↪→ XA, X ↪→ ε, A

1/2
↪→ D, A

1/2
↪→ ε, D

1
↪→ D.

Let S = {X, A,D}∗ and T = {D}{A}∗. One can easily verify that Val+(X) = 1.
However, for every HR strategy σ we have that Valσ(X) < 1.

In the rest of this section we restrict our attention to 1 1
2 -player BPA games.

Due to Proposition 3, from now on we can safely consider just MD strategies
because they are equivalently powerful as HR strategies in the context of extended
reachability objectives.

To simplify our notation, for the rest of this section we fix a 1 1
2 -player BPA game

∆ = (Γ, ↪→, (Γ2, Γ©),Prob). Realize that all of the previously introduced game-
theoretic notions (strategy, upper/lower value, etc.) apply to G(∆), not directly to
∆. In particular, the vertices of G(∆) are stack configurations of Γ ∗, which means
that MD strategies generally depend on the whole sequence of symbols which form
a given vertex. An MD strategy σ is stackless (SMD) if it depends just on the
top-of-the-stack symbol of a given vertex.

A termination objective is an ERO where S = Γ ∗ and T = {ε}. In [6, 7], it
has been shown that 1 1

2 -player BPA games with termination objectives have the
following properties:

(a) There are optimal SMD minimizing and maximizing strategies.
(b) For each X ∈ Γ , the values Val+(X) and Val−(X) are expressible as the

least solution of an effectively constructible system of non-linear equations.
This allows to express the values Val+(X) and Val−(X) in (R,+, ∗,≤), i.e.,
first-order arithmetic of the reals.

(c) The problems whether Val+(α) = x, where x ∈ {0, 1}, and whether Val−(α) =
x, where x ∈ {0, 1}, are solvable in polynomial time.

In this paper we consider 1 1
2 -player BPA games with more general EROs, where

the sets S and T are simple:
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Definition 5. A set M ⊆ Γ ∗ is simple iff there is a characteristic set C(M) ⊆ Γ
such that M =

⋃
Y ∈C(M){Y }Γ ∗. An ERO (S, T ) is simple if S and T are simple.

The properties (a)–(c) stated above do not hold for BPA games with simple EROs.
In particular, note the following:

(A) An optimal minimizing SMD strategy may not exist (though there must be an
optimal minimizing MD strategy by Proposition 3). An optimal maximizing
strategy may not exist at all (see Example 4), and the existence of an optimal
maximizing strategy does not imply the existence of an optimal maximizing
SMD strategy.

(B) The system of non-linear recursive equations which was used in [6] for termina-
tion objectives cannot be immediately generalized to simple EROs. Intuitively,
the reason is that the optimal minimizing/maximizing strategy in a configura-
tion Xα does not depend just on X but also on α, and a small modification
of α may lead to a completely different optimal strategy. This is because one
has to “balance” between the probability of termination and the probability of
hitting a terminal configuration for each stack symbol, depending on what is
achievable for the symbols stored below in the stack.

(C) For a given α ∈ Γ ∗, the problems whether Val−(α) = 0, whether Val+(α) = 0,
and whether Val−(α) = 1 are solvable in polynomial time. The decidability
of the problem whether Val+(α) = 1 is left open. Nevertheless, we show that
the problem whether there is an optimal maximizing strategy σ such that
Valσ(α) = 1 is decidable in polynomial time (remember that Val+(α) can be
1 even if no optimal maximizing strategy exists).

The property (A) is demonstrated in the following example:

Example 6. Let ∆ = ({X, R}, ↪→, ({X, R}, ∅),Prob) be a 1 1
2 -player BPA game,

where X ↪→ XR, X ↪→ ε, R ↪→ R. Let us consider an ERO (S, T ) where C(S) =
{X} and C(T ) = {R}. Then Val+(X) = 1 and there an optimal maximizing MD
strategy, but there is no optimal maximizing SMD strategy.

