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Abstract Stochastic game logic (SGL) is a new temporal logic for multi-agent
systems modeled by turn-based multiplayer games with discrete transition prob-
abilities. It combines features of alternating-time temporal logic (ATL), proba-
bilistic computation tree logic (PCTL) and extended temporal logic (ETL). SGL
contains an ATL-like modality to specify the individual cooperation and reaction
facilities of agents in the multiplayer game to enforce a certain winning objective.
While the standard ATL modality states the existence of a strategy for a certain
coalition of agents without restricting the range of strategies for the semantics of
inner SGL formulas, we deal with a more general modality. It also requires the ex-
istence of a strategy for some coalition, but imposes some kind of strategy binding
to inner SGL formulas. The PCTL and ETL fragment of SGL serves to formalize
qualitative and quantitative, linear or branching time winning objectives.

This paper presents the syntax and semantics of SGL and discusses its model
checking problem for different types of strategies. The model checking problem
of SGL turns out to be undecidable when dealing with the full class of history-
dependent strategies. We show that the SGL model checking problem for memory-
less deterministic strategies as well as the model checking problem of the qualita-
tive fragment of SGL for memoryless randomized strategies is PSPACE-complete.
Moreover, we establish a reduction from the SGL model checking problem under
memoryless randomized strategies into the Tarski algebra which proves the prob-
lem to be in EXPSPACE.
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1 Introduction

Traditional temporal logics, such as linear temporal logic (LTL) or computation
tree logic (CTL) are widely used to specify properties of parallel systems [14].
In the classical approach for concurrent systems, the semantics of LTL and CTL
relies on an operational model (transition system) where the paths represent the
possible interleavings of the processes running in parallel and formulas assert con-
ditions on all paths (LTL) or on the branching structure of states (CTL). This ap-
proach is adequate for closed systems where the transition system describes the
potential system behaviors from a global perspective. In contrast, the semantics of
open systems relies on a game-based view where the indidividual components are
considered as players (also called agents) that interact with each other and their
environment. Alur, Henzinger and Kuperman [2] introduced alternating-time tem-
poral logic (ATL) as a variant of CTL with modalities expressing the existence
of strategies for coalitions of agents that enforce a certain event. More precisely,
ATL extends CTL by formulas of the form (A}, ¢ and ||A] ... where A is a set
of cooperating players (agents) and ¢ an ATL path formula.' Intuitively, the for-
mula (A} @ asserts that there is a strategy for the agents in A such that the event
specified by ¢ holds, no matter how the opponents (i.e., the other agents) behave.
The dual operator, denoted by || - ||an., can be understood as universal quantifica-
tion over strategies. That is, formula ||A| .« ¢ states that ¢ holds along at least one
path under all strategies for A. Stated differently, ||Al| ¢ asserts the absence of
a strategy for the coalition A to avoid ¢ to hold. The ATL semantics relies on
the standard CTL-like approach where all subformulae are interpreted over the
“full” structure. Le., the ATL modalities {-) . and | - || s do not restrict the range
of strategies for nested ()., and || - ||, modalities. For instance, the formula
(A) . O{B) xm. Opasserts the existence of a strategy o for the agents in A such that
(B) .Op holds (in the “full” game) for all states s that can be reached when the
agents in A make their decisions according to @, i.e., from these states s the agents
in B have a strategy 3 in the original game (neglecting the strategy o) which en-
sures that a state where p holds is reached.” Thus in ATL a strategy chosen by the
(-} s operator is not propagated to the inner ATL state formulae. Therefore, prop-
erties stating that a certain agent can react on the choices made by another agent
are not expressible in ATL. Several variants of ATL have been proposed that con-
tain modalities for strategy quantification imposing certain bindings of strategies
to inner formulas. Examples are game logic [2], ATL with strategy contexts [1,
10] or stochastic logic that contains first-order quantification over strategies [12].

In this paper, we introduce a probabilistic variant of ATL, called stochastic
game logic, SGL for short. It serves to specify properties of multi-agent systems
where actions can have a probabilistic effect. More precisely, we deal with finite-
state turn-based games where the game arena is based on a graph structure with
several annotations. Each state is either a game configuration where a single agent
is declared to choose a successor state (based on some deterministic or random-

' Our logic SGL will use other modalities for existential and universal quantification over
strategies. To avoid notation overloading, we use the notation {A) . and ||A||xr. to denote the
standard ATL modalities, while {A) and ||A| will be used for the SGL-modalities. Later on, we
will explain how the ATL-modalities can be derived from {A) and ||A].

2 O and ¢ denote the “always” and “eventually” operator, respectively.
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ized strategy) or a probabilistic state where the next state is chosen randomly ac-
cording to some fixed probabilistic distribution. The logic SGL contains a variant
of the ATL-modalities for reasoning about the existence or absence of strategies
for coalitions of agents, denoted {A)) and ||A||, where — as before — A denotes
a coalition of agents, to achieve a certain objective. The difference between the
ATL-modalities (A} and ||A|| . and the SGL modalities {(A)) and ||A|| becomes
apparent when these operators are nested. Following the approach of [4,24,9], the
semantics of the SGL formula {A) & is defined differently. The operator {A) im-
poses a binding of the strategy o chosen by the agents in A in the same way as
first-order quantification 3x¢ binds the variable x. The scope of the binding is the
full formula @ including its subformulae. However, the nested {A’) operators can
revise the binding for the agents in ANA’.

In SGL, the objectives of coalitions of agents can be linear-time or branching-
time properties with qualitative or quantitative probability bounds. For this pur-
pose, the SGL syntax combines features of probabilistic computation tree logic
(PCTL) for Markov decision processes [7] with features of extended temporal
logic (ECTL) [33,30, 13]. More precisely, the SGL-operators {.)) and || - || can be
used in combination with PCTL-like properties that might express qualitative or
quantitative probability bounds on path-events, or Boolean combinations thereof.
We follow here the concept of extended temporal logics especially the concept of
ECTL [13] and use deterministic Rabin automata to describe path properties.

With this concept we can formalize typical multi-player game properties such
as “the agents in A have a strategy such that whatever strategy the agents in B
choose, the agents in C can react to that strategy so that the winning condition
holds”. This is formalized by SGL formula

{A)||B||{C)) “the winning condition holds”,

where ||B|® = —{B)—®. This property might or might not be expressible
in ATL, depending on the winning condition and whether the game is turn-
based or concurrent. In general, the SGL formulae {A)|B||{C) “win.cond.” and
{AUC) “win.cond.” and not equivalent, because C’s strategies can depend on B’s
decisions.

For an example that illustrates the usefulness of the revision of a strategy cho-
sen for a formula {A)® by another {A) operator inside @, we consider the fol-
lowing scenario. A banker or money broker has a certain amount x (say 1 Mio
Dollars) to work with. His/her goal is to design a strategy (of buying and selling
stock, fixed-term deposit, subscription warrants, etc.) for the upcoming months
that guarantees with a given probability (e.g. 90) his/her earnings to become larger
than 100.000 Dollars in the next year. On the other hand, if everything goes hay-
wire, the banker wants to be able to have at least 120.000 Dollars at his/her dis-
posal within a day, no matter what happens to the rest of the money.

