Acta Informatica manuscript No.
(will be inserted by the editor)

Antonin Kuéera - Jan Strejcek

The Stuttering Principle Revisited

Received: date / Revised version: date

Abstract It is known that LTL formulae without the ‘next’ operator are in-
variant under the so-called stutter equivalence of words. In this paper we ex-
tend this principle to general LTL formulae with given nesting depths of both
‘next’ and ‘until’ operators. This allows us to prove the semantical strictness
of three natural hierarchies of LTL formulae, which are parametrized either
by the nesting depth of just one of the two operators, or by both of them.
Further, we provide an effective characterization of languages definable by
LTL formulae with a bounded nesting depth of the ‘next’ operator.

Keywords Linear Temporal Logic (LTL), Stuttering

1 Introduction

Linear temporal logic (LTL) [12] is a popular formalism for specifying prop-
erties of (concurrent) programs. The syntax of LTL is given by the following
abstract syntax equation:

pu=tt [p| o | wiAp2 | Xo | pi1Ups

Here p ranges over a countable set A = {o,p,q,...} of letters. We also use
Fo to abbreviate tt Uy, and Gy to abbreviate =F—¢.

The first author is supported by the research centre “Institute for Theoretical Com-
puter Science (ITI)”, project No. 1M0021620808. The second author is supported

by grant No. 1ET-408050503 and by GACR, grant No. 201/03/1161.

This paper is a revised and extended version of [6].

Antonin Kucera - Jan Strejcek

Faculty of Informatics, Masaryk University in Brno
Botanickd 68a, CZ-60200 Brno, Czech Republic
Tel.: ++420-549 494 476, Fax: ++420-549 491 820
E-mail: {kucera,strejcek }@fi. muni.cz

We define the semantics of LTL in terms of languages over infinite
words (all of our results carry over to finite words immediately). An al-
phabet is a finite set ¥ C A. An w-word over ¥ is an infinite sequence!
a = a(0)a(l)a(2) ... of letters from X. The set of all w-words over X is de-
noted X*“. For every i > 0 we denote by a; the i*" suffix of a, i.e., the word
a(i)a(i + 1) ... (we use this notation for finite words as well). Moreover, for
all i > 0 and j > 0, the symbol «a(i,j) denotes the subword of « of length j
starting with a(7).

Let ¢ be an LTL formula. The walidity of ¢ for a given a € X¢ is defined
inductively as follows:

a =ttt

al=p it p=a(0)

a =g ff e
alFEpiAp it aEpiAaE e
a = X iff afEe

alEpiUp iff HeNy ol AV0<j<i:aj =@

Let us note that the results presented in this paper remain valid if the
logic LTL is built over atomic propositions rather than over letters.

For every alphabet X' and every LTL formula ¢ we define the language
L7 ={a € Z¥ | a [¢}. If ¥ is understood from the context, we write
just L.

It is well-known that languages definable by LTL formulae form a proper
subclass of w-regular languages (see, e.g., [15]). More precisely, LTL languages
are exactly the languages definable in first-order logic with the signature
{suc, <} U A’, where suc and < are binary predicates standing for successor
and less than, respectively, and A’ is a set of unary predicates corresponding
to the set of letters A. See [5,4] for more details regarding the relationship
between LTL and first-order logic.

Since LTL contains just two modal connectives, a natural question is how
they influence the expressive power of LTL. First, let us (inductively) define
the nesting depth of the X and the U modality in a given LTL formula ¢,
denoted X (p) and U(yp), respectively.

Ut)_0 X(tt)=0
U(p) = X(p)=0
(<p/\¢) = max{U(¢),U(¢)} X(p Ayp) = max{X(p), X(¥)}
U(~p) =U(yp) X (=p) = X(p)
U(Xp) =U(y) X(Xp) =X(p) +1

UlpU) =max{U(p),U()} +1 X(pU¢) = max{X(p), X ()}

Now we introduce three natural hierarchies of LTL formulae. For all m,n €
No we define
LTL(U™,X") = {4 € LTL | U(p) <m A X(p) <n}
LTL(U™,X) = s, LTL(U™, X?)
LTL(U,X") = U;2, LTL(U?, X™)

1 We use 0,p,q,... to range over X, u,v,... to range over X*, and o, 3,... to
range over Y.

Hence, the LTL(U™, X™) hierarchy takes into account the nesting depths of
both modalities, while the LTL(U™, X) and LTL(U, X™) hierarchies ‘count’
just the nesting depth of U and X, respectively. The languages definable by
formulae of LTL(U™,X™) are called LTL(U™, X™) languages.

