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2 We de�ne the semanti
s of LTL in terms of languages over in�nitewords (all of our results 
arry over to �nite words immediately). An al-phabet is a �nite set � � �. An !-word over � is an in�nite sequen
e1� = �(0)�(1)�(2) : : : of letters from �. The set of all !-words over � is de-noted �!. For every i � 0 we denote by �i the ith suÆx of �, i.e., the word�(i)�(i+ 1) : : : (we use this notation for �nite words as well). Moreover, forall i � 0 and j > 0, the symbol �(i; j) denotes the subword of � of length jstarting with �(i).Let ' be an LTL formula. The validity of ' for a given � 2 �! is de�nedindu
tively as follows:� j= tt� j= p i� p = �(0)� j= :' i� � 6j= '� j= '1 ^ '2 i� � j= '1 ^ � j= '2� j= X' i� �1 j= '� j= '1 U'2 i� 9i 2 N0 : �i j= '2 ^ 8 0 � j < i : �j j= '1Let us note that the results presented in this paper remain valid if thelogi
 LTL is built over atomi
 propositions rather than over letters.For every alphabet � and every LTL formula ' we de�ne the languageL�' = f� 2 �! j � j= 'g. If � is understood from the 
ontext, we writejust L'.It is well-known that languages de�nable by LTL formulae form a propersub
lass of !-regular languages (see, e.g., [15℄). More pre
isely, LTL languagesare exa
tly the languages de�nable in �rst-order logi
 with the signaturefsu
; <g [ �0, where su
 and < are binary predi
ates standing for su

essorand less than, respe
tively, and �0 is a set of unary predi
ates 
orrespondingto the set of letters �. See [5,4℄ for more details regarding the relationshipbetween LTL and �rst-order logi
.Sin
e LTL 
ontains just two modal 
onne
tives, a natural question is howthey in
uen
e the expressive power of LTL. First, let us (indu
tively) de�nethe nesting depth of the X and the U modality in a given LTL formula ',denoted X(') and U('), respe
tively.U(tt) = 0 X(tt) = 0U(p) = 0 X(p) = 0U(' ^  ) = maxfU('); U( )g X(' ^  ) = maxfX('); X( )gU(:') = U(') X(:') = X(')U(X') = U(') X(X') = X(') + 1U('U ) = maxfU('); U( )g+ 1 X('U ) = maxfX('); X( )gNow we introdu
e three natural hierar
hies of LTL formulae. For all m;n 2N0 we de�neLTL(Um;Xn) = f' 2 LTL j U(') � m ^ X(') � ngLTL(Um;X) = S1i=0 LTL(Um;Xi)LTL(U;Xn) = S1i=0 LTL(Ui;Xn)1 We use o; p; q; : : : to range over �, u; v; : : : to range over ��, and �; �; : : : torange over �!.



3Hen
e, the LTL(Um;Xn) hierar
hy takes into a

ount the nesting depths ofboth modalities, while the LTL(Um;X) and LTL(U;Xn) hierar
hies `
ount'just the nesting depth of U and X, respe
tively. The languages de�nable byformulae of LTL(Um;Xn) are 
alled LTL(Um;Xn) languages.Our work is motivated by basi
 questions about the presented hierar
hies;in parti
ular, the following problems seem to be among the most natural ones:Question 1. Are those hierar
hies semanti
ally stri
t? That is, if we in
reasem or n just by one, do we always obtain a stri
tly more expressive frag-ment of LTL?Question 2. If we take two 
lasses A;B in the above hierar
hies whi
h aresynta
ti
ally in
omparable (for example, we 
an 
onsider LTL(U4;X3)and LTL(U2;X5), or LTL(U3;X0) and LTL(U2;X)), are they also seman-ti
ally in
omparable? That is, are there formulae 'A 2 A and 'B 2 Bsu
h that 'A is not expressible in B and 'B is not expressible in A?Question 3. In the 
ase of LTL(Um;Xn) hierar
hy, what is the semanti
al in-terse
tion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2)? That is, what languagesare expressible in both fragments?We provide (positive) answers to Question 1 and Question 2. Here, the resultsabout the LTL(Um;Xn) hierar
hy seem to be parti
ularly interesting. As forQuestion 3, one is tempted to expe
t the following answer: The semanti
alinterse
tion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2) are exa
tly the languagesexpressible in LTL(Um;Xn), where m = minfm1;m2g and n = minfn1; n2g.Surprisingly, this answer turns out to be in
orre
t. For all m � 1, n � 0 wegive an example of a language L whi
h is de�nable both in LTL(Um+1;Xn)and LTL(Um;Xn+1), but not in LTL(Um;Xn). This shows that the answerto Question 3 is not as easy as one might expe
t. In fa
t, Question 3 is leftopen as an interesting 
hallenge dire
ting our future work.The results on Question 1 are 
losely related to the work of Etessami andWilke [3℄ (see also [17℄ for an overview of related results). They 
onsider anuntil hierar
hy of LTL formulae whi
h is similar to our LTL(Um;X) hierar
hy.The di�eren
e is that they treat the F operator `expli
itly', i.e., their U -depth
ounts just the nesting of the U operator and ignores all o

urren
es of X andF (in our approa
h, F' is just an abbreviation for ttU', and hen
e `our'U -depth of Fp is one and not zero). They prove the stri
tness of their untilhierar
hy in the following way: First, they design an appropriate Ehrenfeu
ht-Fra��ss�e (EF) game for LTL (the game is played on a pair of words) whi
h ina sense 
hara
terizes those pairs of words whi
h 
an be distinguished by LTLformulae where the temporal operators are nested only to a 
ertain depth.Then, for every k they 
onstru
t a formula Fairk with until depth k andprove that this parti
ular formula 
annot be equivalently expressed by anyother formula with U -depth equal to k�1. Here the previous results aboutthe designed EF game are used. Sin
e the formula Fairk 
ontains just oneF operator and many nested X and U operators, this proof 
arries over toour LTL(Um;X) hierar
hy. In fa
t, [3℄ presents a `stronger' result in the sensethat one additional nesting level of U 
annot be `
ompensated' by arbitrarily-deep nesting of X and F. On the other hand, the proof does not allow to
on
lude that, e.g., LTL(U3;X0) 
ontains a formula whi
h is not expressiblein LTL(U2;X) (be
ause Fairk 
ontains the nested X modalities).