Let ∆′ = ({X, Y, Z,H, R}, ↪→, ({X, Y, Z,R}, {H}),Prob) be a 1 1
2 -player BPA

game, where

X ↪→ Y R, Y ↪→ H, Y ↪→ ε, R ↪→ R, Z ↪→ Z, H
1/2
↪→ Y Z, H

1/2
↪→ R.

Let us consider an ERO (S, T ) where C(S) = {X, Y, Z,H} and C(T ) = {R}. Then
Val−(X) = 1/2 and there an optimal minimizing MD strategy, but there is no
optimal minimizing SMD strategy.

Now we present a sequence of results from which (C) follows as a simple con-
sequence, and which allow to design the model-checking algorithm for 1 1

2 -player
games and qualitative PCTL formulae presented in Section 4.

For the rest of this section, let us fix a simple ERO (S, T ). Let ∆′ = (Γ, ;
, (Γ2, Γ©),Prob′) be a modification of the game ∆ obtained by replacing all rules
of the form P ↪→ α, where P ∈ C(T ) ∪ (Γ r C(S)), with a single rule P ; P
(the other rules are preserved). One can easily verify that for every strategy σ
and every α ∈ Γ ∗ we have that P(G∆(σ), α, S U T ) = P(G∆′(σ), α,FT ), and this
fact is heavily used in the proofs of subsequent theorems where we freely “shift”
between ∆ and ∆′.
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Theorem 7. Let [S U >0T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(G∆(σ), α, S U T ) > 0. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U >0T ] = A∗BΓ ∗.

Proof. Let A = {X ∈ Γ | X ;∗ ε} and B = {X ∈ Γ | X ;∗ Rβ, where R ∈
C(T ) and β ∈ Γ ∗}. Now observe that α ∈ [S U >0T ] iff α ;∗ Rβ for some R ∈
C(T ) and β ∈ Γ ∗ iff α ∈ A∗BΓ ∗. The sets A,B can be computed using standard
algorithms for PDA reachability. ut

Theorem 8. Let [S U =0T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(G∆(σ), α, S U T ) = 0. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U =0T ] = B∗ ∪ (B∗AΓ ∗).

Proof. We define the sets A and B as follows:

– X ∈ A iff there is a strategy σ such that P(Run(G∆′(σ), X,F(T ∪ {ε}))) = 0
– X ∈ B iff there is a strategy σ such that P(Run(G∆′(σ), X,FT )) = 0

It is easy to verify that A and B satisfy the property that [S U =0T ] = B∗∪B∗AΓ ∗.
We show that the sets A and B can be computed as the greatest fixpoint of a

monotonic function Θ : 2Γ × 2Γ → 2Γ × 2Γ , where Θ(M,N) = (M ′, N ′) is defined
as follows:

– X ∈ M ′ iff X ∈ M r C(T ) and the following conditions are satisfied:
• If X ∈ Γ2, then there is a rule of one of the following forms: X ; Y where

Y ∈ M , or X ; Y Z where either Y ∈ M , or Y ∈ N and Z ∈ M .
• If X ∈ Γ©, then all rules of the form X ; α satisfy either α = Y where

Y ∈ M , or α = Y Z where either Y ∈ M , or Y ∈ N and Z ∈ M .
– X ∈ N ′ iff X ∈ N r C(T ) and the following conditions are satisfied:

• If X ∈ Γ2, then there is a rule of one of the following forms: X ; ε,
or X ; Y where Y ∈ N ∪ M , or X ; Y Z where either Y ∈ M , or
Y, Z ∈ N ∪M .

• If X ∈ Γ©, then all rules of the form X ; α satisfy either α = ε, or α = Y
where Y ∈ N ∪M , or α = Y Z where either Y ∈ M , or Y,Z ∈ N ∪M .

It is easy to show that:

(1) (A,B) is a fixpoint of Θ.
(2) If (C,D) is a fixpoint of Θ, then C ⊆ A and D ⊆ B.