These are two requirements, that cannot be expressed in a formula of the kind
P>(...). The second one is rather a postulation that allows for a change in the
strategy of our banker, which explains the need of the {.})) operator in nested form.
Thus the appropriate formula looks like this:

(A) [(@20_9(0§365(earnings > 100.000)) A
P=1(0(A) P21 (% (available money > 120.000)))]
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Here, A represents the banker, .2 represents the next operator and one step corre-
sponds to one day.

Note that except for the probabilistic operator &(.) a formula like the one
above can also be expressed in ATL.

Our contribution. The novel logic SGL provides a uniform framework for rea-
soning about qualitative and quantitative linear- and branching-time properties of
probabilistic multi-agent systems. We present the syntax and semantics of SGL
and study decidability and complexity of the SGL model checking problem for
various types of strategies. As a consequence of known results for stochastic
games with branching time winning objectives [24,9], we obtain the undecidabil-
ity of the SGL model checking problem for history-dependent strategies. How-
ever, decidability can be established when restricting the range of the strategies
for the modalities {A) and ||A| to memoryless ones. We present a classification
of SGL formulas into “types” that yield a perfect match with the polynomial
hierarchy when dealing with memoryless strategies only. This yields PSPACE-
completeness of the SGL model checking problem under memoryless determinis-
tic strategies and the model checking problem for the qualitative fragment of SGL
under memoryless randomized strategies. Using an encoding of the semantics for
(arbitrary) SGL formulas in the first-order theory of reals, we obtain an expo-
nentially space-bounded model checking algorithm for full SGL and memoryless
randomized strategies.

To the best of our knowledge, this paper (and its preceding conference version
[3]) yields the first attempt for defining an ATL-like logic that can express quan-
titative (PCTL-like) properties. Former approaches with ATL-like modalities for
reasoning about concurrent stochastic games have been studied by de Alfaro et al,
e.g. [21,20]. However, these papers concentrate on qualitative properties and they
do not consider Boolean combination of qualitative properties or the nesting of
{.) operators.

The reduction of the SGL model checking problem for memoryless random-
ized strategies to Tarski algebra reuses ideas that have been presented in [24] for
the synthesis of controller from PCTL specifications. However, several non-trivial
adaptions to our more general logical framework with potential nestings of ATL-
like modalities are required.

Organization. Section 2.1 introduces our model of probabilistic multi-player
games (PMGQG) and related notions. The syntax and semantics of our logic SGL
will be introduced in Section 3. The model checking problem for SGL on multi-
player games is addressed in Section 4. Section 5 concludes the paper.

2 Preliminaries

We briefly explain our model of probabilistic multi-player games and introduce re-
lated notations (Section 2.1) and summarize the relevant features of deterministic
Rabin automata (Section 2.2).
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2.1 Probabilistic multi-player games

In this paper, we deal with turn-based multi-player games where in each state only
one agent makes a move.

Definition 1 (Probabilistic multi-player game (PMG)) A probabilistic multi-
player game (PMG) is a tuple .# = (Agents, S, —, P, Props, v) where

— Agents is a finite set of agents,

S is a set of states, disjointly partitioned into § = S, U U S
acAgents

— C 8§ x S is a total transition relation,i.e., for every s € S there is t € S such
that s — ¢,

P :Sp0p xS — [0,1] is a probability assignment such that, for all s € Sy,
Y P(s,u) =1and P(s,) =0iff s A 1,

ues

Props is a finite set of atomic propositions,

v : § — 2ProPs s a labeling function that assigns to each state s the set v(s) of
atomic propositions which hold in s.

A Markov decision process (MDP) is a PMG where the set of agents is a singleton.

We may regard S as a function that assigns to each agent a a set S, such that
S.NS, = @ if a # b. The states s € S, are called a-states. For an agent set A C
Agents, we write S4 for |J,c4 S, and refer to the states s € S4 as A-states. Note that
in the a-states, it is agent’s a turn to choose a transition s — ¢. In the probabilistic
states s € Sy,0p, the successor state is chosen randomly according to P.

So far, no restrictions on .# have been made. When addressing the model
checking problem, we consider only finite-state PMG with rational probability
assignment (i.e., S is a finite set and P(s,?) is rational for all (s,7) € Sy, X S).

We write Paths(s) for the set of all infinite sequences sos;js3... € S® where
so =s and s; — s;4 for all i > 0. More generally, for a finite sequence w = s ... S
of states we use Paths(w) to denote the set of all & € Paths(so) that start with w
(note that Paths(w) can be empty). We denote by Succ(s) the set of all successors
of s, i.e., Succ(s) ={tr € S | s — t}. For a path @ = 59, 51,... and j > 0, we denote
by 7(j) the state s; of .

Given a finite or countably infinite set 7', let Distr(T') be the set of all distribu-
tions on T, i.e., functions u : T — [0, 1] such that ¥, p(¢) = 1. A distribution u
is Dirac if u(r) =1 for somet € T.

Definition 2 (Strategy) Let A C Agents. A history-dependent random-
ized A-strategy (briefly HR strategy, or simply strategy) is a function
o : S*S4 — Distr(S) such that a(sy...s,s)(#) = 0 if s /4 . An «a-path de-
notes a path s sy 57 ... which is consistent with a’s decisions, i.e., for all i > 0,
S; € Sa implies OC(S() .. -Si)(5i+l) > 0.

A strategy « is called deterministic (or a HD strategy) if for all s1...s,5 €
S*S4, the distribution ot(sy...s,s) is Dirac. We say that o/ is memoryless (or an
MR strategy) if a(s; ...s,s) = a(s) for all state-sequences sj .. .s,. An MD strat-
egy means a memoryless deterministic strategy. A special type of HR strategies

3 In the rest of this paper, we will write s — ¢ instead of (s,z) € —.



6 Christel Baier et al.

are finite-memory (FR) strategies, where the decision depends only on the con-
trol state entered by some fixed finite-state automaton after reading the sequence
§1...5p8 € §*Sa. An FD strategy is deterministic finite-memory strategy.

Given a strategy « for all agents and a state s € S, we define the probability
space (Paths(s),.Z , Prob%) in the standard way, i.e.,

— % is the o-field generated by all Parhs(w) where w is a finite sequence of
states initiated in s,

— Prob% is the unique probability measure such that for all w = s ... s, where
s = so and n > 1 we have that Prob® (Paths(w)) = [T*_, x;. Here x; is equal to
P(si,8i41) or a(so...s;)(si+1), depending on whether s; € S, or not, respec-
tively.

Sometimes we also need to consider games induced by A-strategies, where
A is just a subset of agents. In particular, this is useful for memoryless strate-
gies. For a given MR A-strategy a, the game .# % induced by « arises from
A by fixing the decisions for the agents in A according to o (note that
the A-states of .# become probabilistic states in .#*). Formally, we define
M* = (Agents\A,S,—% P% Props,v) where

- s—>%riffse€ Sy and a(s)(r) > 0,0or s € Sy and s — 1;
— P%(s,t) = a(s)(z) if s € Sy, and P¥(s,¢) = P(s,1) if s & S4 is a probabilistic
state of .