4 Our method for solving Questions 1 and 2 is di�erent. Instead of design-ing appropriate Ehrenfeu
ht-Fra��ss�e games whi
h 
ould (possibly) 
hara
-terize the membership to LTL(Um;Xn), we formulate a general `stutteringtheorem' for LTL(Um;Xn) languages. Roughly speaking, the theorem saysthat under 
ertain `lo
al-periodi
ity' 
onditions (whi
h depend on m and n)one 
an remove a given subword u from a given word � without in
uen
ingthe (in)validity of LTL(Um;Xn) formulae (we say that u is (m;n)-redundantin �). This result 
an be seen as a generalization of the well-known formof stutter invarian
e admitted by LTL(U;X0) formulae (a detailed dis
us-sion is postponed to Se
tion 2). Thus, we obtain a simple (but surprisinglypowerful) tool allowing to prove that a 
ertain formula ' is not de�nable inLTL(Um;Xn). The theorem is applied as follows: we 
hoose a suitable alpha-bet �, 
onsider the language L', and �nd an appropriate � 2 L' and itssubword u su
h that{ u is (m;n)-redundant in �;{ �0 6j= ' where �0 is obtained from � by deleting the subword u.If we manage to do that, we 
an 
on
lude that ' is not expressible inLTL(Um;Xn).We use our stuttering theorem to answer Questions 1 and 2. Proofs areremarkably short though it took us some time to �nd appropriate formulaewhi
h witness the presented 
laims. It is worth noting that some of the knownresults about LTL (like, e.g., the formula `G2p' is not de�nable in LTL) admita one-line proof if our general stuttering theorem is applied. We also obtainan alternative 
hara
terization of LTL languages whi
h are exa
tly the !-regular languages 
losed under the generalized stutter equivalen
e of words(see Se
tion 3). These results are still valid when interpreting LTL over �nitewords.The paper is organized as follows. In Se
tion 2 we formulate and provea general stuttering theorem for LTL(Um;Xn) languages together with somerelated results. Using this theorem, we answer Questions 1{3 in Se
tion 4. InSe
tion 3, we examine the question whether the 
onsidered forms of stutterinvarian
e fully 
hara
terize the 
orresponding LTL fragments. Finally, inSe
tion 5 we draw our 
on
lusions and identify dire
tions of future resear
h.2 A General Stuttering TheoremIn this se
tion we formulate and prove the promised general stuttering the-orem for LTL(Um;Xn) languages. General stuttering 
ombines and extendstwo independent prin
iples of letter stuttering (n-stuttering) and subwordstuttering, whi
h are appli
able to the LTL(U;Xn) and LTL(Um;X0) frag-ments of LTL, respe
tively. We start by explaining these two prin
iples inSe
tion 2.1 and Se
tion 2.2. This material has been in
luded for two reasons.First, the two simpli�ed prin
iples are interesting on their own. In Se
tion 3.1we present spe
ial results about letter stuttering whi
h do not hold for gen-eral stuttering. Se
ondly, the remarks and proof sket
hes given in Se
tion 2.1and Se
tion 2.2 should help the reader in gaining some intuition about thefun
tionality and underlying prin
iples of general stuttering.



52.1 Letter stuttering (n-stuttering)Letter stuttering is a simple generalization of the well-known prin
iple ofstutter invarian
e of LTL(U;X0) formulae [8℄ saying that LTL(U;X0) formu-lae 
annot distinguish between one and more adja
ent o

urren
es of thesame letter in a given word. Formally, a letter �(i) of an !-word � is 
alledredundant i� �(i) = �(i + 1) and there is j > i su
h that �(i) 6= �(j). The
anoni
al form of � is the !-word obtained by deleting all redundant let-ters from �. Two !-words �; � are stutter equivalent i� they have the same
anoni
al form.Theorem 1 ([8℄) Every LTL(U;X0) language is 
losed under stutter equiv-alen
e.Intuitively, it is not very surprising that this prin
iple 
an be extended toLTL(U;Xn) formulae (where n 2 N0 ). The so-
alled n-stuttering is based ona simple observation that LTL(U;Xn) formulae 
annot distinguish betweenn+1 and more adja
ent o

urren
es of the same letter in a given !-word.Formally, a letter �(i) is n-redundant i� �(i) = �(i+1) = � � � = �(i+ n+1)and there is some j > i su
h that �(i) 6= �(j). The n-
anoni
al form andn-stutter equivalen
e are de�ned in the same way as above.Theorem 2 (n-stuttering) Every LTL(U;Xn) language is 
losed under n-stutter equivalen
e.Proof The theorem 
an be proven dire
tly by indu
tion on n. Sin
e it is a
onsequen
e of Theorem 9, we do not give an expli
it proof here2. utTheorem 2 
an be used to show that a given property is not expressible inLTL(U;Xn) (or even in LTL) in the following way.Example 3 A standard example of an !-regular language whi
h is not de-�nable in LTL is `G2p' [18℄. The language 
onsists of all � 2 �! su
h that�(i) = p for every even i 2 N0 . With the help of Theorem 2 we 
an easilyprove that G2p is not an LTL(U;Xn) language for any n 2 N0 (assumingj�j � 2) and hen
e it is not an LTL language. Suppose the 
onverse, i.e.,there are n 2 N0 and ' 2 LTL(U;Xn) su
h that L' = G2p. Now 
onsiderthe !-words � = p2n+2qp! and � = p2n+1qp!, where q 2 � r fpg. Clearly �and � are n-stutter equivalent, and � 62 L' while � 2 L'. Hen
e, L' is notn-stutter 
losed whi
h 
ontradi
ts Theorem 2.2.2 Subword stutteringSin
e letter stuttering takes into a

ount just the X-depth of LTL formulae,a natural question is whether there is another form of stutter-like invarian
edetermined by the U-depth of a given LTL formula. We provide a (positive)answer to this question by formulating the prin
iple of subword stuttering,2 A dire
t proof of Theorem 2 is of 
ourse simpler than the proof of Theorem 9.It 
an be found in [7℄.



6whi
h is appli
able to LTL(Um;X0) formulae (where m � 1). The term `sub-word stuttering' re
e
ts the fa
t that we do not ne
essarily delete/pump justindividual letters, but whole subwords. The essen
e of the idea is formulatedin the following 
laim:Claim 4 Let ' 2 LTL(Um;X0) where m � 1. For all v; u 2 �� and � 2 �!we have that vum+1� j= ' i� vum� j= '.In other words, LTL(Um;X0) 
annot distinguish between m and more adja-
ent o