Hence, the sets A and B can be computed in polynomial time by a simple iterative
algorithm. ut

Theorem 9. Let [S U =1T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(G∆(σ), α, S U T ) = 1. Then there are A,B, C ⊆ Γ computable in
polynomial time such that [S U =1T ] = (B ∪ C)∗AΓ ∗.

Proof. We define the sets A, B and C as follows:

– X ∈ A iff there is a strategy σ such that P(Run(G∆′(σ)), X,FT ) = 1
– X ∈ B iff there is a strategy σ such that P(Run(G∆′(σ)), X,F(T ∪ {ε})) = 1

and P(Run(G∆′(σ)), X,FT ) > 0

9



– X ∈ C iff there is a strategy σ such that P(Run(G∆′(σ)), X,F{ε}) = 1

Observe that C can be computed in polynomial time using the algorithm of [7].
Moreover, it is easy to show that [S U =1T ] = (B ∪ C)∗AΓ ∗ and [S U =1(T∪{ε})] =
(B ∪ C)∗ ∪ (B ∪ C)∗AΓ ∗.

We prove that the sets A and B can be computed in polynomial time. The proof
proceeds as follows: first we define a monotone function Θ : 2Γ ×2Γ → 2Γ ×2Γ and
show that (A,B) is the greatest fixpoint of Θ. Second, we show how to compute Θ
(and hence also its greatest fixpoint) in polynomial time.

In order to define the function Θ we need to introduce some notation. Let
R,H ⊆ Γ . For every MD strategy π, we define two predicates QR,H and Q′

R,H over
FPath(G∆′(π), X) as follows: Given a path u ∈ FPath(G∆′(π), X) of length n ≥ 0,
the predicate QR,H(u) (or Q′

R,H(u)) holds iff u[n] ∈ T and for all 0 ≤ i < n such
that u[i] ∈ Γ©Γ ∗ we have that all successors of u(i) are of the form (H ∪ C)∗RΓ ∗

(or (H ∪ C)∗RΓ ∗ ∪ (H ∪ C)∗, resp.). Now, we put Θ(R,H) = (R′,H ′) where

R′ = {X ∈ R ∪ C(T ) | ∃π∃u ∈ FPath(G∆′(π), X), QR∪C(T ),H∪C(T )(u) = true}
H ′ = {X ∈ H ∪ C(T ) | ∃π∃u ∈ FPath(G∆′(π), X), Q′

R∪C(T ),H∪C(T )(u) = true}

It follows directly from the definition that Θ is monotone. It remains to show that
(A,B) is the greatest fixpoint of Θ. First, we prove that (A,B) is a fixpoint.

Let Θ(A,B) = (A′,B′). Since A′ ⊆ A and B′ ⊆ B by definition of Θ, it suffices
to show the opposite inclusions. Let X ∈ A and let σ be a strategy which witnesses
that X ∈ A. Let us consider a path of minimal length in G∆′(σ) from X to a
configuration of T . Since every configuration reachable from X along a path which
does not visit T belongs to [S U =1T ] = (B ∪ C)∗AΓ ∗, we can conclude X ∈ A′.
Similarly, we can show that B ⊆ B′ which implies that Θ(A,B) = (A,B).

