Why is Simulation Harder Than Bisimulation?

Antonin Kutera! and Richard May¥

1 Faculty of Informatics, Masaryk University, Botanickae6®0200 Brno, Czech Republic,
tony@fi.muni.cz
2 Department of Computer Science, Albert-Ludwigs-UnivigrBireiburg
Georges-Koehler-Allee 51, D-79110 Freiburg, Germany.

mayrri@informatik.uni-freiburg.de

Abstract. Why is deciding simulation preorder (and simulation egl¢rae)
computationally harder than deciding bisimulation eqgieimae on almost all
known classes of processes? We try to answer this questiatednribing two
general methods that can be used to construct direct oore@olynomial-time
reductions from bisimulation equivalence to simulatioagrder (and simulation
equivalence). These methods can be applied to many claSEeisaty generated
transition systems, provided that they satisfy certairirab8y formulated con-
ditions. Roughly speaking, our first method works for alksles of systems that
can test for ‘non-enabledness’ of actions, while our seeonathod works for all
classes of systems that are closed under synchronization.

1 Introduction

In the last decade, a lot of research effort has been devotdoet study of decid-
ability/complexity issues for checking various semanticigalences between certain
(classes of) processes. Formallypm@cessis (associated with) a state int@nsition
system

Definition 1. Atransition systens atriple7 = (T, Act, —) whereT is a set ofstates
Act is afinite set ofactionsand— C T' x Act x T is atransition relation

We writet % instead of(¢, a, f) € — and we extend this notation to elementsiof *
in the natural way. A stateis reachablgrom a state, writtent —* £, if t — # for some
w € Act*. A statet is ana-successoof a statet if t % 7. The set of alli-successors
of ¢ is denoted byucc(t, a). Assuming some implicit linear ordering eacc(t, a), we
denote byt (a, j) thej?" a-successor of for eachl < j < |succ(t, a)|. Thebranching
degreeof 7, denotedi(7), is the least numbet such thaty > ||, 4., succ(t,a)]
for everyt € T. If there is no such thend(7") = occ.

The notion of ‘behavioral sameness’ of two processes carobedlly captured
in many different ways (see, e.g., [vG99] for an overviewindng those behavioral
equivalencessimulationandbisimulationequivalence enjoy special attention.

Definition 2. LetS = (S, Act,—) and7 = (T, Act,—) be transition systems. A
relation R C S x T is asimulationiff whenever(s, t) € R, then

* Supported by the Grant Agency of the Czech Republic, gran®R&/00/0400.

— for eachs % 5 there is some % 7 such that(s, #) € R.

A processs is simulatedby ¢, written s C ¢, iff there is a simulatioriR such that
(s,t) € R. Processes, t are simulation equivalentwvritten s ~ ¢, iff they can simulate
each other.

A bisimulation is a simulation whose inverse is also a sirmioita a more explicit defi-
nition follows.

Definition 3. LetS = (S, Act,—) and T = (T, Act,—) be transition systems. A
relation R C S x T is abisimulationiff whenever(s, t) € R, then

— for eachs % 5 there is some - such that(s, f) € R;
— for eacht % # there is some % 5 such that(s, #) € R.

Processes andt are bisimulation equivalent (bisimilay)written s ~ ¢, iff they are
related by some bisimulation.

Simulations (and bisimulations) can also be viewega®edSti98, Tho93] between
two players, the attacker and the defender. In a simulatéonegthe attacker wants to
show thats [Z ¢, while the defender attempts to frustrate this. Imaginé tivere are
two tokens put on statesandt¢. Now the two players, attacker and defender, start to
play asimulation gamevhich consists of a (possibly infinite) numberrotindswhere
each round is performed as follows: The attacker takes tkentahich was put on
originally and moves it along a transition labeled by (somehe task of the defender
is to move the other token along a transition with the samelldbone player cannot
move then the other player wins. The defender wins everyiiafgame. It can be easily
shown thats C ¢ iff the defender has a winning strategy. The only differebetveen
a simulation game andkasimulation gamés that the attacker cazthoosehis token at
the beginning of every round (the defender has to responddwmg the other token).
Again we get that ~ t iff the defender has a winning strategy.

Let A, B be classes of processes. The problem whether a given proodds is
simulated by a given processf B is denoted byA T B. Similarly, the problem i and
t are simulation equivalent (or bisimilar) is denoteddby- B, (orA ~ B, respectively).