urren
es of the same subword u in a given word. Note that there areno assumptions about the length of u.Claim 4 
an be easily proven by indu
tion on m. We just sket
h the
ru
ial part of the argument (a full proof is in fa
t 
ontained in the proof ofTheorem 9). Let us suppose that ' =  U %, where  ; % 2 LTL(Um�1;X0).We want to show that vum+1� j= ' i� vum� j= '. We 
on
entrate just on theindu
tion step (i.e., m � 2) of the `=)' part (the other dire
tion is similar).By indu
tion hypothesis, the following equivalen
es hold for all 0 � ` < jvuj:(vu)` um � j=  i� (vu)` um�1 � j=  (1)(vu)` um � j= % i� (vu)` um�1 � j= % (2)Let vum+1� j=  U %. Then there is j 2 N0 su
h that (vum+1�)j j= % and(vum+1�)i j=  for all 0 � i < j. If j < jvuj, we immediately obtain vum� j= U % by applying (1) and (2) above. If j � jvuj, we 
an imagine that theword vum� was obtained from vum+1� by deleting the �rst 
opy of u (fromnow on, we denote the kth 
opy of u in vum+1� by u[k℄). The situation 
anbe pi
tured as follows:PSfrag repla
ements v � %u[1℄ u[2℄ u[3℄ u[m+1℄Realize that the (in)validity of  and % for any suÆx of u[2℄u[3℄ � � � u[m+1℄�is not in
uen
ed by deleting the u[1℄ subword (LTL is future-only in oursettings). That is, it suÆ
es to show that for ea
h suÆx v0 of v we have thatv0um+1� j=  implies v0um� j=  . However, this follows from (1) above.The prin
iple of subword stuttering, as formulated in Claim 4, is quitesimple and intuitively 
lear. Now we re�ne this prin
iple into a stronger form.Claim 5 Let ' 2 LTL(Um;X0) where m � 0. For all v; y 2 ��, u 2 �+,and � 2 �! su
h that{ jyj = juj �m�m+ 1,{ y is a pre�x of u!we have that vuy� j= ' i� vy� j= '.The stru
ture of vuy� 
an be illustrated as follows:



7PSfrag repla
ements v �yu[1℄ u[2℄u[3℄u[m�1℄ u[m℄ u[m+1℄m�1 lettersIn other words, the u subword has to be repeated `basi
ally' m+ 1 times asin Claim 4, but now we 
an ignore the last m� 1 letters of u[1℄ � � �u[m+ 1℄.Note that there is no assumption about the length of u; if u is `short' and mis `large', it 
an happen that the last m�1 letters a
tually `subsume' severaltrailing 
opies of u.Claim 5 
an also be proven by indu
tion on m. Again, we 
on
entrate juston the 
ru
ial step when ' =  U % and  ; % 2 LTL(Um�1;X0). We only showthe `=)' part (the other dire
tion is similar). So, let vuy� j=  U %. Thenthere is j 2 N0 su
h that (vuy�)j j= % and (vuy�)i j=  for all 0 � i < j. Wedistinguish three possibilities (the �rst two of them are handled in the sameway as in Claim 4):(i) j < jvj. To prove that vy� j=  U %, it suÆ
es to show that for everysuÆx v0 of v we have that{ v0uy� j=  implies v0y� j=  ,{ v0uy� j= % implies v0y� j= %.However, this follows dire
tly from indu
tion hypothesis.(ii) j � jvuj. First, realize that the (in)validity of  and % for any suÆx ofy� is not in
uen
ed by deleting the u subword. Hen
e, it suÆ
es to showthat v0uy� j=  implies v0y� j=  for ea
h suÆx v0 of v. This followsfrom the indu
tion hypothesis in the same way as in (i).(iii) jvj � j < jvuj. This requires more 
are. A key observation is that theword vuy� 
an be seen as v0u0y0� = vuy�, where jv0j = j, ju0j = juj,and jy0j = jyj+ jvj � jv0j.PSfrag repla
ements  %v �yv0 �y0u u0Due to the periodi
ity of y we have that vy� = v0y0�. Hen
e, it suÆ
esto show that y0� j= % and v00y0� j=  for every nonempty suÆx v00 of v0.We know that u0y0� j= % and v00u0y0� j=  ; so, if y0 is `suÆ
iently long',we 
an use indu
tion hypothesis to �nish the proof. That is, we need toverify that jy0j � ju0j � (m�1)� (m�1)+ 1, but this follows immediatelyfrom the known (in)equalities jy0j = jyj + jvj � jv0j, ju0j = juj, andjvj > jv0j � juj.



82.3 General stutteringIn this se
tion we 
ombine the previously dis
ussed prin
iples of letter stut-tering and subword stuttering into a single `general stuttering theorem' whi
his appli
able to LTL(Um;Xn) formulae.De�nition 6 Let � be an alphabet and m;n 2 N0 .{ A subword �(i; j) of a given � 2 �! is (m;n)-redundant if the word�(i+ j;m � j �m+ 1 + n) is a pre�x of �(i; j)! .{ The relation �m;n � �! � �! is de�ned as follows: � �m;n � i� �
an be obtained from � by deleting some (possibly in�nitely many) non-overlapping (m;n)-redundant subwords. The (m;n)-stutter equivalen
e isthe least equivalen
e over �! subsuming the relation �m;n.{ A language L � �! is (m;n)-stutter 
losed if it is 
losed under(m;n)-stutter equivalen
e.The stru
ture of an !-word � with an (m;n)-redundant subword �(i; j)
an be illustrated as follows:PSfrag repla
ements v �0periodi
 patternu[1℄ = �(i; j) u[2℄u[3℄u[m�1℄ u[m℄ u[m+1℄m�1 lettersn lettersHen
e, the �(i; j) subword has to be repeated `basi
ally' m+1 times but we
an ignore the last (m � 1) � n letters (if (m � 1)� n is negative, we musta
tually prolong the repetition `beyond' the m+ 1 
opies of �(i; j)|see the�gure above). Note that there is no assumption about the size of m, n, and j.Our goal is to prove that the (in)validity of LTL(Um;Xn) formulae isnot in
uen
ed by deleting/pumping (m;n)-redundant subwords. First, letus realize that this result is a proper generalization of both Theorem 2 andClaim 5. If we 
ompare the `periodi
ity assumptions' of Theorem 2, Claim 5,and De�nition 6, we 
an observe that{ a letter �(i) is n-redundant i� it is 
onse
utively repeated at least n+ 1times. That is, �(i) is n-redundant i� �(i+1; n+1) is a pre�x of �(i; 1)!.For every m 2 N0 we get that �(i) is n-redundant i� �(i; 1) is (m;n)-redundant as �(i+1; n+1) = �(i+1;m�1�m+1+n). In other words, thenotion of n-redundan
y 
oin
ides with (m;n)-redundan
y for subwords oflength 1.{ the 
ondition of Claim 5 mat
hes exa
tly the de�nition of (m; 0)-redundan
y.Before formulating and proving the general stuttering theorem, we need tostate two auxiliary lemmas.Lemma 7 Let � be an alphabet, m;n 2 N0 , and � 2 �!. If a subword�(i; j) is