Now, suppose that (R,H) is a fixpoint of Θ. We prove that R ⊆ A and H ⊆ B.
For every Y ∈ R (or Y ∈ H), let us fix a path uY which witnesses that Y ∈ R (or
Y ∈ H, resp.). It follows from the definition of Θ that if Y ∈ R (or Y ∈ H) then
all successors of all stochastic configurations that appear on uY are of the form
(H ∪C)∗RΓ ∗ (or (H ∪C)∗RΓ ∗ ∪ (H ∪C)∗, resp.). Note that for every configuration
of the form (H ∪ C)∗RΓ ∗ there is a strategy which forces almost all runs to reach
a configuration of the form RΓ ∗ ∪ (H(H ∪ C)∗RΓ ∗). Let us consider a strategy
π which from configurations of the form {X}Γ ∗ where X ∈ R (or configurations
of the form {X}(H ∪ C)∗RΓ ∗ where X ∈ H) follows the path uX and for all
successors of stochastic configurations on uX strives to reach configurations of the
form RΓ ∗∪(H(H∪C)∗RΓ ∗) with probability 1. Now, observe that almost every run
of Run(G∆′(π), X), where X ∈ R, enters configurations with a head Y ∈ R ∪ H
infinitely often, which implies that almost every run takes a path uY for some
Y ∈ R ∪H. It follows that P(Run(G∆′(π), X,FT )) = 1. Similarly, we prove that
for X ∈ H there is a strategy π such that P(Run(G∆′(π), X,F(T ∪ {ε})) = 1 and
P(Run(G∆′(π), X,FT ) > 0.

So, we proved that (A,B) is the greatest fixpoint of Θ. Now we indicate how to
compute Θ(R,H) in polynomial time.

We can consider ∆′ as a non-probabilistic BPA (just ignoring the probabilities
on transitions from the stochastic configurations). Observe that there is a path u
with the properties stated in the definition of R′ (or H ′) iff in the non-probabilistic
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BPA ∆′ the set T is reachable via configurations with all successors in (H∪C)∗RΓ ∗

(or (H∪C)∗RΓ ∗∪(H∪C)∗, resp.). This variant of reachability problem is decidable
in polynomial time for BPA processes using standard techniques. ut

Theorem 10. Let [S U <1T ] be the set of all α ∈ Γ ∗ for which there is a strategy
σ such that P(G∆(σ), α, S U T ) < 1. Then there are A,B ⊆ Γ computable in
polynomial time such that [S U <1T ] = A∗ ∪ (A∗BΓ ∗).

Proof. Let us define the sets A and B as follows:

– X ∈ A iff there is a strategy σ such that P(Run(G∆′(σ), X,F{ε})) > 0
– X ∈ B iff there is a strategy σ such that P(Run(G∆′(σ), X,¬F(T ∪{ε}))) > 0

It is easy to prove that A and B satisfy the desired property [S U <1T ] = A∗ ∪
(A∗BΓ ∗). It follows from Theorem 7 that the membership to A is decidable in
polynomial time. For the rest of this proof we fix some X ∈ Γ and examine the
conditions under which X ∈ B.

One sufficient condition for X∈B is the existence of some Y ∈ ΓrC(T )
and two strategies σ, π where P(Run(G∆′(σ), X,F({Y }Γ ∗)) > 0 and
P(Run(G∆′(π), Y,F(T ∪ {ε}))) = 0. The strategies σ and π can be combined into
a single strategy σ′ which behaves like σ until a configuration with the head Y is
reached, and then it behaves like π. Obviously, P(Run(G∆′(σ′), X,¬F(T∪{ε}))) >
0. The existence of such Y , σ and π can be decided in polynomial time using The-
orem 7 and Theorem 8. However, this condition is not necessary as the following
example illustrates. Let us consider a 1 1

2 -player BPA game with rules

A
1/2
↪→ C, A

1/2
↪→ B, B

3/4
↪→ BB, B

1/4
↪→ ε, C

1
↪→ C.

Note that this example closely ressembles one-dimensional (asymmetric) random
walk. It can be shown that using the only (empty) strategy the probability of
reaching ε or (a configuration with a head) C from A is less than 1 but every Y
reachable from A reaches ε or C with a non-zero probability.

Hence, let us assume that there are no suitable Y , σ and π such that
P(Run(G∆′(σ), X,F({Y }Γ ∗)) > 0 and P(Run(G∆′(π), Y,F(T ∪ {ε}))) = 0. For
now, let us assume that X ∈ B and let us fix a strategy σ which witnesses that
X ∈ B.

