
Why is Simulation Harder Than Bisimulation?

Antonı́n Kučera⋆1 and Richard Mayr2

1 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,
tony@fi.muni.cz

2 Department of Computer Science, Albert-Ludwigs-University Freiburg
Georges-Koehler-Allee 51, D-79110 Freiburg, Germany.

mayrri@informatik.uni-freiburg.de

Abstract. Why is deciding simulation preorder (and simulation equivalence)
computationally harder than deciding bisimulation equivalence on almost all
known classes of processes? We try to answer this question bydescribing two
general methods that can be used to construct direct one-to-one polynomial-time
reductions from bisimulation equivalence to simulation preorder (and simulation
equivalence). These methods can be applied to many classes of finitely generated
transition systems, provided that they satisfy certain abstractly formulated con-
ditions. Roughly speaking, our first method works for all classes of systems that
can test for ‘non-enabledness’ of actions, while our secondmethod works for all
classes of systems that are closed under synchronization.

1 Introduction

In the last decade, a lot of research effort has been devoted to the study of decid-
ability/complexity issues for checking various semantic equivalences between certain
(classes of) processes. Formally, aprocessis (associated with) a state in atransition
system.

Definition 1. A transition systemis a tripleT = (T,Act ,→) whereT is a set ofstates,
Act is a finite set ofactions, and→ ⊆ T × Act × T is a transition relation.

We writet
a
→ t̄ instead of(t, a, t̄) ∈ → and we extend this notation to elements ofAct∗

in the natural way. A statēt is reachablefrom a statet, writtent →∗ t̄, if t
w
→ t̄ for some

w ∈ Act∗. A statet̄ is ana-successorof a statet if t
a
→ t̄. The set of alla-successors

of t is denoted bysucc(t, a). Assuming some implicit linear ordering onsucc(t, a), we
denote byt(a, j) thejth a-successor oft for each1 ≤ j ≤ |succ(t, a)|. Thebranching
degreeof T , denotedd(T), is the least numbern such thatn ≥ |

⋃
a∈Act

succ(t, a)|
for everyt ∈ T . If there is no suchn thend(T) = ∞.

The notion of ‘behavioral sameness’ of two processes can be formally captured
in many different ways (see, e.g., [vG99] for an overview). Among those behavioral
equivalences,simulationandbisimulationequivalence enjoy special attention.

Definition 2. Let S = (S,Act ,→) and T = (T,Act ,→) be transition systems. A
relationR ⊆ S × T is asimulationiff whenever(s, t) ∈ R, then

⋆ Supported by the Grant Agency of the Czech Republic, grant No. 201/00/0400.

– for eachs
a
→ s̄ there is somet

a
→ t̄ such that(s̄, t̄) ∈ R.

A processs is simulatedby t, written s ⊑ t, iff there is a simulationR such that
(s, t) ∈ R. Processess, t aresimulation equivalent, writtens ≃ t, iff they can simulate
each other.

A bisimulation is a simulation whose inverse is also a simulation; a more explicit defi-
nition follows.

Definition 3. Let S = (S,Act ,→) and T = (T,Act ,→) be transition systems. A
relationR ⊆ S × T is abisimulationiff whenever(s, t) ∈ R, then

– for eachs
a
→ s̄ there is somet

a
→ t̄ such that(s̄, t̄) ∈ R;

– for eacht
a
→ t̄ there is somes

a
→ s̄ such that(s̄, t̄) ∈ R.

Processess and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they are
related by some bisimulation.

Simulations (and bisimulations) can also be viewed asgames[Sti98, Tho93] between
two players, the attacker and the defender. In a simulation game the attacker wants to
show thats 6⊑ t, while the defender attempts to frustrate this. Imagine that there are
two tokens put on statess andt. Now the two players, attacker and defender, start to
play asimulation gamewhich consists of a (possibly infinite) number ofroundswhere
each round is performed as follows: The attacker takes the token which was put ons
originally and moves it along a transition labeled by (some)a; the task of the defender
is to move the other token along a transition with the same label. If one player cannot
move then the other player wins. The defender wins every infinite game. It can be easily
shown thats ⊑ t iff the defender has a winning strategy. The only differencebetween
a simulation game and abisimulation gameis that the attacker canchoosehis token at
the beginning of every round (the defender has to respond by moving the other token).
Again we get thats ∼ t iff the defender has a winning strategy.

Let A, B be classes of processes. The problem whether a given processs of A is
simulated by a given processt of B is denoted byA ⊑ B. Similarly, the problem ifs and
t are simulation equivalent (or bisimilar) is denoted byA ≃ B, (orA ∼ B, respectively).

One reason why simulation preorder/equivalence and bisimilarity found their way
to many practical applications is their special computational tractability—both equiv-
alences are decidable in polynomial time for finite-state processes (in fact, they are
P-complete [BGS92, SJ01]) and remain decidable even for certain classes of infinite-
state processes [Mol96]. By contrast, all trace-based equivalences arePSPACE-
complete for finite-state systems and become undecidable for infinite-state systems.
Further evidence is provided by recent results on equivalence-checking between infi-
nite and finite-state systems—see [KM02b] for an overview. Although the formal defi-
nitions of simulation and bisimulation are quite similar, one cannot immediately trans-
fer techniques and algorithms developed for one of the two equivalences to the other
one. Nevertheless, thereis some kind of connection between them—for example, in
[KM02b] it has been shown that simulation equivalence can be‘reduced’ to bisimula-
tion equivalence in the following sense: given a transitionsystemT , one can define a
transition systemT ′ with the same set of states asT such that for all statess, t we have

that s, t are simulation equivalent inT iff s, t are bisimilar inT ′. Although this ‘re-
duction’ works for arbitrary finitely-branching transition systems, it is not effective in
general (the only known class of infinite-state processes where the method is effective
is the class of one-counter nets [JKM00]; for finite-state processes, the method is even
efficient, i.e., polynomial-time). Actually, our present knowledge indicates that there
cannot be any general efficient reduction from simulation equivalence to bisimilarity,
because all of the existing results confirm a general rule saying that

“simulation is computationally harder than bisimilarity.”

