On Simulation-Checking with Sequential Systems

Antonin Kucera

Faculty of Informatics, Masaryk University, Czech Repalftiony@fi .muni . cz)

Abstract. We present new complexity results for simulation-checkind model-
checking with infinite-state systems generated by pushdmwtomata and their
proper subclasses of one-counter automata and one-cawetter(one-counter
nets are ‘weak’ one-counter automata computationallyvedgmt to Petri nets
with at most one unbounded place).

As for simulation-checking, we show the following: a) simtibn equivalence
between pushdown processes and finite-state proceS¥®EME -complete;

b) simulation equivalence between processes of one-coautemata and finite-
state processes @NP-hard; c) simulation equivalence between processes of
one-counter nets and finite-state processes is(io the best of our knowledge,
it is the first (and rather tight) polynomiality result fomsillation with infinite-
state processes).

As for model-checking, we prove that a) the problem of siniatachecking be-
tween processes of pushdown automata (or one-counter aiatpon one-counter
nets) and finite-state processes are polynomially redrititthe model-checking
problem with a fixed formulg = v X.[2](z)X of the modalu-calculus. Conse-
guently, model-checking with is EXPTIME -complete for pushdown processes
andcoNP-hard for processes of one-counter automata; b) modekatgavith

a fixed formula®[a]©[b]££ of the logic EF (a simple fragment of CTL) NP-
hard for processes of OC nets, and model-checking with anditked formula
O(a)O(b)tt of EF iscoNP-hard. Consequently, model-checking with any tem-
poral logic which can express these simple formulae is caatipmally hard even
for the (very simple) sequential processes of OC-nets.

1 Introduction

Two important approaches to formal verification of concotsystems arequivalence-
checkingand model-checkingln both cases, a process is formally understood to be
(associated with) a state inteansition systemwhich is a triple7T = (S, Act, —)
whereS is a set ofstates Act is a finite set ofactions and— C S x Act x S'is a
transition relation We writes % ¢ instead of(s, a, t) € — and we extend this notation

to elements ofdct™ in the natural way. A state is reachablefrom a states, written

s —* t,iff s = ¢ for somew € Act*.

In the equivalence-checking approach, one describespihaficatior(the intended
behavior) and the actuénplementatiorof a concurrent process as states in transi-
tion systems, and then it is shown that they egeivalent Here the notion of equiva-
lence can be formalized in various ways according to spewifirls of a given practical

* Supported by the Grant Agency of the Czech Republic, gramts201/98/P046 and No.
201/00/1023.

problem (see, e.g., [24] for an overview). A favorite apmtoes the one osimulation
equivalence which has been found appropriate in many gtgand consequently its
accompanying theory has been developed very intensivelyl L= (S, Act, —) be a
transition system. A binary relatiaR C S x S is asimulationiff whenever(s, t) € R,
then for eachs % s’ there is some % ' such that(s’,t') € R. A processs is simu-
latedby ¢, writtens C; ¢, iff there is a simulatior? such tha(s,¢) € R. Processes, ¢
aresimulation equivalentwritten s =; ¢, iff they can simulate each other. Simulation
can also be viewed asgame— imagine there are two tokens put on stateendt.
Now two players, Al and EX, start to playsémulation gamevhich consists of a (possi-
bly infinite) number offoundswhere each round is performed as follows: Al takes the
token which was put os originally and moves it along a transition labelled by (sdme
a; the task of Ex is to move the other token along a transiticth Wie same label. Al
wins the game iff after a finite number of rounds Ex cannoteesiio Al's final attack.
We see that C; t iff Ex has a universal defending strategy, i.e., Al neversyimo-
vided Ex plays in a sufficiently ‘clever’ way. We use simutatigame as some points
to give a more intuitive justification for our claims. Fingllet us note that simulation
can also be used to relate stateslifferenttransition systems; formally, two systems
are considered to be a single one by taking their disjoindmni

In the model-checking approach, desired properties ofrtipddmentation are en-
coded as formulae of certain temporal logic (interpreteer dransition systems) and
then it is demonstrated that the implementation satisfiedaimulae. There are many
systems of temporal logic differing in their expressive povdecidability, complexity,
and other aspects (see, e.g., [23, 6]). In this paper we ool with one (fixed) formula
¢ = vX.z X of themodalp-calculus[13] and some other (fixed) formulae of its
very simple fragment which is known as tB€ logic (the logic EF can also be seen as
a natural fragment of CTL [6]). A formal definition of the saxtand semantics of the
modalp-calculus is omitted due to space constraints (we refer, t.¢13]). However,
we do explain the meaning gfin Section 3. Formulae of the logic EF look as follows:

Y=ttt [YAY [[(a)p | OY

Herea ranges over a given set of atomic actions. Dual operatdes tand< are[a] and
O, defined bya]y = —(a)—¢ andOy = -, respectively. LeT = (S, Act, —)
be a transition system. Thienotation]«] of a formulay is the set of states where the
formulaholds it is defined as follows:

[tt] =S
[i1 A o] = [91] N [4o]
[-¥] =S - [¥]