2.2 Deterministic Rabin automata

The logic SGL that will be introduced in the next section uses w-regular languages
to specify path properties in the style of the extended computation tree logic ECTL
[13]. These languages are expressed by deterministic Rabin automata. We briefly
recall here the basic concepts.

Definition 3 (Deterministic Rabin Automata (DRA)) A deterministic Rabin au-
tomaton (DRA) 7 is a tuple (Q, X, ginir, 0, (Li,R;)!" | ), where

— Qs a finite set of states,

— X is a finite alphabet,

— Ginir € Q is the initial state,

— 6 : 0 x X — Qis a transition function, and

- (Li,R;)", is the acceptance condition, where L;,R; C Q forall 1 <i <m.

Given an infinite word © = m; mp ... € Z® over the alphabet X, we call r(x) =
419293 - .. where ¢ = ginir and q;+1 = 6(g;, ;) the run of <7 for the input word 7.
By

lim(r(r)) = {qg € Q | q; = q for infinitely many j}
we denote the limit of 7(7), i.e., the set of states that occur infinitely often in
r(7). We say that a set of states T C Q is accepting iff there exists an index j €

{1,...,m} such that T NL; # @ and T NR; = @. The language accepted by the
Rabin automaton < is defined as

L(«/) = {me€ X?|lim(r(x)) is accepting}.
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In this paper (particularly in Section 4), we rely on well-known results about
optimal values in maximizing and minimizing MDPs with DRA objectives (see
[17,16] or chapter 10 in [5]). To make this paper self-contained, we briefly re-
call these results (in a form which suits our purposes). Let .# = ({a},S,—
,P,Props,v) be an MDP and &/ = (Q, X, qjnit, 8, (Li,R;)",) a DRA where £ =
2ProPs_ For every infinite path 7 = s1s5 ..., let # = v(s;) v(s2) ... be the corre-
sponding infinite word over X. For every s € S, we define its upper and lower
of -value as follows:

val™ (o ,s) = sup Prob®({m € Paths(s) | & € L(</)}),
o

val~ (o ,s) = iIalfProba({ﬂ: € Paths(s) | & € L(<7)}).

Here o ranges over all HR strategies of the only agent a.

The next proposition says that val™(<7,s) and val~ (</,s) correspond to
components of the least solution of efficiently constructible systems of linear
(in)equalities.

Proposition 1 (see [7,17,16,5]) Ler .# = ({a},S,—,P,Props,Vv) be an MDP
and o/ = (Q,X,qinit, S, (Li,Ri)",) a DRA where £ = 2ProPS There are systems
Aacer Arej of linear (in)equalities over the set of variables Var = {x;4 | s € S,q €
0}, constructible in polynomial time, such that for every s € S we have that

- Val*(gf,s) = :u“[AﬂCC]<x375[init)’
- val™ (& ,s) = 1 — U[Ar] (X5, gy, )-

Here U[Auec] and |[Ayj] denote the least solution of Aee and Ay in [0,1], and
U[Auce](X5,q) and [ Avj|(xs4) denote the value of xy 4 in L[Agec] and p[Ayj), re-
spectively.

Proof (sketch) First, we construct the synchronized product of .# and <7, which
isan MDP .# x o/ = ({a},S x Q,—g,Pg,Propsg, Vs ), where

- (§xQ)a=84%xQ, (SXQ)prob = Sprob X Qs

- (5,9) =g (s',¢) iff s — s’ and 6(q,v(s)) = ¢/,

- Px((s,9),(s',q")) is equal either to P(s,s)
(s,q) =g (s',4') or not, respectively.

— Propsg, = Props,

- V@(S,q) = V(S).

An end component of .Z x <7 is aset U C S x Q such that

or 0, depending on whether

— for all (s,q) € U and (5',¢') € S x Q such that s € Sp,p and (s,q9) = (5,¢)
we have that (s’ ,q’) € U, i.e., U is closed under successors of probabilistic
vertices;

— for every (s,q) € U, where s € S, there is (s',¢') € U such that (s,q) —e
(s',¢") and (s',q") € U;

— U is strongly connected, i.e., for each pair of states of U we have that the first
state is reachable from the second state by a finite path leading only through
the states of U.
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Obviously, for each end component U, there is a strategy o for the only agent a
such that each state of U is visited infinitely often with probability one, assuming
that we start in a state of U. For a given end component U, we use Qy to denote
the set {g € Q| (s,q) € U for some s € S}. We say that a given end component
U is accepting if there is 1 < i < m such that Qy NL; # @ and Qy NR; = @.
Similarly, we say that U is rejecting if for all 1 <i < m we have that Qy NL; = @
or Qu NR; # . The systems Ayc. and A,,; are constructed as follows:

(1) If (s,q) belongs to some accepting/rejecting end component, we add to
Agccl Arej the equality x, , = 1;
(2) otherwise, we add to Ay../Ay; either
— the equality x,4 = y Po((5,9),(s',q")) - xg 4, if 5 € Sprop:
(s.q)=a(s )
— the inequality x; , > xy  for every transition (s,q) —¢ (s',¢'), if s € S,.

It follows from the results of [7,17,16,5] that val™ (<7, s) = U[Asec](x5,q,,,) and
val™ (o ,s) = 1 — U[Arj](Xs,q,,;,)- Further, the systems A, and A,,; are con-
structible in time polynomial in the size of .# and 27, because the condition of (1)
is solvable in polynomial time. O

3 The logic SGL

For specifying properties of probabilistic multi-player games we introduce a tem-
poral logic, called stochastic game logic (SGL). It borrows ideas from ATL (and
the ATL-like formalisms for stochastic games [21,20]), extended computation tree
logic ECTL [13], and the game logic GL of [2]. The probabilistic fragment of SGL
contains a PCTL-like probabilistic operator which allows to reason about the prob-
abilities for w-regular properties, expressed by a deterministic Rabin automaton.

We start with the syntax of SGL formulas (Section 3.1), then presents its
formal semantics by interpreting SGL formulas over the states of a probabilis-
tic multi-player game (Section 3.2) and then discuss the expressiveness of SGL
(Section 3.3).

3.1 SGL Syntax

Throughout the paper, let AP and AG be countably infinite sets of atomic proposi-
tions and agents, respectively.
The abstract syntax of SGL formulae is given by the following equation:

®=p ] ~® ‘ Ay ‘ Dol Py,..., D)

Here p and A range over AP and finite subsets of AG, respectively, < € {<, <, >
,>1} is a comparison operator, A € [0, 1] is a rational probability bound, and < is
a DRA over the alphabet ALk}

Note that SGL does not contain the usual Boolean connectives (A, V, etc.) or
temporal operators such as 2" (next) or % (until). As we shall see in Example 1,
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5,A,0 Exy P iff pev(s)
5,A,0 Fxy °P iff 5,A, & exy @
$,A,0 Exy (B)P iff there is an XY B-strategy f3 such that

$,AUB, (0t + B) =xy @
$,A,0 Exy Poap (5 Py,..., Py) iff for all HR strategies B for Agents \ A we have that
Prob*<P ({7 € Paths(s) | ﬁ:;flo;gj‘("}?k EL()})=A

Fig. 1 Semantics of SGL.

these are expressible using appropriate DRA. Actually, negation is also redundant,
but we keep it in SGL syntax for technical convenience.