Indeed, bisimilarity tends to be ‘more decidable’ and ‘moretractable’ than simulation;
to the best of our knowledge, there is (so far) no counterexample violating this ‘rule of
thumb’ (maybe except for some artificial constructions). But why is that? One possible
answer is that bisimilarity is so much finer than simulation equivalence that it has ‘more
structure’ and becomes easier to decide. However, this is a rather vague statement. In
this paper we try to provide a more convincing explanation/justification for the afore-
mentioned rule. We show that there are possibilities how to ‘transfer’ winning strategies
for both players from a bisimulation game to a simulation game. More precisely, given
two statess andt in transition systemsS andT , we show how to construct statess′

andt′ in transition systemsS′ andT ′ in such a way thats ∼ t iff s′ ⊑ t′ (or s′ ≃ t′).
We propose two methods how to achieve that. The point is that both methods are appli-
cable to certain (quite large) classes of models of concurrent systems where they result
in effectiveandpolynomial-timereductions. In fact, we formulate abstract conditions
on process classesA andB under which the problemA ∼ B is polynomially reducible
to the problemA ⊑ B (or A ≃ B). Roughly speaking, the first method (introduced in
Section 2) applies to models with a finite branching degree where one can in some sense
identify what actions are not enabled. Examples include (subclasses of) pushdown sys-
tems, queue systems, etc. The second method (Section 3) is applicable to models closed
under (synchronized) parallel composition. Examples are,e.g., Petri nets with various
extensions/restrictions. The applicability and limitations of each method are discussed
in greater detail in the respective sections.

Although the two methods do not cover all of the existing models of concurrent
processes (see Section 4), they reveal a kind of general relationship between winning
strategies in bisimulation and simulation games. Moreover, it is now clear that sim-
ulation is harder than bisimulation not by coincidence but due to some fundamental
reason—one can polynomially reduce bisimilarity to simulation preorder/equivalence
by general reductions whose underlying principle is independent of concrete process
models. Hence, the paper presents a new piece of generic knowledge rather than a col-
lection of technical results.

2 Reducing Bisimilarity to Simulation – Method 1

For the rest of this section, we fix a finite set of actionsAct = {a1, . . . , ak} and two
transition systemsS = (S,Act ,→), T = (T,Act ,→) with a finite branching degree.
Moreover, we putd = max{d(S), d(T)}. Our aim is to define two other transition
systemsS′ andT ′ which extend the systemsS andT by some new states and transitions

in such a way that for alls ∈ S, t ∈ T we have thats ∼ t iff s′ ⊑ t′, wheres′ andt′

are the ‘twins’ ofs andt in S′ andT ′, respectively. Since, in the considered simulation
game, the attacker plays withinS′ and the defender plays withinT ′, we callS′ anA-
extensionof S, andT ′ a D-extensionof T . The idea behind the construction ofS′ and
T ′ can be intuitively described as follows: one round of a bisimulation game between
s and t is emulated by at most two rounds of a simulation game betweens′ and t′.
The rules of the bisimulation game allow the attacker to makehis move either froms

or from t . If he choosess and playss
ai→ s(ai, j), we can easily emulate his attack

by s′
ai→ s(ai, j)

′ (remember thats(ai, j) is thejth ai-successor ofs). The defender’s
responset

ai→ t(ai, ℓ) is emulated byt′
ai→ t(ai, ℓ)

′ (t′ has the ‘same’ai-successors ast).
If the attacker choosest and playst

ai→ t(ai, j), the emulation is more complicated and
takes two rounds. First, to each successort(ai, j) of t we associate a unique actionλ

j
i .

Now, we add tos′ a family of transitionss′
λ

j

i→ s′ for all 1 ≤ i ≤ k and1 ≤ j ≤ d.
To emulate the movet

ai→ t(ai, j) in our simulation game, the attacker performs the
λ

j
i -loop ons′. In our bisimulation game, the attackt

ai→ t(ai, j) would be matched by
(some) moves

ai→ s(ai, ℓ). First, we name the successors ofs by a family ofδj
i actions.

Now, the responses
ai→ s(ai, ℓ) is emulated byt′

λ
j

i→ r[ai, j, ℓ], wherer[ai, j, ℓ] is a
newly added state. It finishes the first round, i.e., the first emulation phase. In the second
round,t′ is in a wayforcedto go tot(ai, j)

′ and the only response available tor[ai, j, ℓ]
is to enters(ai, ℓ)

′, which finishes the emulation. The mentioned ‘forcing’ is achieved
by allowing r[ai, j, ℓ] to go to a ‘universal’ state (i.e., to a state which can simulate
everything) under all but one actionδℓ

i . It means that if any other action (different from
δℓ
i) is used byt′ in the second round, the attacker loses the simulation game.Hence,

his only chance is to play aδℓ
i -transition; our construction ensures that the only such

transition ist′
δℓ

i→ t(ai, ℓ)
′. Our construction also guarantees that any ‘bad’ move of

one of the two players in the simulation game (which is not consistent with the above
given scenario) is immediately ‘punished’ by allowing the other player to win. Formal
definitions and proofs follow.