One reason why simulation preorder/equivalence and Hasiityi found their way
to many practical applications is their special computsldractability—both equiv-
alences are decidable in polynomial time for finite-statecpsses (in fact, they are
P-complete [BGS92, SJ01]) and remain decidable even foaicectasses of infinite-
state processes [Mol96]. By contrast, all trace-basedvatprices ardPSPACE
complete for finite-state systems and become undecidablmfiaite-state systems.
Further evidence is provided by recent results on equicatemecking between infi-
nite and finite-state systems—see [KMO02b] for an overvielthéugh the formal defi-
nitions of simulation and bisimulation are quite similangocannot immediately trans-
fer techniques and algorithms developed for one of the twdvatgnces to the other
one. Nevertheless, thei® some kind of connection between them—for example, in
[KMO2b] it has been shown that simulation equivalence catrdmuced’ to bisimula-
tion equivalence in the following sense: given a transigatem?7, one can define a
transition systenT’ with the same set of statesAssuch that for all states ¢ we have

that s, ¢ are simulation equivalent iff’ iff s,¢ are bisimilar in7”’. Although this ‘re-
duction’ works for arbitrary finitely-branching transiticystems, it is not effective in
general (the only known class of infinite-state processe=raithe method is effective
is the class of one-counter nets [JKMOO]; for finite-statecgisses, the method is even
efficient, i.e., polynomial-time). Actually, our presentdwledge indicates that there
cannot be any general efficient reduction from simulationiveence to bisimilarity,
because all of the existing results confirm a general rulengdpat

“simulation is computationally harder than bisimilarity.

Indeed, bisimilarity tends to be ‘more decidable’ and ‘mweetable’ than simulation;
to the best of our knowledge, there is (so far) no counter@@miolating this ‘rule of
thumb’ (maybe except for some artificial constructions)t Bhy is that? One possible
answer is that bisimilarity is so much finer than simulatigonigalence that it has ‘more
structure’ and becomes easier to decide. However, thisash&r vague statement. In
this paper we try to provide a more convincing explanatigstification for the afore-
mentioned rule. We show that there are possibilities howamsfer’ winning strategies
for both players from a bisimulation game to a simulation gaMore precisely, given
two statess andt in transition systems$ and7, we show how to construct state’s
andt’ in transition systems&’ and7” in such a way that ~ tiff s’ C ¢’ (or s’ ~ t).
We propose two methods how to achieve that. The point is ththtdnethods are appli-
cable to certain (quite large) classes of models of conouggstems where they result
in effectiveand polynomial-timereductions. In fact, we formulate abstract conditions
on process classésandB under which the problerA ~ B is polynomially reducible
to the problemA C B (or A ~ B). Roughly speaking, the first method (introduced in
Section 2) applies to models with a finite branching degreeresbne can in some sense
identify what actions are not enabled. Examples includedsisses of) pushdown sys-
tems, queue systems, etc. The second method (Section isadgbe to models closed
under (synchronized) parallel composition. Exampleseug, Petri nets with various
extensions/restrictions. The applicability and limitais of each method are discussed
in greater detail in the respective sections.

Although the two methods do not cover all of the existing nmeasd concurrent
processes (see Section 4), they reveal a kind of generébredhip between winning
strategies in bisimulation and simulation games. Moreatés now clear that sim-
ulation is harder than bisimulation not by coincidence bu¢ ¢bo some fundamental
reason—one can polynomially reduce bisimilarity to sintiola preorder/equivalence
by general reductions whose underlying principle is inecej@mt of concrete process
models. Hence, the paper presents a new piece of generidédgswrather than a col-
lection of technical results.

2 Reducing Bisimilarity to Simulation — Method 1

For the rest of this section, we fix a finite set of actiohg = {ay,...,ar} and two
transition systems§ = (5, Act,—), T = (T, Act,—) with a finite branching degree.
Moreover, we pud = max{d(S),d(7)}. Our aim is to define two other transition
systemsS’ and7’ which extend the systendsand7 by some new states and transitions

in such a way that for alt € S, ¢ € T we have that ~ tiff s’ C t/, wheres’ andt’
are the ‘twins’ ofs andt in &’ and7”, respectively. Since, in the considered simulation
game, the attacker plays with#f and the defender plays withif’, we call S’ an A-
extensiorof S, and7’ a D-extensiorof 7. The idea behind the construction®fand
7' can be intuitively described as follows: one round of a bidation game between
s andt is emulated by at most two rounds of a simulation game betwéand'.
The rules of the bisimulation game allow the attacker to ntdkemove either frons

or from¢ . If he chooses and playss % s(a;,7), we can easily emulate his attack
by s’ % s(a;, j) (remember that(a,, j) is thej** a;-successor of). The defender’s
response 4 t(a;, £) is emulated by’ % t(a;,)’ (t' has the ‘samai;-successors as3.

If the attacker choosesand plays % t(a;, j), the emulation is more complicated and
takes two rounds. First, to each successay, j) of t we associate a unique actian.

Now, we add tas’ a family of transitionss’ X s'foralll <i<kandl <j<d.

To emulate the move % t(a;,7) in our simulation game, the attacker performs the
/\-Z—Ioop ons’. In our bisimulation game, the atta¢k™ ¢(a;, j) would be matched by
(some) moves % s(ay, £). First, we name the successorsdlfy a family oféf actions.

