
On Simulation-Checking with Sequential Systems

Antonı́n Kučera?
Faculty of Informatics, Masaryk University, Czech Republic (tony�fi.muni.
z)

Abstract. We present new complexity results for simulation-checkingand model-
checking with infinite-state systems generated by pushdownautomata and their
proper subclasses of one-counter automata and one-counternets (one-counter
nets are ‘weak’ one-counter automata computationally equivalent to Petri nets
with at most one unbounded place).
As for simulation-checking, we show the following: a) simulation equivalence
between pushdown processes and finite-state processes isEXPTIME -complete;
b) simulation equivalence between processes of one-counter automata and finite-
state processes iscoNP-hard; c) simulation equivalence between processes of
one-counter nets and finite-state processes is inP (to the best of our knowledge,
it is the first (and rather tight) polynomiality result for simulation with infinite-
state processes).
As for model-checking, we prove that a) the problem of simulation-checking be-
tween processes of pushdown automata (or one-counter automata, or one-counter
nets) and finite-state processes are polynomially reducible to the model-checking
problem with a fixed formula' � �X:[z℄hziX of the modal�-calculus. Conse-
quently, model-checking with' is EXPTIME -complete for pushdown processes
andcoNP-hard for processes of one-counter automata; b) model-checking with
a fixed formula3[a℄3[b℄ff of the logic EF (a simple fragment of CTL) isNP-
hard for processes of OC nets, and model-checking with another fixed formula2hai2hbitt of EF iscoNP-hard. Consequently, model-checking with any tem-
poral logic which can express these simple formulae is computationally hard even
for the (very simple) sequential processes of OC-nets.

1 Introduction

Two important approaches to formal verification of concurrent systems areequivalence-
checkingand model-checking. In both cases, a process is formally understood to be
(associated with) a state in atransition system, which is a tripleT = (S;A
t ;!)
whereS is a set ofstates, A
t is a finite set ofactions, and! � S � A
t � S is a
transition relation. We writes a! t instead of(s; a; t) 2 ! and we extend this notation
to elements ofA
t� in the natural way. A statet is reachablefrom a states, writtens!� t, iff s w! t for somew 2 A
t�.

In the equivalence-checking approach, one describes thespecification(the intended
behavior) and the actualimplementationof a concurrent process as states in transi-
tion systems, and then it is shown that they areequivalent. Here the notion of equiva-
lence can be formalized in various ways according to specificneeds of a given practical? Supported by the Grant Agency of the Czech Republic, grants No. 201/98/P046 and No.

201/00/1023.

problem (see, e.g., [24] for an overview). A favorite approach is the one ofsimulation
equivalence which has been found appropriate in many situations and consequently its
accompanying theory has been developed very intensively. Let T = (S;A
t ;!) be a
transition system. A binary relationR � S�S is asimulationiff whenever(s; t) 2 R,
then for eachs a! s0 there is somet a! t0 such that(s0; t0) 2 R. A processs is simu-
latedby t, writtens vs t, iff there is a simulationR such that(s; t) 2 R. Processess; t
aresimulation equivalent, written s =s t, iff they can simulate each other. Simulation
can also be viewed as agame— imagine there are two tokens put on statess andt.
Now two players, Al and Ex, start to play asimulation gamewhich consists of a (possi-
bly infinite) number ofroundswhere each round is performed as follows: Al takes the
token which was put ons originally and moves it along a transition labelled by (some)a; the task of Ex is to move the other token along a transition with the same label. Al
wins the game iff after a finite number of rounds Ex cannot respond to Al’s final attack.
We see thats vs t iff Ex has a universal defending strategy, i.e., Al never wins pro-
vided Ex plays in a sufficiently ‘clever’ way. We use simulation game as some points
to give a more intuitive justification for our claims. Finally, let us note that simulation
can also be used to relate states ofdifferent transition systems; formally, two systems
are considered to be a single one by taking their disjoint union.

In the model-checking approach, desired properties of the implementation are en-
coded as formulae of certain temporal logic (interpreted over transition systems) and
then it is demonstrated that the implementation satisfies the formulae. There are many
systems of temporal logic differing in their expressive power, decidability, complexity,
and other aspects (see, e.g., [23, 6]). In this paper we only work with one (fixed) formula' � �X:[z℄hziX of themodal�-calculus[13] and some other (fixed) formulae of its
very simple fragment which is known as theEF logic (the logic EF can also be seen as
a natural fragment of CTL [6]). A formal definition of the syntax and semantics of the
modal�-calculus is omitted due to space constraints (we refer, e.g., to [13]). However,
we do explain the meaning of' in Section 3. Formulae of the logic EF look as follows: ::= tt j ^ j : j hai j3
Herea ranges over a given set of atomic actions. Dual operators tohai and3 are[a℄ and2, defined by[a℄ � :hai: and2 � :3: , respectively. LetT = (S;A
t ;!)
be a transition system. Thedenotation[[℄℄ of a formula is the set of states where the
formulaholds; it is defined as follows:[[tt℄℄ = S[[1 ^ 2℄℄ = [[1℄℄ \ [[2℄℄[[: ℄℄ = S � [[℄℄[[hai ℄℄ = fs 2 S j 9t 2 S : s a! t ^ t 2 [[℄℄g[[3 ℄℄ = fs 2 S j 9t 2 S : s!� t ^ t 2 [[℄℄g