Our work is motivated by basic questions about the presented hierarchies;
in particular, the following problems seem to be among the most natural ones:

Question 1. Are those hierarchies semantically strict? That is, if we increase
m or n just by one, do we always obtain a strictly more expressive frag-
ment of LTL?

Question 2. If we take two classes A, B in the above hierarchies which are
syntactically incomparable (for example, we can consider LTL(U*, X?)
and LTL(U?,X?), or LTL(U?,X%) and LTL(U?, X)), are they also seman-
tically incomparable? That is, are there formulae o4 € A and pp € B
such that ¢4 is not expressible in B and @pp is not expressible in A?

Question 3. In the case of LTL(U™, X™) hierarchy, what is the semantical in-
tersection of LTL(U™! X") and LTL(U™2,X"2)? That is, what languages
are expressible in both fragments?

We provide (positive) answers to Question 1 and Question 2. Here, the results
about the LTL(U™, X") hierarchy seem to be particularly interesting. As for
Question 3, one is tempted to expect the following answer: The semantical
intersection of LTL(U™, X") and LTL(U™2,X"2) are exactly the languages
expressible in LTL(U™, X™), where m = min{m;,m2} and n = min{ny,no}.
Surprisingly, this answer turns out to be incorrect. For all m > 1, n > 0 we
give an example of a language I which is definable both in LTL(U™*!,X")
and LTL(U™, X"*1) but not in LTL(U™,X"). This shows that the answer
to Question 3 is not as easy as one might expect. In fact, Question 3 is left
open as an interesting challenge directing our future work.

The results on Question 1 are closely related to the work of Etessami and
Wilke [3] (see also [17] for an overview of related results). They consider an
until hierarchy of LTL formulae which is similar to our LTL(U™, X) hierarchy.
The difference is that they treat the F operator ‘explicitly’, i.e., their U-depth
counts just the nesting of the U operator and ignores all occurrences of X and
F (in our approach, Fyp is just an abbreviation for tt U, and hence ‘our’
U-depth of Fp is one and not zero). They prove the strictness of their until
hierarchy in the following way: First, they design an appropriate Ehrenfeucht-
Fraissé (EF) game for LTL (the game is played on a pair of words) which in
a sense characterizes those pairs of words which can be distinguished by LTL
formulae where the temporal operators are nested only to a certain depth.
Then, for every k they construct a formula Fair;, with until depth k£ and
prove that this particular formula cannot be equivalently expressed by any
other formula with U-depth equal to k—1. Here the previous results about
the designed EF game are used. Since the formula Fair, contains just one
F operator and many nested X and U operators, this proof carries over to
our LTL(U™, X) hierarchy. In fact, [3] presents a ‘stronger’ result in the sense
that one additional nesting level of U cannot be ‘compensated’ by arbitrarily-
deep nesting of X and F. On the other hand, the proof does not allow to
conclude that, e.g., LTL(U?,X%) contains a formula which is not expressible
in LTL(U?%, X) (because Fairy contains the nested X modalities).

Our method for solving Questions 1 and 2 is different. Instead of design-
ing appropriate Ehrenfeucht-Fraissé games which could (possibly) charac-
terize the membership to LTL(U™,X"), we formulate a general ‘stuttering
theorem’ for LTL(U™, X™) languages. Roughly speaking, the theorem says
that under certain ‘local-periodicity’ conditions (which depend on m and n)
one can remove a given subword u from a given word a without influencing
the (in)validity of LTL(U™, X™) formulae (we say that u is (m,n)-redundant
in «). This result can be seen as a generalization of the well-known form
of stutter invariance admitted by LTL(U,X°) formulae (a detailed discus-
sion is postponed to Section 2). Thus, we obtain a simple (but surprisingly
powerful) tool allowing to prove that a certain formula ¢ is not definable in
LTL(U™, X™). The theorem is applied as follows: we choose a suitable alpha-
bet X, consider the language L, and find an appropriate a € L, and its
subword u such that

— w is (m,n)-redundant in «;
— o' £ ¢ where @' is obtained from «a by deleting the subword wu.