Let Λ = {λj
i | 1 ≤ i ≤ k, 1 ≤ j ≤ d} and∆ = {δj

i | 1 ≤ i ≤ k, 1 ≤ j ≤ d} be
finite sets of actions such thatΛ, ∆, andAct are pairwise disjoint. We defineAct ′ =
Act ∪ Λ ∪ ∆ ∪ {γ} whereγ is a fresh action.

Definition 4. AnA-extensionofS (see Fig.1) is a transition systemS ′ = (S′,Act ′,→)
together with an injective mappingf : S → S′ satisfying the following conditions
(wheref(s) is abbreviated tos′):

– If s
a
→ s̄ is a transition ofS, thens′

a
→ s̄′ is a transition ofS′.

– s′
λ
→ s′ is a transition ofS′ for everys ∈ S andλ ∈ Λ.

– For all s ∈ S, 1 ≤ i ≤ k, and1 ≤ j ≤ d we have the following:

• if j ≤ |succ(s, ai)| thens′
δ

j

i→ s(ai, j)
′ is a transition ofS′ (remember that

s(ai, j) is thejth ai-successor ofs in S);

• if j > |succ(s, ai)| then there is a transitions′
δ

j

i→ qj to some stateqj ∈ S′

which can perform the actionγ. This family ofδj
i -transitions is indicated by a

s t

a1

a1a1

a1

ak

ak

ak

ak

s(a1, 1) s(a1, n1) s(ak, 1) s(ak, nk) t(a1, 1) t(a1, m1) t(ak, 1) t(ak, mk)

succ(s, a1) succ(s, ak) succ(t, a1) succ(t, ak)

s′ t′

a1
a1 akak

s(a1, 1)
′

s(a1, n1)
′ s(ak, 1)′s(ak, nk)′

succ(s, a1) succ(s, ak)

δ1

1 δ
n1

1 δ1

k

δ
nk

k

Λ

γ

Θ

Act
′

Act
′

Act
′

Act
′ − {δ1

i } Act
′ − {δd

i }

r[ai, j, 1] r[ai, j, d]

λ
j
i λ

j
i

ai

δ1

i

δd
i

∆

t(ai, j)
′

Fig. 1. Statess of S andt of T , and the corresponding statess′ of S ′ andt′ of T ′ (some of the
out-going transitions oft′ are omitted).

Θ-labeled arrow in Fig. 1. Also observe that we do not impose any additional
restrictions onqj (i.e.,qj can also emit other actions).

– For eachs ∈ S the states′ has only the transitions admitted above.

A simple observation aboutA-extensions is

Lemma 5. If S is deterministic, thenS has a deterministicA-extension.

A stateu is universalif u
a
→ u for everya ∈ Act ′ (u can also have other out-going

transitions). Observe that a universal state can simulateanyprocess which emits actions
of Act ′. In the next definition, we writet

a
→ U to indicate thatt

a
→ u for some universal

stateu.

Definition 6. A D-extensionof T (see Fig. 1) is a transition systemT ′ = (T ′,Act ′,→
) together with an injective mappingg : T → T ′ satisfying the following conditions
(whereg(t) is abbreviated tot′):

– If t
a
→ t̄ is a transition ofT , thent′

a
→ t̄′ is a transition ofT ′.

– t′
δ
→ U for everyt ∈ T andδ ∈ ∆.

– For all t ∈ T , 1 ≤ i ≤ k, and1 ≤ j ≤ d we have the following:

• If j ≤ |succ(t, ai)| thent′
λ

j

i→ r[ai, j, ℓ] is a transition ofS′ for each1 ≤ ℓ ≤ d.
Herer[ai, j, ℓ] is a state ofT ′ which has

∗ exactly oneδℓ
i -transitionr[ai, j, ℓ]

δℓ
i→ t(ai, j)

′ (remember thatt(ai, j) is
thejth ai-successor oft in T);

∗ a transitionr[ai, j, ℓ]
a
→ U for eacha ∈ Act ′ − {δℓ

i}.

• If j > |succ(t, ai)| then there is a transitiont′
λ

j

i→ U .
– For eacht ∈ T the statet′ has only the transitions admitted above.

Theorem 7. Lets ∈ S andt ∈ T . LetS ′ be an A-extension ofS andT ′ a D-extension
of T . We have thats ∼ t iff s′ ⊑ t′.

Proof. We start with the ‘=⇒’ direction. Let us suppose thats ∼ t. We show that
the defender has a winning strategy in a simulation game initiated in(s′, t′). LetR =
{(s′, t′) | s ∈ S, t ∈ T, s ∼ t}. We prove thatR can be extended to a simulation
relation (which means that indeeds′ ⊑ t′). Let (s′, t′) ∈ R. We show that the defender
can play in such a way that after at most two rounds he achieveseither a configuration
from R, or a configuration where he ‘obviously’ wins. So, lets′

a
→ p be an attacker’s

move. We consider three possibilities:

– If a ∈ Act , thenp = s̄′ for somes̄ ∈ S. Sinces ∼ t, there ist
a
→ t̄ such that̄s ∼ t̄.

Hence, the defender can respond byt′
a
→ t̄′ and thus enter a configuration fromR.