The ‘language’ of transition systems is not very practical –concurrent systems of-
ten have a very large (or even infinite) state-space and henceit is not feasible to define
their semantics ‘directly’ by means of transition systems.Therefore, ‘higher’ languages
allowing to construct compact definitions of large systems have been proposed and

studied. In this paper we mainly work with (subclasses of) pushdown automata, which
are considered as a fundamental model of sequential behaviors in the framework of
concurrency theory (for example, one can conveniently model programs consisting of
mutually recursive procedures in the syntax of PDA, and existing verification tech-
niques for PDA are then applicable to, e.g., some problems ofdata-flow analysis [7]).
Formally, apushdown automatonis a tuple� = (Q;�;A
t ; Æ) whereQ is a finite
set ofcontrol states, � is a finitestack alphabet, A
t is a finite input alphabet, andÆ : (Q � �) ! 2A
t�(Q���) is a transition functionwith finite image. We can as-
sume (w.l.o.g.) that each transition increases the height (or length) of the stack at most
by one (each PDA can be efficiently transformed to this kind ofnormal form). In the
rest of this paper we adopt a more intuitive notation, writing pA a! q� 2 Æ instead of(a; (q; �)) 2 Æ(p;A). To� we associate the transition systemT� whereQ� � � is the
set of states (we writep� instead of(p; �)), A
t is the set of actions, and the transition
relation is determined bypA� a! q�� () pA a! q� 2 Æ.

A natural and important subclass of pushdown automata is theclass ofone-counter
automata where the stack behaves like acounter. Such a restriction is reasonable be-
cause in practice we often meet systems which can be abstracted to finite-state pro-
grams operating on a single unbounded variable. For example, network protocols can
maintain the count on how many unacknowledged messages havebeen sent, printer
spool should know how many processes are waiting in the inputqueue, etc. Formally,
a one-counter automatonA is a pushdown automaton with just two stack symbolsI andZ; the transition functionÆ of � is a union of functionsÆZ and ÆI whereÆZ : (Q�fZg)! 2A
t�(Q�(fIg�fZg)) andÆI : (Q�fIg)! 2A
t�(Q�fIg�). Hence,Z works like a bottom symbol (which cannot be removed), and thenumber of pushedI ’s represents the counter value. Processes ofA (i.e., states ofT�) are of the formpI iZ
which is abbreviated top(i) in the rest of this paper. Again, we assume (w.l.o.g) that
each transition increases the counter at most by one. A proper subclass of one-counter
automata of its own interest areone-counter nets. Intuitively, OC-nets are ‘weak’ OC-
automata which cannot test for zero explicitly. They are computationally equivalent to
a subclass of Petri nets [22] with (at most) one unbounded place. Hence, one-counter
nets can be used, e.g., to model systems consisting of producers and consumers which
share an infinite buffer (a non-empty buffer enables the execution of consumers but it
need not be tested for zero explicitly). Formally, aone-counter netN is a one-counter
automaton such that wheneverpZ a! qI iZ 2 Æ, thenpI a! qI i+1 2 Æ. In other words,
each transition which is enabled at zero-level is also enabled at (each) non-zero-level.
Hence, there are no ‘zero-specific’ transitions which couldbe used to ‘test for zero’.

The state of the art: Let PDA, BPA, OC-A, OC-N, andFS be the classes of all
processes of pushdown automata, stateless pushdown automata, one-counter automata,
one-counter nets, and finite-state systems, respectively.Moreover, letPN, BPP, andPA
denote the classes of all processes of Petri nets [22], basicparallel processes [5], and
process algebra [4], respectively. The problems of simulation preorder and simulation
equivalence between processes of classesA andB are denoted byA vs B andA =s B,
respectively. The problem of simulation-checking with (certain classes of) infinite-state
systems has been attracting attention for almost a decade; here we only mention some
of the most relevant results. First, it was shown in [8] that the problemsBPA vs BPA

andBPA =s BPA are undecidable. The undecidability ofBPPvs BPP andBPP =s
BPP was proved in [9]. An interesting positive result is [1] where it is shown that
OC-N vs OC-N (and hence alsoOC-N =s OC-N) is decidable. However,OC-A vs
OC-A andOC-A =s OC-A are already undecidable [12]. The problem of checking
simulation between infinite and finite-state systems was first examined in [11] where it
is shown thatPN vs FS, FSvs PN, andPN =s FS are decidable. A similar positive
result was later demonstrated in [16] for thePDA vs FS, FS vs PDA, andPDA =s
FS problems; some complexity estimation were also given (see below). Moreover, the
problemsPA vs FS, FSvs PA, andPA =s FS are proved to be undecidable.

The decidability and complexity of checking other behavioral equivalences (in par-
ticular, strongandweak bisimilarity[21, 20]) between infinite and finite state systems
also exist; we give a short comparison in the final section.

Our contribution: In our paper we present new complexity results for simulation-
checking and model-checking problems with the above mentioned subclasses of push-
down processes. The most significant original contributions are summarized below to-
gether with a short discussion on previous work.

– PDA =s FS is EXPTIME -complete. Previously, there was acoNP lower bound
for the problem [16] (this lower bound also works forBPA processes). In the same
paper, the membership ofPDA =s FS to EXPTIME has also been shown, hence
here we only need to prove theEXPTIME lower bound.

– OC-A =s FS is coNP-hard. The problem whether this lower bound is tight is left
open. Intuitively, the problem should be expected easier then for PDA processes,
because there is a substantial simplification in the case of strong bisimilarity – the
problem of strong bisimilarity with finite-state processesis in P for OC-A processes
[14], butPSPACE-complete forPDA processes [19].

– OC-N =s FS is in P. In fact, we show thatOC-N vs FS andFS vs OC-N are
in P. To the best of our knowledge, this is the first (and rather tight) polynomiality
result for simulation with infinite-state systems. Let us note that some equivalence-
checking problems between processes of OC-nets and FS processes are still hard
(for example, weak bisimilarity isDP-hard [14]), so the result is not immediate (see
also the comments below).