;
Now, the response % s(a;,¢) is emulated by’ X rla;, j, €], wherer|a;, 7, £] is a
newly added state. It finishes the first round, i.e., the firatlation phase. In the second
round,t’ is in a wayforcedto go tot(a;, j)’ and the only response availablere;, j, /]

is to enters(a;, £)’, which finishes the emulation. The mentioned ‘forcing’ ihi@ved

by allowing r[a;, j,¢] to go to a ‘universal’ state (i.e., to a state which can sitteula
everything) under all but one actidf. It means that if any other action (different from
%) is used byt’ in the second round, the attacker loses the simulation geieece,

his only chance is to play &-transition; our construction ensures that the only such

5¢

transition ist’ — t(a;, £)’. Our construction also guarantees that any ‘bad’ move of
one of the two players in the simulation game (which is notsitstent with the above
given scenario) is immediately ‘punished’ by allowing titeer player to win. Formal
definitions and proofs follow. _

LetA={N|1<i<kl<j<dlandA={§|1<i<k1<j<d}be
finite sets of actions such thadt A, and Act are pairwise disjoint. We defingct’ =
Act U AU AU {~} wherey is a fresh action.

Definition 4. An A-extensiorof S (see Fig.1) is a transition systeff = (S’, Act’, —)
together with an injective mapping : S — S’ satisfying the following conditions
(wheref(s) is abbreviated ta’):

a

- If s % 5is atransition ofS, thens’ % 3 is a transition ofS’.
- ' X ¢ is a transition ofS’ for everys € Sand\ € A.
— Forallse S,1<i<k,andl < j < dwe have the following:
) 57 . .
o if j < |succ(s,a;)| thens’ = s(a;,j) is a transition ofS’ (remember that
s(as, 7) is thej" a;-successor of in S);
. . . 57
o if j > |succ(s,a;)| then there is a transitios’ — ¢; to some statg; € S’
which can perform the action. This family ofd/-transitions is indicated by a

s(a1,1) s(a1,n1) s(ak, 1) s(ak,nk) t(a1,1) t(ar,m1) tlax,1) t(ak, mx)

succ(s, a1) suce(s, ag) succ(t,ar) succ(t, ax)

’
¢ A
Act’

\

rlas, j, 1] rlai, §, d]

s(a1,1) s(ar,n1) s(ar, 1) s(ak, ng)’

R/_jw_j

succe(s, ar) succ(s, ag)

Act' — {61} | Act’ — {5¢}

Y

Act’ Act’

Fig. 1. Statess of S andt of 7, and the corresponding stat€sof S’ andt’ of 7’ (some of the
out-going transitions of are omitted).

©-labeled arrow in Fig. 1. Also observe that we do not imposg aatditional
restrictions ory; (i.e.,g; can also emit other actions).
— For eachs € S the states’ has only the transitions admitted above.

A simple observation about-extensions is
Lemma 5. If S is deterministic, thew has a deterministicl-extension.

A stateu is universalif v % u for everya € Act’ (u can also have other out-going
transitions). Observe that a universal state can simalagprocess which emits actions
of Act’. In the next definition, we write % U to indicate that % v for some universal
stateu.

Definition 6. A D-extensiorof 7 (see Fig. 1) is a transition systefi = (77, Act’, —
) together with an injective mapping: T — T’ satisfying the following conditions
(whereg(t) is abbreviated ta’):

a

— Ift % fis atransition of 7, thent’ % ¢’ is a transition of7”.

- % Ufor everyt € T andj € A.
—PForallteT,1 <i<k, andl < j < d we have the following:

A : .
o If j < |succ(t,a;)| thent’ = rla;, j, ¢] is atransition ofS’ for eachl < ¢ < d.

Herer[a;, 7, /] is a state of I’ which has
2

. 5%)
* exactly oney’-transitionr[a;, j, /] — t(a;,j) (remember that(a;,7) is
the j*" a;-successor of in 7);
* atransitionr[a;, j,¢] % U for eacha € Act’ — {6!}.

. N
o If j > |succ(t,a;)| then there is a transitioff — U.
— For eacht € T the state’ has only the transitions admitted above.

Theorem 7. Lets € S andt € T. LetS’ be an A-extension &f and7”’ a D-extension
of 7. We have that ~ tiff s’ T t'.

Proof. We start with the == direction. Let us suppose that ~ t. We show that
the defender has a winning strategy in a simulation gamiaied in(s’,¢'). LetR =
{(s,t') | s € S,;t € T,s ~ t}. We prove thatR can be extended to a simulation
relation (which means that indeetC ¢'). Let (s',¢') € R. We show that the defender
can play in such a way that after at most two rounds he achathesr a configuration
from R, or a configuration where he ‘obviously’ wins. So, ¥t p be an attacker’s
move. We consider three possibilities:

— If a € Act, thenp = & for somes € S. Sinces ~ t, there ist % £ such that ~ £.
Hence, the defender can respond:by>> ¢’ and thus enter a configuration froRh

— If a € A, then there is a transitiati = U (cf. Definition 6). Hence, the defender
can use this transition and from that point on he can simtgatrything'.