– If a ∈ ∆, then there is a transitiont′
a
→ U (cf. Definition 6). Hence, the defender

can use this transition and from that point on he can simulate‘everything’.
– If a = λ

j
i , thenp = s′ and there are two possibilities:

• The statet has fewer thanj ai-successors. Then there is a transitiont′
λ

j

i→ U

and the defender wins.
• Otherwise, let us consider the attackt

ai→ t(ai, j) in thebisimulationgame be-
tweens andt. Sinces ∼ t, there is a moves

ai→ s(ai, ℓ) such thats(ai, ℓ) ∼

t(ai, j). In our simulation game, the defender uses thet′
λ

j

i→ r[ai, j, ℓ] tran-
sition as a response. The current game situation (after playing one round) is

(s′, r[ai, j, ℓ]). Now, if the attacker playss′
δℓ

i→ s(ai, ℓ)
′, the defender can re-

spond byr[ai, j, ℓ]
δℓ

i→ t(ai, j)
′ and enter a configuration fromR. If the attacker

uses any other attack, the defender can go to a universal state and thus he wins.

Now we show the ‘⇐=’ direction, i.e., we assumes′ ⊑ t′ and proves ∼ t. To do
that, we demonstrate thatR = {(s, t) | s ∈ S, t ∈ T, s′ ⊑ t′} is a bisimulation. So, let
(s, t) ∈ R. An attack which comes from the first component is easy to handle—if s

a
→

s̄, then alsos′
a
→ s̄′ and sinces′ ⊑ t′, there ist′

a
→ t̄′ such that̄s′ ⊑ t̄′. Hence,t

a
→ t̄

where(s̄, t̄) ∈ R. Now let us consider an attackt
ai→ t(ai, j). To find an appropriate

response for the defender, let us examine thesimulationgame betweens′ andt′. Here,

the attacker can plays′
λ

j

i→ s′. The defender must respond by somet′
λ

j

i→ r[ai, j, ℓ] (there

is surely no transitiont′
λ

j

i→ U). If the ℓ was greater than the number ofai-successors

of s, the defender’s response would be definitely wrong because then the attacker could

win in two rounds by performing the transitionss′
δℓ

i→ qℓ
γ
→ q. So, we see that theℓ must

be less than or equal to the number ofai-successors ofs. The attacker can further play

s′
δℓ

i→ s(ai, ℓ)
′, and the defender can respond only byr[ai, j, ℓ]

δℓ
i→ t(ai, j)

′. Thus, we
obtain thats(ai, ℓ)

′ ⊑ t(ai, j)
′. It means that, in our bisimulation game, the defender

can use the transitions
ai→ s(ai, ℓ) and enter a configuration fromR. ⊓⊔

2.1 Applications

Theorem 7 allows to construct direct one-to-one polynomial-time reductions from the
problemA ∼ B to the problemA ⊑ B (andA ≃ B) for many process classesA and
B. All we need to show is that the syntax ofA andB admits an efficient construction
of A- and D-extensions, respectively. It can be done, e.g., for (various subclasses of)
pushdown automata, BPA systems, one-counter automata, queue automata (where the
queue can be tested for emptiness), channel systems, 1-safePetri nets, and others (the
list is surely not exhaustive; interested reader can probably add some of his own favorite
models). To illustrate this, we discuss the model of pushdown automata in greater detail.
The limitations of our first method are mentioned at the end ofthis section.

A pushdown automaton (PDA)is a tupleM = (Q, Γ,Act , η) whereQ is a finite
set ofcontrol states, Γ is a finitestack alphabet, Act is a finite input alphabet, and
η : (Q × Γ) → P(Act × (Q × Γ ∗)) is a transition functionwith finite image (here
P(M) denotes the powerset ofM). In the rest of this paper we adopt a more intuitive
notation, writingpA

a
→ qβ ∈ η instead of(a, (q, β)) ∈ η(p, A). To M we associate

the transition systemTM whereQ × Γ ∗ is the set of states (we writepα instead of
(p, α)), Act is the set of actions, and the transition relation is defined by pAα

a
→ qβα

iff pA
a
→ qβ ∈ η. The set of all states ofTM is also denoted byStates(TM).

A PDA M = (Q, Γ,Act , η) is

– deterministicif for all p ∈ Q, A ∈ Γ , anda ∈ Act there is at most oneqβ ∈ Q×Γ ∗

such thatpA
a
→ qβ;

– normedif for everypα ∈ Q × Γ ∗ there isq ∈ Q such thatpα →∗ qε;
– statelessif |Q| = 1;
– one-counter automatonif Γ = {I, Z} and each element ofη is either of the form

pZ
a
→ qIjZ wherej ∈ IN0 (such transitions are calledzero-transitions), or of

the formpI
a
→ qIj wherej ∈ IN0 (these transitions arenon-zero-transitions).

Hence, theZ can be viewed as a bottom marker (which cannot be removed), and
the number of pushedI ’s represents the counter value.

The classes of all pushdown processes, stateless pushdown processes, one-counter pro-
cesses, and finite-state processes are denoted byPDA, BPA, OC, andFS, respectively.
The normed subclasses ofPDA andBPA are denoted bynPDA andnBPA (one could
also consider normedOC processes, but these are not so important). IfA is any of the
so-far defined classes, thendet-A denotes the subclass of all deterministic processes of
A. For example,det-nBPA is the class of all deterministic normedBPA processes. Let

– D = {PDA, BPA, OC, nPDA, nBPA, FS},

– A = D ∪ {det-A | A ∈ D}.