If we manage to do that, we can conclude that ¢ is not expressible in
LTL(U™, X™).

We use our stuttering theorem to answer Questions 1 and 2. Proofs are
remarkably short though it took us some time to find appropriate formulae
which witness the presented claims. It is worth noting that some of the known
results about LTL (like, e.g., the formula ‘Gsp’ is not definable in LTL) admit
a one-line proof if our general stuttering theorem is applied. We also obtain
an alternative characterization of LTL languages which are exactly the w-
regular languages closed under the generalized stutter equivalence of words
(see Section 3). These results are still valid when interpreting LTL over finite
words.

The paper is organized as follows. In Section 2 we formulate and prove
a general stuttering theorem for LTL(U™, X") languages together with some
related results. Using this theorem, we answer Questions 1-3 in Section 4. In
Section 3, we examine the question whether the considered forms of stutter
invariance fully characterize the corresponding LTL fragments. Finally, in
Section 5 we draw our conclusions and identify directions of future research.

2 A General Stuttering Theorem

In this section we formulate and prove the promised general stuttering the-
orem for LTL(U™, X™) languages. General stuttering combines and extends
two independent principles of letter stuttering (n-stuttering) and subword
stuttering, which are applicable to the LTL(U,X") and LTL(U™,X°) frag-
ments of LTL, respectively. We start by explaining these two principles in
Section 2.1 and Section 2.2. This material has been included for two reasons.
First, the two simplified principles are interesting on their own. In Section 3.1
we present, special results about letter stuttering which do not hold for gen-
eral stuttering. Secondly, the remarks and proof sketches given in Section 2.1
and Section 2.2 should help the reader in gaining some intuition about the
functionality and underlying principles of general stuttering.

2.1 Letter stuttering (n-stuttering)

Letter stuttering is a simple generalization of the well-known principle of
stutter invariance of LTL(U,X%) formulae [8] saying that LTL(U, X°) formu-
lae cannot distinguish between one and more adjacent occurrences of the
same letter in a given word. Formally, a letter (i) of an w-word « is called
redundant iff a(i) = a(i + 1) and there is j > 7 such that a(i) # a(j). The
canonical form of a is the w-word obtained by deleting all redundant let-
ters from «. Two w-words a, 8 are stutter equivalent iff they have the same
canonical form.

Theorem 1 ([8]) Every LTL(U,X°) language is closed under stutter equiv-
alence.

Intuitively, it is not very surprising that this principle can be extended to
LTL(U,X™) formulae (where n € Ny). The so-called n-stuttering is based on
a simple observation that LTL(U,X") formulae cannot distinguish between
n+1 and more adjacent occurrences of the same letter in a given w-word.
Formally, a letter a(i) is n-redundant iff a(i) = a(i+1)=---=a(i+n+1)
and there is some j > 4 such that «(i) # a(j). The n-canonical form and
n-stutter equivalence are defined in the same way as above.

Theorem 2 (n-stuttering) Every LTL(U, X") language is closed under n-
stutter equivalence.

Proof The theorem can be proven directly by induction on n. Since it is a
consequence of Theorem 9, we do not give an explicit proof here?. a

Theorem 2 can be used to show that a given property is not expressible in
LTL(U,X™) (or even in LTL) in the following way.

Example 8 A standard example of an w-regular language which is not de-
finable in LTL is ‘Gop’ [18]. The language consists of all @ € X such that
a(i) = p for every even i € Ny. With the help of Theorem 2 we can easily
prove that Gop is not an LTL(U,X") language for any n € Ny (assuming
|X| > 2) and hence it is not an LTL language. Suppose the converse, i.e.,
there are n € Ny and ¢ € LTL(U,X"™) such that L, = Gap. Now consider
the w-words a = p?"*2¢qp” and B = p*"gp*, where ¢ € ¥ \ {p}. Clearly o
and 3 are n-stutter equivalent, and o ¢ L, while § € L. Hence, L, is not
n-stutter closed which contradicts Theorem 2.