[(a)y] ={se€S|3teS:sStnte 4]}
[OY]={seS|3teS:s=>"tAte[y]}

The ‘language’ of transition systems is not very practicabacurrent systems of-
ten have a very large (or even infinite) state-space and lieisceot feasible to define
their semantics ‘directly’ by means of transition systeftserefore, ‘higher’ languages
allowing to construct compact definitions of large systeragehbeen proposed and

studied. In this paper we mainly work with (subclasses ofhalown automata, which
are considered as a fundamental model of sequential bekawidhe framework of
concurrency theory (for example, one can conveniently rhpderams consisting of
mutually recursive procedures in the syntax of PDA, andtigsverification tech-
niques for PDA are then applicable to, e.g., some problendata-flow analysis [7]).
Formally, apushdown automatois a tupleA = (Q, I, Act,d) where@ is a finite
set of control states " is a finite stack alphabetAct is a finiteinput alphabetand
§: (Q x I') — 24¢x(@xT7) i atransition functionwith finite image. We can as-
sume (w.l.0.g.) that each transition increases the heaghefigth) of the stack at most
by one (each PDA can be efficiently transformed to this kindafmal form). In the
rest of this paper we adopt a more intuitive notation, wgitisl = ¢ € 6 instead of
(a,(q,B)) € 6(p, A). To A we associate the transition systdm where@ x I'* is the
set of states (we writga instead of(p, a)), Act is the set of actions, and the transition
relation is determined byAda % gBa <= pA % ¢B € 6.

A natural and important subclass of pushdown automata isléss ofone-counter
automata where the stack behaves likeoanter Such a restriction is reasonable be-
cause in practice we often meet systems which can be alestrexfinite-state pro-
grams operating on a single unbounded variable. For examete/ork protocols can
maintain the count on how many unacknowledged messageshesresent, printer
spool should know how many processes are waiting in the igpetie, etc. Formally,
a one-counter automatopl is a pushdown automaton with just two stack symbols
I and Z; the transition functiony of A is a union of functionsi; and é; where
8z 1 (Q x {Z}) = 24ctx(@x(I{ZN) andd; : (Q x {I}) — 24<x(@x{1}") Hence,

Z works like a bottom symbol (which cannot be removed), anchitmaber of pushed
I's represents the counter value. Processes (ife., states of) are of the fornpI‘Z
which is abbreviated tp(i) in the rest of this paper. Again, we assume (w.l.0.g) that
each transition increases the counter at most by one. A penbelass of one-counter
automata of its own interest aome-counter netdntuitively, OC-nets are ‘weak’ OC-
automata which cannot test for zero explicitly. They are potationally equivalent to
a subclass of Petri nets [22] with (at most) one unboundetkpldence, one-counter
nets can be used, e.g., to model systems consisting of peosland consumers which
share an infinite buffer (a non-empty buffer enables the @@t of consumers but it
need not be tested for zero explicitly). Formallygree-counter nelV" is a one-counter
automaton such that wheneyef = ¢I'Z € §, thenpI = ¢I't! € §. In other words,
each transition which is enabled at zero-level is also ethat (each) non-zero-level.
Hence, there are no ‘zero-specific’ transitions which cdigddised to ‘test for zero’.

The state of the art: Let PDA, BPA, OC-A, OC-N, andFS be the classes of all
processes of pushdown automata, stateless pushdown aat@me-counter automata,
one-counter nets, and finite-state systems, respectiMelgover, lePN, BPP, andPA
denote the classes of all processes of Petri nets [22], pasidlel processes [5], and
process algebra [4], respectively. The problems of sirarigireorder and simulation
equivalence between processes of clagsasdB are denoted b C; B andA =; B,
respectively. The problem of simulation-checking withr{ae classes of) infinite-state
systems has been attracting attention for almost a decadewe only mention some
of the most relevant results. First, it was shown in [8] tihat problem8PA C; BPA

andBPA =; BPA are undecidable. The undecidabilityBPP C, BPP andBPP =,
BPP was proved in [9]. An interesting positive result is [1] whet is shown that
OC-N C5 OC-N (and hence als®C-N =, OC-N) is decidable. Howevef)C-A C,
OC-A andOC-A =; OC-A are already undecidable [12]. The problem of checking
simulation between infinite and finite-state systems wasditamined in [11] where it

is shown thaPN C; FS, FS C; PN, andPN =, FS are decidable. A similar positive
result was later demonstrated in [16] for tARBA C, FS, FS C, PDA, andPDA =,

FS problems; some complexity estimation were also given (sté@n\). Moreover, the
problemsPA C; FS, FSC; PA, andPA =, FSare proved to be undecidable.

The decidability and complexity of checking other behazi@quivalences (in par-
ticular, strongandweak bisimilarity[21, 20]) between infinite and finite state systems
also exist; we give a short comparison in the final section.

Our contribution: In our paper we present new complexity results for simutatio
checking and model-checking problems with the above meaticubclasses of push-
down processes. The most significant original contribtiare summarized below to-
gether with a short discussion on previous work.

— PDA =, FSis EXPTIME -complete. Previously, there wascaNP lower bound
for the problem [16] (this lower bound also works BIPA processes). In the same
paper, the membership BDA =; FSto EXPTIME has also been shown, hence
here we only need to prove tlEXPTIME lower bound.

— OC-A =; FSis coNP-hard. The problem whether this lower bound is tight is left
open. Intuitively, the problem should be expected easien flor PDA processes,
because there is a substantial simplification in the castaig bisimilarity — the
problem of strong bisimilarity with finite-state procesissis P for OC-A processes
[14], butPSPACE-complete folPDA processes [19].

— OC-N =, FSisin P. In fact, we show thaOC-N C, FSandFS C, OC-N are
in P. To the best of our knowledge, this is the first (and rathdmnt}igolynomiality
result for simulation with infinite-state systems. Let usenhat some equivalence-
checking problems between processes of OC-nets and FSspescare still hard
(for example, weak bisimilarity iBP-hard [14]), so the result is not immediate (see
also the comments below).