– Next, we show that the problems of simulation preorder/equivalence between pro-
cesses ofPDA (or OC-A, or OC-N) andFS processes are reducible to the model-
checking problem for the fixed formula' � �X:[z℄hziX of (the alternation-free
fragment of) the modal�-calculus. It is essentially a simple observation which was
(in a similar form) used already in [2, 16, 18]. The point is that (due to the previ-
ous hardness results) we can conclude that the problem of model-checking with'
is EXPTIME -complete forPDA processes (the upper-bound is due to [25]) and
coNP-hard forOC-A processes. An interesting thing is that the model-checking
problem for stateless pushdown (i.e.,BPA) processes andanyfixed formula of the
modal�-calculus is already polynomial [25]. The classes ofBPA andOC-A pro-
cesses are rather natural butincomparablesubclasses ofPDA processes – we see
that the absence of a finite control is a ‘stronger’ simplification than the replacement
of the storage device (counter instead of stack) in this case.
As simulation betweenOC-N andFS processes is inP, the aforementioned tech-
nique does not yield any hardness result for model-checkingwith OC-N processes.

Therefore, we examine the problem directly – we prove that even model-checking
with a simple fixed formula3[a℄3[b℄ff of the logic EF isNP-hard for OC-N
processes, and model-checking with another fixed formula2hai2hbitt is coNP-
hard. Hence, we can forget about an efficient model-checkingprocedure forOC-N
processes and any modal logic which can express these simpleformulae (unless
P = NP).

2 Results about Equivalence-Checking

Theorem 1. The problem of simulation equivalence between PDA processes and de-
terministic FS processes isEXPTIME-hard.

Proof. We showEXPTIME -hardness by reduction from the acceptance problem for
alternating LBA (which is known to beEXPTIME -complete). Analternating LBAis a
tupleM = (Q;�; Æ; q0;`;a; p) whereQ;�; Æ; q0;`; anda are defined as for ordinary
non-deterministic LBA (in particular,̀ anda are the left-end and right-end markers,
resp.), andp : Q ! f8; 9; a

; rejg is a function which partitions the states ofQ
into universal, existential, accepting, andrejecting, respectively. We assume (w.l.o.g.)
thatÆ is defined so that ‘terminated’ configurations (i.e., the ones from which there are
no further computational steps) are exactly accepting and rejecting configurations. A
computational treeforM on a wordw 2 �� is any (finite or infinite) treeT satisfying
the following: the root ofT is (labeled by) the initial configurationq0`wa of M, and
if N is a node ofM labeled by a configurationuqv whereu; v 2 �� andq 2 Q, then
the following holds:

– if q is accepting or rejecting, thenT is a leaf;
– if q is existential, thenT has one successor whose label is (some) configuration

which can be reached fromuqv in one computational step (according toÆ);
– if q is universal, thenT hasm successors wherem is the number ofall configura-

tions which can be reached fromuqv in one step; those configurations are used as
labels of the successors in one-to-one fashion.M acceptsw iff there is a finite computational treeT such that all leaves ofT are

accepting configurations.
Now we describe a polynomial algorithm which for a given alternating LBAM =(Q;�; Æ; q0;`;a; p) and a wordw 2 �� constructs a processP of a PDA system�

and a processF of a finite-state systemF such that

– P vs F , and
– F vs P iff M does not acceptw.

Hence,M acceptsw iff P 6=s F and we are (virtually) done.
Intuition: The underlying systemF of F looks as follows (note theF is determin-

istic):

F F F0 1 F2 Fa a a a Fnexti
b

H
again

n+1 n+2 checkj

Intuitively, the goal ofF is to demonstrate that there is an accepting computational
tree forM onw, while P aims to show the converse. The game starts with the initial
configurationq0`wa stored in the stack ofP . NowF ‘chooses’ the next configuration
(i.e., the rule ofÆ which is to be applied to the current configuration stored at the top of
stack) by emitting one of thenexti actions. The quotes are important here becauseP is
constructed in such a way that it has to accept the choice ofF only if the control state
of the current configuration isexistential. If it is universal, P can ‘ignore’ the dictate ofF and choose the next configuration according to its own will. The new configuration is
then pushed to the stack ofP (technically, it is done by guessing individual symbols and
an auxiliary verification mechanism is added so thatP cannot gain anything if it starts
to cheat). As soon asP enters an accepting configuration, it ‘dies’ (i.e., it is notable to
emit any action); and as soon as it enters a rejecting configuration, it starts to behave
identically asF . Hence, if there is an accepting computational tree forM onw, thenF can forceP to enter an accepting configuration in finitely many rounds (and henceF 6vs P). If there is no accepting computational tree, thenP can successfully defend; it
either enters a rejecting configuration or the game goes forever. It means, in both cases,
thatF vs P . Moreover, a careful design ofP ensures thatP vs F regardless whetherM acceptw or not. A full (formal) proof is omitted due to space constraints; it can be
found in [15]. ut

In the proof of our next theorem we use the technique for encoding assignments of
Boolean variables in the structure of one-counter automatadiscovered in [14].

Theorem 2. The problem of simulation equivalence between OC-A processes and FS
processes iscoNP-hard.

Proof. We showcoNP-hardness by reduction of thecoNP-complete problem UNSAT.
An instance is a Boolean formula in CNF. The question is whether is unsatisfiable.