An important syntactic fragment of SGL is qualitative SGL where the constant
A in the probabilistic operator £, ; may only take the value 0 or 1.

3.2 SGL Semantics

The formula {A)® requires the existence of an XY A-strategy* a such that the
subformula @ is satisfied in the game induced by a. However, the decisions al-
ready made by o can be changed by another {B)) operator in @ for the agents in
ANB. As decisions once made by a {.}) operator might be changed by a nested {.)
operator, we need to keep track on the strategy decisions that have already been
made.

The P, (o Py, ..., D) operator has the standard PCTL* semantics, mean-
ing that for all HR strategies 8 of the “remaining” agents, the probability measure
of all paths accepted by the automaton .o/ in the Markov chain induced by com-
bining the “current” strategy « with 8 matches the probability bound A. Here, a
path is accepted by the automaton o7 if its projection to words over 21k} indi-
cating which of the formulae &y, ..., P are satisfied in each of the states of the
path, is in L().

Let .# = (Agents,S,—,P,Props, v) be a PMG where Agents C AG, Props C
AP, and XY a class of strategies (i.e., XY is either MD, MR, HD, or HR). We
define a satisfaction relation s,A, & j=x, @ where s is a state in .#, A C Agents,
o is an XY A-strategy, and @ is an SGL formula such that for every (B)) operator
used in @ we have that B C Agents. The intuitive meaning is that s satisfies @
in the game induced by o. Note that we need to keep track of the strategy deci-
sions already made. The rules for the satisfaction relation are given in Fig. 1. The
meaning of the newly employed symbols is the following:

— (o + B) denotes the strategy for the agents in AU B such that the agents in
A\ B behave according to the strategy o and the agents in B behave according
to the strategy f3, i.e., decisions already made by an agent in AN B are neglected
and a new strategy is chosen. Formally, given a path & = s, ...,s,, we put

oo - i Fa S

4 Here XY stands for MD, MR, FD, FR, HD, or HR.
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:Qf\/i LIZ{ql},RIIQ DZ =

@) @
{1423 {1.2} o o

B A A

{1}

xz xz @,{1}

Ay Li={p},Ri =9 dy: Li={q},R =
(@)

o,{1} {1,2},{2}
(42) @) @)

1 2
AN (N (N
o,{1} @,{1} z 2

Fig. 2 DRA implementing Boolean and modal connectives. The initial state is go.

- ﬁf; P e (21141 is defined as follows.
ﬁf;X’;pk {J‘l<}<kandﬂ:()A,a|:XY(Pj}.

Given a formula @, we denote by Sarxy (P) the set of all states of .# that sat-
isfy &, i.e.,
Satxy(¢) = {S es | S, Ol lZXY @}

Note that the class of strategies for agents that explicitly appear in some {.)
operator is restricted to XY, while the remaining agents can always use unre-
stricted (i.e., HR) strategies. Intuitively, this is because the remaining agents are
usually interpreted as unpredictable intruders, and hence their worst possible be-
haviour must be taken into account. On the other hand, the strategy for cooperating
agents should be as simple as possible. The results in [4] yield that the satisfaction
relations =yp, Furs Fwps and =y are pairwise distinct.

Example 1 As we already mentioned, the syntax of SGL does not contain the stan-
dard Boolean connectives and temporal operators such as “NextStep” (denoted by
Z), “Always” (denoted by [J), or “Until” (denoted by % ). It is perhaps worth not-
ing how to express these operators in SGL. For example, the formula &2, (O®)
can be expressed in SGL as &, (@/7; Py ), where the DRA o/ is shown in Fig. 2
(together with DRA for some other connectives).

3.3 The relationship between SGL and other logics

In this paragraph we show that formulae of other well-known logics such as CTL,
CTL*, PCTL, PCTL*, ATL, etc., can effectively be translated into SGL.
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The standard (non-probabilistic) CTL is expressible in SGL. CTL is inter-
preted over labelled transition systems (Kripke structures) which can be seen as
a PMG with no probabilistic states and only one agent. In the CTL semantics
each path quantifier 3,V is interpreted over the “full” system. Since in SGL strate-
gies chosen by the (({1})) operator can be overwritten by another {{1}) operator,
we can embed CTL as follows. Given a labelled transition system 7 and a CTL
formula @, let @’ be the SGL formula obtained from @ by substituting each oc-
currence of the existential quantifier 3(.) by {{1})#?>1(.), and each occurrence
of the universal quantifier V(.) by |[{1}| Z?>1(.), where ||.| = —={.)—. Then,

SatcrL(db) = Sat;lD(¢/)'

Note that @’ is not conform to our SGL syntax as it uses temporal operators like
“Always” and “NextStep” instead of Rabin automata to express path properties.
But, as indicated in Example 1, the formula @’ can be transformed into an equiv-
alent SGL formula.

The same transformation embeds CTL* into SGL, but in this case, the SGL for-
mula has to be interpreted over the HD-semantics. That is, given a CTL* formula
@, it holds that Satcrr-(®) = Sath,(P'). As CTL* uses LTL path formulae we
need more complicated automata as the ones introduced in example 1. However,
this does not pose any real problems as the languages expressible by LTL formu-
lae are contained in the w-regular languages, and deterministic Rabin automata
are as expressive as w-regular languages [27,31,32].

The standard PCTL (interpreted over Markov decision processes (MDP)) can
also be embedded into SGL. Each Markov decision process M can be seen as a
PMG with only one agent. In PCTL, there are no path quantifiers like 3 and V. The
semantics of the PCTL &2 (.) operator implicitly quantifies over all strategies in
the given MDP M. This is the same as in our SGL semantics. Moreover, given a
formula

Lo (A Dy, By),

the formulae @,..., P, are interpreted over the same system as the formula
P (d;P1,..., D). Hence, we do not need a transformation from PCTL to
SGL as in the CTL case above; we only need the transformation from LTL path
formulae to Rabin automata. Given a PCTL formula @ and an MDP M, it holds
that

SatpCTL(dJ) = Sat%D(é).

Again, the temporal operators have to be substituted by the appropriate automata.
Similarly, PCTL* embeds into SGL. Let M be an MDP and & be a PCTL* for-
mula. Then,

Satpcrr+ (d’) = Satll_"[ID(@).

Remark 1 Let M be and MDP (which can be understood as PMG with one agent
1), and let ¢ be a SGL formula that is obtained from some PCTL* formula in
the way indicated above. In particular, note that @ does not contain the {.) op-
erator. Assume that @ has nested &, (.) operators, so it might look like this:
P (. Poga(...)...). Let @' be the formula obtained from & by substituting
each occurrence of & (.) by [[{1}|| %% (.). Then,
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Satll, (®) = Satk,(P') for each strategy class XY, whereas
Satyip(®) # Satjip(|{1}|®P) in general.

This is because although in @' the ||[{1}|| operator of the outermost &, (.) op-
erator fixes a strategy for the only agent, this strategy can be overwritten by the
[[{1}|| operator of a nested Z,; (.) operator. Thus, we get the standard PCTL se-
mantics. On the other hand, the formula ||{1}||® fixes a strategy o by the ||{1}||
operator and evaluates the outermost #, (.) operator on the Markov chain M%.
This means that also the nested &, (.) operators are evaluated over .#“* which
gives the above inequality.