— Next, we show that the problems of simulation preorderiejance between pro-
cesses oPDA (or OC-A, or OC-N) andFS processes are reducible to the model-
checking problem for the fixed formula = v X.[2](z)X of (the alternation-free
fragment of) the modat-calculus. It is essentially a simple observation which was
(in a similar form) used already in [2, 16, 18]. The point iattdue to the previ-
ous hardness results) we can conclude that the problem oflrebdcking withy
is EXPTIME -complete forPDA processes (the upper-bound is due to [25]) and
coNP-hard forOC-A processes. An interesting thing is that the model-checking
problem for stateless pushdown (i.BRA) processes anahyfixed formula of the
modalu-calculus is already polynomial [25]. The classeB&A andOC-A pro-
cesses are rather natural llmtomparablesubclasses dPDA processes — we see
that the absence of a finite control is a ‘stronger’ simpltfamathan the replacement
of the storage device (counter instead of stack) in this.case
As simulation betwee®C-N andFS processes is iR, the aforementioned tech-
nigue does not yield any hardness result for model-checkitihgOC-N processes.

Therefore, we examine the problem directly — we prove thahewodel-checking
with a simple fixed formula®[a]<[b)f£ of the logic EF isNP-hard for OC-N
processes, and model-checking with another fixed forrmfta O(b)tt is CONP-
hard. Hence, we can forget about an efficient model-chegkiogedure foOC-N
processes and any modal logic which can express these siarpielae (unless
P = NP).

2 Results about Equivalence-Checking

Theorem 1. The problem of simulation equivalence between PDA prosemse de-
terministic FS processes ESXPTIME-hard.

Proof. We showEXPTIME -hardness by reduction from the acceptance problem for
alternating LBA (which is known to bEXPTIME -complete). Aralternating LBAis a
tupleM = (Q, X, 6, qo, F, 1, p) whereQ, X, 4, qo, -, and- are defined as for ordinary
non-deterministic LBA (in particulaf; and- are the left-end and right-end markers,
resp.), anb : Q@ — {V,3, acc, rej} is a function which partitions the states @f
into universal existentia] accepting andrejecting respectively. We assume (w.l.0.g.)
thatd is defined so that ‘terminated’ configurations (i.e., thesoinem which there are
no further computational steps) are exactly accepting ajetting configurations. A
computational treéor M on a wordw € X* is any (finite or infinite) tred” satisfying
the following: the root off" is (labeled by) the initial configuratiop-w- of M, and

if NV is a node ofM labeled by a configuratiomgv whereu,v € X* andq € @, then
the following holds:

— if ¢ is accepting or rejecting, thefiis a leaf;

— if ¢ is existential, ther” has one successor whose label is (some) configuration
which can be reached fronyv in one computational step (accordingso

— if ¢ is universal, thed" hasm successors where is the number oéll configura-
tions which can be reached fromgv in one step; those configurations are used as
labels of the successors in one-to-one fashion.

M acceptsw iff there is a finite computational tréE such that all leaves df" are
accepting configurations.

Now we describe a polynomial algorithm which for a given altging LBA M =
(Q,%,0,q0,F,4,p) and a wordw € X* constructs a proces3 of a PDA systemA
and a proces8’ of a finite-state systert such that

- PLC, F,and
— F C; P iff M does not accepb.

Hence M acceptsv iff P #, F and we are (virtually) done.
Intuition: The underlying syster# of F' looks as follows (note th& is determin-
istic):
F nex; Fo a F1 a Fz a Frt a Faro check O b
O——»O0———pO———BO——B Qe O———» 00— 0O
H

Intuitively, the goal of F' is to demonstrate that there is an accepting computational
tree for M onw, while P aims to show the converse. The game starts with the initial
configurationggw- stored in the stack aP. Now F' ‘chooses’ the next configuration
(i.e., the rule ob which is to be applied to the current configuration storethatop of
stack) by emitting one of theezt; actions. The quotes are important here bec@uise
constructed in such a way that it has to accept the choideatily if the control state

of the current configuration existential If it is universal P can ‘ignore’ the dictate of

F and choose the next configuration according to its own wilk fiew configuration is
then pushed to the stack Bf(technically, it is done by guessing individual symbols and
an auxiliary verification mechanism is added so tRatannot gain anything if it starts

to cheat). As soon aB enters an accepting configuration, it ‘dies’ (i.e., it is abte to
emit any action); and as soon as it enters a rejecting comafligur, it starts to behave
identically asF'. Hence, if there is an accepting computational tree¥¢on w, then

F can forceP to enter an accepting configuration in finitely many roundel(hence

F [Zs P). Ifthere is no accepting computational tree, tifeoan successfully defend; it
either enters a rejecting configuration or the game goesdark means, in both cases,
thatF' C, P. Moreover, a careful design &f ensures thaP C, F' regardless whether
M acceptw or not. A full (formal) proof is omitted due to space congttsj it can be
found in [15]. 0

In the proof of our next theorem we use the technique for eingoassignments of
Boolean variables in the structure of one-counter autotiativered in [14].

Theorem 2. The problem of simulation equivalence between OC-A presegsd FS
processes isoNP-hard.

Proof. We showcoNP-hardness by reduction of tlmteNP-complete problem NSAT.
An instance is a Boolean formudain CNF. The question is whethéris unsatisfiable.