2.2 Subword stuttering

Since letter stuttering takes into account just the X-depth of LTL formulae,
a natural question is whether there is another form of stutter-like invariance
determined by the U-depth of a given LTL formula. We provide a (positive)
answer to this question by formulating the principle of subword stuttering,

2 A direct proof of Theorem 2 is of course simpler than the proof of Theorem 9.
It can be found in [7].

which is applicable to LTL(U™,X%) formulae (where m > 1). The term ‘sub-
word stuttering’ reflects the fact that we do not necessarily delete/pump just
individual letters, but whole subwords. The essence of the idea is formulated
in the following claim:

Claim 4 Let ¢ € LTL(U™,X°) where m > 1. For all v,u € ¥* and a € ¥
we have that vu™ o | ¢ iff vu™a = p.

In other words, LTL(U™, X?) cannot distinguish between m and more adja-
cent, occurrences of the same subword u in a given word. Note that there are
no assumptions about the length of w.

Claim 4 can be easily proven by induction on m. We just sketch the
crucial part of the argument (a full proof is in fact contained in the proof of
Theorem 9). Let us suppose that ¢ = 1 U p, where 1, 0 € LTL(U™ 1, X9).
We want to show that vu™ o | ¢ iff vu™a = ¢. We concentrate just on the
induction step (i.e., m > 2) of the ‘== part (the other direction is similar).
By induction hypothesis, the following equivalences hold for all 0 < £ < |vu|:

(vu)eu™a =1 iff (vu)pu™ ! a = (1)
(vu)eu™a = o iff (vu)u™ ' a = (2)

Let vu™ o |= 1 U . Then there is j € Ny such that (vu™'«a); = 0 and
(vu™*la); = for all 0 < i < 4. If j < |vu|, we immediately obtain vu™a =
1 U p by applying (1) and (2) above. If j > |vu|, we can imagine that the
word vu™a was obtained from vu™*ta by deleting the first copy of u (from
now on, we denote the k* copy of u in vu™*'a by u[k]). The situation can
be pictured as follows:

" 0
v u[1] u[2] u[3] u[m+1] !
'S0l 00 e 0000 0 o 00 i
———

Realize that the (in)validity of ¢» and g for any suffix of u[2]u[3] - - - u[m+1] «
is not influenced by deleting the w[1] subword (LTL is future-only in our
settings). That is, it suffices to show that for each suffix v' of v we have that
v'u™ o | 1) implies v'u™a |= 1. However, this follows from (1) above.
The principle of subword stuttering, as formulated in Claim 4, is quite
simple and intuitively clear. Now we refine this principle into a stronger form.

Claim 5 Let ¢ € LTL(U™,X%) where m > 0. For all v,y € X*, u € X7,
and a € X such that

= |yl =1lul-m—m+1,
— y is a prefix of u¥
we have that vuya |= ¢ iff vya |= @.

The structure of vuya can be illustrated as follows:

m—1 letters

In other words, the v subword has to be repeated ‘basically’ m + 1 times as
in Claim 4, but now we can ignore the last m — 1 letters of u[1]---u[m + 1].
Note that there is no assumption about the length of w; if u is ‘short’ and m
is ‘large’, it can happen that the last m — 1 letters actually ‘subsume’ several
trailing copies of u.

Claim 5 can also be proven by induction on m. Again, we concentrate just
on the crucial step when ¢ = 1) U g and v, o € LTL(U™ !, X%). We only show
the ‘=" part (the other direction is similar). So, let vuya = ¥ U p. Then
there is j € Ny such that (vuya); |= 0 and (vuya); = for all 0 <i < j. We
distinguish three possibilities (the first two of them are handled in the same
way as in Claim 4):

(i) 7 < |v|. To prove that vya = ¥ U p, it suffices to show that for every
suffix v’ of v we have that

— v'uya | ¢ implies v'ya = ¢,
— v'uya | o implies v'ya = o.
However, this follows directly from induction hypothesis.

(ii) j > |vul. First, realize that the (in)validity of ¢» and p for any suffix of
ya is not influenced by deleting the u subword. Hence, it suffices to show
that v'uya = ¢ implies v'ya = ¢ for each suffix v’ of v. This follows
from the induction hypothesis in the same way as in (i).

(iii) |v| < j < |vu|. This requires more care. A key observation is that the

word vuya can be seen as v'u'y'a = vuya, where [V'| = j, |u/| = |ul,

and [y'| = [y| + [v] = [v'].