— If a = X}, thenp = &’ and there are two possibilities:

. L, M
e The state has fewer than a;-successors. Then there is a transittor> U
and the defender wins.
e Otherwise, let us consider the attack’ ¢(a;, j) in thebisimulationgame be-

tweens andt¢. Sinces ~ t, there is a move 2 s(a;, ¢) such thats(a;, £) ~

. . bY:
t(a;, 7). In our simulation game, the defender uses the> r[a;, j, ¢] tran-
sition as a response. The current game situation (afteingayne round) is
14

(s',rlas, j,£]). Now, if the attacker plays’ A s(as, £), the defender can re-

o . .
spond byr[a;, j, ¢] = t(a;,j)" and enter a configuration frof. If the attacker
uses any other attack, the defender can go to a universakstdtthus he wins.

Now we show the<{="direction, i.e., we assum€& C ¢’ and proves ~ t. To do
that, we demonstrate th& = {(s,t) | s € S,¢t € T, s’ C t'} is a bisimulation. So, let
(s,t) € R. An attack which comes from the first component is easy to leani s %
5, then alsos’ % 5’ and sinces’ C ¢/, there ist’ % # such thats?’ C #. Hencet % ¢
where(s,7) € R. Now let us consider an attack™ t(a;, 7). To find an appropriate
response for the defender, let us examinesihaulationgame betweer’ andt’. Here,

the attacker can play %, s’. The defender must respond by sorhé» rla;, j, €] (there

. LN
is surely no transition’ — U). If the £ was greater than the numberafsuccessors

of s, the defender’s response would be definitely wrong becédnesethe attacker could

. . . o
win in two rounds by performing the transitios's= ¢, > ¢. So, we see that themust

be less than or equal to the numbemrgisuccessors of. The attacker can further play
£

&4 5t
s’ = s(a;,?)’, and the defender can respond onlynby;, j, ¢] = t(a;,j)’. Thus, we
obtain thats(a;,)’ C t(a;,j) . It means that, in our bisimulation game, the defender
can use the transition 2 s(a;, ¢) and enter a configuration frof. O

2.1 Applications

Theorem 7 allows to construct direct one-to-one polynoitimaé reductions from the
problemA ~ B to the problemA C B (andA ~ B) for many process classésand
B. All we need to show is that the syntax AfandB admits an efficient construction
of A- and D-extensions, respectively. It can be done, eqg.(farious subclasses of)
pushdown automata, BPA systems, one-counter automatae gugomata (where the
queue can be tested for emptiness), channel systems, Paafaets, and others (the
listis surely not exhaustive; interested reader can prigtzatal some of his own favorite
models). To illustrate this, we discuss the model of pushdautomata in greater detail.
The limitations of our first method are mentioned at the entthisfsection.

A pushdown automaton (PDAg a tupleM = (Q, I, Act,n) whereQ is a finite
set of control states I is a finite stack alphabetAct is a finiteinput alphabetand
n:(QxTI)— P(Act x (Q x I'*)) is atransition functionwith finite image (here
‘P(M) denotes the powerset 8f). In the rest of this paper we adopt a more intuitive
notation, writingpA % ¢8 € 7 instead of(a, (¢, 3)) € n(p, A). To M we associate
the transition systerfy; where@ x I'* is the set of states (we writer instead of
(p, @), Act is the set of actions, and the transition relation is definegda % ¢S«
iff pA % B € 7. The set of all states 6y is also denoted b$tate$7).

APDAM = (Q, T, Act,n)is

deterministidf forall p € Q, A € I', anda € Actthereisatmostongd € Qx 1™
such thap4 = ¢g;

normedif for everypa € Q x I'* there isq € Q such thapa —* ge;

statelessf |Q| = 1;

one-counter automatah I" = {I, Z} and each element efis either of the form
pZ % qI’Z wherej € IN, (such transitions are callezkro-transitiony, or of

the formpI % ¢I7 wherej € INy (these transitions aneon-zero-transitions
Hence, theZ can be viewed as a bottom marker (which cannot be removed), an
the number of pushedfis represents the counter value.

The classes of all pushdown processes, stateless pushdowaspes, one-counter pro-
cesses, and finite-state processes are denote®ByBPA, OC, andFS, respectively.
The normed subclasses BDA andBPA are denoted bpPDA andnBPA (one could
also consider norme@C processes, but these are not so importan#. i any of the
so-far defined classes, thdat-A denotes the subclass of all deterministic processes of
A. For exampledet-nBPA is the class of all deterministic norm&dPA processes. Let

— D = {PDA, BPA, OC, nPDA, nBPA, FS},

— A=DuU{det-A| A € D).

Lemma 8. LetA € A and let M € A be an automaton oh. Then there isM’ € A
and a mapping’ : State§7,) — State$7,) constructible in polynomial time (in the
size ofM) such that7 . together withf is an A-extension of\1.