Lety = C1A---AC,, be aformulain CNF wher€; are clauses over propositional
variablesey, - - -, 2,,. We construct (in polynomial time) a proceBof a OC-A system
A and a proces$’ of a finite-state systert such thatP C, F'iff ¢ is unsatisfiable.
Then we simply consider the procesg&sand F’ which have the following outgoing
transitions:P’ 5 P,P' 5 F, andF’' 5 F wherez is a fresh action. Observe that
P' is easily definable in the syntax of one-counter processég-ain the syntax of
finite-state processes. Clea#} C, P', andP' C, F' iff P Ty F. In other words,
P' =, F' iff 4 is unsatisfiable and it proves our theorem.

It remains to show the construction &, A, F, andF. The set of actions ofA
andF is Act = {a,b,cq,. .., cm}. LetA; = Act — {a,c;}. The set of states df is

3 3

{F,F,...,F,} and its transitions aré&’ S FF LA F; for eachl < i < m, and
F, % F, for eachy € A; and eacH < i < m. Hence, the systetft looks as follows:

In the construction ofA we rely on the following theorem of number theory (see,
e.g., [3]): Letp; be thei®® prime number, and lef : IN — IN be a function which
assigns to each the sum)_ ", p;. Thenf is O(n®). This fact ensures that has only
polynomially-many control states (see below).

The set of control state@ of Ais {s,r} U {s(p, jy [1 <i <n,0 <5 < p;}. For
eachl < i < n we now define two sets of actions.

— B; = {¢; | 1 < j <m, the variabler; appears positively in the claugg }

— B; ={¢; |1 < j <m, the variabler; appears negatively in the clauSg}

Transitions ofA are defined as follows:

sZ % sIZ,sI % sIT,sI 5 rl,
rl % s(p;,001 foreachl <i <n,

= Sy ! LA 5(p;,(j+1) mod p;)€ foreachl <i < nandeach) < j < p;,
— S(pi.0yZ 2 3(p; 0y Z foreach0 < i < n and eacly € B;. B
— Sty Z > 84,5y Z foreachd < i < n, eachl < j < p;, and eacly € B;.

The structure of the transition system associated te depicted in the following figure
(transition systems associated to OC systems can be vietedalimensional ‘tables’
with an infinite height where control states are used as colindexes and counter
values as row indexes; as the outgoing transitions of a psgge) for i > 0 do not
depend on the exact value @it suffices to depict the out-going transitions at the zero
level and (some) non-zero level):

>0:

I o Q Q QBZ Qsz Qez QE" Q ““““ Q

S r So0> S<2,1> Sc3,0> %3,1> 232> S<pn 0> S<pn 1> S<pn n-1>

The initial state iss(0). Intuitively, P first increases its counter, emitting a sequence
of a’s. Then it emits the firsk action and changes its control state-tfpreserving the
value stored in the counter). To each stgtie we associate the (unique) assignmmnt
defined byy;(z;) = ttiff r(I) =" 5(,,,0)(0) (i.e.,vi(z;) = ££iff r(I) =" s, 5(0)

for somel < j < p;). Conversely, for each assignmenthere isl € IN such that

v = y; (for example, we can put= IT} f(j), wheref(j) = p; if v(z;) = tt, and
f(4) = 1 otherwise). Now it is easy to check that a cladgeis true for an assignment
v, iff at least one of the ‘bottom’ states,,, ; (0) where a;.-loop is enabled (see above)
is reachable from().

Lets(l) be a state of such that; () = ££. It means that there is< k < m such
thaty;(Cy) = ££. Hence, the proceds can safely match the transitici/) A r(l) by

F Fy, (from that point on it can do everything excep). However, if there is some
such thaw, (¢) = tt, thenF does not have any ‘safe’ matching move for the transition

s(l) LN r(l) because none of it8}, successors can do all of theactions. Hencey is
unsatisfiable iffs(0) C, F. |

Now we prove that simulation preorder and simulation edaivee between pro-
cesses of one-counteetsand finite-state processes can be decided in polynomial time
To the best of our knowledge, these are the first polynomgiadisults for simulation
with infinite-state systems. Intuitively, the crucial pesty which makes our proofs
possible (and which does not hold for general one-countenaata) is the following
kind of ‘monotonicity’ — if p(¢) is a process of a one-counter net, théf) T p(j)
for everyj > i.

It should be noted that in our next constructions we prefapétity to optimality.
Therefore, it does not pay to evaluate the degrees of poliaisraxplicitly (though
it would be of course possible) because they would condifledecrease after some
straightforward optimizations. Our only aim here is to prdle membership .

Let T = (S, Act, —) be a transition system. A family a?, i € IN; relations is
defined inductively as follows:

—sCYtforalls,tes;
— s Ci*1 tiff s T/ t and for eacts = s’ there is some - #' such thats’ T /.

Intuitively, s Ci t iff Ex has a defending strategy for the firstounds of the simula-
tion game. If we restrict ourselves to processefirotely-branchingransition systems
(where each state has only finitely manguccessors for every actiaiy thens C; ¢ iff

s C! t for everyi € IN (observe that transition systems generated by PDA arelfinite
branching). This enables the following (straightforwgyd)ynomial-time algorithm for
checking simulation between finite-state processes:

Lemma l. LetF = (F, Act,—) andG = (G, Act, —) be finite-state systems with
andn states, respectively. Lét=m-n. Forall f € F andg € G we have thaf C* ¢

iff f CEFL giff f T, g. Moreover, the relatior_® can be computed in time which is
polynomial in the size oF andg.