Let � C1^� � �^Cm be a formula in CNF whereCi are clauses over propositional
variablesx1; � � � ; xn. We construct (in polynomial time) a processP of a OC-A system� and a processF of a finite-state systemF such thatP vs F iff is unsatisfiable.
Then we simply consider the processesP 0 andF 0 which have the following outgoing
transitions:P 0 x! P; P 0 x! F , andF 0 x! F wherex is a fresh action. Observe thatP 0 is easily definable in the syntax of one-counter processes and F 0 in the syntax of
finite-state processes. ClearlyF 0 vs P 0, andP 0 vs F 0 iff P vs F . In other words,P 0 =s F 0 iff is unsatisfiable and it proves our theorem.

It remains to show the construction ofP , �, F , andF . The set of actions of�
andF is A
t = fa; b;
1; : : : ;
mg. LetAi = A
t � fa;
ig. The set of states ofF isfF; F1; : : : ; Fmg and its transitions areF a! F , F b! Fi for each1 � i � m, andFi y! Fi for eachy 2 Ai and each1 � i � m. Hence, the systemF looks as follows:

F

FF F1 2 m

a

b b b

A A A1 2 m

In the construction of� we rely on the following theorem of number theory (see,
e.g., [3]): Letpi be theith prime number, and letf : IN ! IN be a function which
assigns to eachn the sum

Pni=1 pi. Thenf isO(n3). This fact ensures that� has only
polynomially-many control states (see below).

The set of control statesQ of � is fs; rg [fshpi;ji j 1 � i � n; 0 � j < pig. For
each1 � i � n we now define two sets of actions.

– Bi = f
j j 1 � j � m; the variablexi appears positively in the clauseCjg
– Bi = f
j j 1 � j � m; the variablexi appears negatively in the clauseCjg

Transitions of� are defined as follows:

– sZ a! sIZ, sI a! sII , sI b! rI ,

– rI b! shpi;0iI for each1 � i � n,

– shpi;jiI b! shpi;(j+1) mod pii" for each1 � i � n and each0 � j < pi,
– shpi;0iZ y! shpi;0iZ for each0 � i � n and eachy 2 Bi.
– shpi;jiZ y! shpi;jiZ for each0 � i � n, each1 � j < pi, and eachy 2 Bi.

The structure of the transition system associated to� is depicted in the following figure
(transition systems associated to OC systems can be viewed as two-dimensional ‘tables’
with an infinite height where control states are used as column indexes and counter
values as row indexes; as the outgoing transitions of a processp(i) for i > 0 do not
depend on the exact value ofi, it suffices to depict the out-going transitions at the zero
level and (some) non-zero level):

B B B B B B B B1 1 22 2

s r s<2,0> s<2,1> s s s<3,0> <3,1> <3,2> s s

b
bb

b

ba

a

b b

b

b b b b

n n n

s
n<p ,0> n<p ,1> n<p ,n-1>

0:

>0:

The initial state iss(0). Intuitively, P first increases its counter, emitting a sequence
of a’s. Then it emits the firstb action and changes its control state tor (preserving the
value stored in the counter). To each stater(l) we associate the (unique) assignment�l
defined by�l(xi) = tt iff r(l) !� shpi;0i(0) (i.e.,�l(xi) = ff iff r(l) !� shpi;ji(0)
for some1 � j < pi). Conversely, for each assignment� there isl 2 IN such that� = �l (for example, we can putl = �nj=0f(j), wheref(j) = pj if �(xj) = tt, andf(j) = 1 otherwise). Now it is easy to check that a clauseCk is true for an assignment�l iff at least one of the ‘bottom’ statesshpi;ji(0) where a
k-loop is enabled (see above)
is reachable fromr(l).

Let s(l) be a state ofP such that�l() = ff. It means that there is1 � k � m such

that�l(Ck) = ff. Hence, the processF can safely match the transitions(l) b! r(l) byF b! Fk (from that point on it can do everything except
k). However, if there is somel
such that�l() = tt, thenF does not have any ‘safe’ matching move for the transitions(l) b! r(l) because none of itsFk successors can do all of the
i actions. Hence, is
unsatisfiable iffs(0) vs F . ut

Now we prove that simulation preorder and simulation equivalence between pro-
cesses of one-counternetsand finite-state processes can be decided in polynomial time.
To the best of our knowledge, these are the first polynomiality results for simulation
with infinite-state systems. Intuitively, the crucial property which makes our proofs
possible (and which does not hold for general one-counter automata) is the following
kind of ‘monotonicity’ — if p(i) is a process of a one-counter net, thenp(i) vs p(j)
for everyj � i.

It should be noted that in our next constructions we prefer simplicity to optimality.
Therefore, it does not pay to evaluate the degrees of polynomials explicitly (though
it would be of course possible) because they would considerably decrease after some
straightforward optimizations. Our only aim here is to prove the membership toP.

Let T = (S;A
t ;!) be a transition system. A family ofvis, i 2 IN0 relations is
defined inductively as follows:

– s v0s t for all s; t 2 S;
– s vi+1s t iff s vis t and for eachs a! s0 there is somet a! t0 such thats0 vis t0.

Intuitively, s vis t iff Ex has a defending strategy for the firsti rounds of the simula-
tion game. If we restrict ourselves to processes offinitely-branchingtransition systems
(where each state has only finitely manya-successors for every actiona), thens vs t iffs vis t for everyi 2 IN0 (observe that transition systems generated by PDA are finitely-
branching). This enables the following (straightforward)polynomial-time algorithm for
checking simulation between finite-state processes:

Lemma 1. LetF = (F;A
t ;!) andG = (G;A
t ;!) be finite-state systems withm
andn states, respectively. Letk = m �n. For all f 2 F andg 2 G we have thatf vks g
iff f vk+1s g iff f vs g. Moreover, the relationvks can be computed in time which is
polynomial in the size ofF andG.