P 1Y
v u Y e
:O OIO Olé.‘olo.”.,.l O:O
o o y’ «

Due to the periodicity of y we have that vya = v'y'a. Hence, it suffices
to show that y'a = ¢ and v"y'« |= ¢ for every nonempty suffix v of v'.
We know that u'y'a = ¢ and v"u'y'a | ; so, if y' is ‘sufficiently long’,
we can use induction hypothesis to finish the proof. That is, we need to
verify that |y'| > |u'|- (m—1) — (m—1) + 1, but this follows immediately
from the known (in)equalities |y'| = |y| + |v] — |v'], |¥/| = |ul, and
o] > [v'] — [ul.

2.3 General stuttering

In this section we combine the previously discussed principles of letter stut-
tering and subword stuttering into a single ‘general stuttering theorem’ which
is applicable to LTL(U™, X") formulae.

Definition 6 Let X be an alphabet and m,n € Ny.

— A subword «a(7,j) of a given a € X% is (m,n)-redundant if the word
ali+j,m-j—m+14n) is a prefix of a(i,j)“.

— The relation >,,, C X“ x XY is defined as follows: a >,,, 8 iff 8
can be obtained from a by deleting some (possibly infinitely many) non-
overlapping (m, n)-redundant subwords. The (m, n)-stutter equivalence is
the least equivalence over ¥“ subsuming the relation >, .

— A language L C X% is (m,n)-stutter closed if it is closed under
(m,n)-stutter equivalence.

The structure of an w-word « with an (m, n)-redundant subword «a(i, §)
can be illustrated as follows:

v u[l] = a4, j) periodic pattern o
IO OIO OIO .. OIO
L= oo L. O |
u[2] u[m] u[m+1]

m—1 letters |

n letters

Hence, the a(i, j) subword has to be repeated ‘basically’ m + 1 times but we
can ignore the last (m — 1) — n letters (if (m — 1) — n is negative, we must
actually prolong the repetition ‘beyond’ the m + 1 copies of (i, j)—see the
figure above). Note that there is no assumption about the size of m, n, and j.

Our goal is to prove that the (in)validity of LTL(U™,X™) formulae is
not influenced by deleting/pumping (m,n)-redundant subwords. First, let
us realize that this result is a proper generalization of both Theorem 2 and
Claim 5. If we compare the ‘periodicity assumptions’ of Theorem 2, Claim 5,
and Definition 6, we can observe that

— a letter a(i) is n-redundant iff it is consecutively repeated at least n + 1
times. That is, a(i) is n-redundant iff a(i+1,n+1) is a prefix of (i, 1)“.
For every m € Ny we get that «(i) is n-redundant iff «(i,1) is (m,n)-
redundant as a(i+1,n+1) = a(i+1,m-1—m+1+n). In other words, the
notion of n-redundancy coincides with (m, n)-redundancy for subwords of
length 1.

— the condition of Claim 5 matches exactly the definition of (m,0)-
redundancy.

Before formulating and proving the general stuttering theorem, we need to
state two auxiliary lemmas.

Lemma 7 Let X be an alphabet, m,n € Ny, and o € X¥. If a subword
ali, j) is

(1) (m,n)-redundant then it is also (m',n')-redundant for all 0 < m’' <m
and 0 <n' <n.
(it) (m,n + 1)-redundant then a(i + 1,7) is (m,n)-redundant.
(i7) (m + 1,n)-redundant then a(i + k,j) is (m,n)-redundant for every k
satisfying 0 < k < j.

Proof (i) follows immediately as j > 0 implies
mj—m'+14+n" <m-j—m+1+n

(i) is also simple—due to the (m,n+1)-redundancy of «(i,j) we know that
the subword is repeated at least on the next m-j—m+2+n letters. Hence, the
subword «a(i+1,) is repeated at least on the next m-j—m+1+n letters and
thus it is (m,n)-redundant. A proof of (i4i) is similar; if «(i,) is repeated
on the next (m+1) - j — m + n letters, then the subword a(i+k,j) (where
0 <k < j)isrepeated on the next (m+1)-j—m+n—k =m-j—m+n+j—k
letters, i.e., a(i+k, j) is (m,n+ j — k —1)-redundant. The (m, n)-redundancy
of a(i+k,j) follows from (i) and k < j. O

Lemma 8 For allm > 1, n >0, and all o, € X¥ such that o >y, B
there exists a surjective function g : Ng — Ny such that