Proof. If we start to construct the family of2%’ relations according to the above stated
definition, we must reach the greatest fixed-point after (@styk refinement rounds,
because"?’ contains onlyk elements andCi C i+ for eachi € IN. Itis clear that
each refinement step can be computed in time which is polyalemihe size ofF and

g. O

Lemma 2. The problem whether a OC-N process can be simulated by a-fitzite
process is irP.

Proof. Let N' = (Q,{I,Z}, Act,d) be a one-counter net anl = (F, Act,—) a
finite-state system. We show that (a description of) the Kitimn preorder between

processes ol andF can be computed in time which is polynomial in the size\6f
andF.

The first step of our algorithm is a construction oftearacteristic finite-state sys-
temof A/, denotedF,,, which is defined as followsFy = (Q, Act, —) where@ =
{plp e Qyandp 5 qiff pI 5 qI' € §(p,I) for somei € INy. Hence, a process
p of Fy intuitively corresponds to a ‘limit procesg{oc) of A/ (in particular, observe
thatp(i) Cs pforallp € Q andi € INp). It is obvious that the systefiys can be
constructed in linear time.

Next, for allp € Q and f € F we check whethep C, f. It can be done in
polynomial time (see Lemma 1). Now observe that if ; f for givenp and f, we can
conclude thap(i) Ty f for anyi € INg, because(i) C, p. If p Z; f, thenp Z* f
wherek = |Q| - |F| (see Lemma 1). Hencg,can win the simulation game ovérin
(at most)k steps. It is clear that the procesg) can ‘mimic’ this winning strategy of
P, because the counter can be decreased at moktviithin the firstk moves (note
that if we allowed to test the counter for zero, thgi) could notmimic the firstk
moves ofp in general). The same appliesanyprocesy(i) wherei > k, because then
p(k) Cs p(i). To sum up, at this point we know jf(i) Cs f forallp € Q,f € F,
and: > k. It remains to decide simulation between pairs of the fop(d), f) where
0 <i < k. Asthere are onlyQ|- |F|-k = |Q|* - |F|* such states, we can use a simple
refinement technique similar to the one of Lemma 1. Formealgydefine a family of
R7 relations inductively as follows:

= RO ={(p(i). /) |i < k.p€ Q. f € F}

— RJT! consists of those pairs of the for(p(i), f) for which we either have that
P Cs g,0r (p(i), f) € R and for each move(i) = (1) there is a movef = ¢
suchthag C, g or (¢(1), g) € R.

Let R be the greatest fixed point of this refinement proceduret, Filsserve thaik

is computable irP because it is reached in (at mo&p)|? - | F|? refinement steps and

each step can be obviously computed in polynomial time. Ndiwi$ consider a pair of

the form(p(i), f) wherep € Q,i < k, andf € F. If (p(i), f) ¢ R, then obviously

p(i) Zs f. Onthe other hand, ifp(i), f) € R, thenp(i) C, f because we can readily

confirm that the relatio® U {(q(l),g) | ¢ € Q,1 € No,g € F,q C; g} is a simulation.
O

Lemma 3. The problem whether a finite-state process can be simulateal ®C-N
process is irP.

Proof. Let N' = (Q,{I,Z}, Act,d) be a one-counter net anl = (F, Act,—) a
finite-state system. Similarly as in the previous lemma wewskthat (a description
of) the simulation preorder between processe& aind V' can be computed in time
which is polynomial in the size of” and F. However, the argument is slightly more
complicated in this case.

We start with one auxiliary definition. For afl € F andp € @ we define the
frontier counter valugdenoted/(f, p), to be the least € IN, such thatf C; p(i); if
there is no such, we putV(f,p) = —1. Our aim is to show that every frontier counter
value is bounded byQ)| - |F|, i.e.,V(f,p) < |Q|-|F|forall f € F andp € Q. Letm

be the maximal frontier value. It suffices to prove that fachea such thatl < n < m
there aref € F andp € @ such thatV(f,p) = n. Let us suppose the converse, i.e.,
there is somes > 1 such that there is at least one frontier value greater thesome
frontier values are (possibly) less thanbut no frontier value equals to. It follows
directly from the definition of frontier points that the gtest simulation among the
processes af and\V is the following relatioriR:

R=A(f.p()) | f € FpeQ.V(fp)>0,i >V(fp)}

Now we show that if there is some with the above stated properties, than we can
actually construct a simulation which is strictly largeattiR, which is a contradiction.
LetR' be the following finite relation:

R'={(9,q(c) | g€ F.q € Q,V(g9,q) >n,c=V(g,q) — 1}

Asn < m, R' is clearly nonempty. We show th& U R’ is a simulation. To do
that, it suffices to check the simulation condition for pafsRk’, becauser itself is

a simulation. Let(g, q(c)) € R’ andg % h. We need to find some movgc) % a
such that the paith,) is related byR U R'. However, agg, ¢(c)) € R', we have
thate = V(g,¢q) — 1 and henceg, q(c + 1)) € R. Therefore, there must be some
movegq(c + 1) % r(1) such thath, (1)) € R (also observe thdt> n). It means that
q(c) 5 r(l — 1) (here we use the fact that> 1). Now if (h, (I — 1)) € R, we are
done immediately. If it is not the case, thiis the frontier counter value fdr andr by
definition, i.e.,] = V(h,r). Asl > n and there is no frontier value which equalsito
we conclude that > n — but it means thath, (I — 1)) € R’ by definition ofR'.