Claim (1). There are Y ∈ Γ r C(T ) where P(G∆′(σ), X,F({Y }Γ ∗)) > 0, sets
A ⊆ Γ r C(T ) and R ⊆ ;, a strategy σ′, and a set of runs V ⊆ Run(G∆′(σ′), Y )
such that

1. P(V ) > 0;
2. for all w ∈ V and i ≥ 0 we have that head(w[i]) ∈ A (in particular, Y ∈ A)

and w(i) → w(i + 1) is induced by a transition rule of R;
3. for every Z ∈ A there are infinitely many i ≥ 0 such that head(w[i]) = Z

and for every rule Z ; α ∈ R there are infinitely many i ≥ 0 such that
w(i) → w(i + 1) is induced by Z ; α.

Proof (of Claim (1)). For all A ⊆ Γ and R ⊆ ;, we denote LA,R the set of all
w ∈ Run(G∆′(σ), X,¬F(T ∪ {ε})) such that exactly the heads of A and exactly
the transitions induced by the rules of R occur infinitely often along w. Since there
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are only finitely many sets LA,R, Run(G∆′(σ), X,¬F(T ∪ {ε})) =
⋃

LA,R, and
P(Run(G∆′(σ), X,¬F(T ∪ {ε}))) > 0, we have that P(LA,R) > 0 for some A and
R. Let us fix such sets A and R.

For every v ∈ FPath(G∆′(σ), X), we denote Uv the set of all runs w of LA,R

such that v is a prefix of w, w(|v|−1) is a minimum of w (i.e. for all j ≥ |v|
we have that the length of w[j] is not strictly less than the length of w[|v|−1]),
and for all i ≥ |v|−1 we have that head(w[i]) ∈ A and w(i) → w(i + 1) is
induced by a rule of R. Clearly, LA,R =

⋃
v∈FPath(G∆′ (σ),X) Uv. It follows that

0 < P(LA,R) ≤
∑

v∈FPath(G∆′ (σ),X) P(Uv) and thus there is v ∈ FPath(G∆′(σ), X)
such that P(Uv) > 0.

Let us assume that v[|v|−1] = Y α and let w ∈ Uv. Since w(|v|−1) is a minimum
of w, for all i ≥ 0 we have that w(i+|v|−1) = βiα where βi 6= ε. We define
Θ(w) = β0, β0β1, β0β1β2, . . .. Now, let us consider a strategy σ′ which, along a
run Θ(w) of Θ(Uv), behaves similarly as σ over w after the prefix v (ignoring the
context α). It can be proved using standard arguments for Markov chains that
P(Uv) = P(Run(G∆′(σ), v)) · P(Θ(Uv)), which implies that

P(Θ(Uv)) =
P(Uv)

P(Run(G∆′(σ), v))
> 0

Now it is easy to verify that we can safely put V = Θ(Uv). 3

For all A′ ⊆ Γ and R′ ⊆ ;, we put ∆′
A′,R′ = (A′, R′, (A′ ∩ Γ2, A′ ∩ Γ©),Prob).

Claim (2). ∆′
A,R is a 1 1

2 -player BPA game, and there is a strategy π for ∆′
A,R such

that P(Run(G∆′
A,R

(π), Y,F{ε})) < 1.

Proof (of Claim (2)). First we take a closer look at the rules in R. Let Z ∈ Γ©∩A
and let Z ; D. We claim that (Z,D) ∈ R and D ∈ A. Indeed, all runs of V enter
a configuration having Z as its head infinitely often which implies that almost all
runs of V take the rule Z ; D infinitely often. Thus, if (Z,D) 6∈ R or D 6∈ A, then
P(V ) = 0. Similarly, we prove that if Z ; ε then (Z, ε) ∈ R.