Lemma 8. Let A ∈ A and letM ∈ A be an automaton ofA. Then there isM′ ∈ A
and a mappingf : States(TM) → States(TM′) constructible in polynomial time (in the
size ofM) such thatTM′ together withf is anA-extension ofM.

Proof. We constructM′ by extendingM. First, if M is not a one-counter automaton,
it can possibly empty its stack and therefore we add a new ‘bottom’ symbolZ to the
stack alphabet. The mappingf then maps every configurationpα to pαZ (in the case
of one-counter automata,f is just identity). Theλj

i -loops are added by extending the

transition function with all rules of the formpX
λ

j

i→ pX . Since the outgoing transitions
of a given statepXα are completely determined byp andX , we can also easily add the
δ

j
i -transitions; the family ofΘ-transitions (see Fig. 1) is implemented by changing the

top stack symbol to a fresh symbolY , without changing the control state (this works
both for PDA and BPA; in the case of one-counter automata we instead change the
control to a newly-added control state without modifying the stack). Then, the action
γ is emitted andY is removed from the stack. Note that this construction preserves
normedness and determinism. Obviously, the reduction works in polynomial time (and
even in logarithmic space). ⊓⊔

The next lemma can be proved in a similar way. Note that the construction does not
preserve determinism (see Fig. 1).

Lemma 9. Let D ∈ D and letM ∈ D be an automaton ofD. Then there isM′ ∈ D
and a mappingf : States(TM) → States(TM′) constructible in polynomial time (in the
size ofM) such thatTM′ together withf is anD-extension ofM.

Now, we can formulate two interesting corollaries of Theorem 7.

Corollary 10. Let A ∈ A andD ∈ D. The problemA ∼ D is polynomially reducible
to the problemA ⊑ D.

Corollary 11. LetA, B ∈ D such thatB ⊆ A. Then the problemA ∼ B is polynomially
reducible to the problemA ≃ B.

Proof. There is a general one-to-one reduction from the problemA ⊑ B to the problem
A ≃ B, which is applicable also in our case—given two processess andt, we construct
other processess′ andt′ with transitionss′

a
→ s, s′

a
→ t, andt′

a
→ t. We see thats ⊑ t

iff s′ ≃ t′. ⊓⊔

Our first method is applicable to a wide variety of models, butit has its limitations.
For example, in the case of A-extensions there can be difficulties with the family of
Θ-transitions. In order to implement them, the model must be able to (somehow) ‘de-
tect’ the missing transitions. It is not always possible; for example, general Petri nets
cannot test a place for emptiness and hence theΘ-transitions cannot be implemented.
Nevertheless, the method is applicable to some subclasses/extensions of Petri nets. For
example, 1-safe Petri netscan in a way test their places for emptiness—to construct
an A-extension of a given 1-safe netN , we just equip each placep with its ‘twin’ p̄

and restructure the transitions so that they have the same effect on the ‘old’ places and
preserve the following invariant:̄p is marked iffp is unmarked. It is quite easy; then, we
can easily implement the family ofΘ-transitions (by testing appropriate ‘twins’ for be-
ing marked). Another example are Petri nets with inhibitor arcs, where our first method
applies without any problems.

Hence, we can extended theA andD classes by many other models and the obtained
corollaries are still valid. In this way one can ‘generate’ along list of results, of which
some were already known while others are new. Some of these results are ‘exotic’ (for
example,det-nPDA ∼ 1-PN is polynomially reducible (and hence not harder than)
det-nPDA ⊑ 1-PN where1-PN is the class of 1-safe Petri nets; both problems are
decidable but their complexity has not yet been analyzed in detail). However, some of
the obtained consequences actually improve our knowledge about previously studied
problems. For example,PDA ∼ FS is known to bePSPACE-hard [May00] while the
best known lower bound forPDA ⊑ FS wascoNP [KM02b]. Our method allows to
improve this lower bound toPSPACE1.

3 Reducing Bisimilarity to Simulation – Method 2

As in the previous section, we first fix a finite set of actionsAct = {a1, . . . , ak} and
two transition systemsS = (S,Act ,→), T = (T,Act ,→) with a finite branching
degree. We also defined = max{d(S), d(T)}.

Definition 12. By aparallel compositionof transition systemsT1 = (T1,Act ,→) and
T2 = (T2,Act ,→) we mean a transition systemT1‖T2 = (T1 × T2,Act ,→) where
(t1, t2)

a
→ (t̄1, t̄2) iff either t1

a
→ t̄1 and t̄2 = t2, or t2

a
→ t̄2 and t̄1 = t1.

Intuitively, our second method works for all classes of systems that are closed under
parallel composition and synchronization (see Definition 17). The idea is as follows:
ForS andT one constructs new systems A-comp(S, T) and D-comp(S, T) by com-
posing (and synchronizing)S andT . Hence, the sets of states of A-comp(S, T) and
D-comp(S, T) subsumeS × T (to prevent confusion, states of A-comp(S, T) are
marked by a horizontal bar; hence,(s, t) is a state of A-comp(S, T) while (s, t) is
a state of D-comp(S, T)). The goal is to obtain the property that, for alls ∈ S, t ∈ T

we have thats ∼ t iff (s, t) ⊑ (s, t). Note that each player has his own copy ofS
andT .