Let £ = |Q| - |F|. Now let us realize that if we could decide simulation for all
pairs of the form(f,p(k)) in polynomial time, we would be done — observe that if
f Cs p(k), then clearlyf C, p(i) for all i > k. As all frontier counter values are
bounded by (see above), we can also conclude that Iif; p(k) thenf IZ, p(i) for
alli > k. Simulation between the? remaining pairs of the forrif, p(i)) wherei < k
could be then decided in the same way as the previous lemenaby. computing the
greatest fixed-point of a refinement procedure defined by

=R ={(f.p(0) | f € F.p € Q,i < k} ,

— R+ consists of those pairs of the forfy, p(i)) such that f, p(i)) € R? and for
each movef % g there is a move(i) = ¢(I) such that eithetg, ¢(1)) € R’, or
I =kandg C; q(k).

The greatest fixed-point is reached after (at mb%tefinement steps and each step can
be computed in polynomial time.

Now we prove that simulation for the pairs of the fo(fy p(k)) can be indeed
decided in polynomial time. To do that, we show thfaE, p(k) iff f g§k2 p(k). It
clearly suffices — ag(k) cannot increase the counter to more tR&d + & in 2k
moves, we can decide Whethfeﬂgg’“2 p(k) simply by computing thegg’“Q’ relation
between the states of the systeéfnand a finite-state systeif, ¥, —) whereS =
{(p,i) |p € Q,0 <i < 2k + k} and— is given by(p,i) = (g, j) iff p(i) = q(j);

then we just look iff g§k2 (p, k). This can be of course done in polynomial time (see
Lemma 1).

Letj € INy be the least number such thaZZ p(k). Then Al can win the simula-
tion game inj rounds, which means that there is a sequence

(Fi.05(13)) 2 (Fictpjm1 (=) 225 - 22 (frp (1)) 25 (fo, —)

of game positions wher¢ = f;, p(k) = p;(l;), and fi Zi p;(l;) for eachl < i <
j. The Al's attack at a positioif;, p;(;)) is fi = fi—1, and Ex’s defending move
is pi(l;) X pi—1(li_1) (observe that, in particula; Z! pi(l;) and hencep;(I;)
cannot emit the actiom,). Moreover, we assume (w.l.0.g.) that Ex defends ‘optiyall
i.e., fi Ci=! p;(l;) for eachl < i < j. The first step is to show thdt < 2k for
eachl < i < j. Suppose the converse, i.e., there is saméth I; > 2k. As the
counter can be increased at most by one in a single transiti@igan select a (strictly)
increasing sequence of index®ss, . .., si such thal,, = k + i foreach) < i < k.
Furthermore, aé = |Q| - | F|, there must be two indexes, s, whereu < v such that
fs, = fs, andps, = ps,. Letus denotd,, = f,, by f' andp,, = ps, by p'. Now we
see (due to the optimality assumption) tfa_s=—! p'(k + u) and ' Z5» p'(k + v).
As s, — 1 > s,, we also havef’ Z5«~! p/(k + v). However, as: < v we obtain
flCet pl(k +u) Cs p'(k + v), hencef’ Cs«~! p'(k + v) and we derived a
contradiction. The rest is now easy —jif> 2k? (i.e., if Al cannot win in2k? rounds)
then there must be some> v such thatf, = f,, pu = p», andl, = [,. It follows
directly from the fact thak = |Q] - |F'| and that eacly; is at most2k. Now we can
derive a contradiction in the same way as above — dengting f, by f', p, = p, by
p', andl,, = 1, by!’, we obtain (due to the optimality assumption) tfiat_*—* p'(I')
andf’ Z? p'(I'). Asu — 1 > v, we have the desired contradiction. O

An immediate consequence of Lemma 2 and Lemma 3 is the faitpthieorem:

Theorem 3. The problem of simulation equivalence between OC-N presessd FS
processes is iR.

3 Results about Model-Checking

In this section we show that there is a close relationshipréen simulation-checking
problems and the model-checking problem for the formulaE vX.zX of the
modaly-calculus. It is essentially a simple observation which s similar form)
used already in [2, 16, 18].

As we omitted a formal definition of syntax and semantics o bbgic, we clarify
the meaning ofy at this point. Let/” = (S, Act, —) be a transition system. Lét, :
25 — 29 pe a function defined as follows:

fo(M) ={s € S|V(s> s')we have thaB(s' = s") such that” € M}

The denotation op (i.e., the set of states whegeholds), written[y], is defined by

[el = J{U €S |UC f,(U)}

Hence,[¢] is the greatest fixed-point of the (monotonic) functibn As usual, we
write ¢ |= p instead oft € [¢].

Theorem 4. Let P be a process of a PDA systetn= (Q, I, Act,0), andF' a process
of a finite-state systetfi = (S, Act, —). Then it possible to construct (in polynomial
time) processed, B of a PDA system\; and a proces€’ of a PDA system\, such
thatP C, Fiff A=, FC, Piff B=g,andP =, Fiff C |= ¢.

Proof. Intuitively, the processed, B andC ‘alternate’ the transitions o and F' in
an appropriate way. We start with the definitiondf. The set of control states af; is
Q x S x (ActU{?}) x {0, 1}, the set of actions id ct, the stack alphabdt is I'U {7}
whereZ ¢ I is a fresh symbol (bottom of stack). The set of transitiorthésleast set
¢ satisfying the following:

— if pX 5 gais arule ofs, then(p, F,?,0)X 5 (¢, F,a,1)a and(p, F,a,0)X >
(¢, F,?,1)a are rules ob for eachF € S;

—if F % F',then(p, F,?,1)X 5 (p,F',a,0)X and(p, F,a,1)X 5 (p, F',?,0)X
are rules ob forallp € Q andX € T;

Let P = pa. We putA = (p,F,?,0)aZ andB = (p, F,?,1)aZ. Observe thatd
alternates the moves &f and F' — first P performs a transition whose label is stored
in the finite control and passes the tokerfigby changind) to 1); then F' emits some
transition with the same (stored) label and passes the tokektoP. The new bottom
symbolZ is added to ensure that cannot ‘die’ within A just due to the emptiness of
the stack. Now it is obvious th@t C, F iff A = ¢; the factthat) C; P iff B |= ¢
can be justified in the same way.