Proof. If we start to construct the family of ‘vis’ relations according to the above stated
definition, we must reach the greatest fixed-point after (at most)k refinement rounds,
because ‘v0s ’ contains onlyk elements andvis�vi+1s for eachi 2 IN0. It is clear that
each refinement step can be computed in time which is polynomial in the size ofF andG. ut
Lemma 2. The problem whether a OC-N process can be simulated by a finite-state
process is inP.

Proof. Let N = (Q; fI; Zg;A
t; Æ) be a one-counter net andF = (F;A
t ;!) a
finite-state system. We show that (a description of) the simulation preorder between

processes ofN andF can be computed in time which is polynomial in the size ofN
andF .

The first step of our algorithm is a construction of acharacteristic finite-state sys-
temof N , denotedFN , which is defined as follows:FN = (Q;A
t ;!) whereQ =fp j p 2 Qg andp a! q iff pI a! qI i 2 Æ(p; I) for somei 2 IN0. Hence, a processp of FN intuitively corresponds to a ‘limit process’p(1) of N (in particular, observe
that p(i) vs p for all p 2 Q and i 2 IN0). It is obvious that the systemFN can be
constructed in linear time.

Next, for all p 2 Q andf 2 F we check whetherp vs f . It can be done in
polynomial time (see Lemma 1). Now observe that ifp vs f for givenp andf , we can
conclude thatp(i) vs f for any i 2 IN0, becausep(i) vs p. If p 6vs f , thenp 6vks f
wherek = jQj � jF j (see Lemma 1). Hence,p can win the simulation game overf in
(at most)k steps. It is clear that the processp(k) can ‘mimic’ this winning strategy ofp, because the counter can be decreased at most byk within the firstk moves (note
that if we allowed to test the counter for zero, thenp(k) could notmimic the firstk
moves ofp in general). The same applies toanyprocessp(i) wherei � k, because thenp(k) vs p(i). To sum up, at this point we know ifp(i) vs f for all p 2 Q; f 2 F ,
andi � k. It remains to decide simulation between pairs of the form(p(i); f) where0 � i < k. As there are onlyjQj � jF j � k = jQj2 � jF j2 such states, we can use a simple
refinement technique similar to the one of Lemma 1. Formally,we define a family ofRj relations inductively as follows:

– R0 = f(p(i); f) j i < k; p 2 Q; f 2 Fg
– Rj+1 consists of those pairs of the form(p(i); f) for which we either have thatp vs g, or (p(i); f) 2 Rj and for each movep(i) a! q(l) there is a movef a! g

such thatq vs g or (q(l); g) 2 Rj .
Let R be the greatest fixed point of this refinement procedure. First, observe thatR
is computable inP because it is reached in (at most)jQj2 � jF j2 refinement steps and
each step can be obviously computed in polynomial time. Now let us consider a pair of
the form(p(i); f) wherep 2 Q, i < k, andf 2 F . If (p(i); f) 62 R, then obviouslyp(i) 6vs f . On the other hand, if(p(i); f) 2 R, thenp(i) vs f because we can readily
confirm that the relationR[f(q(l); g) j q 2 Q; l 2 IN0; g 2 F; q vs gg is a simulation.ut
Lemma 3. The problem whether a finite-state process can be simulated by a OC-N
process is inP.

Proof. Let N = (Q; fI; Zg;A
t; Æ) be a one-counter net andF = (F;A
t ;!) a
finite-state system. Similarly as in the previous lemma we show that (a description
of) the simulation preorder between processes ofF andN can be computed in time
which is polynomial in the size ofN andF . However, the argument is slightly more
complicated in this case.

We start with one auxiliary definition. For allf 2 F andp 2 Q we define the
frontier counter value, denotedV(f; p), to be the leasti 2 IN0 such thatf vs p(i); if
there is no suchi, we putV(f; p) = �1. Our aim is to show that every frontier counter
value is bounded byjQj � jF j, i.e.,V(f; p) � jQj � jF j for all f 2 F andp 2 Q. Letm

be the maximal frontier value. It suffices to prove that for eachn such that1 � n � m
there aref 2 F andp 2 Q such thatV(f; p) = n. Let us suppose the converse, i.e.,
there is somen � 1 such that there is at least one frontier value greater thenn, some
frontier values are (possibly) less thann, but no frontier value equals ton. It follows
directly from the definition of frontier points that the greatest simulation among the
processes ofF andN is the following relationR:R = f(f; p(i)) j f 2 F; p 2 Q;V(f; p) � 0; i � V(f; p)g
Now we show that if there is somen with the above stated properties, than we can
actually construct a simulation which is strictly larger thanR, which is a contradiction.
LetR0 be the following finite relation:R0 = f(g; q(
)) j g 2 F; q 2 Q;V(g; q) > n;
 = V(g; q)� 1g
As n < m, R0 is clearly nonempty. We show thatR [R0 is a simulation. To do
that, it suffices to check the simulation condition for pairsof R0, becauseR itself is
a simulation. Let(g; q(
)) 2 R0 andg a! h. We need to find some moveq(
) a! �
such that the pair(h; �) is related byR [R0. However, as(g; q(
)) 2 R0, we have
that
 = V(g; q) � 1 and hence(g; q(
 + 1)) 2 R. Therefore, there must be some
moveq(
 + 1) a! r(l) such that(h; r(l)) 2 R (also observe thatl � n). It means thatq(
) a! r(l � 1) (here we use the fact that
 � 1). Now if (h; r(l � 1)) 2 R, we are
done immediately. If it is not the case, thenl is the frontier counter value forh andr by
definition, i.e.,l = V(h; r). As l � n and there is no frontier value which equals ton,
we conclude thatl > n — but it means that(h; r(l � 1)) 2 R0 by definition ofR0.