Let us consider a rule Z ; DE. By the same argument as above we con-
clude that (Z,DE) ∈ R and D ∈ A. We show that E ∈ A. Suppose the con-
verse, i.e., E 6∈ A. We claim that then for every ξ > 0 there is a strategy ζ such
that P(Run(G∆′(ζ), D,F(T ∪ {ε}))) < ξ, because otherwise P(V ) = 0. Indeed,
if for every ζ we have P(Run(G∆′(ζ), D,F(T ∪ {ε}))) ≥ ξ for a fixed ξ > 0,
then almost all runs of V enter E infinitely often, because all runs of V enter a
configuration with the head Z infinitely often and no run of V enters T . Now,
we employ Proposition 3 (a) and conclude that there is a strategy ζ ′ such that
P(Run(G∆′(ζ ′), D,F(T ∪ {ε})) = 0. However, D is reachable from X (using a
suitable strategy) which contradicts our assumption. Hence, E ∈ A.

Now let us assume that Z ∈ Γ2 ∩ A. Observe that (Z,α) ∈ R for at least one
rule Z ; α. Let us assume that (Z,D) ∈ R. We have that Z ; D is used infinitely
often along every run of V and thus D ∈ A. Similarly, if (Z,DE) ∈ R then D ∈ A
and using similar arguments as above (for Z ∈ Γ© ∩A) we can show that E ∈ A.

The above arguments imply that ∆′
A,R is a 1 1

2 -player BPA game. Now, let
us consider an arbitrary strategy π for ∆′

A,R which behaves similarly as σ′ over
runs of V . The existence of such a strategy is guaranteed by Claim (1). Using

12



standard arguments for Markov chains, it can be proven that the probability of V
remains the same (i.e., non-zero) in G∆′

A,R
(π) as in G∆′(σ′), which implies that

P(G∆′
A,R

, Y,F{ε}) < 1. 3

So far, we have proved that if X ∈ B, then

– there are Y ∈ Γ rC(T ), A ⊆ Γ rC(T ) and R ⊆ ; such that Y ∈ A and ∆′
A,R

is a 1 1
2 -player BPA game;

– there is a strategy σ satisfying P(Run(G∆′(σ), Y,F({Y }Γ ∗)) > 0;
– there is a strategy π satisfying P(Run(G∆′

A,R
(π), Y,F{ε})) < 1.

Using the strategies σ and π, we can easily define a strategy ζ for ∆′ which witnesses
that X ∈ B (ζ behaves like σ until Y is reached and then behaves like π).

Now, it is easy to see that if ∆′
A′,R′ is a 1 1

2 -player BPA game for some A′ ⊇ A
and R′ ⊇ R, then the strategy π can be extended to a strategy π′ in ∆′

A′,R′

which satisfies P(Run(G∆′
A′,R′

(π′), Y,F{ε})) = P(Run(G∆′
A,R

(π), Y,F{ε})) < 1.

Furthermore, if for A′, R′ and A′′, R′′ we have that ∆′
A′,R′ and ∆′

A′′,R′′ are 1 1
2 -player

BPA games, then ∆′
A′∪A′′,R′∪R′′ is a 1 1

2 -player BPA game.
Hence, in order to decide whether X ∈ B, it suffices to compute the largest sets

A ⊆ Γ rC(T ) and R ⊆ ; for which ∆′
A,R is a 1 1

2 -player BPA game, and to decide
whether there are Y ∈ A, σ, and π such that P(Run(G∆′(σ), X,F({Y }Γ ∗)) > 0
and P(Run(G∆′

A,R
(π), Y,F{ε})) < 1. The problem whether there is π such that

P(Run(G∆′
A,R

(π), Y,F{ε})) < 1 can be decided in polynomial time using the algo-
rithm of [7]. The maximal sets A and R can be computed using a simple fixpoint
algorithm. ut

4 Model-checking Qualitative PCTL for 11
2
-player BPA

Games

In this section we show that the results about 1 1
2 -player BPA games with extended

reachability objectives (see Section 3) can be used to design an essentially optimal
model-checking algorithm for the qualitative fragment of PCTL and 1 1

2 -player BPA
games. For technical convenience, we restrict ourselves to simple valuations, where
ν(p) is a simple set for each p ∈ Ap (see Definition 5).