(1) for all £,x € Ny, where 0 < x < g(f), there exists 0 < ' < £ such that
gt') ==,
(ii) for each £ € Ny we have that ap = 1,0 By(e)-

Proof Let m > 1, n > 0 and o,8 € X* such that a >y, 8. Let D =
a(io,jo), (i1, 1), ... be the (finite or infinite) sequence of non-overlapping
(m, n)-redundant subwords which were deleted from « to obtain 8 (we assume
that ig < 41 < ---). We say that a given £ € Ny is covered by a subword
a(ig,jq) of D ifi, < ¢ <iz+j,—1. For each such ¢ we further define jump(¢) =
l+ j, and pos(f) = £ — i, + 1. If £ is not covered by any subword of D, we
put pos(f) = 0 and jump(€) = £. The set of all £’s that are covered by the
subwords of D is denoted cov (D). For each £ ¢ cov(D), the symbol length(£)
denotes the total length of all subwords of D which cover some k < /.
The function g is defined as follows:

_ [£~ length(¢) if £ ¢ cov(D),
g() = {g(ju;g)g(g)) othervxfioslé.

The structure of g can be illustrated as follows:

a(io, jo) alit,ji1) aliz,j2) ofis, j3)

10

In particular, note that uncovered letters of a are projected to the “same”
letters in 3, and covered letters are in fact mapped to uncovered ones by
performing one or more jumps of possibly different length. Also note that g
is not monotonic in general.

First we show that g is well-defined, i.e., for each £ € cov(D) there is
k € N such that jump®(¢) & cov(D) (here jump® denotes jump applied k-
times). This is an immediate consequence of the following observation:

For each £ € cov(D) there is k € N such that pos(jump”(€)) < pos(¢).

Proof of the observation: First, let us realize that pos(f) > pos(jump(£)) for
every £ € cov(D). Now assume that the observation does not hold. Then
there is ¢ € cov(D) such that pos(jump®(€)) = pos(f) for every k € N. Let
a(ig,jq) be the subword of D covering ¢, and let D, be the sequence obtained
from D by removing the first ¢ elements. Since pos(jump®(€)) = pos(¢) for
every k € N, all subwords of D, are adjacent and the length of each of them
is at least pos(?). Hence, each ¢ > £ is covered by some subword of D, which
contradicts the assumption that g is infinite.

Proof of (i): First we show that for every £ € Ny we have that g(£+ 1) <
g(f) + 1. Let us assume that there is some ¢' € Ny such that g(¢' + 1) >
g(f") 4+ 1, and let k € Ny be the least number such that ¢ = jump®(¢') is
either uncovered or satisfies g(jump(¢) + 1) < g(jump(€)) + 1. Observe that
such a k must exist, and that ¢ satisfies g(£+1) > g(¢)+1 (otherwise we get a
contradiction with the minimality of k). Now we distinguish two possibilities:

— pos(£ +1) < 1. Let £” be the least uncovered index greater or equal to
£+ 1. Tt follows easily from the definition of g that g(¢+1) = g(¢""). Hence,
g(¢) is either equal to g(£ 4+ 1) — 1 (if £ & cov(D)), or greater or equal
to g(+ 1) (if £ € cov(D)). Again, this contradicts the assumption that
g(l+1)>g(0)+ 1.

— pos(£+1) > 2. Then /£,f+1 are covered by the same subword of D.
By applying the definition of g we obtain g(¢) = g(jump(f)) and
g(l+1) = g(jump(€+1)). Moreover, jump({+1) = jump(f) + 1 because
£,£+1 are covered by the same subword of D. If pos(jump(£)+1) is equal
to 0 or 1, we derive a contradiction using the arguments of previous
cases. If pos(jump(€)+1) > 2, we have that jump(f) € cov(D), hence
g(jump(£)+1) < g(jump(€))+1 due to the assumption adopted above. Al-
together, we derived a contradiction with g(£+1) > g(£)+1.

Now we are ready to finish the proof of (7). Let us assume that (7) does not

hold, and let £ € Ny be the least number such that (i) is violated for ¢ and

some 0 < z < g(¥). Clearly ¢ > 0, because g(0) = 0. Further, g(¢{ — 1) >
g(£) — 1 due to the claim just proved. This means that either g(£ — 1) =z, or
¢ —1 also violates (i). In both cases we have a contradiction with our choice

of 4.