9(i) (m;n)-redundant then it is also (m0; n0)-redundant for all 0 � m0 � mand 0 � n0 � n.(ii) (m;n+ 1)-redundant then �(i+ 1; j) is (m;n)-redundant.(iii) (m + 1; n)-redundant then �(i + k; j) is (m;n)-redundant for every ksatisfying 0 � k < j.Proof (i) follows immediately as j > 0 impliesm0 � j �m0 + 1 + n0 � m � j �m+ 1 + n(ii) is also simple|due to the (m;n+1)-redundan
y of �(i; j) we know thatthe subword is repeated at least on the nextm�j�m+2+n letters. Hen
e, thesubword �(i+1; j) is repeated at least on the next m �j�m+1+n letters andthus it is (m;n)-redundant. A proof of (iii) is similar; if �(i; j) is repeatedon the next (m+1) � j � m + n letters, then the subword �(i+k; j) (where0 � k < j) is repeated on the next (m+1) �j�m+n�k = m �j�m+n+j�kletters, i.e., �(i+k; j) is (m;n+ j�k�1)-redundant. The (m;n)-redundan
yof �(i+k; j) follows from (i) and k < j. utLemma 8 For all m � 1, n � 0, and all �; � 2 �! su
h that � �m;n �there exists a surje
tive fun
tion g : N0 �! N0 su
h that(i) for all `; x 2 N0 , where 0 � x < g(`), there exists 0 � `0 < ` su
h thatg(`0) = x,(ii) for ea
h ` 2 N0 we have that �` �m�1;n �g(`).Proof Let m � 1, n � 0 and �; � 2 �! su
h that � �m;n �. Let D =�(i0; j0); �(i1; j1); : : : be the (�nite or in�nite) sequen
e of non-overlapping(m;n)-redundant subwords whi
h were deleted from � to obtain � (we assumethat i0 < i1 < � � �). We say that a given ` 2 N0 is 
overed by a subword�(iq ; jq) ofD if iq � ` � iq+jq�1. For ea
h su
h ` we further de�ne jump(`) =` + jq and pos(`) = ` � iq + 1. If ` is not 
overed by any subword of D, weput pos(`) = 0 and jump(`) = `. The set of all `'s that are 
overed by thesubwords of D is denoted 
ov (D). For ea
h ` 62 
ov(D), the symbol length(`)denotes the total length of all subwords of D whi
h 
over some k � `.The fun
tion g is de�ned as follows:g(`) = � `� length(`) if ` 62 
ov (D);g(jump(`)) otherwise.The stru
ture of g 
an be illustrated as follows:PSfrag repla
ements� :� :
�(i0; j0) �(i1; j1) �(i2; j2) �(i3; j3)



10In parti
ular, note that un
overed letters of � are proje
ted to the \same"letters in �, and 
overed letters are in fa
t mapped to un
overed ones byperforming one or more jumps of possibly di�erent length. Also note that gis not monotoni
 in general.First we show that g is well-de�ned, i.e., for ea
h ` 2 
ov(D) there isk 2 N su
h that jumpk(`) 62 
ov(D) (here jumpk denotes jump applied k-times). This is an immediate 
onsequen
e of the following observation:For ea
h ` 2 
ov(D) there is k 2 N su
h that pos(jumpk(`)) < pos(`).Proof of the observation: First, let us realize that pos(`) � pos(jump(`)) forevery ` 2 
ov (D). Now assume that the observation does not hold. Thenthere is ` 2 
ov(D) su
h that pos(jumpk(`)) = pos(`) for every k 2 N. Let�(iq ; jq) be the subword of D 
overing `, and let Dq be the sequen
e obtainedfrom D by removing the �rst q elements. Sin
e pos(jumpk(`)) = pos(`) forevery k 2 N, all subwords of Dq are adja
ent and the length of ea
h of themis at least pos(`). Hen
e, ea
h `0 � ` is 
overed by some subword of Dq, whi
h
ontradi
ts the assumption that � is in�nite.Proof of (i): First we show that for every ` 2 N0 we have that g(`+1) �g(`) + 1. Let us assume that there is some `0 2 N0 su
h that g(`0 + 1) >g(`0) + 1, and let k 2 N0 be the least number su
h that ` = jumpk(`0) iseither un
overed or satis�es g(jump(`) + 1) � g(jump(`)) + 1. Observe thatsu
h a k must exist, and that ` satis�es g(`+1) > g(`)+1 (otherwise we get a
ontradi
tion with the minimality of k). Now we distinguish two possibilities:{ pos(` + 1) � 1. Let `00 be the least un
overed index greater or equal to`+1. It follows easily from the de�nition of g that g(`+1) = g(`00). Hen
e,g(`) is either equal to g(` + 1) � 1 (if ` 62 
ov (D)), or greater or equalto g(` + 1) (if ` 2 
ov(D)). Again, this 
ontradi
ts the assumption thatg(`+ 1) > g(`) + 1.{ pos(`+1) � 2. Then `; `+1 are 
overed by the same subword of D.By applying the de�nition of g we obtain g(`) = g(jump(`)) andg(`+1) = g(jump(`+1)). Moreover, jump(`+1) = jump(`) + 1 be
ause`; `+1 are 
overed by the same subword of D. If pos(jump(`)+1) is equalto 0 or 1, we derive a 
ontradi
tion using the arguments of previous
ases. If pos(jump(`)+1) � 2, we have that jump(`) 2 
ov(D), hen
eg(jump(`)+1) � g(jump(`))+1 due to the assumption adopted above. Al-together, we derived a 
ontradi
tion with g(`+1) > g(`)+1.Now we are ready to �nish the proof of (i). Let us assume that (i) does nothold, and let ` 2 N0 be the least number su
h that (i) is violated for ` andsome 0 � x < g(`). Clearly ` > 0, be
ause g(0) = 0. Further, g(` � 1) �g(`)�1 due to the 
laim just proved. This means that either g(`�1) = x, or`� 1 also violates (i). In both 
ases we have a 
ontradi
tion with our 
hoi
eof `.Proof of (ii): We show that �` �m�1;n �g(`) for ea
h ` 2 N0 . We pro
eedby indu
tion on pos(`).Basis. pos(`) = 0. This means that ` 62 
ov(D). Clearly �` �m;n �g(`) be-
ause �g(`) is obtained from �` by deleting all those subwords �(iq ; jq)of D su
h that iq > `. Hen
e, we also have �` �m�1;n �g(`) by applyingLemma 7 (i).