Proof. We constructM’ by extendingM. First, if M is not a one-counter automaton,
it can possibly empty its stack and therefore we add a newidhttsymbol Z to the
stack alphabet. The mappirfgthen maps every configuratigix to pa.Z (in the case
of one-counter automatd, is just identity). The\/-loops are added by extending the

5
transition function with all rules of the formX it pX. Since the outgoing transitions
of a given state X o are completely determined yand X, we can also easily add the
d7-transitions; the family oB-transitions (see Fig. 1) is implemented by changing the
top stack symbol to a fresh symbpl, without changing the control state (this works
both for PDA and BPA,; in the case of one-counter automata wt&u change the
control to a newly-added control state without modifying g8tack). Then, the action

~ is emitted andY” is removed from the stack. Note that this construction prese
normedness and determinism. Obviously, the reduction svorpolynomial time (and
even in logarithmic space). a

The next lemma can be proved in a similar way. Note that thestcoction does not
preserve determinism (see Fig. 1).

Lemma9. LetD € D and letM € D be an automaton d. Then there isM’ € D
and a mapping’ : State§7,,) — State$7,) constructible in polynomial time (in the
size of M) such that7 . together withf is an D-extension oj\.

Now, we can formulate two interesting corollaries of Theoré

Corollary 10. LetA € AandD € D. The problenA ~ D is polynomially reducible
to the problemA C D.

Corollary 11. LetA,B € D suchthaB C A. Then the problem ~ B is polynomially
reducible to the problem ~ B.

Proof. There is a general one-to-one reduction from the prol#iemB to the problem
A ~ B, which is applicable also in our case—given two processexlt, we construct
a

other processe€ andt’ with transitionss’ % s, s’ % ¢, andt’ % ¢. We see that C ¢
iff s’ ~¢. O

Our first method is applicable to a wide variety of models, iblias its limitations.
For example, in the case of A-extensions there can be diffisulvith the family of
O-transitions. In order to implement them, the model mustltde & (somehow) ‘de-
tect’ the missing transitions. It is not always possible; dgample, general Petri nets
cannot test a place for emptiness and hencestfiensitions cannot be implemented.
Nevertheless, the method is applicable to some subclastessions of Petri nets. For
example, 1-safe Petri netainin a way test their places for emptiness—to construct
an A-extension of a given 1-safe nkf, we just equip each plagewith its ‘twin’ p

and restructure the transitions so that they have the sdew ef the ‘old’ places and
preserve the following invariant:is marked iffp is unmarked. It is quite easy; then, we
can easily implement the family é¥-transitions (by testing appropriate ‘twins’ for be-
ing marked). Another example are Petri nets with inhibitesawhere our first method
applies without any problems.

Hence, we can extended tHeandD classes by many other models and the obtained
corollaries are still valid. In this way one can ‘generatédag list of results, of which
some were already known while others are new. Some of thegligare ‘exotic’ (for
example,det-nPDA ~ 1-PN is polynomially reducible (and hence not harder than)
det-nPDA C 1-PN wherel-PNis the class of 1-safe Petri nets; both problems are
decidable but their complexity has not yet been analyzeatail). However, some of
the obtained consequences actually improve our knowledgetareviously studied
problems. For exampl&DA ~ FSis known to bePSPACE-hard [May00] while the
best known lower bound fdPDA C FS wascoNP [KM02b]. Our method allows to
improve this lower bound t8SPACE'.

3 Reducing Bisimilarity to Simulation — Method 2

As in the previous section, we first fix a finite set of actiohg = {a4,...,ax} and
two transition system§ = (S, Act,—), T = (T, Act,—) with a finite branching
degree. We also define= max{d(S), d(7T)}.

Definition 12. By aparallel compositiomf transition system&; = (71, Act,—) and
T = (T, Act,—) we mean a transition systeffj |72 = (T} x Tz, Act,—) where
(tl,tg) N (El,fg) iff eithert1 N El andt} = t9, Ol to N Eg andfl =11.

Intuitively, our second method works for all classes of eyst that are closed under
parallel composition and synchronization (see Definiti@). The idea is as follows:
For S and7 one constructs new systemsamp(S, 7) and Dcomp(S,7) by com-
posing (and synchronizingj and7. Hence, the sets of states of&mp(S,7) and
D-comp(S,T) subsumeS x T (to prevent confusion, states of &mp(S,7) are
marked by a horizontal bar; hendg, t) is a state of Aeomp(S,7T) while (s,t) is

a state of Deomp(S,T)). The goal is to obtain the property that, forale S,t € T
we have thats ~ tiff (s,t) C (s,t). Note that each player has his own copy&f
and7’.