Proof of (ii): We show that ap = 1,0 By(e) for each £ € Ny. We proceed
by induction on pos(f).

Basis. pos(¢) = 0. This means that ¢ ¢ cov(D). Clearly oy = n B4e) be-
cause 3,y is obtained from ay by deleting all those subwords (i, j,)
of D such that i, > £. Hence, we also have a; =m—1,n By(¢) by applying
Lemma 7 (7).

11

Induction step. Let pos(£) > 0 and let & € N be the least number such that
pos(jump®(¢)) < pos(f). To simplify our notation, we put £ = jump®(¢).
Clearly g(¢) = g(¢') by definition of g. By induction hypothesis we have
that ap >m—1,n Bgr). Hence, it suffices to show that a((,¢' — () is a
sequence of (m—1, n)-redundant subwords. Let us assume that ¢ is covered
by a(ig, jq). Consider the sequence of subwords

a(ig,Jg)s--vsQligrr—1,Jq+k—1)

From the minimality of k£ we obtain that these subwords are adjacent and
the length of each of them is at least pos(¢). Hence, a(f,¢' — £) can be
seen as a sequence of words

afigtpos(£)—1,74), - -, aligrr—1+pos(£) =1, jork—1)

Moreover, each of these words is (m—1,n)-redundant by Lemma 7 (i3).
O

Theorem 9 (general stuttering) FEvery LTL(U™,X") language is closed
under (m,n)-stutter equivalence.

Proof Let m,n € Ny and ¢ € LTL(U™, X"). It suffices to prove that for all
a,B € X such that a >,,, B we have that « E ¢ <= B | ¢. We
proceed by a simultaneous induction on m and n (we write (m',n') < (m,n)
iff m' <m and n' <n,orm' <m and n’ <n).

Basis. m = 0 and n = 0. Let a, 8 € X be w-words such that a >, 3.
Let D denote the sequence of non-overlapping (0, 0)-redundant subwords
D = afig, jo),a(i1,71),--. which were deleted from « to obtain 8 (we
assume that ig < iy < ...). Since LTL(U%,X%) formulae are just ‘Boolean
combinations’ of letters and tt, it suffices to show that «(0) = 3(0). If
io > 0 then it is clearly the case. Now let ip = 0, and let £ € Ny be
the least number such that the subwords a(ig, jx) and a(igt1,jrr1) are
not adjacent (i.e., ix11 > ix + ji). Hence, 8(0) = a(ir + jx) and (0,0)-
redundancy of the subwords in D implies that

a(0) = alio) = a(i1) = aliz) = ... = alix) = a(ir + jr) = B(0).

Induction step. Let m,n € Ny, and let us assume that the theorem holds
for all m',n' such that (m',n') < (m,n). Let a, 8 € X% be w-words such
that @ >, B, and let D = afio, jo), ®(i1,51), ... (io < i1 < ...) be
the sequence of non-overlapping (m,n)-redundant subwords which were
deleted from « to obtain #. We distinguish four possibilities:

— ¢ € LTL(U™ | X"") for some (m',n') < (m,n). Since every (i, j)
from D is (m',n’)-redundant by Lemma 7 (i), we just apply induction
hypothesis.

— ¢ =Xt¢p. We need to prove that ay = ¢ <= (1 E ¢. By induction
hypothesis, 1) cannot distinguish between (m,n—1)-stutter equivalent
w-words. Hence, it suffices to show that a; >, -1 f1. If ig > 0, then
ay(io—1,70), 1(i1 —1,71), 1 (i2 — 1, j2), . .. are (m,n)-redundant and
due to Lemma 7 () they are also (m,n — 1)-redundant. Moreover, 51
can be obtained from a; by deleting these subwords.

12

If ig = 0, then let k£ € Ny be the least number such that the subwords
a(ig, jr) and a(igs1,jrr1) are not adjacent. The w-word By can be
obtained from «a; by deleting the subwords

a1(i0,50), -+ 01 (iks i), 01 (p1—=1, Jrs1), @1 (Brr2—1, Jrg2), - - -

The subwords «;(io,J0), @1(i1,51), .-, 1(ig,Jr) are (m,n—1)-
redundant by Lemma 7 (ii), and the other subwords are (m,n—1)-
redundant by applying Lemma 7 ().