Infinite sets of stack configurations will be represented by deterministic finite-
state automata (DFA) which read the stack bottom-up. Formally, a DFA is a tuple
F = (Q,Σ, δ, q̂, F ) where Q is a finite set of control states, Σ is a finite input
alphabet, δ : (Q×Σ) → Q is a total transition function, q̂ ∈ Q is the initial state,
and F ⊆ Q is a subset of final states. The function δ is extended to the elements
of Q×Σ∗ in the natural way. A word w ∈ Σ∗ is accepted by F iff δ(q0, w) ∈ F .

Let ∆ be a 1 1
2 -player BPA game with the stack alphabet Γ , and let F be

a DFA with the input alphabet Γ . We say that a stack configuration α ∈ Γ ∗ is
recognized by F iff the reverse of α is accepted by F . Note that stack configurations
are traditionally written as words starting with the top-of-the-stack symbol, but
for technical reasons we prefer to read them in the bottom-up (i.e., right to left)
direction.

In the proof of our next theorem we use the standard technique of simulating
DFA in the stack alphabet (see, e.g., [5]).
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Theorem 11. Let ∆ = (Γ, ↪→, (Γ2, Γ©),Prob) by a 1 1
2 -player BPA game. Let ν

be a simple valuation and Φ a qualitative PCTL formula. Then there is a DFA FΦ

of size |∆| ·2O(|Φ|) constructible in time which is polynomial in |∆| and exponential
in |Φ| such that for all α ∈ Γ ∗ we have that α |=ν Φ iff α is recognized by FΦ.

Proof. We proceed by induction on the structure of Φ. The cases when Φ ≡ p,
Φ ≡ Φ1 ∧ Φ2, and Φ ≡ ¬Φ1 follow immediately.

Let Φ ≡ X =1Φ1, and let F1 = (Q1, Γ, δ1, q̂, F1) be the DFA associated with
Φ1. The automaton F associated with Φ should then recognize exactly all α ∈ Γ ∗

such that for every transition α → β we have that β is recognized by F1. Hence,
we put F = (Q1 ∪ Q′

1, Γ, δ, r̂, Q′
1), where Q′

1 = {q′ | q ∈ Q1} and the transition
function δ is constructed as follows: Let q ∈ Q1, A ∈ Γ , and let t = δ1(q, A). If for
all rules A ↪→ γ we have that δ1(q, γr) ∈ F1 (where γr denotes the reverse of γ),
then δ(q, A) = δ(q′, A) = t′. Otherwise, δ(q, A) = δ(q′, A) = t. The initial state r̂ of
F is either q̂′ or q̂, depending on whether ε is recognized by F1 or not, respectively.

The cases when Φ ≡ X <1Φ1, Φ ≡ X =0Φ1, and Φ ≡ X >0Φ1 are handled
similarly.

Now, let us consider the case when Φ ≡ Φ1 U =1Φ2. Note that α |=ν Φ1 U =1Φ2

iff there is no MD strategy σ such that P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) < 1. Let
F1 = (Q1, Γ, δ1, q̂, F1) and F2 = (Q2, Γ, δ2, r̂, F2) be the DFA associated with Φ1

and Φ2. We construct another DFA F which accepts exactly those α ∈ Γ ∗ for
which there exists an MD strategy σ such that P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) <
1. The desired DFA is then obtained simply by complementing the automaton
F . First we construct a 1 1