The simulation game proceeds as follows: The attacker ifag A-comp(S, 7))
chooses eithe$ or 7 and makes a move there. Let us assume that the attacker shoose
S (the other case is symmetric). Then the defender (playifg-iwmp(S, 7)) must
make exactly the same move in his copyShs the attacker, but also some move in
his copy of7. The defender can choose which moveZirhe makes, provided it has
the same action as the attacker's move. Furthermore, tieedef ‘threatens’ to go to a
universal state (that can simulate everything) unlessttiaeker does a specific action
in the next round. In the next round the attacker must maketlxéne same move in

! Very recently [KMO02a], the authors proved tHaDA C FSis actuallyEXPTIME -complete
andPDA ~ FSis PSPACE-complete.

his (the attacker’s) copy of as the defender did in his (the defender’s) cop¥ of the
previous round. The defender responds to this by endindpfeéatto become universal.
Otherwise the defender can make his side universal and hésimulation game.

This construction ensures that the two copiesSadnd7 on both sides are kept
consistent. One round of the bisimulation game betwgamd7 is thus emulated by
two rounds of the simulation game betweertéwp (S, 7) and Dcomp(S,T).

Of course, it is possible that for a given statthere are several different outgoing
arcs labeled with the same action However, we need to construct new systems where
outgoing transitions are labeled uniquely. Our notaticsinsilar to the one used in the
previous section: Letl = {\/ |1 <i<k,1<j<d}andA={0] |1<i<k,1<
J < d} befinite sets of actions such th&t A, and Act are pairwise disjoint. We define
Act' = AU A. _

For any states in S, the actions? is used to label thg-th outgoing arc that was
previously labeled by action;. Note that the actioﬂf can occur many times in the
transition system. It is only uniqgue among the labels of tirgoing arcs of any single
state. Similarly, the actions] are used to label the outgoing arcs of statesT".

Fig. 2 illustrates the construction. The first row shows paftthe original systems
S and7. The second row shows Aemp(S, 7). The labels of the transitions have
been changed as described above, and the modified systembdeav put in parallel
without any synchronization. The last row shows (a fragnodnb- comp(S, 7). Here
the systemss and7 have been composed and synchronized in such a way as to ensure
the properties of the simulation game as described above.

Definition 13. We define transition syster§é = (S, Act’, —) and7’ = (T, Act’, —)
where
a; o . L6l o
— for every transitions = s(a;, j) in S there is a transitiors = s(a;,j) in &';

o ; . . LA .
— for every transitiort % t(a,, £) in T there is a transitiont = t(a;, £) in 7/;
— there are no other transitions i’ and7".

The A-compositionA-comp(S,7) of S and T (see Fig.2) is the parallel composition
S'||7’. Configurations in Acomp(S, T) are denoted bys, t).

Remark 14.0bserve that Acomp(S, T) is always deterministic, even & and7 are
nondeterministic.

A statew is universalif u % u for everya € Act’ (u can also have other outgoing
transitions). Observe that a universal state can simalagprocess which emits actions
of Act’. In the next definition, we write = U to indicate that — « for some universal
stateu.

Definition 15. The D-compositiorD-comp(S,7) of S and7 (see Fig. 2) is the tran-
sition systenD = (D, Act’, —), whereD is the set

{(s,t)|s€ S,teTtU{(s,t) |s€S,teT}U{(s,t)"|s€S,teT}

and the transition relation oD is defined as follows. Lat < i < k,1 < j < n; and

s(a1,1) s(ar,n1) s(ar,1) s(ar, i) t(ai, 1) t(ar,m1) t(ar,1) t(a, me)

N -

succ(s,ar) succ(s, ar) succ(t, a1) suce(t, ar)

s(a1,1) s(ar,n1) s(ak, 1) s(aw,ni) tlar, 1) tlar,m1) tlak, 1) t(ak, my)

succ(s, ar) succ(s, ak) suce(t, ar) suce(t, ar)
(s(ai, 1), t(ai, £)) (s(as,ni),t(a:, £))

g
61'

Py 15 S N Act' — {57} oy

Act’

@

(S(G,i,j), t(u'iv mz))/

Act’ At =Ny S Act’ — {AT"}

my
A

(S(a’ivj)’t(ai’l)) (S(ai7j)7t(ai7mi))

Fig.2. Statess and ¢ of S and 7, then the A-composition of S and 7, and finally the
D-composition ofS and7 .

— If there are transitionss %% s(a;,j) in S andt % t(a;,¢) in 7 then there are
transitions(s,t) = i ((a;, j),t(a;, £)) and(s, t) A—i (s(as, j),t(ai, €))" inD.

~ (s(ai,), tas, 0)) > (s(as,), H(as,)

— (s(ai, 4),t(a:i, £)) L U, for eachb € Act’ — {6}

- (SE%J’) (auf;) —“((@i, 4), t(ai, £))

— (s(ai,), t(a;, £))" = U, for eache € Act’ — {67},

Theorem 16. Lets € S, t € T, and let(s, t) and(s, t) be the corresponding states in
A-comp(S,T) and Dcomp(S, T), respectively. We have that t iff (s,t) C (s,).