The simulation game proceeds as follows: The attacker (playing in A-comp(S, T))
chooses eitherS or T and makes a move there. Let us assume that the attacker chooses
S (the other case is symmetric). Then the defender (playing inD-comp(S, T)) must
make exactly the same move in his copy ofS as the attacker, but also some move in
his copy ofT . The defender can choose which move inT he makes, provided it has
the same action as the attacker’s move. Furthermore, the defender ‘threatens’ to go to a
universal state (that can simulate everything) unless the attacker does a specific action
in the next round. In the next round the attacker must make exactly the same move in

1 Very recently [KM02a], the authors proved thatPDA ⊑ FS is actuallyEXPTIME -complete
andPDA ∼ FS is PSPACE-complete.

his (the attacker’s) copy ofT as the defender did in his (the defender’s) copy ofT in the
previous round. The defender responds to this by ending his threat to become universal.
Otherwise the defender can make his side universal and wins the simulation game.

This construction ensures that the two copies ofS andT on both sides are kept
consistent. One round of the bisimulation game betweenS andT is thus emulated by
two rounds of the simulation game between A-comp(S, T) and D-comp(S, T).

Of course, it is possible that for a given states there are several different outgoing
arcs labeled with the same actionai. However, we need to construct new systems where
outgoing transitions are labeled uniquely. Our notation issimilar to the one used in the
previous section: LetΛ = {λj

i | 1 ≤ i ≤ k, 1 ≤ j ≤ d} and∆ = {δj
i | 1 ≤ i ≤ k, 1 ≤

j ≤ d} be finite sets of actions such thatΛ, ∆, andAct are pairwise disjoint. We define
Act ′ = Λ ∪ ∆.

For any states in S, the actionδj
i is used to label thej-th outgoing arc that was

previously labeled by actionai. Note that the actionδj
i can occur many times in the

transition system. It is only unique among the labels of the outgoing arcs of any single
state. Similarly, the actionsλj

i are used to label the outgoing arcs of statest in T .
Fig. 2 illustrates the construction. The first row shows parts of the original systems

S andT . The second row shows A-comp(S, T). The labels of the transitions have
been changed as described above, and the modified systems have been put in parallel
without any synchronization. The last row shows (a fragmentof) D-comp(S, T). Here
the systemsS andT have been composed and synchronized in such a way as to ensure
the properties of the simulation game as described above.

Definition 13. We define transition systemsS′ = (S,Act ′,→) andT ′ = (T,Act ′,→)
where

– for every transitions
ai→ s(ai, j) in S there is a transitions

δ
j

i→ s(ai, j) in S′;

– for every transitiont
ai→ t(ai, ℓ) in T there is a transitiont

λℓ
i→ t(ai, ℓ) in T ′;

– there are no other transitions inS′ andT ′.

TheA-compositionA-comp(S, T) of S andT (see Fig.2) is the parallel composition
S′‖T ′. Configurations in A-comp(S, T) are denoted by(s, t).

Remark 14.Observe that A-comp(S, T) is always deterministic, even ifS andT are
nondeterministic.

A stateu is universalif u
a
→ u for everya ∈ Act ′ (u can also have other outgoing

transitions). Observe that a universal state can simulateanyprocess which emits actions
of Act ′. In the next definition, we writet

a
→ U to indicate thatt

a
→ u for some universal

stateu.

Definition 15. TheD-compositionD-comp(S, T) of S andT (see Fig. 2) is the tran-
sition systemD = (D,Act ′,→), whereD is the set

{(s, t) | s ∈ S, t ∈ T } ∪ {(s, t)′ | s ∈ S, t ∈ T } ∪ {(s, t)′′ | s ∈ S, t ∈ T }

and the transition relation ofD is defined as follows. Let1 ≤ i ≤ k, 1 ≤ j ≤ ni and
1 ≤ ℓ ≤ mi.

s t

a1

a1a1

a1

ak

ak

ak

ak

s(a1, 1) s(a1, n1) s(ak, 1) s(ak, nk) t(a1, 1) t(a1, m1) t(ak, 1) t(ak, mk)

succ(s, a1) succ(s, ak) succ(t, a1) succ(t, ak)

s t

s(a1, 1) s(a1, n1) s(ak, 1) s(ak, nk) t(a1, 1) t(a1, m1) t(ak, 1) t(ak, mk)

succ(s, a1) succ(s, ak) succ(t, a1) succ(t, ak)

δ1

1 δ
n1

1 δ1

k

δ
nk
k λ1

1 λ
m1

1 λ1

k

λ
mk
k

Act
′

Act
′

Act
′

Act
′

(s, t)

δ
j
i

δ
j
i

(s(ai, j), t(ai, 1))
′

(s(ai, j), t(ai, mi))
′

(s(ai, j), t(ai, 1)) (s(ai, j), t(ai, mi))

λ1

i λ
mi
i

Act
′ − {λ1

i } Act
′ − {λmi

i }

λℓ
i λℓ

i

(s(ai, 1), t(ai, ℓ))
′′

(s(ai, ni), t(ai, ℓ))
′′

(s(ai, 1), t(ai, ℓ)) (s(ai, ni), t(ai, ℓ))

δ1

i δ
ni
i

Act
′ − {δ1

i } Act
′ − {δni

i }

Fig. 2. Statess and t of S and T , then theA-composition ofS and T , and finally the
D-composition ofS andT .

– If there are transitionss
ai→ s(ai, j) in S and t

ai→ t(ai, ℓ) in T then there are

transitions(s, t)
δ

j

i→ (s(ai, j), t(ai, ℓ))
′ and(s, t)

λℓ
i→ (s(ai, j), t(ai, ℓ))

′′ in D.

– (s(ai, j), t(ai, ℓ))
′

λℓ
i→ (s(ai, j), t(ai, ℓ))

– (s(ai, j), t(ai, ℓ))
′ b
→ U , for eachb ∈ Act ′ − {λℓ

i}.