11Indu
tion step. Let pos(`) > 0 and let k 2 N be the least number su
h thatpos(jumpk(`)) < pos(`). To simplify our notation, we put `0 = jumpk(`).Clearly g(`) = g(`0) by de�nition of g. By indu
tion hypothesis we havethat �`0 �m�1;n �g(`0). Hen
e, it suÆ
es to show that �(`; `0 � `) is asequen
e of (m�1; n)-redundant subwords. Let us assume that ` is 
overedby �(iq ; jq). Consider the sequen
e of subwords�(iq ; jq); : : : ; �(iq+k�1; jq+k�1)From the minimality of k we obtain that these subwords are adja
ent andthe length of ea
h of them is at least pos(`). Hen
e, �(`; `0 � `) 
an beseen as a sequen
e of words�(iq+pos(`)�1; jq); : : : ; �(iq+k�1+pos(`)�1; jq+k�1)Moreover, ea
h of these words is (m�1; n)-redundant by Lemma 7 (iii).utTheorem 9 (general stuttering) Every LTL(Um;Xn) language is 
losedunder (m;n)-stutter equivalen
e.Proof Let m;n 2 N0 and ' 2 LTL(Um;Xn). It suÆ
es to prove that for all�; � 2 �! su
h that � �m;n � we have that � j= ' () � j= '. Wepro
eed by a simultaneous indu
tion on m and n (we write (m0; n0) < (m;n)i� m0 � m and n0 < n, or m0 < m and n0 � n).Basis. m = 0 and n = 0. Let �; � 2 �! be !-words su
h that � �0;0 �.Let D denote the sequen
e of non-overlapping (0; 0)-redundant subwordsD = �(i0; j0); �(i1; j1); : : : whi
h were deleted from � to obtain � (weassume that i0 < i1 < : : :). Sin
e LTL(U0;X0) formulae are just `Boolean
ombinations' of letters and tt, it suÆ
es to show that �(0) = �(0). Ifi0 > 0 then it is 
learly the 
ase. Now let i0 = 0, and let k 2 N0 bethe least number su
h that the subwords �(ik; jk) and �(ik+1; jk+1) arenot adja
ent (i.e., ik+1 > ik + jk). Hen
e, �(0) = �(ik + jk) and (0; 0)-redundan
y of the subwords in D implies that�(0) = �(i0) = �(i1) = �(i2) = : : : = �(ik) = �(ik + jk) = �(0):Indu
tion step. Let m;n 2 N0 , and let us assume that the theorem holdsfor all m0; n0 su
h that (m0; n0) < (m;n). Let �; � 2 �! be !-words su
hthat � �m;n �, and let D = �(i0; j0); �(i1; j1); : : : (i0 < i1 < : : :) bethe sequen
e of non-overlapping (m;n)-redundant subwords whi
h weredeleted from � to obtain �. We distinguish four possibilities:{ ' 2 LTL(Um0 ;Xn0) for some (m0; n0) < (m;n). Sin
e every �(i; j)from D is (m0; n0)-redundant by Lemma 7 (i), we just apply indu
tionhypothesis.{ ' = X . We need to prove that �1 j=  () �1 j=  . By indu
tionhypothesis,  
annot distinguish between (m;n�1)-stutter equivalent!-words. Hen
e, it suÆ
es to show that �1 �m;n�1 �1. If i0 > 0, then�1(i0�1; j0); �1(i1�1; j1); �1(i2�1; j2); : : : are (m;n)-redundant anddue to Lemma 7 (i) they are also (m;n� 1)-redundant. Moreover, �1
an be obtained from �1 by deleting these subwords.



12 If i0 = 0, then let k 2 N0 be the least number su
h that the subwords�(ik; jk) and �(ik+1; jk+1) are not adja
ent. The !-word �1 
an beobtained from �1 by deleting the subwords�1(i0; j0); : : : ; �1(ik; jk); �1(ik+1�1; jk+1); �1(ik+2�1; jk+2); : : :The subwords �1(i0; j0); �1(i1; j1); : : : ; �1(ik; jk) are (m;n�1)-redundant by Lemma 7 (ii), and the other subwords are (m;n�1)-redundant by applying Lemma 7 (i).{ ' =  U %. By indu
tion hypothesis,  ; % 
annot distinguish be-tween (m�1; n)-stutter equivalent !-words. Let g be the fun
tion ofLemma 8 
onstru
ted for the 
onsidered m;n; �; � (i.e., �` �m�1;n�g(`) for every ` 2 N0 ).Now we show that if � j=  U % then also � j=  U %. If � j=  U %,there is 
 � 0 su
h that �
 j= % and for every d < 
 we have that�d j=  . By indu
tion hypothesis we get �g(
) j= %. Further, for everyd0 < g(
) there is d < 
 su
h that g(d) = d0. By Lemma 8, for everyd0 < g(
) there is d < 
 su
h that �d �m�1;n �g(d) = �d0 and hen
e�d0 j=  . Altogether, we obtain that � j=  U %.Similarly, we also show that if � j=  U % then � j=  U %. If � j=  U %,there is 
 � 0 su
h that �
 j= % and for every d < 
 we have that�d j=  . Let 
0 be the least number satisfying g(
0) = 
 (there is su
ha 
0 be
ause g is surje
tive). Then �
0 j= % by indu
tion hypothesis.From the de�nition of g we get that for every d0 < 
0 it holds thatg(d0) < g(
0) = 
 (otherwise we would obtain a 
ontradi
tion with our
hoi
e of 
0). Thus, �d0 j=  and hen
e � j=  U %.{ ' is a `Boolean 
ombination' of formulae of the previous 
ases. For-mally, this 
ase is handled by an `embedded' indu
tion on the stru
tureof '. The basi
 step (when ' is not of the form : or  ^%) is 
overedby the previous 
ases. The indu
tion step (' = : or ' =  ^% wherewe assume that our theorem holds for  ; %) follows immediately. ut3 Stuttering as a SuÆ
ient ConditionIn Se
tion 2 we have shown that formulae of 
ertain LTL fragments are in-variant under 
ertain forms of stutter equivalen
e of !-words. These results(Theorem 2, Claim 4, Claim 5, and Theorem 9) were formulated as \pumpinglemmas", i.e., ne
essary 
onditions whi
h must be satis�ed by languages ofthe respe
tive LTL fragments. In this se
tion we show that 
ertain forms ofstutter invarian
e together with some additional assumptions in fa
t 
hara
-terize 
ertain LTL fragments.3.1 Letter stutteringIt has been proved by Peled and Wilke [9℄ that every LTL language 
losed un-der stuttering is de�nable in LTL(U;X0). This proof 
an be straightforwardlygeneralized to n-stuttering. Hen
e, every n-stutter 
losed LTL property is de-�nable in LTL(U;Xn). For the sake of 
ompleteness, we present this proof