2 -player BPA game ∆̄ which is obtained from ∆ by
encoding the automata F1, F2 into the stack alphabet and simulating them “on-
the-fly”. Formally, ∆̄ = (Γ̄ , ;, (Γ̄2, Γ̄©),Pr) where Γ̄ = (Γ ∪ {ε}) × Q1 × Q2,
Γ̄2 = Γ2 × Q1 × Q2, Γ̄© = (Γ© ∪ {ε}) × Q1 × Q2 and the transition relation ;

together with Pr are defined as follows (A, q, and r range over Γ , Q1, and Q2,
respectively):

– (A, q, r) x
; ε iff A

x
; ε;

– (A, q, r) x
; (B, q, r) iff A

x
; B

– (A, q, r) x
; (B, q′, r′)(C, q, r) iff A

x
; BC, δ1(q, C) = q′ and δ2(r, C) = r′;

– (ε, q, r) 1
; (ε, q, r).

For every configuration α ∈ Γ ∗ of the form An · · ·A1 there is a unique configuration
[α] ∈ Γ̄ ∗ of the form (An, qn, rn) · · · (A1, q1, r1)(ε, q̂, r̂) where q1 = q̂, r1 = r̂, and
for all 0 ≤ i < n we have that δ1(qi, Ai) = qi+1 and δ2(ri, Ai) = ri+1. Note that for
every α ∈ Γ ∗, the subgraphs of G∆ and G∆̄ which consist of all vertices reachable
from α and [α] are isomorphic. Let S, T ⊆ Γ̄ ∗ be the simple sets where

– C(S) = {(x, q, r) | x ∈ Γ ∪ {ε}, δ1(q, x) ∈ F1, r ∈ Q2}
– C(T ) = {(x, q, r) | x ∈ Γ ∪ {ε}, q ∈ Q1, δ2(r, x) ∈ F2}.

Now it is easy to see that {α ∈ Γ ∗ | ∃σ : P(Run(G∆(σ), α, [[Φ1]]U [[Φ2]])) < 1}
is equal to the set K = {α ∈ Γ ∗ | ∃σ : P(Run(G∆̄(σ), [α], S U T )) < 1}. By
Theorem 10, there effectively exist the sets A,B ⊆ Γ̄ such that K = {α ∈ Γ ∗ |
[α] ∈ A∗ ∪ (A∗BΓ̄ ∗)}. Hence, the automaton F recognizing the set K can now be
constructed as follows: we put F = (Q,Γ, δ, t̂, F ) where

14



– Q = Q1 ×Q2 × {0, 1}.
– For all A ∈ Γ , q ∈ Q1, r ∈ Q2, and i ∈ {0, 1} we put δ((q, r, i), A) =

(δ1(q, A), δ2(r, A), j), where
• j = 0 iff either i = 0 and (q, r, A) ∈ A ∪ B, or i = 1 and (q, r, A) ∈ B;
• j = 1 iff either i = 0 and (q, r, A) ∈ Γ r (A ∪ B), or i = 1 and (q, r, A) ∈

Γ r B.
– The initial state t̂ is either (q̂, r̂, 0) or (q̂, r̂, 1), depending on whether (ε, q̂, r̂) ∈
A ∪ B or not, respectively.

– F = Q1 ×Q2 × {0}.
The cases when Φ ≡ Φ1 U =0Φ2, Φ ≡ Φ1 U >0Φ2, and Φ ≡ Φ1 U <1Φ2 are handled
similarly, using Theorem 7, 8, and 9, respectively.

The complexity of the whole algorithm is easy to evaluate (it suffices to consider
the worst subcase Φ ≡ Φ1 U 1%Φ2). ut
Since the model-checking problem for qualitative PCTL and fully probabilistic
BPA (i.e., the subclass of 1 1

2 -player BPA games where Γ2 = ∅) is known to be
EXPTIME-hard [3], we obtain the following:

Corollary 12. The model-checking problem for qualitative PCTL and 1 1
2 -player

BPA games is EXPTIME-complete. For each fixed formula, the problem becomes
solvable in polynomial time.

Acknowledgement. We thank an anonymous reviewer for fixing a mistake in the
proof of Theorem 9.
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