Let k = jQj � jF j. Now let us realize that if we could decide simulation for all
pairs of the form(f; p(k)) in polynomial time, we would be done — observe that iff vs p(k), then clearlyf vs p(i) for all i � k. As all frontier counter values are
bounded byk (see above), we can also conclude that iff 6vs p(k) thenf 6vs p(i) for
all i � k. Simulation between thek2 remaining pairs of the form(f; p(i)) wherei < k
could be then decided in the same way as the previous lemma, i.e., by computing the
greatest fixed-point of a refinement procedure defined by

– R0 = f(f; p(i)) j f 2 F; p 2 Q; i < kg
– Rj+1 consists of those pairs of the form(f; p(i)) such that(f; p(i)) 2 Rj and for

each movef a! g there is a movep(i) a! q(l) such that either(g; q(l)) 2 Rj , orl = k andg vs q(k).
The greatest fixed-point is reached after (at most)k2 refinement steps and each step can
be computed in polynomial time.

Now we prove that simulation for the pairs of the form(f; p(k)) can be indeed
decided in polynomial time. To do that, we show thatf vs p(k) iff f v2k2s p(k). It
clearly suffices — asp(k) cannot increase the counter to more than2k2 + k in 2k2
moves, we can decide whetherf v2k2s p(k) simply by computing the ‘v2k2s ’ relation
between the states of the systemF and a finite-state system(S;�;!) whereS =f(p; i) j p 2 Q; 0 � i < 2k2 + kg and! is given by(p; i) a! (q; j) iff p(i) a! q(j);

then we just look iff v2k2s (p; k). This can be of course done in polynomial time (see
Lemma 1).

Let j 2 IN0 be the least number such thatf 6vjs p(k). Then Al can win the simula-
tion game inj rounds, which means that there is a sequence(fj ; pj(lj)) aj�! (fj�1; pj�1(lj�1)) aj�1�! � � � a2�! (f1; p1(l1)) a1�! (f0;�)
of game positions wheref = fj , p(k) = pj(lj), andfi 6vis pi(li) for each1 � i �j. The Al’s attack at a position(fi; pi(li)) is fi ai! fi�1, and Ex’s defending move
is pi(li) ai! pi�1(li�1) (observe that, in particular,f1 6v1s p1(l1) and hencep1(l1)
cannot emit the actiona1). Moreover, we assume (w.l.o.g.) that Ex defends ‘optimally’,
i.e., fi vi�1s pi(li) for each1 � i � j. The first step is to show thatli � 2k for
each1 � i � j. Suppose the converse, i.e., there is somei with li > 2k. As the
counter can be increased at most by one in a single transition, we can select a (strictly)
increasing sequence of indexess0; s1; : : : ; sk such thatlsi = k + i for each0 � i � k.
Furthermore, ask = jQj � jF j, there must be two indexessu; sv whereu < v such thatfsu = fsv andpsu = psv . Let us denotefsu = fsv by f 0 andpsu = psv by p0. Now we
see (due to the optimality assumption) thatf 0 vsu�1s p0(k + u) andf 0 6vsvs p0(k + v).
As su � 1 � sv, we also havef 0 6vsu�1s p0(k + v). However, asu < v we obtainf 0 vsu�1s p0(k + u) vs p0(k + v), hencef 0 vsu�1s p0(k + v) and we derived a
contradiction. The rest is now easy — ifj > 2k2 (i.e., if Al cannot win in2k2 rounds)
then there must be someu > v such thatfu = fv, pu = pv, andlu = lv. It follows
directly from the fact thatk = jQj � jF j and that eachli is at most2k. Now we can
derive a contradiction in the same way as above — denotingfu = fv by f 0, pu = pv byp0, andlu = lv by l0, we obtain (due to the optimality assumption) thatf 0 vu�1s p0(l0)
andf 0 6vvs p0(l0). Asu� 1 � v, we have the desired contradiction. ut
An immediate consequence of Lemma 2 and Lemma 3 is the following theorem:

Theorem 3. The problem of simulation equivalence between OC-N processes and FS
processes is inP.

3 Results about Model-Checking

In this section we show that there is a close relationship between simulation-checking
problems and the model-checking problem for the formula' � �X:[z℄hziX of the
modal�-calculus. It is essentially a simple observation which was(in a similar form)
used already in [2, 16, 18].

As we omitted a formal definition of syntax and semantics of this logic, we clarify
the meaning of' at this point. LetT = (S;A
t ;!) be a transition system. Letf' :2S ! 2S be a function defined as follows:f'(M) = fs 2 S j 8(s z! s0) we have that9(s0 z! s00) such thats00 2Mg
The denotation of' (i.e., the set of states where' holds), written[['℄℄, is defined by[['℄℄ =[fU � S j U � f'(U)g

Hence,[['℄℄ is the greatest fixed-point of the (monotonic) functionf'. As usual, we
write t j= ' instead oft 2 [['℄℄.
Theorem 4. LetP be a process of a PDA system� = (Q;�;A
t ; Æ), andF a process
of a finite-state systemF = (S;A
t ;!). Then it possible to construct (in polynomial
time) processesA;B of a PDA system�1 and a processC of a PDA system�2 such
thatP vs F iff A j= ', F vs P iff B j= ', andP =s F iff C j= '.