13expli
itly. (Later we formulate further observations whi
h refer to te
hni
aldetails of this proof.)Theorem 10 Let L � �!. The following 
onditions are equivalent:(a) L is de�nable in LTL(U;Xn).(b) L is an n-stutter 
losed LTL language.Proof The (a) =) (b) dire
tion follows from Theorem 2. We prove the otherdire
tion. Let ' be an LTL formula su
h that L' is n-stutter 
losed. Wetranslate ' into an equivalent formula �n(') 2 LTL(U;Xn).Let � be the set of letters o

urring in ', and let � = Wp2� p. For allp 2 � and i > 0 we de�ne formulae �pi , �pi:p, �:�i , and �:�i� as follows:�p1 = p �pi+1 = p ^ X�pi�p0:p = :p �pi:p = p ^ X�pi�1:p�:�1 = :� �:�i+1 = :� ^ X�:�i�:�0� = � �:�i+1� = :� ^ X�:�i�Observe that X(�pi+1) = X(�pi:p) = X(�:�i+1) = X(�:�i�) = i.The translation �n(') is de�ned indu
tively on the stru
ture of '.{ �n(p) = p{ �n(: ) = :�n( ){ �n( ^ %) = �n( ) ^ �n(%){ �n( U %) = �n( )U �n(%){ �n(X ) = �( ) _ � ( ) where�( ) = (G:� _ _p2� Gp) ^ �n( )and � ( ) = _1�i�n+1( �( ;:�; i) _ _p2� �( ; p; i) ):The subformulae �( ;:�; i) and �( ; p; i) of � ( ) are 
onstru
ted asfollows:�( ; p; i) = ��pi:p ^ pU (�pi�1:p ^ �n( )) if i � n�pn+1 ^ pU (�pn:p ^ �n( )) if i = n+1�( ;:�; i) = ��:�i� ^ :�U (�:�i�1� ^ �n( )) if i � n�:�n+1 ^ :�U (�:�n� ^ �n( )) if i = n+1One 
an readily 
on�rm that the X-depth of �n(') is n. We need to provethat if L�' is n-stutter 
losed, then ' is equivalent to �n('). Sin
e ' and�n(') 
annot distinguish between letters whi
h do not belong to �, we 
anassume that � � � [ fog, where o 62 � represents all letters not o

urringin '.As both L' and L�n(') are n-stutter 
losed (in the 
ase of L�n(') weapply Theorem 2), it a
tually suÆ
es to prove that ' and �n(') 
annot bedistinguished by any n-stutter free !-word � 2 �! (an !-word � is n-stutter



14free if � has no n-redundant letters). That is, for every n-stutter free � 2 �!we show that � j= ' i� � j= �n('). We pro
eed by indu
tion on the stru
tureof '. All sub
ases ex
ept for ' = X are trivial. Here we distinguish twopossibilities:{ � = p! for some p 2 �. Then �1 = � and thus we get � j= X i��1 j=  i� �1 j= �n( ) (by indu
tion hypothesis) i� � j= �n( ). Hen
e,this sub
ase is `
overed' by the formula �( ) saying that � is of the formp! and that �n( ) holds (the parti
ular 
ase when � = o! 
orresponds toG:�).{ � = piq� where p; q 2 �, p 6= q, 1 � i � n+ 1, and � 2 �!.Let us �rst 
onsider the 
ase when p = o. Then piq� j= X i� pi�1q� j=  i� pi�1q� j= �n( ) (we use indu
tion hypothesis). If i � n, then the last
ondition is equivalent topiq� j= �:�i� ^ :�U (�:�i�1� ^ �n( ))If i = n+1, then the 
ondition is equivalent topn+1q� j= �:�n+1 ^ :�U (�:�n� ^ �n( ))In both 
ases, the resulting formula 
orresponds to �( ;:�; i).The 
ase when p 2 � is handled similarly; we have that piq� j= X i�pi�1q� j=  i� pi�1q� j= �n( ) (by indu
tion hypothesis). If i � n thenthe last 
ondition is equivalent topiq� j= �pi:p ^ pU (�pi�1:p ^ �n( ))If i = n+1 then the 
ondition is equivalent topn+1q� j= �pn+1 ^ pU (�pn:p ^ �n( ))In both 
ases, the resulting formula 
orresponds to �( ; p; i).To sum up, the 
ase when � = piq� is `
overed' by the formula � ( ). utIn general, the size of �n(') is exponential in X('). However, the size of the
ir
uit3 representing �n(') is only O((n + 1) � j'j2). To see this, realize thefollowing:(1) The total size of all 
ir
uits representing the formulae �pn:p; �pn+1 (forall p 2 �) and �:�n� ; �:�n+1 is O((n+1)�j'j). Moreover, all 
ir
uits rep-resenting the formulae �pi:p and �:�i� (for all 0 � i � n) are 
ontainedin the 
ir
uits representing �pn:p or �:�n�, respe
tively.(2) Assuming that the 
ir
uits of (1) and the 
ir
uit representing �n( ) areat our disposal, we only need to add a 
onstant number of new nodesto represent the formulae �( ;:�; i) and �( ; p; i) for given p 2 � and1 � i � n+1. This means that we need to add O((n+1) � j'j) new nodeswhen 
onstru
ting the 
ir
uit for �n(X ).(3) Sin
e ' 
ontains O(j'j) subformulae of the form X , the 
ir
uit repre-senting ' has O((n+ 1) � j'j2) nodes in total.3 A 
ir
uit (or DAG) representing a given LTL formula ' is obtained from thesyntax tree of ' by identifying all nodes whi
h 
orrespond to the same subformula.



15Theorem 11 Let ' be an LTL formula and n 2 N0 . The problem whetherthere is a formula  2 LTL(U;Xn) equivalent to ' is PSPACE-
omplete (as-suming unary en
oding of n).Proof It suÆ
es to show that the problem whether a given LTL formula 'de�nes an n-stutter 
losed language is PSPACE-
omplete. The proof for n = 0has been presented in [10℄.Similarly as in [10℄, the PSPACE-lower bound is obtained by redu
ingthe validity problem for LTL formulae, whi
h is known to be PSPACE-
omplete [13℄. For every LTL formula % we de�ne a formula�(%) = p ^ Xp ^ XXp ^ : : : ^ nz }| {XX : : :X(p ^ Xq ^ XX:%):The language L�(%) = pn+1qL:% is n-stutter 
losed i� L:% is empty. That is,L�(%) is n-stutter 
losed i� % is valid.The mat
hing PSPACE-upper bound is obtained by applying a similarargument as in [2℄|due to the (proof of) Theorem 10 we have that L' isn-stutter 
losed i� ' is equivalent to �n('). First, we 
onstru
t the 
ir
uitrepresenting �n(') (its size is O((n + 1) � j'j2) as shown above). Then we
he
k the validity of the formula ', �n(') (represented as a 
ir
uit), whi
h
an be also done in polynomial spa
e [13℄. utFinally, let us note that the 
ondition (b) of Theorem 10 
annot be weak-ened to \L is an n-stutter 
losed !-regular language", be
ause there are !-regular languages whi
h are n-stutter 
losed for all n 2 N0 , yet not de�nablein LTL. A 
on
rete example of su
h a language is L = f(p+q+)2ir! j i 2 Ngwhi
h is 
learly n-stutter 
losed for every n 2 N0 , but not (m;n)-stutter
losed for any m;n 2 N0 (and hen
e not de�nable in LTL).3.2 General stutteringIn Se
tion 3.1 we have shown that LTL(U;Xn) languages are exa
tly n-stutter
losed LTL languages. A natural question is whether LTL(Um;Xn) languagesare fully 
hara
terized by the 
losure property indu
ed by (m;n)-stuttering.In this se
tion we show that this is not the 
ase. Nevertheless, regular (m;n)-stutter 
losed languages are inevitably non
ounting, and hen
e expressiblein LTL. This means that if L is !-regular and (m;n)-stutter 
losed, thenL 2 LTL(Um0 ;Xn0) for some m0; n0. In this se
tion we also show that there isno fun
tional relationship between (m0; n0) and (m;n).De�nition 12 A language L � �! is non
ounting if there is k 2 N0 su
hthat for all n � k and x; y; z; u 2 �� we have the following:{ xunyz! 2 L () xun+1yz! 2 L,{ x(yunz)! 2 L () x(yun+1z)! 2 L.Theorem 13 Let L � �!. The following 
onditions are equivalent:(a) L is de�nable in LTL,