Even ATL is expressible in SGL. In standard ATL, the {.) . operator is fol-
lowed by a path formula. The ATL semantics of the formula {A) . ¢ yields the
existence of an HD strategy for the A-agents such that for all HD strategies of the
agents not in A, the path formula ¢ holds for the unique path that is determined by
the chosen strategies. As already mentioned, the strategy chosen for the A-agents
is not propagated to the subformulae. Given a PMG .# without any probabilis-
tic states and an ATL formula @, let &’ be the SGL formula obtained from &
by substituting each occurrence of (A} .. @ by (A)||Agents\ A||F?>;(@). It holds
that

Satarp(®) = Sarily(P').
The corresponding results hold also for ATL* and the SGL satisfaction under the
HD-semantics.

In [2], the authors introduce an extension of ATL called game logic (GL).
In contrast to ATL, where the operator {.)) . is followed by a path formula and
the semantics implicitly quantifies over all paths, the {.)) operator in game logic
can also be followed by an existential path quantifier 3. A formula of the kind
@ = (A)(30¢; A I0¢,) is expressible in GL. & assert the existence of a strat-
egy a for the agents in A, such that for some behavior of the remaining agents ¢
is always true, and for some (possibly different) behavior of the remaining agents
¢, is always true. Thus, the chosen strategy « is propagated to the inner subfor-
mulae. Nevertheless, the semantics of GL does not propagate strategies chosen by
{(.) operators to nested {.})) operators. For example, the GL formula {A}) {B) ® is
equivalent to (B)®. Hence, the GL semantics is more alike to the standard CTL*
semantics and differs crucially from our SGL semantics. Therefore, GL fails to
express typical game properties like “player B can react to the strategy chosen by
player A”.

ATL-like approaches to reason about stochastic games and qualitative winning
objectives have been introduced by de Alfaro et al [21,20]. They use ATL-like for-
mulae, such as {A) aimost ¥ O {A) positive Y- to formalize the existence of a strat-
egy for agents in A such that the condition specified by y holds almost surely or
with positive probability. Our framework generalizes these concepts to the quan-
titative setting and allows to express, e.g., properties asserting that the agents in
A can cooperate so that the probability of the event specified by y is within a
certain interval, or so that a Boolean combination of such PCTL-like formulae
holds, no matter how the other agents behave. The ATL-like formulae {A) 1imost ¥
or (A} positive ¥ of [21,20] are encoded in SGL by the formulae (A) ()

and {(A) P~o(y), respectively. However, SGL cannot express the limit operator
(ADtimic of [21].
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4 Model checking SGL

The model checking problem for SGL addresses the question whether for a given
finite PMG .7, a state s of .#, and SGL-formula @ it holds that s € Saty, (P)
for a given strategy class XY. We analyze the complexity of the model-checking
problem for SGL and its natural fragments with respect to HR, HD, FR, FD, MR,
and MD strategy classes.

We start by recalling the standard notion of polynomial hierarchy [25,26].
For every ¢ > 0, the complexity classes Ay, Xy, and Iy are defined inductively as
follows:

Ag, X9, Iy are equal to P,

Aiy1 =P%, Xy =NP¥, II;;; = coNP¥.
A complete problem for Xy, where ¢ > 1, is QBF,. An instance of QBF is a
quantified Boolean formula (with ¢ quantifier alternations) of the form

X1 VXo IX3 VX, --- OX) (0]

where the variables which appear in the propositional formula ¢ are disjointly
partitioned into X, ...,X,, and Q is either V or 3 depending on whether ¢ is even
or odd, respectively. The question is whether the formula is valid. Without restric-
tions, we may assume that @ takes the form

I
o= /\w, where I > 1 and
i=1
Ji
Y= \/ &ij where J; > 1 and
j=1
K’a./
&ij= /\ Pij k> where K; ; > 1 and (1)
k=1
M; jx
Pijk= \/ 5i,j,k,m, where M; j; > 1 and
m=1
Nijkm
S jkm = /\ Lijkmn, where N; j i > 1 and L; j i 1 is a literal.
n=1

Here, a literal is a propositional variable or its negation. This assumption is safe
because the propositional formula constructed in the proof of Cook’s theorem [15]
also has the same fixed structure®.

6 The propositional formula constructed in the proof of Cook’s theorem is satisfiable iff a
given non-deterministic Turing machine .# running in polynomial time accepts a given input
word w. The formula depends on . and w, but the nesting depth (and structure) of conjunctions
and disjunctions is fixed. An explicit construction of the formula can be found in, e.g., [23], and
a full justification of our assumption about ¢ follows from the proof of X;-hardness of QBF;
see, e.g., [26], Theorem 17.10.
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We show that there is a close correspondence between the polynomial hierar-
chy and natural syntactic fragments of SGL. For every SGL formula @, we define
the “type” of @, denoted by Type(P), inductively as follows:

Type(p) = Ao
Ay if Type(®) = Ay,
Type(—®) = < X, if Type(®) = II,,
Hg if Type(df)) :Eg.

_ [ Zpy if Type(@) = X or Type(P) = I,
Tye((B)) = {310 RPS) 2N

] | Apyy if Max{Type(®y),..., Type(Py)} = Z;
Type(Zoar (3P, By)) = {A( if Max{Type(P),..., Type(Py)} = A,.

Here Max{Type(®;),..., Type(®P;)} denotes the “maximal” type in the set. More
precisely, let £ > 0 be the least number such that for every 1 < i < k we have
that Type(®;) = Aj where j < and A € {Z,IT,A}.If for all 1 <i < k such that
Type(®d;) = Ay we have that A = A, then Max{Type(P),..., Type(Py)} = A,.
Otherwise, Max{Type(®;),..., Type(®P;)} = X;. Note that we do not distinguish
between the types X, and Il; when defining the maximal type. Intuitively, this is
because the maximal type is used as an oracle for a deterministic polynomial-time
algorithm which checks the validity of 2, ; (o; Py, ..., d;), and P* = P (see
Theorem 1).
Now we can define the promised hierarchy of SGL syntactic fragments.

— SGL(4y), SGL(Xy), and SGL(I) consist of all SGL formulae of type Ay, Xy,
and Iy, respectively.

— SGL(Ai+1), SGL(Zi+1), and SGL(IT;4 ) consist of all formulae in SGL(4;) U
SGL(ZX;) USGL(IT;), and all formulae of type A;;1, Xi+1, and IT;;, respec-
tively.

4.1 MD strategies

In this section we examine the SGL model-checking problem with respect to MD
semantics.

Lemma 1 Let .# = (Agents,S,—,P,Props,v) be a PMG where Agents C AG,
Props C AP, and let @ be an SGL formula. The problem whether s,A, o0 Eyp P,
where s € S, A C Agents, and o is an MD A-strategy, is solvable in Type(P).

Proof We proceed by induction on the structure of @. The cases when @ = p and
@ = - are immediate.