The way how to defin€' is now easy to see — it suffices to ensure that the only
transitions ofC areC = C' andC = C" whereC' 5 A andC” 5 B. It can be
achieved by a straightforward extensionf. O

The proof of Theorem 4 carries over to processes of one-eoantomata and one-
counter nets immediately (observe there is no need to add &dogom symbol when
constructing/A; and A, because the zero-marker of one-counter systems is never re-
moved from the stack by definition.

Corollary 1. The model-checking problem foris

— EXPTIME-complete for PDA processes;
— coNP-hard for OC-A processes;

As simulation between OC-N and FS processes B, itheorem 4 does not imply
any hardness result for model-checking with OC-N procesHesrefore, we examine
this problem ‘directly’ by showing that a simple fixed forraub[a] > [b]£ £ of the logic
EF isNP-hard for OC-N processes. In our proof we use a slightly medifiersion of
the construction which was given in [14] to profzé>-hardness of weak bisimilarity
between OC-N and FS processes. To make this paper selfiwettave present a full
proof here.

Theorem 5. Let p(0) be a process of a one-counter n&t The problem ifp(0) =
Ola]©[b)££ is NP-hard.

Proof. Letyp = Cy A--- AC), be aformulain CNF wher€); are clauses over proposi-
tional variablesy, - - - , z,,. We construct a OC-N systeM = (Q, {I, Z}, {a,b,7},d)
and its procesp(0) such thatp is satisfiable iffp(0) = ¢[a]<[b]££. The construction
of A/ will be described in a stepwise manner. The ggtndd are initialized as follows:
Q=1{q},0={ql LA ql,qZ LN qZ}. Now, for each claus€;, 1 < i < m, we do the
following:

— Letr; denote thg’" prime number. We add a new control statéo). Moreover,
for each variable:; and eaclk such tha) < k& < 7; we add toQ) a control state
<Oi7 Tj, k)

— For each newly added control stateve add tod the transitionssI = ¢I,sZ =
qZ.

— For eachl < j < n we add tod the transitions; I = (C;, X, 0)1.

— Forall j,k such thatl < j < nand0 < k < w; we add toé the transition
<Cz’,ﬂ§j, k‘)[l) <Cz’,ﬂ§j, (k‘ + 1) mod 71'j>6.

— We add ta$ the ‘loops’c; I LN c;l,c; Z LN c; 7.

— Forallj, k suchthal < j <nand0 < k < m; we add ta the loop(C;, z;, k) I LN
<Cl', xj, k)].

— Ifavariablez; doesnotappear positively in a claugg;, then we add t@ the loop
<Cz’,33j,0>Z —b) <CZCU]0>Z

— Ifavariablez; does not appear negatively in a cladgethen we add té the loops

(Ciyzj, k) Z by (Ci, x4, k) Z foreveryl < k < ;.

If we draw the transition system which is generated by thesniirmpproximation o/,
we obtain a collection off; graphs] < i < m; eachG; corresponds to the ‘subgraph’
of the transition system associated\fowhich is obtained by restricting to the set of
control states which have been added for the claysé&he structure of7; is shown in
the following picture (thei-transitions to the states of the foiy) are omitted as the
picture would become too complicated).

T

o><o O>{<o T T T

0Q P, L 00 DO D

<Ci X 0> <Ci X 1> <Ci X, 0> <CiXp1> <CjXp2> <Ci X, 05 <Ci Xy 1> <G, X, T 1>

Now we can observe the following:

— For eachl > 0, the state; (1) ‘encodes’ the (unique) assignmantin the same
way as in the proof of Theorem 2, i.ey, is defined byy;(z;) = ttiff ¢;(I) —»*
(Cy,2;,0)(0); conversely, for each assignmenthere is/ € IN such that = y,
(for example, we can put= I}, f(j), wheref(j) = =; if v(z;) = tt, and
f(4) = 1 otherwise).

— For eachl > 0 we have thay,(C;) = tt iff ¢;(I) = <©[b]ff. Indeed, observe
thaty;(C;) = tt iff ¢;(I) can reach some of the ‘zero-states’ where the adtiign
disabled.

We finish the construction oY by connecting thé&7; components together. To do that,
we add two new control statgsandr to @, and enrichy by adding the transitions
pZ 5 pIZ, pI 5 pI'I, pI & qI, pZ 5 qZ, pI 5 rI, andrl = ¢ for every

1 < i < m. The structure of of the transition system associatelf tc shown below
(again, thea-transitions to the states of the forrtyj) are omitted).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Now we can observe the following:

— The only states which can (potentially) satisfy the formlulg>[b]££ are those of
the formr(l), because all other states haveatransition to a state of the form
q(j) where is it impossible to get rid ofs.

— A stater(l) satisfies the formulf] O [b]£1 iff ¢;(1) = Oblff forall 1 <i < miff
v (C;) = tt for eachl < i < m (due to the previous observations)if{y) = tt.