Proof. Intuitively, the processesA;B andC ‘alternate’ the transitions ofP andF in
an appropriate way. We start with the definition of�1. The set of control states of�1 isQ�S� (A
t [f?g)�f0; 1g, the set of actions isA
t , the stack alphabet� is� [fZg
whereZ 62 � is a fresh symbol (bottom of stack). The set of transitions isthe least setÆ satisfying the following:

– if pX a! q� is a rule ofÆ, then(p; F; ?; 0)X z! (q; F; a; 1)� and(p; F; a; 0)X z!(q; F; ?; 1)� are rules ofÆ for eachF 2 S;
– if F a! F 0, then(p; F; ?; 1)X z! (p; F 0; a; 0)X and(p; F; a; 1)X z! (p; F 0; ?; 0)X

are rules ofÆ for all p 2 Q andX 2 � ;

Let P � p�. We putA � (p; F; ?; 0)�Z andB � (p; F; ?; 1)�Z. Observe thatA
alternates the moves ofP andF — first P performs a transition whose label is stored
in the finite control and passes the token toF (by changing0 to 1); thenF emits some
transition with the same (stored) label and passes the tokenback toP . The new bottom
symbolZ is added to ensure thatF cannot ‘die’ withinA just due to the emptiness of
the stack. Now it is obvious thatP vs F iff A j= '; the fact thatQ vs P iff B j= '
can be justified in the same way.

The way how to defineC is now easy to see – it suffices to ensure that the only
transitions ofC areC z! C 0 andC z! C 00 whereC 0 z! A andC 00 z! B. It can be
achieved by a straightforward extension of�1. ut
The proof of Theorem 4 carries over to processes of one-counter automata and one-
counter nets immediately (observe there is no need to add a new bottom symbol when
constructing�1 and�2 because the zero-marker of one-counter systems is never re-
moved from the stack by definition.

Corollary 1. The model-checking problem for' is

– EXPTIME-complete for PDA processes;
– coNP-hard for OC-A processes;

As simulation between OC-N and FS processes is inP, Theorem 4 does not imply
any hardness result for model-checking with OC-N processes. Therefore, we examine
this problem ‘directly’ by showing that a simple fixed formula3[a℄3[b℄ff of the logic
EF isNP-hard for OC-N processes. In our proof we use a slightly modified version of
the construction which was given in [14] to proveDP-hardness of weak bisimilarity
between OC-N and FS processes. To make this paper self-contained, we present a full
proof here.

Theorem 5. Let p(0) be a process of a one-counter netN . The problem ifp(0) j=3[a℄3[b℄ff is NP-hard.

Proof. Let' � C1 ^ � � �^Cm be a formula in CNF whereCi are clauses over proposi-
tional variablesx1; � � � ; xn. We construct a OC-N systemN = (Q; fI; Zg; fa; b; �g; Æ)
and its processp(0) such that' is satisfiable iffp(0) j= 3[a℄3[b℄ff. The construction
ofN will be described in a stepwise manner. The setsQ andÆ are initialized as follows:Q = fqg, Æ = fqI b! qI; qZ b! qZg. Now, for each clauseCi, 1 � i � m, we do the
following:

– Let �j denote thejth prime number. We add a new control state
i toQ. Moreover,
for each variablexj and eachk such that0 � k < �j we add toQ a control statehCi; xj ; ki.

– For each newly added control states we add toÆ the transitionssI a! qI; sZ a!qZ.
– For each1 � j � n we add toÆ the transitions
iI �! hCi; Xj ; 0iI .
– For all j; k such that1 � j � n and0 � k < �j we add toÆ the transitionhCi; xj ; kiI �! hCi; xj ; (k + 1) mod �ji".
– We add toÆ the ‘loops’
iI b!
iI;
iZ b!
iZ.

– For allj; k such that1 � j � n and0 � k < �j we add toÆ the loophCi; xj ; kiI b!hCi; xj ; kiI .
– If a variablexj doesnot appear positively in a clauseCi, then we add toÆ the loophCi; xj ; 0iZ b! hCi; xj ; 0iZ.
– If a variablexj does not appear negatively in a clauseCi, then we add toÆ the loopshCi; xj ; kiZ b! hCi; xj ; kiZ for every1 � k < �j .

If we draw the transition system which is generated by the current approximation ofN ,
we obtain a collection ofGi graphs,1 � i � m; eachGi corresponds to the ‘subgraph’
of the transition system associated toN which is obtained by restrictingQ to the set of
control states which have been added for the clauseCi. The structure ofGi is shown in
the following picture (thea-transitions to the states of the formq(j) are omitted as the
picture would become too complicated).

c i

b

b

b

b

b

<C ,X ,0> <C ,X ,1>1 2 2 21 n n

0:

τ τ τ τ τ τ τ τ

<C ,X ,1><C ,X ,0>

>0:

<C ,X ,0> <C ,X ,1> <C ,X ,2> iiiiiii n πn<C , X , -1>i

b b b b b b

bbbbbb b
τ

τ

τ

q

Now we can observe the following:

– For eachl > 0, the state
i(l) ‘encodes’ the (unique) assignment�l in the same
way as in the proof of Theorem 2, i.e.,�l is defined by�l(xj) = tt iff
i(l) !�hCi; xj ; 0i(0); conversely, for each assignment� there isl 2 IN such that� = �l
(for example, we can putl = �nj=0f(j), wheref(j) = �j if �(xj) = tt, andf(j) = 1 otherwise).

– For eachl > 0 we have that�l(Ci) = tt iff
i(l) j= 3[b℄ff. Indeed, observe
that�l(Ci) = tt iff
i(l) can reach some of the ‘zero-states’ where the actionb is
disabled.

We finish the construction ofN by connecting theGi components together. To do that,
we add two new control statesp andr to Q, and enrichÆ by adding the transitionspZ �! pIZ, pI �! pI I , pI a! qI , pZ a! qZ, pI �! rI , andrI a!
iI for every1 � i � m. The structure of of the transition system associated toN is shown below
(again, thea-transitions to the states of the formq(j) are omitted).