16(b) L is !-regular and non
ounting,(
) L is !-regular and (m;n)-stutter 
losed for some m;n 2 N0 .Proof The equivalen
e of (a) and (b) is a 
onsequen
e of several results;Kamp [5℄ proved that languages (of in�nite words) de�nable in LTL are ex-a
tly the languages expressible in �rst-order logi
. Using the results presentedin [14℄ and [1℄, Perrin [11℄ showed that a language is de�nable in �rst-orderlogi
 i� it is !-regular and non
ounting.The impli
ation (a) =) (
) is given by Theorem 9. The impli
ation(
) =) (b) follows from a straightforward observation that a language violat-ing non
ounting property is not (m;n)-stutter 
losed for any m;n 2 N0 . utA natural question is whether the 
ondition (
) of Theorem 13 
an beweakened to \L is (m;n)-stutter 
losed for some m;n 2 N0". The answer isgiven in our next theorem.Theorem 14 For all m � 2 and n � 1 there is an (m;n)-stutter 
losedlanguage L � fo; p; q; rg! whi
h is not de�nable in LTL.Proof Due to Lemma 7 (i), we just need to 
onsider the 
ase when m =2 and n = 1. We say that a word w 2 �� is square-free if it does not
ontain a subword of the form uu, where juj � 1. It is known that there arein�nitely many square-free words4 w0; w1; : : : over the alphabet fo; p; qg [16℄.Now observe that for ea
h of these wi there is no other word v 2 fo; p; qg� su
hthat wir! �(2;1) vr! or vr! �(2;1) wir! . This means that L = fwir! j i 2N0g is (2; 1)-stutter 
losed. Obviously, L is not !-regular by using standardarguments (pumping lemma for !-regular languages). Thus, L is not de�nablein LTL. utDue to Theorem 13, we know that if L is !-regular and (m;n)-stutter
losed, then L is de�nable in LTL, i.e., there are m0; n0 2 N su
h that L isde�nable in LTL(Um0 ;Xn0). However, it is not 
lear what is the relationshipbetween m;n and m0; n0. One might be tempted to think that m0; n0 
anbe expressed (or at least bounded) by some simple fun
tions in m;n, forexample m0 = m and n0 = n. Our next theorem says that there is no su
hrelationship.Theorem 15 Let m � 2 and n � 1. For all m0; n0 2 N0 there is an(m;n)-stutter 
losed LTL language L � fo; p; q; rg! whi
h is not de�nablein LTL(Um0 ;Xn0).Proof First, realize that for all m0; n0 2 N0 there are only �nitely manypairwise non-equivalent LTL(Um0 ;Xn0) formulae over the alphabet fo; p; q; rg.Hen
e, it suÆ
es to show that for all m � 2 and n � 1 there are in�nitelymany (m;n)-stutter 
losed LTL languages over the alphabet fo; p; q; rg. Dueto Lemma 7 (i), we just need to 
onsider the 
ase when m = 2 and n = 1.Let L be the language 
onstru
ted in the proof of Theorem 14. Now realizethat ea
h of the in�nitely many �nite subsets of L is a (2; 1)-stutter 
losedLTL language. ut4 The sequen
e w0; w1; � � � is de�ned indu
tively by w0 = o and wi+1 = f(wi),where f is a word homomorphism given by f(o) = opqop, f(p) = oqopqp, f(q) =oqpqoqp. The proof in [16℄ reveals that if w is square-free, then so is f(w).



17Finally, let us note that possible generalizations of Theorem 14 and The-orem 15 
annot 
ross 
ertain limits|they do not hold for all m;n 2 N0and every alphabet �. For example, every (1; 0)-stutter 
losed language overthe alphabet fp; qg is de�nable in LTL(U2;X0). To see this, realize that thequotient of fp; qg! under (1; 0)-stutter equivalen
e has exa
tly eight equiv-alen
e 
lasses represented by words (pq)!, (qp)! , p!, q!, pq!, qp!, pqp!,and qpq!. Hen
e, there are exa
tly 28 = 256 languages over fp; qg whi
h are(1; 0)-stutter 
losed. Sin
e ea
h equivalen
e 
lass of the quotient is a languagede�nable in LTL(U2;X0), we 
an 
on
lude that ea
h of these 256 languagesis de�nable in LTL(U2;X0).4 Answers to Questions 1, 2, and 3Now we are ready to provide answers to Questions 1, 2, and 3 whi
h werestated in Se
tion 1 (though Question 3 will be left open in fa
t). We startwith a simple observation.Lemma 16 For ea
h n � 1 there is a formula ' 2 LTL(U0;Xn) whi
h
annot be expressed in LTL(U;Xn�1).Proof Let � = fp; qg and n � 1. Consider the formula' = nz }| {XX � � �X p:We show that L' is not 
losed under (n�1)-stutter equivalen
e (whi
h suÆ
esdue to Theorem 2). This is easy; realize that pn+1q! 2 L' and the �rsto

urren
e of p in this word is (n�1)-redundant. Sin
e pnq! 62 L', we aredone. utA `dual' fa
t is proven below (this is already non-trivial).Lemma 17 For ea
h m � 1 there is a formula ' 2 LTL(Um;X0) whi
h
annot be expressed in LTL(Um�1;X).Proof Let m � 1 and let � = fq; p1; : : : ; pmg. We de�ne a formula ' 2LTL(Um;X0) as follows:' = F(p1 ^ F(p2 ^ : : : ^ F(pm�1 ^ Fpm) : : :))Let us �x an arbitrary n 2 N0 , and de�ne a word � 2 �! by� = (qn+1 pm pm�1 : : : p1)m q!Clearly � j= ' and the subword �(0; n+1+m) is (m�1; n)-redundant. As theword � obtained from � by removing �(0; n+1+m) does not model ', thelanguage L' is not (m�1; n)-stutter 
losed. As this holds for every n 2 N0 ,the formula ' is not expressible in LTL(Um�1;X). utThe last te
hni
al lemma whi
h is needed to formulate answers to Questions 1and 2 follows.