Hence,p is satisfiable iff there i$ € IN such that(l) satisfiega]<[b]££ iff p(0) E
Ola]Olb]£E. O

Corollary 2. Letp(0) be a process of a one-counter n&t The problem ifp(0) =
O(a)O(b)tt is coNP-hard.

4 Conclusions

This paper fills some gaps in our knowledge on complexitymisation-checking and
model-checking with (subclasses of) pushdown automate.fdllowing table gives a
summary of known results (contributions of this paper arbatdface). For compar-
ison, related results about checking strong and weak Hgiityi (denoted by~ and

~, respectively) with finite-state processes are also shdwe.overview supports the
claim that simulation tends to be computationally hardanthisimilarity; to the best
of our knowledge, there is so far no result violating thidéraf thumb’.

PDA BPA OC-A OC-N

~ FS | PSPACE-complete [19 € P[17] € P [14] € P [14]

~FS| PSPACE-hard[19] cP[17] DP-hard [14]| DP-hard [14]

€ EXPTIME [10]

S

FS EXPTIME-complete | coNP-hard [16]| coNP-hard ebP

References

1.

10.

11.

12.

13.

14.

15.

P.A. Abdulla and KCerans. Simulation is decidable for one-counter ne®rdeeedings of
CONCUR’98 volume 1466 of_ecture Notes in Computer Scienpages 253—268. Springer,
1998.

. H.R. Andersen. Verification of Temporal Properties of Concurrent SysterhD thesis,

Arhus University, 1993.

. E. Bach and J. ShallitAlgorithmic Number Theory. Vol. 1, Efficient AlgorithmBhe MIT

Press, 1996.

. J.C.M. Baeten and W.P. WeijlandProcess Algebra Number 18 in Cambridge Tracts in

Theoretical Computer Science. Cambridge University RE3S0.

. S. ChristenserDecidability and Decomposition in Process Algebr&hD thesis, The Uni-

versity of Edinburgh, 1993.

. E.A. Emerson. Temporal and modal logldandbook of Theoretical Computer ScienBe

1991.

. J. Esparza and J. Knop. An automata-theoretic approaaiterprocedural data-flow anal-

ysis. InProceedings of FoSSaCS'9%lume 1578 ol ecture Notes in Computer Science
pages 14-30. Springer, 1999.

. J.F. Groote and H. Hittel. Undecidable equivalencebdsic process algebrénformation

and Computation115(2):353-371, 1994.

Y. Hirshfeld. Petri nets and the equivalence problenPriiceedings of CSL'9¥olume 832
of Lecture Notes in Computer Scienpages 165-174. Springer, 1994.

P. Jantar, A. KuCera, and R. Mayr. Deciding bisimolaiike equivalences with finite-state
processes. IRroceedings of ICALP’98/0lume 1443 of_ecture Notes in Computer Science
pages 200-211. Springer, 1998.

P. Jantar and F. Moller. Checking regular propertid3etfi nets. InProceedings of CON-
CUR’95 volume 962 of_ecture Notes in Computer Scienpages 348-362. Springer, 1995.
P. Jancar, F. Moller, and Z. Sawa. Simulation problemn®fie-counter machines. Rro-
ceedings of SOFSEM’'9®olume 1725 of_ecture Notes in Computer Sciengages 404—
413. Springer, 1999.

D. Kozen. Results on the propositiopatalculus. Theoretical Computer Scienc27:333—
354, 1983.

A. KuCera. Efficient verification algorithms for onetrter processes. IRroceedings of
ICALP 2000 volume 1853 of_ecture Notes in Computer Scienpages 317-328. Springer,
2000.

A. KuCera. On simulation-checking with sequentialtegss. Technical report FIMU-RS-
2000-05, Faculty of Informatics, Masaryk University, 2000

16

17.

18.

19.

20.
21.

22.

23.

24.

25.

. A. Kutera and R. Mayr. Simulation preorder on simplecpss algebras. IRroceedings of
ICALP’99, volume 1644 of_ecture Notes in Computer Sciengages 503-512. Springer,
1999.

A. Ku€era and R. Mayr. Weak bisimilarity with infinitéase systems can be decided in poly-
nomial time. InProceedings of CONCUR’9%olume 1664 ol_ecture Notes in Computer
Sciencepages 368-382. Springer, 1999.

F. Laroussinie and Ph. Schnoebelen. The state explpsdem from trace to bisimulation
equivalence. IfProceedings of FoSSaCS 2000lume 1784 of_ecture Notes in Computer
Sciencepages 192-207. Springer, 2000.

R. Mayr. On the complexity of bisimulation problems farshdown automata. IRro-
ceedings of IFIP TCS'200&olume 1872 ol ecture Notes in Computer Scien&pringer,
2000.

R. Milner. Communication and ConcurrenciPrentice-Hall, 1989.

D.M.R. Park. Concurrency and automata on infinite sezeeen InProceedingsst" Gl
Conferencevolume 104 ofLecture Notes in Computer Sciengages 167-183. Springer,
1981.

W. Reisig.Petri Nets—An IntroductianSpringer, 1985.

C. Stirling. Modal and temporal logiddandbook of Logic in Computer Scien@e477-563,
1992.

R.J. van Glabbeek. The linear time—branching time spect In Proceedings of CON-
CUR’90, volume 458 otf_ecture Notes in Computer Scienpages 278-297. Springer, 1990.
I. Walukiewicz. Pushdown processes: Games and modekicige In Proceedings of
CAV’96, volume 1102 ot ecture Notes in Computer Sciengages 62—74. Springer, 1996.