Proof. We start with the =" direction. Let us suppose that~ ¢. We show that the
defender has a winning strategy in a simulation game ieitiah ((s, ¢), (s,t)). Let
R = {((s,t),(s,t)) | s € S,t € T,s ~ t}. We prove thatR can be extended to a
simulation relation (which means that indefedt) C (s, t)). To do that, we show that
the defender can play in such a way that after at most two mbedachieves either a
configuration fromR, or a configuration where he ‘obviously’ wins.

57
Let us assume that the attacker makes a njemMg — (s(a;,), t). (The other case

£
where the attacker makes a mdet) art (s,t(as,£)) is symmetric.) Then the defender
responds by a movgs, t) & (s(as, j),t(ai, £))" such thats(a;, j) ~ t(a;, £). Such a
move must exist by the definition of Bemp (S, 7) and the fact that ~ ¢. Then there
are two cases:

£
— If the attacker makes the move(a;, j),t) X (s(as,7),t(ai, £)) then the defender
£
responds by the mov@(a;, j), t(a;, £)) % (s(ai, j),t(a;, £)). The resulting pair
((S(aiv .])7 t(aia g))a (S(aia .])a t(aiv é))) is in R, because(aia .]) ~ t(aiv 6)
— If the attacker makes any other move then the defender cam gaihiversal state
where he can simulate everything.

Now we show the<+="direction, i.e., we assumgs, t) C (s,¢) and proves ~ t.
To do that, we demonstrate th& = {(s,t) | s € S,t € T,(s,t) C (s,t)} is a

bisimulation. So, lets,t) € R. Assume that the attacker makes a mevé s(a;, j).
(The other case where the attacker makes a mo¥e t(a;, £) is symmetric.) Thus,

J

. 5! .
there is an attacker's move, t) — (s(a;,j),t). Since(s,t) C (s,t) there must be a

defender movés, t) o (s(as, 4),t(ai, £)) suchtha(s(a;, j),t) C (s(as, j), t(a;, £)) .

Also there must be a move® t(a;,¢) in 7. Furthermore, against the attacker move
£ 4

(s(ai, j),t) ! (s(as,7),t(ai, £) there is just one defender moyga;, 5),t(a;, £))’ !

(s(ai, 4),t(ai, 0)) such that(s(a;,), t(a;, £) T (s(as,j),t(a;,£)). Thus, we obtain

(S(aivj)vt(aivé)) eER. O

3.1 Applications

The range of applicability of Theorem 16 is incomparabldwlite one of Theorem 7.

Definition 17. Let us denote bg the class of all model€ to which our second method
applies. The following conditions are sufficient for menshgy ofC.

1. ForanyM € C, the transition systerfiy, determined by\1 satisfies the following
condition: the out-going transitions of a given stateZp, are determined by a
finite number of labeled ‘transition rules’ which are a paift 81. The transition
rules must bénjectivein the sense that each rule generates at most one out-going
transition in every state of \,. The label of this outgoing transition is the same as
the label of the associated transition rule.

2. Cis efficiently closed under parallel composition (i.e., &ir M, My € C there
is M3 € C computable in polynomial time such thBty, = T, || Ta,)-

3. Cis efficiently closed under synchronization in the follogvsense: for any two
given transition rules it is possible to (efficiently) defaaew transition rule that
has the effect of both.

4. C subsumes the class of finite automata.

For example, the above conditions are satisfied by 1-saferiéd$, general Petri nets,
reset Petri nets, transfer Petri nets [Pet81], VASS (veaddition systems with states)
[BM99], FIFO-channel systems [AJ93], etc. However, theraso some classes that
not in C. For example, Basic Parallel Processes [Chr93] are nd} ibecause they
are not closed under synchronization (condition 3). Pusihdautomata are not i@,
because they are not closed under parallel compositiord{om 2). PA-processes
[BK85] are not inC, because they are not closed under synchronization andifeca
their transition rules are not injective (they do not sgtisfnditions 1 and 3).

Lemma 18. Let C be a process model satisfying the above conditions and let
M1, M5 € C. Then there isM’ € C constructible in polynomial time such thaj,/
is (isomorphic to) Acomp(Ta, s Ta,)-

Proof. Follows immediately from condition 1 (which enables effitieenaming of ac-
tions) and condition 2 (efficient parallel composition). a

Lemma 19. Let C be a process model satisfying the above conditions and let
M1, M5 € C. Then there isM’ € C constructible in polynomial time such thaj,/
is (isomorphic to) Deomnp(Taq, , T,)-

Proof. M’ is obtained by constructing the synchronizatiom\df and M, according

to Definition 15 (this is possible by conditions 1 and 3). lalso necessary to include
the states of the forrfis,)’ and (s, t)” into the new system. This is possible because
C subsumes the class of finite automata (condition 4) and is éfeo closed under
synchronization with them (condition 3). a

Corollary 20. LetC be a process model satisfying the above conditions, ardilet
be the subclass of alM € C which generate a deterministic transition system. Then
the problenC ~ Cis polynomially reducible tdet-C C C (and also toC ~ C).