0:

G G G1 2 m

>0:
a a

a

a

r c c

τ

τ

cm21p

Now we can observe the following:

– The only states which can (potentially) satisfy the formula[a℄3[b℄ff are those of
the formr(l), because all other states have ana-transition to a state of the formq(j) where is it impossible to get rid ofb’s.

– A stater(l) satisfies the formula[a℄3[b℄ff iff
i(l) j= 3[b℄ff for all 1 � i � m iff�l(Ci) = tt for each1 � i � m (due to the previous observations) iff�l(') = tt.

Hence,' is satisfiable iff there isl 2 IN such thatr(l) satisfies[a℄3[b℄ff iff p(0) j=3[a℄3[b℄ff. ut
Corollary 2. Let p(0) be a process of a one-counter netN . The problem ifp(0) j=2hai2hbitt is coNP-hard.

4 Conclusions

This paper fills some gaps in our knowledge on complexity of simulation-checking and
model-checking with (subclasses of) pushdown automata. The following table gives a
summary of known results (contributions of this paper are inboldface). For compar-
ison, related results about checking strong and weak bisimilarity (denoted by� and

�, respectively) with finite-state processes are also shown.The overview supports the
claim that simulation tends to be computationally harder than bisimilarity; to the best
of our knowledge, there is so far no result violating this ‘rule of thumb’.

PDA BPA OC-A OC-N� FS PSPACE-complete [19] 2 P [17] 2 P [14] 2 P [14]� FS PSPACE-hard [19] 2 P [17] DP-hard [14] DP-hard [14]2 EXPTIME [10]=s FS EXPTIME-complete coNP-hard [16] coNP-hard 2 P

References

1. P.A. Abdulla and K.̌Cer āns. Simulation is decidable for one-counter nets. InProceedings of
CONCUR’98, volume 1466 ofLecture Notes in Computer Science, pages 253–268. Springer,
1998.

2. H.R. Andersen.Verification of Temporal Properties of Concurrent Systems. PhD thesis,
Arhus University, 1993.

3. E. Bach and J. Shallit.Algorithmic Number Theory. Vol. 1, Efficient Algorithms. The MIT
Press, 1996.

4. J.C.M. Baeten and W.P. Weijland.Process Algebra. Number 18 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

5. S. Christensen.Decidability and Decomposition in Process Algebras. PhD thesis, The Uni-
versity of Edinburgh, 1993.

6. E.A. Emerson. Temporal and modal logic.Handbook of Theoretical Computer Science, B,
1991.

7. J. Esparza and J. Knop. An automata-theoretic approach tointerprocedural data-flow anal-
ysis. InProceedings of FoSSaCS’99, volume 1578 ofLecture Notes in Computer Science,
pages 14–30. Springer, 1999.

8. J.F. Groote and H. Hüttel. Undecidable equivalences forbasic process algebra.Information
and Computation, 115(2):353–371, 1994.

9. Y. Hirshfeld. Petri nets and the equivalence problem. InProceedings of CSL’93, volume 832
of Lecture Notes in Computer Science, pages 165–174. Springer, 1994.

10. P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes. InProceedings of ICALP’98, volume 1443 ofLecture Notes in Computer Science,
pages 200–211. Springer, 1998.

11. P. Jančar and F. Moller. Checking regular properties ofPetri nets. InProceedings of CON-
CUR’95, volume 962 ofLecture Notes in Computer Science, pages 348–362. Springer, 1995.

12. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. InPro-
ceedings of SOFSEM’99, volume 1725 ofLecture Notes in Computer Science, pages 404–
413. Springer, 1999.

13. D. Kozen. Results on the propositional�-calculus.Theoretical Computer Science, 27:333–
354, 1983.

14. A. Kučera. Efficient verification algorithms for one-counter processes. InProceedings of
ICALP 2000, volume 1853 ofLecture Notes in Computer Science, pages 317–328. Springer,
2000.

15. A. Kučera. On simulation-checking with sequential systems. Technical report FIMU-RS-
2000-05, Faculty of Informatics, Masaryk University, 2000.

16. A. Kučera and R. Mayr. Simulation preorder on simple process algebras. InProceedings of
ICALP’99, volume 1644 ofLecture Notes in Computer Science, pages 503–512. Springer,
1999.

17. A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems can be decided in poly-
nomial time. InProceedings of CONCUR’99, volume 1664 ofLecture Notes in Computer
Science, pages 368–382. Springer, 1999.

18. F. Laroussinie and Ph. Schnoebelen. The state explosionproblem from trace to bisimulation
equivalence. InProceedings of FoSSaCS 2000, volume 1784 ofLecture Notes in Computer
Science, pages 192–207. Springer, 2000.

19. R. Mayr. On the complexity of bisimulation problems for pushdown automata. InPro-
ceedings of IFIP TCS’2000, volume 1872 ofLecture Notes in Computer Science. Springer,
2000.

20. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
21. D.M.R. Park. Concurrency and automata on infinite sequences. InProceedings5th GI

Conference, volume 104 ofLecture Notes in Computer Science, pages 167–183. Springer,
1981.

22. W. Reisig.Petri Nets—An Introduction. Springer, 1985.
23. C. Stirling. Modal and temporal logics.Handbook of Logic in Computer Science, 2:477–563,

1992.
24. R.J. van Glabbeek. The linear time—branching time spectrum. In Proceedings of CON-

CUR’90, volume 458 ofLecture Notes in Computer Science, pages 278–297. Springer, 1990.
25. I. Walukiewicz. Pushdown processes: Games and model checking. In Proceedings of

CAV’96, volume 1102 ofLecture Notes in Computer Science, pages 62–74. Springer, 1996.