If & = (B)P, it suffices to guess an appropriate MD B-strategy 8 and check
whether s,AUB, (a < ) E=up . Hence, by applying induction hypothesis, the
problem whether s,A, a |=pp @ is in NPTYPe(Y) | which is equal to Type(®) by
the definition of Type. Recall that NP = X, and NP> = NP = ¥, .
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If &=, (A;¥,..., %), we first apply the current MD A-strategy o to
A and construct the PMG .#Z % (see Section 2.1). Further, for every state t we
compute the set o(z) of all j € {1,...,k} such thatz,A, o |=pp ¥;. By induction
hypothesis, this is achievable by a deterministic polynomial-time algorithm with
Max{Type(),..., Type(¥)} oracle. Since the agents in Agents \ A are now
considered adversarial, we interpret .# % as an MDP where the only agent {a}
controls all (Agents~A)-states. Further, we interpret {1,...,k} as the set of atomic
propositions of .#Z %, and ¢ as the corresponding valuation. If >1 € {>,>}, we
simply check if val™(7,s) <1 A, where s is considered as a state of .#*. Note
that this is achievable in time polynomial in the size of .# % and <7 by solving the
linear program of Proposition 1.

Similarly, if > € {<, <}, we check if val™ («/,s) 1 1. Hence, the problem
whether s, A, & [=yp Poa, (% ‘I’l, W) is in PMax{Type(#).... Type(¥)} which is
equal to Type(Zo (7 W, .., %)) by the definition of Type. O

Now we prove the corresponding lower complexity bound. For the sake of read-
ability, we adopt the following abbreviations, where <4,, &7y, </, and < are
the automata of Fig. 2.

D =D = Py (AP, D)
XD = Py (Ay D)
0~* @ = Py, P)

D UNDy, = Py (dy; Py, D)
Al P = —(A)-P

We also write {a})) @ instead of ({a}) P for a single agent a.

Lemma 2 For every { > 0, there is a fixed formula ® € SGL(X;) such that the
model-checking problem for ® is X-hard.

Proof Let 3X, VX, 3X3VXy --- OXy ¢ be a quantified Boolean formula with ¢
quantifier alternations, where the propositional formula ¢ takes the special
form (1) introduced at the beginning of Section 4. We construct a PMG .# =
(Agents, S, —,P,Props, v), a state s(¢) € S, and a fixed formula & € SGL(X)
such that 3X; VX, 3X3 VX4 - -- QX @ is valid iff s(@) € Satyp(P).

Let {xj,...,x,} be the set of all propositional variables that appear in ¢. The
PMG ./ is constructed as follows. We put Agents = {ay,...,ay} and Props =
{t,f,d,a,e,b}. The probability assignment P can be chosen arbitrarily (the pre-
cise values of transition probabilities do not influence our arguments; note that P
is required to be positive by Definition 1). The states, transitions, and labelling
function of .# are defined incrementally. For all u € {1,...,r}, we put to S a fresh
stochastic state B, which satisfies b and no other proposition. Further, for every
0; j k,m subformula of ¢, we add to .# the gadget with initial state § depicted in
Fig. 3. All states of the gadget are fresh, except for By,...,B, that are shared by
all gadgets (note that the number of outgoing transitions of every B, is the same
and it is equal to the number of &; j x ,» subformulae of ¢). The states py,..., p, are
controlled by the agents, and the other states are stochastic. Intuitively, the agent
controlling p, can set the variable x, to true or false by selecting the transition
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leading to x, or X, respectively. The state p, satisfies either the atomic proposi-
tion e or a, depending on whether x,, is quantified existentially (i.e., x,, € X; where
i is odd) or universally, respectively. For every i € {1,...,¢}, the agent a; sets the
variables in Xj, i.e., if x, € X, then p, is an g;-state. The propositions ¢ and f
are satisfied exactly in x1,...,x, and X, ..., X,, respectively, and the proposition d
encodes the structure of ; 4, in the following way: for every variable x,, where
1<u<r,

— if §; j x,m contains both x, and —x,, (as literals), then d & v(x,) and d & v(X,);

— if &; j 4 m does not contain x, and —x,, then d € v(x,) and d € v(X,);

— if & j xm contains x, and does not contain —x,, then d € v(x,) and d & v(X,);

— if & j 4 m does not contain x, and contains —x,, then d ¢ v(x,) and d € v(%,).

The other states of the gadget, different from xy,...,x,,%,...,%-,By,...,B,, sat-
isfy d as well.

Note that in general, agents can play inconsistently by setting the same vari-
able to true and false in different gadgets. However, this can be easily detected.
Consider the following formulae:

Surely, = (=t N\—f) U=t
Surely, = (~tA-f)w=" f

Cons, = 7! ((3&”>0b A 3&”>0e) = (Surelyt \/Surelyf))

Cons, = 07! <(%>0b A 2 70a) = (Surely, \/Surelyf)>
Let 6 be the initial state of some of the constructed gadgets, and let o be an MD
Agents-strategy. We claim that ¢ is consistent iff

6, Agents, o =y Cons, A Cons,,.

The formula Cons, encodes the consistency of ¢« with respect to existentially
quantified variables, and the formula Cons, does the same for universally quanti-
fied variables (the reason why we treat the existentially/universally quantified vari-
ables separately becomes clear later). To see this, consider, e.g., the choice made
by « in the states p,, where x, is quantified universally. Let g be a predecessor of
Ppu in some gadget. Then ¢, Agents, & =, 2% A 2770, If & behaves consis-
tently in all p,, i.e., selects either always the transition to x, or always the transi-
tion to &, then g, Agents, & [=yy, Surely, or q,Agents, & [y, Surely s, respectively.
On the other hand, if @ behaves inconsistently in p,, then g, Agents, o &, Surely,
and g, Agents, o [y, Surely +- These observations are easy to verify by examining
the structure of the gadgets, and also explain the role of B, states.

Observe that every assignment 1t for the propositional variables xi,...,x, de-
termines a unique consistent MD Agents-strategy @, and vice versa. For every
assignment u and every 0; j x » subformula we have that J; j s , is true in p iff

0,Agents, 0y = b U0 —d.

This follows directly from the construction of the gadgets.
Now we complete the construction of .# by adding the following states and
transitions:
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&

Fig. 3 The gadget for &; j x ,» subformula.

— we add a state s(¢); further, for every y; subformula we add a state s(y;), for
every &; ; subformula we add a state s(&; ;), and for every p; ; x subformula we
add a state s(p; jx);

— we add a transition s(¢) — s(y;) forevery 1 <i<1I;

— for every y; subformula, we add a transition s(y;) — s(&; ;) forall 1 < j <Jj;

- for every &; ; subformula, we add a transition s(&; ;) — s(p; jx) forall 1 <k <
Ki j;

- for] every p; ;i subformula and every 1 < m < M, ;, we add a transition
s(pi.jx) — 6 where 9 is the initial state of the gadget for &; j i -

Finally, we define the formula & as follows:
(a1} laz| (az)--- [ac] 20 =t >0 (=Consq V (Conse A b= —d))

Here [ay] is either (a¢) or ||a||, depending on whether £ is odd or even, respec-
tively. Observe that @ € SGL(X;) and @ is a fixed formula for a fixed £. We claim
that

X, VX, IX3VXy - - - oX, o is valid iff S((P) € SatMD(db).
The “=" direction follows by observing that

— if i is even, then the agent ¢; does not gain anything by using an inconsistent
strategy, because this inevitably makes the subformula —=Cons, valid;

— if i is odd and all of the previous choices of the agents were consistent (i.e.,
encode an assignment for the variables in X; U---UX;_1), then a; simply takes
an assignment for X; which makes the formula VX;, --- QX ¢ valid and en-
codes this assignment in his strategy. If some of the previous choices of the
agents was inconsistent, then a; can play arbitrarily.