18Lemma 18 For all m;n 2 N0 there is a formula ' 2 LTL(Um;Xn)whi
h is expressible neither in LTL(Um�1;Xn) (assuming m � 1), nor inLTL(Um;Xn�1) (assuming n � 1).Proof If m = 0 or n = 0, we 
an apply Lemma 16 or Lemma 17, respe
tively.Now let m;n � 1, and let � = fp1; : : : ; pk; qg where k = maxfm;n+1g. Wede�ne formulae  and ' as follows: = �pm ^ Xnpm�n if m > npm ^ Xnpm+1 if m � n' = �F if m = 1F(p1 ^ F(p2 ^ F(p3 ^ : : : ^ F(pm�1 ^ F ) : : :))) if m > 1where Xl abbreviates lz }| {XX : : :X. The formula ' belongs to LTL(Um;Xn). Letus 
onsider the !-word � de�ned by� =8<: (pm pm�1 : : : p1)mpm pm�1 : : : pm�n+1q! if m > n(pn+1 pn : : : p1)m+1q! if m = n(pn+1 pn : : : p1)m+1pn+1 pn : : : pm+2q! if m < nIt is easy to 
he
k that � 2 L' and that the subword �(0; k) (where k =maxfm;n+1g) is (m;n�1)-redundant as well as (m�1; n)-redundant. As theword � obtained from � by removing �(0; k) does not satisfy ', the languageL' is neither (m;n�1)-stutter 
losed, nor (m�1; n)-stutter 
losed. utThe knowledge presented in the three lemmata above allows to 
on
lude thefollowing:Corollary 19 (Answer to Question 1) The LTL(Um;Xn), LTL(Um;X),and LTL(U;Xn) hierar
hies are stri
t.Corollary 20 (Answer to Question 2) Let A and B be 
lasses ofLTL(Um;Xn), LTL(Um;X), or LTL(U;Xn) hierar
hy (not ne
essarily of thesame one) su
h that A is synta
ti
ally not in
luded in B. Then there is aformula ' 2 A whi
h 
annot be expressed in B.Although we 
annot provide a full answer to Question 3, we 
an at leastreje
t the aforementioned `natural' hypotheses (see Se
tion 1).Lemma 21 (About Question 3) For all m;n 2 N0 there is a languagede�nable in LTL(Um+2;Xn) as well as in LTL(Um+1;Xn+1) whi
h is notde�nable in LTL(Um+1;Xn).Proof We start with the 
ase when m = n = 0. Let � � fp; qg, and let 1 = F(q ^ (qU:q)) and  2 = F(q ^ X:q). Note that  1 2 LTL(U2;X0)and  2 2 LTL(U1;X1). Moreover,  1 and  2 are equivalent as they de�nethe same language L = ��q(� r fqg)�!. This language is not de�nable inLTL(U1;X0) as it is not (1; 0)-stutter 
losed; for example, the !-word � =pqpq! 2 L 
ontains a (1; 0)-redundant subword �(0; 2) but �2 = pq! 62 L.



19The above example 
an be generalized to arbitrary m;n (using thedesigned formulae  1;  2). For given m;n we de�ne formulae '1 2LTL(Um+2;Xn) and '2 2 LTL(Um+1;Xn+1), both de�ning the same lan-guage L over � = fq; p; p1; : : : ; pm+1g, and we give an example of an !-word� 2 L with an (m+ 1; n)-redundant subword su
h that � without this sub-word is not from L. We distinguish three 
ases.{ m = n > 0. For i 2 f1; 2g we de�ne'i = m-timesz }| {XF(p ^ XF(p ^ XF(p ^ : : : ^ XF(p^ i) : : :)))The !-word � = (pq)m+2q! 2 L, �(0; 2) is (m + 1; n)-redundant, and�2 = (pq)m+1q! 62 L.{ m > n. For i 2 f1; 2g we de�ne'i = n-timesz }| {XF(q ^ XF(q ^ : : : ^ XF(q ^'0i) : : :))where '0i = (m�n)-timesz }| {F(p1 ^ F(p2 ^ : : : ^ F(pm�n^ i) : : :))The !-word � = (qpm�npm�n�1 : : : p1)m+1q! 2 L, �(0;m � n + 1) is(m+ 1; n)-redundant, and �m�n+1 62 L.{ m < n. For i 2 f1; 2g we de�ne'i = m-timesz }| {F(p1 ^ F(p2 ^ : : : ^ F(pm^ nz }| {XX : : :X i) : : :))The !-word � = (qn�mpm+1pm : : : p1)m+2q! 2 L, �(0; n+1) is (m+1; n)-redundant, and �n+1 62 L. utIn fa
t, the previous lemma says that if we take two 
lasses LTL(Um1 ;Xn1)and LTL(Um2 ;Xn2) whi
h are synta
ti
ally in
omparable and wherem1;m2 � 1, then their semanti
al interse
tion (i.e., the interse
tion ofthe 
orresponding 
lasses of languages) is stri
tly greater than the 
lassof languages de�nable in LTL(Um;Xn) where m = minfm1;m2g and n =minfn1; n2g. Another 
onsequen
e of Lemma 21 is that there is generally no\best" way how to minimize the nesting depths of X and U modalities in agiven LTL formula.5 Con
lusionsThe main te
hni
al 
ontributions of this paper are the theorems about n-stuttering and general stuttering presented in Se
tion 2. With their help wewere able to 
onstru
t (short) proofs of other results. In parti
ular, we gavean alternative 
hara
terization of LTL(U;Xn) languages (whi
h are exa
tlyn-stutter 
losed languages), proved the stri
tness of the three hierar
hies ofLTL formulae introdu
ed in Se
tion 1, and we also showed several related



20fa
ts about the relationship among the 
lasses in the three hierar
hies. All ofthe presented results 
arry over to LTL interpreted over �nite words.Some problems are left open. For example, the exa
t 
hara
terization ofthe semanti
al interse
tion of LTL(Um1 ;Xn1) and LTL(Um2 ;Xn2) 
lasses (inthe 
ase when they are synta
ti
ally in
omparable) surely deserves furtherattention. Another interesting question is whether Theorem 9 
an serve as abasis for new state-spa
e redu
tion methods in the model-
he
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