Proof. Immediately from Theorem 16, Remark 14, Lemma 18, and Leménalthe
reduction toC ~ C is achieved in the same way as in Corollary 11. O

4 Conclusion

We have described two general methods to construct direct@one reductions from
bisimulation equivalence to simulation preorder (or siation equivalence) on labeled
transition systems. On many classes of finitely generasegition systems these reduc-
tions are even effectively computable in polynomial timen@rally speaking, the first
method is effective for all classes of systems that can tstdn-enabledness of ac-
tions, like finite-state systems, pushdown automata, gbffitee processes (BPA), one-
counter machines, FIFO-channel systems with explicitt@sjueue-emptiness, 1-safe
Petri nets, Petri nets with inhibitor arcs, and various fagses of all these. The second
method is effective for all classes of systems that are dlaseler parallel composition
and synchronization like 1-safe Petri nets, general Petd,meset Petri nets, transfer
Petri nets, VASS (vector addition systems with states) [BM#hd FIFO-channel sys-
tems [AJ93].

Thus, for all these classes of systems, deciding simulgir@order/equivalence
must be computationally at least as hard as deciding bisitionl equivalence. This
provides a formal justification of the general rules of thuméntioned in Section 1. It
is interesting to compare these results to the results inQ&bJ, where an abstract, (but
not generally effective) one-to-one reduction from sintiolaequivalence to bisimula-
tion equivalence on general labeled transition systemspresented (i.e., a reduction
in the other direction). Therefore, these results furtharify the relationship between
simulation equivalence and bisimulation equivalence.

For some classes of systems both methods are effectivefa.dinite-state sys-
tems, FIFO-channel systems with explicit test for empsnes for 1-safe Petri nets.
However, for general Petri nets only the second method whlesfirst one fails since
Petri nets cannot test for non-enabledness of actionspistrdown automata it is vice-
versa. They can test for non-enabledness of actions, butcrelosed under parallel
composition.

Finally, there remain a few classes of systems for which rafneur methods is
effective, like Basic Parallel Processes (BPP) and PAgsses. Also for these classes,
simulation preorder/equivalence is computationally karthan bisimulation equiva-
lence [KMO02b], but no effectiveirectreduction from bisimulation equivalence to sim-
ulation preorder is known for them yet (although effectivdirect reductions exist).

References

[AJ93] P.A. Abdulla and B. Jonsson. Verifying programs witireliable channels. IRro-
ceedings of LICS'93ages 160-170. IEEE Computer Society Press, 1993.

[BGS92] J.Balcazar, J. Gabarrd, and M. Santha. Decilisignilarity is P-completeFormal
Aspects of Computing(6A):638—648, 1992.

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicatiorocesses with abstraction.
Theoretical Computer Scienc&7:77-121, 1985.

[BM99] A. Bouajjani and R. Mayr. Model-checking lossy vectmdition systems. |i®ro-
ceedings of STACS'99olume 1563 of.NCS pages 323-333. Springer, 1999.

[Chro3] S. ChristensenDecidability and Decomposition in Process Algebra3hD thesis,
The University of Edinburgh, 1993.

[JKMOO]

[KM02a]
[KMO2b]

[May00]

[Mol96]
[Pet81]
[SJO1]
[Stios]
[Tho93]

[VG99]

P. Jancar, A. Ku€era, and F. Moller. Simulatiorddsisimulation over one-counter
processes. IfProceedings of STACS 2Q0@lume 1770 olLNCS pages 334-345.
Springer, 2000.

A. KuCera and R. Mayr. On the complexity of semargguivalences for pushdown
automata and BPA. IRroceedings of MFCS200RNCS. Springer, 2002. To appear.
A. Ku€era and R. Mayr. Simulation preorder over pimprocess algebramforma-
tion and Computationl73(2):184—198, 2002.

R. Mayr. On the complexity of bisimulation problerfee pushdown automata. In
Proceedings of IFIP TCS'200(olume 1872 ofLNCS pages 474-488. Springer,
2000.

F. Moller. Infinite results. InProceedings of CONCUR’'9&olume 1119 oL NCS
pages 195-216. Springer, 1996.

J.L. PetersorPetri Net Theory and the Modelling of SysterRsentice-Hall, 1981.

Z. Sawa and P. Jancar. P-hardness of equivaleriegtes finite-state processes.
In Proceedings of SOFSEM'200%olume 2234 oL NCS pages 326-335. Springer,
2001.

C. Stirling. The joys of bisimulation. IRroceedings of MFCS’98/0lume 1450 of
LNCS pages 142-151. Springer, 1998.

W. Thomas. On the Ehrenfeucht-Fraissé game iorétieal computer science. In
Proceedings of TAPSOFT'98olume 668 olLNCS pages 559-568. Springer, 1993.
R. van Glabbeek. The linear time—branching time spee. Handbook of Process
Algebrg pages 3-99, 1999.