The “=" direction follows similarly. O

A direct consequence of Lemma 1 and Lemma 2 is the following:
Theorem 1 Let ¢ > 0. Then

— the model-checking problem for SGL(X;) is Xy-complete for MD semantics,
and the hardness result holds even for a fixed SGL(X;) formula;

— the model-checking problem for SGL(ITy) is ITy-complete for MD semantics,
and the hardness result holds even for a fixed SGL(I1y) formula;
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— the model-checking problem for SGL(Ay) is in Ay for MD semantics.

Finally, the model-checking problem for SGL is PSPACE-complete for MD se-
mantics.

Observe that PSPACE-hardness of the model-checking problem for SGL follows
immediately from Lemma 2 (we can use the same construction to reduce the QBF
problem to SGL model-checking). However, the constructed SGL formula is not
fixed anymore because the quantifier alternation depth in QBF instances is not
fixed. In fact, it is unlikely that SGL model-checking is PSPACE-hard for some
fixed SGL formula @, because this would imply collapse of the polynomial hier-
archy at Type(®P) level. Let us note that one can also give a simple direct proof
for PSPACE-hardness of SGL model-checking which avoids many of the techni-
calities presented in the proof of Lemma 1.

4.2 MR strategies

We start by observing that if we restrict ourselves to the qualitative fragment of
SGL (see Section 3.1), then randomization brings only a limited extra power to
the agents, and the corresponding results are the same as for MD strategies.

Theorem 2 Let ¢ > 0. Then

— the model-checking problem for qualitative SGL(X;) is Xy-complete for MR
semantics, and the hardness result holds even for a fixed qualitative SGL(X)
formula;

— the model-checking problem for qualitative SGL(ILy) is I1;-complete for MR
semantics, and the hardness result holds even for a fixed qualitative SGL(ITy)
formula;

— the model-checking problem for qualitative SGL(Ay) is in Ay for MR seman-
tics.

Finally, the model-checking problem for qualitative SGL is PSPACE-complete for
MR semantics.

Note that the formula @ constructed in the proof of Lemma 2 is qualitative, and
the agents do not gain anything by using randomized strategies. Hence, the proof
of Lemma 2 works also for qualitative SGL(XZ,) and MR strategies without any
change, and thus we obtain the lower bounds of Theorem 2. The upper complexity
bounds follow from Lemma 1, which is valid also for MR strategies and qualitative
SGL(X;). However, the subcase @ = (B)¥ in the proof of Lemma 1 requires a
slight modification. Realize that for the qualitative fragment of SGL, the exact val-
ues of transition probabilities chosen by the agents do not really matter; it is only
important which of them are chosen with positive/zero probability. Hence, instead
of guessing a single outgoing transition for every B-state, which was enough for
MD strategies, we now guess for every B-state a subset of outgoing transitions
that are assigned a positive probability (and choose an arbitrary positive distri-
bution over the chosen successors). The rest of the proof of Lemma 1 does not
require any modification.

For general SGL formulae, the exact values of transition probabilities are of
course relevant, and our decidability proof is based on encoding the SGL model
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checking problem into first-order theory of the reals, i.e., (R, *,+,<), which is
known to be decidable [29]. Our proof can be seen as an extension of the previous
result [24] where it was shown that the MR-controller synthesis for MDPs (viewed
as 1 %-player games) and PCTL specifications can effectively be encoded by closed
formulae of (IR, *,+,<).

In the proof of our next lemma we often construct some finite index set / =
{i1,...,in} and then fix a fresh first-order variable X; for every i € I. To simplify
our notation, we define

ﬁXj.W = (ElXil E|Xi2 . E|Xln)l//

Similarly, if J C I where J = {j1,..., jm}, We write just (ﬁX, : j €J).y instead of
(3X;, 3Xj, -+ - 3X;j, ) ¥

Lemma 3 Let .# = (Agents,S,—,P,Props,v) be a PMG where Agents C AG,
Props C AP, and let @ be an SGL formula. For every s € S there is a closed
Sformula ©(s, D) of (R, *,+,<) such that s € Satyr(P) iff ©(s, D) holds.

Proof For every transition s — ¢ of .#, we use Y, to denote either the constant
whose value is equal to P(s,#) if s is stochastic, or a fresh first-order variable
that encodes the probability of s — ¢ chosen by the responsible agent. For every
subset C of agents, we construct a closed formula 7¢ (s, ®) of (RR,*,+,<) such
that 7c(s, @) is valid iff 5,C,y =% &, where the strategy 7 is given by the values
of the variables Y;; for s € S¢. Then, we simply put 7(s, @) = 75 (s, P).

The formula 7¢(s, ®) is defined by induction on the structure of &. The first
three subcases are immediate. We put

Tc(s,p)

) true if pev(s),
- false  otherwise;

Tc(S, _‘(P) = —|Tc(S, ¢),

Tc(s, (AY D) = (gYw (r€Sa,r—1). (TcuA(s,(I)) A /\ Distr> )

reSy

where

Dist, = </\0§Y,,,§1> A (ZY,’,:1>.

r—t r—t

Now let @ = Z, (3 ¥,..., W), where & = (Q,Z, Ginir, 0, (Li,R;)[- ;). Let us
consider the MDP .#7 with atomic propositions {1,...,k} and a labelling func-
tion 17 such that 1 (¢) consists of all i where 1 <i < kand,C,y =7 ¥. We need
to encode either the property val™ (o7, s) >i A or val~ (< ,s) 1 A (where s is in-
terpreted as a state of .#Z7), depending on whether <1 € {<, <} or i € {>,>},
respectively. According to Proposition 1, this means to encode

either 1 [Agee) (g, 54 2 08 1= 1[A ]| (1.4, 592
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respectively. Note that the first inequality holds iff there exists some solution sol
of Ayec in [0, 1] such that sol(xy g4, ) > A. Realize that pt[Ay..] < sol. Similarly, the
second inequality holds iff there exists some solution sol of Ay in [0, 1] such that
1 —s0l(Xg,g;..) DA A.

For all t € S and g € O, let Z, , be a fresh first-order variable. The formula
7 (s, D) takes the form

Tc(s, D) = §Zl,q. ( /\ 0<%, < 1) A Sol A\ Req
teS,qeQ

where

stqinhma ifae {S7<}’
Req =

1 —Z 4, XA otherwise.

The subformula Sol says that the variables Z; ; form a solution of A, and A,; in
[0,1], respectively.

The construction of Sol is not trivial, because the labeling 17 depends on the
concrete form of ¥, ..., %. Hence, we first need to encode 1 and the structure of
MY x of symbolically, and then we can proceed with encoding the (in)equalities
of Agec and Ay; (cf. the proof of Proposition 1).