– (s(ai, j), t(ai, ℓ))
′′

δ
j

i→ (s(ai, j), t(ai, ℓ))

– (s(ai, j), t(ai, ℓ))
′′ c
→ U , for eachc ∈ Act ′ − {δj

i }.

Theorem 16. Let s ∈ S, t ∈ T , and let(s, t) and(s, t) be the corresponding states in
A-comp(S, T) and D-comp(S, T), respectively. We have thats ∼ t iff (s, t) ⊑ (s, t).

Proof. We start with the ‘=⇒’ direction. Let us suppose thats ∼ t. We show that the
defender has a winning strategy in a simulation game initiated in ((s, t), (s, t)). Let
R = {((s, t), (s, t)) | s ∈ S, t ∈ T, s ∼ t}. We prove thatR can be extended to a
simulation relation (which means that indeed(s, t) ⊑ (s, t)). To do that, we show that
the defender can play in such a way that after at most two rounds he achieves either a
configuration fromR, or a configuration where he ‘obviously’ wins.

Let us assume that the attacker makes a move(s, t)
δ

j

i→ (s(ai, j), t). (The other case

where the attacker makes a move(s, t)
λℓ

i→ (s, t(ai, ℓ)) is symmetric.) Then the defender

responds by a move(s, t)
δ

j

i→ (s(ai, j), t(ai, ℓ))
′ such thats(ai, j) ∼ t(ai, ℓ). Such a

move must exist by the definition of D-comp(S, T) and the fact thats ∼ t. Then there
are two cases:

– If the attacker makes the move(s(ai, j), t)
λℓ

i→ (s(ai, j), t(ai, ℓ)) then the defender

responds by the move(s(ai, j), t(ai, ℓ))
′

λℓ
i→ (s(ai, j), t(ai, ℓ)). The resulting pair

((s(ai, j), t(ai, ℓ)), (s(ai, j), t(ai, ℓ))) is in R, becauses(ai, j) ∼ t(ai, ℓ).
– If the attacker makes any other move then the defender can go to a universal state

where he can simulate everything.

Now we show the ‘⇐=’ direction, i.e., we assume(s, t) ⊑ (s, t) and proves ∼ t.
To do that, we demonstrate thatR = {(s, t) | s ∈ S, t ∈ T, (s, t) ⊑ (s, t)} is a
bisimulation. So, let(s, t) ∈ R. Assume that the attacker makes a moves

ai→ s(ai, j).
(The other case where the attacker makes a movet

ai→ t(ai, ℓ) is symmetric.) Thus,

there is an attacker’s move(s, t)
δ

j

i→ (s(ai, j), t). Since(s, t) ⊑ (s, t) there must be a

defender move(s, t)
δ

j

i→ (s(ai, j), t(ai, ℓ))
′ such that(s(ai, j), t) ⊑ (s(ai, j), t(ai, ℓ))

′.
Also there must be a movet

ai→ t(ai, ℓ) in T . Furthermore, against the attacker move

(s(ai, j), t)
λℓ

i→ (s(ai, j), t(ai, ℓ) there is just one defender move(s(ai, j), t(ai, ℓ))
′

λℓ
i→

(s(ai, j), t(ai, ℓ)) such that(s(ai, j), t(ai, ℓ) ⊑ (s(ai, j), t(ai, ℓ)). Thus, we obtain
(s(ai, j), t(ai, ℓ)) ∈ R. ⊓⊔

3.1 Applications

The range of applicability of Theorem 16 is incomparable with the one of Theorem 7.

Definition 17. Let us denote byC the class of all modelsC to which our second method
applies. The following conditions are sufficient for membership ofC.

1. For anyM ∈ C, the transition systemTM determined byM satisfies the following
condition: the out-going transitions of a given state inTM are determined by a
finite number of labeled ‘transition rules’ which are a part of M. The transition
rules must beinjective in the sense that each rule generates at most one out-going
transition in every state ofTM. The label of this outgoing transition is the same as
the label of the associated transition rule.

2. C is efficiently closed under parallel composition (i.e., forall M1,M2 ∈ C there
isM3 ∈ C computable in polynomial time such thatTM3

= TM1
‖TM2

).
3. C is efficiently closed under synchronization in the following sense: for any two

given transition rules it is possible to (efficiently) definea new transition rule that
has the effect of both.

4. C subsumes the class of finite automata.

For example, the above conditions are satisfied by 1-safe Petri nets, general Petri nets,
reset Petri nets, transfer Petri nets [Pet81], VASS (vectoraddition systems with states)
[BM99], FIFO-channel systems [AJ93], etc. However, there are also some classes that
not in C. For example, Basic Parallel Processes [Chr93] are not inC, because they
are not closed under synchronization (condition 3). Pushdown automata are not inC,
because they are not closed under parallel composition (condition 2). PA-processes
[BK85] are not inC, because they are not closed under synchronization and because
their transition rules are not injective (they do not satisfy conditions 1 and 3).

Lemma 18. Let C be a process model satisfying the above conditions and let
M1,M2 ∈ C. Then there isM′ ∈ C constructible in polynomial time such thatTM′

is (isomorphic to) A-comp(TM1
, TM2

).

Proof. Follows immediately from condition 1 (which enables efficient renaming of ac-
tions) and condition 2 (efficient parallel composition). ⊓⊔

Lemma 19. Let C be a process model satisfying the above conditions and let
M1,M2 ∈ C. Then there isM′ ∈ C constructible in polynomial time such thatTM′

is (isomorphic to) D-comp(TM1
, TM2

).

Proof. M′ is obtained by constructing the synchronization ofM1 andM2 according
to Definition 15 (this is possible by conditions 1 and 3). It isalso necessary to include
the states of the form(s, t)′ and(s, t)′′ into the new system. This is possible because
C subsumes the class of finite automata (condition 4) and is thus also closed under
synchronization with them (condition 3). ⊓⊔

Corollary 20. Let C be a process model satisfying the above conditions, and letdet-C
be the subclass of allM ∈ C which generate a deterministic transition system. Then
the problemC ∼ C is polynomially reducible todet-C ⊑ C (and also toC ≃ C).

Proof. Immediately from Theorem 16, Remark 14, Lemma 18, and Lemma 19. The
reduction toC ≃ C is achieved in the same way as in Corollary 11. ⊓⊔

4 Conclusion

We have described two general methods to construct direct one-to-one reductions from
bisimulation equivalence to simulation preorder (or simulation equivalence) on labeled
transition systems. On many classes of finitely generated transition systems these reduc-
tions are even effectively computable in polynomial time. Generally speaking, the first
method is effective for all classes of systems that can test for non-enabledness of ac-
tions, like finite-state systems, pushdown automata, context-free processes (BPA), one-
counter machines, FIFO-channel systems with explicit testfor queue-emptiness, 1-safe
Petri nets, Petri nets with inhibitor arcs, and various subclasses of all these. The second
method is effective for all classes of systems that are closed under parallel composition
and synchronization like 1-safe Petri nets, general Petri nets, reset Petri nets, transfer
Petri nets, VASS (vector addition systems with states) [BM99] and FIFO-channel sys-
tems [AJ93].

Thus, for all these classes of systems, deciding simulationpreorder/equivalence
must be computationally at least as hard as deciding bisimulation equivalence. This
provides a formal justification of the general rules of thumbmentioned in Section 1. It
is interesting to compare these results to the results in [KM02b], where an abstract, (but
not generally effective) one-to-one reduction from simulation equivalence to bisimula-
tion equivalence on general labeled transition systems waspresented (i.e., a reduction
in the other direction). Therefore, these results further clarify the relationship between
simulation equivalence and bisimulation equivalence.

For some classes of systems both methods are effective, e.g., for finite-state sys-
tems, FIFO-channel systems with explicit test for emptiness, or for 1-safe Petri nets.
However, for general Petri nets only the second method works(the first one fails since
Petri nets cannot test for non-enabledness of actions). Forpushdown automata it is vice-
versa. They can test for non-enabledness of actions, but arenot closed under parallel
composition.

Finally, there remain a few classes of systems for which noneof our methods is
effective, like Basic Parallel Processes (BPP) and PA-processes. Also for these classes,
simulation preorder/equivalence is computationally harder than bisimulation equiva-
lence [KM02b], but no effectivedirect reduction from bisimulation equivalence to sim-
ulation preorder is known for them yet (although effective indirect reductions exist).

References

[AJ93] P.A. Abdulla and B. Jonsson. Verifying programs withunreliable channels. InPro-
ceedings of LICS’93, pages 160–170. IEEE Computer Society Press, 1993.

[BGS92] J. Balcázar, J. Gabarró, and M. Sántha. Decidingbisimilarity is P-complete.Formal
Aspects of Computing, 4(6A):638–648, 1992.

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77–121, 1985.

[BM99] A. Bouajjani and R. Mayr. Model-checking lossy vector addition systems. InPro-
ceedings of STACS’99, volume 1563 ofLNCS, pages 323–333. Springer, 1999.

[Chr93] S. Christensen.Decidability and Decomposition in Process Algebras. PhD thesis,
The University of Edinburgh, 1993.

[JKM00] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-counter
processes. InProceedings of STACS 2000, volume 1770 ofLNCS, pages 334–345.
Springer, 2000.

[KM02a] A. Kučera and R. Mayr. On the complexity of semanticequivalences for pushdown
automata and BPA. InProceedings of MFCS2002, LNCS. Springer, 2002. To appear.

[KM02b] A. Kučera and R. Mayr. Simulation preorder over simple process algebras.Informa-
tion and Computation, 173(2):184–198, 2002.

[May00] R. Mayr. On the complexity of bisimulation problemsfor pushdown automata. In
Proceedings of IFIP TCS’2000, volume 1872 ofLNCS, pages 474–488. Springer,
2000.

[Mol96] F. Moller. Infinite results. InProceedings of CONCUR’96, volume 1119 ofLNCS,
pages 195–216. Springer, 1996.

[Pet81] J.L. Peterson.Petri Net Theory and the Modelling of Systems. Prentice-Hall, 1981.
[SJ01] Z. Sawa and P. Jančar. P-hardness of equivalence testing on finite-state processes.

In Proceedings of SOFSEM’2001, volume 2234 ofLNCS, pages 326–335. Springer,
2001.

[Sti98] C. Stirling. The joys of bisimulation. InProceedings of MFCS’98, volume 1450 of
LNCS, pages 142–151. Springer, 1998.

[Tho93] W. Thomas. On the Ehrenfeucht-Fraı̈ssé game in theoretical computer science. In
Proceedings of TAPSOFT’93, volume 668 ofLNCS, pages 559–568. Springer, 1993.

[vG99] R. van Glabbeek. The linear time—branching time spectrum. Handbook of Process
Algebra, pages 3–99, 1999.