Let us fix a fresh variable X; ; for all t € S and i € {1,...,k}. We construct a
formula Eta which ensures that X; ; is positive iff 7,C, y |:hf{ ¥

Ea = N\ (X%.:>0 & 1c(t,%))
reS,ie{l,...k}

Further, we fix a fresh variable T, ) v o) for all (t,q),(t',q') € S x Q where

(t,q) # (t',q'), and construct a formula Tran which say that T, 4 (v ») is either

1 or 0, depending on whether (¢,q) —g (t',q') in .Z" x A or not, respectively.

Tran = /\ (T(t7q)7(t’,q') =1V Tyg),0.9) :O)

tiles
9.4'€Q

NN Toguq) =0

11'es
4.4'€Q
1At

A A (s =14V (A%i>04 AXi<0))

1ies AC{l,..k} €A iZA
4.4 €0 3(q.A)=¢'
t—t!

Now we encode the existence of an accepting/rejecting end component of .Z7 x
</ . For all (1,q) € S x Q, we fix a fresh variable V; ;. We construct a formula Acc
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which says that the set of all (,¢), where V; , > 0, forms an accepting/rejecting
end component.

AccRej =\ Vig>0 = ( A Teoiw )= Vg > 0) 2)
1€8pyopUSC es
q€Q q€0
A /\ Vig>0 = ( \/ Twgyq) NVeg > 0) )
teSAgentS\C t'es
4€Q q<0
AN\ (Vig>0AViy>0)= Reach=N(t,q)(t',q') “4)
1i'es
9.4'€Q
A Rabin )

Formula (2) says that the set of states encoded by V; , variables is closed under
successors of stochastic states, and (3) says that each non-deterministic state in
the set has at least one successor in the set. The condition of strong connected-
ness is encoded by (4), where N = |S|-|Q|, and (5) says that the end component
is accepting or rejecting, depending on whether < € {<, <} or < € {>,>1}, re-
spectively. The formula Reach=V (t,q)(t',q') says that (,q) can reach (t',¢') by a
sequence of at most NV transitions, and it is constructed inductively as follows:

true ift=+tandq=¢,

Reach="(t,q)(t',q') =
each=(t,9)(t',q) {false otherwise;

Reach“*1(1,0)(¢¢) = \/ (Reach™(1,)(¢",d") A Tyr gy = 1)
s
q”EQ

The formula Rabin is easy to construct. We put either

Rabin = \/ | \/ (Vig>0) A A (Vg <0)

1<i<m \ 4€L; qER;
tes tes

or

Rabin = \ | \ Vig<0)V \/ (Vig>0)

1<i<m \ 9¢€L; qER;
tes =
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depending on whether 1 € {<, <} or b1 € {>, >}, respectively. Now we can
finally express that the Z; , variables form a solution of Ay or A;. Let

Sat = [\ (Wig. (AccRej AVyp)) = (Zp =1)

res

PEQ
A /\ _‘<§Vt,q~ (AccRej/\VW)) = (an = Z T(r,p)(r’,p’) . Yr,r/ 'Zr’7 /)
€S propUSc ,eé
peQ pe

AN (Vg (AccReiAVip)) = (N Topyrpy =1 = Zip > Zp )

rESAgentst r;ES
peQ e
Now we put

Sol = ﬁX,_’i. gT(l-,q)(l’,t/)' (Eta A Tran A\ Sat).

The correctness of our construction follows by verifying that all subformulae have
the intended meaning, which is straightforward. O

The following theorem is a direct consequence of Theorem 2 and Lemma 3.

Theorem 3 Let ¢ > 0. Then

— the model-checking problem for SGL(Xy) is in EXPTIME and X;-hard for MR
semantics; the hardness result holds even for a fixed SGL(Zy) formula;

— the model-checking problem for SGL(Iy) is in EXPTIME and Iy-hard for
MR semantics; the hardness result holds even for a fixed SGL(ITy) formula;

— the model-checking problem for SGL(Ay) is in EXPTIME for MR semantics.

Finally, the model-checking problem for SGL is in EXPSPACE and PSPACE-hard
for MR semantics.

The lower bounds of Theorem 3 are just inherited from Theorem 2. The upper
bounds are obtained by analyzing the size and structure of the formula 7(s, ®)
constructed in the proof of Lemma 3, and applying known results about the com-
plexity of (R,*,+,<) and its fragments. Note that the size of 7(s, P) is polyno-
mial in the size of .# and @, and the quantifier alternation depth of t(s, ®) is
fixed for every ¢ > 0 (after pushing all negations inside). The general upper bound
for (R,*,+,<) is EXPSPACE. The existential fragment of (R,*,+,<) can be
decided in polynomial space [11], and every fragment of (R, x,+, <) obtained by
restricting the quantifier alternation depth to some fixed level is solvable is expo-
nential time [18]. Thus, we obtain the upper bounds of Theorem 3. Also note that
for £ = 0, the upper bounds trivially improve to P (cf. Proposition 1), and for /=1,
they improve to PSPACE.

4.3 FR, FD, HR, and HD strategies
For history-dependent strategies, the SGL model checking problem becomes un-

decidable. This follows immediately from the undecidability result for 1%-player
games and PCTL stated in [9]. More precisely, [9] yields the undecidability of the
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model checking problem for PMG with a singleton agent set {a} and SGL formu-
lae of the form {a))® where @ is a PCTL formula. This holds for FR, FD, HR,
and HD semantics. For HR and HD semantics, the above problem is even shown
to be highly undecidable, i.e., beyond the arithmetical hierarchy. Thus, we obtain
the following:

Theorem 4 The SGL model checking problem is undecidable for FR, FD, HR,
and HD semantics. This result holds even for the SGL(X) and SGL(II,) frag-
ments.

The results of [9] do not apply to the qualitative fragment of SGL. In [8], it was
shown that the controller synthesis problem for finite-state MDPs and qualitative
PECTL" objectives is decidable. Since the underlying argument is quite involved,
the question whether this result can be generalized to qualitative SGL is postponed
to future work.

5 Conclusion

We introduced a new stochastic game logic (SGL) interpreted over probabilistic
multi-player games (PMG). It combines features of alternating time logic (ATL),
probabilistic computation tree logic and extended temporal logics. Our logic uses
an existential strategy quantifier (.) that, unlike in ATL, propagates the chosen
strategies to the subformulae. This enables us to state game properties like “player
B can react to the strategy chosen by player A”. Whereas the ATL model checking
problem is known to be solvable by a polynomially time-bounded algorithm [2],
modifying the semantics of the {.) operator so that the strategy decisions are
propagated to the subformulae makes the model checking problem PSPACE-hard.
The main results of this paper can be summarized as follows.

The model-checking problem for finite state PMG and (full) SGL is
e undecidable for HR and HD strategies,
e PSPACE-complete for MD strategies,
e PSPACE-hard and in EXPSPACE for MR strategies.

The model-checking problem for finite state MPG and the qualitative
fragment of SGL is PSPACE-complete for MD and MR strategies.

The decidability of the qualitative fragment of SGL with respect to history depen-
dent strategies remains open.
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