— ¢ = Y Up. By induction hypothesis, 1, o cannot distinguish be-
tween (m—1,n)-stutter equivalent w-words. Let g be the function of
Lemma 8 constructed for the considered m,n,a, 8 (i.e., a¢ >m—1n
Bg(l) for every £ € Ny).

Now we show that if @ |= ¢ U p then also § E v Up. If « E ¢ Uy,
there is ¢ > 0 such that a. |= ¢ and for every d < ¢ we have that
a4 = 1. By induction hypothesis we get 3,(.) [= 0. Further, for every
d' < g(c) there is d < ¢ such that g(d) = d'. By Lemma 8, for every
d" < g(c) there is d < c such that ag >m—1,n Bga) = Bar and hence
Bar E ¥. Altogether, we obtain that 8 = ¥ U o.

Similarly, we also show that if 5 =9 Ugthena E9YUp. If 8 =¥ U p,
there is ¢ > 0 such that 8. | ¢ and for every d < ¢ we have that
Ba E 1. Let ¢’ be the least number satisfying g(¢’) = ¢ (there is such
a ¢’ because ¢ is surjective). Then a. = ¢ by induction hypothesis.
From the definition of g we get that for every d’ < ¢’ it holds that
g(d") < g(c') = ¢ (otherwise we would obtain a contradiction with our
choice of ¢'). Thus, ag =1 and hence a =4 U o.

— ¢ is a ‘Boolean combination’ of formulae of the previous cases. For-
mally, this case is handled by an ‘embedded’ induction on the structure
of . The basic step (when ¢ is not of the form —) or 1) A g) is covered
by the previous cases. The induction step (¢ = =) or ¢ = ¢ A g where
we assume that our theorem holds for ¢, p) follows immediately. O

3 Stuttering as a Sufficient Condition

In Section 2 we have shown that formulae of certain LTL fragments are in-
variant under certain forms of stutter equivalence of w-words. These results
(Theorem 2, Claim 4, Claim 5, and Theorem 9) were formulated as “pumping
lemmas”, i.e., necessary conditions which must be satisfied by languages of
the respective LTL fragments. In this section we show that certain forms of
stutter invariance together with some additional assumptions in fact charac-
terize certain LTL fragments.

3.1 Letter stuttering

It has been proved by Peled and Wilke [9] that every LTL language closed un-
der stuttering is definable in LTL(U, X?). This proof can be straightforwardly
generalized to n-stuttering. Hence, every n-stutter closed LTL property is de-
finable in LTL(U,X"). For the sake of completeness, we present this proof

13

explicitly. (Later we formulate further observations which refer to technical
details of this proof.)

Theorem 10 Let L C X¥. The following conditions are equivalent:

(a) L is definable in LTL(U, X™).
(b) L is an n-stutter closed LTL language.

Proof The (a) = (b) direction follows from Theorem 2. We prove the other
direction. Let ¢ be an LTL formula such that L, is n-stutter closed. We
translate ¢ into an equivalent formula 7,,(¢) € LTL(U, X™).

Let © be the set of letters occurring in ¢, and let 8 = \/pe@p. For all
p € © and ¢ > 0 we define formulae o, 0pi,, 00, and 0_gie as follows:

—p
Opt =D Opi+1 =p A XO'pi
Opo—p = 7P Opiop =P N Xopi-1,
o_g1 = 0 o_eit1 = 0 A Xo_ei
e = 0 O @i+l = -0 N XU_,@i@

Observe that X(O'pz‘+1) = X(O'pi_,p) = X(O'_,@iJrl) = X(U_‘@i@) =1.
The translation 7,(p) is defined inductively on the structure of ¢.

— () =p
= (=) = =1 (9)
— (¥ A o) = (¥) ATa(0)
— (YU 0) = 1 (¢) U s (0)
— o(X¢p) = &(¢) V I'(¢p) where
B() = (G0 Vv \/ Gp) A7u(¥)
peO
and

r@y =\ (&@,=0,i)v \/ &@,p.i)).

1<i<n+1 pEO

The subformulae £(y,—0,i) and &(¢,p,i) of I'(¢)) are constructed as
follows:

o Jopip ADU(0pi-ip ATp()) ifi<n
(W, p,i) = {Upn+1 A pU (opn—p A Tn (1)) if i =n+1

N J-0i0 A —6U (U_,@i—le /\Tn(’(ﬁ)) if 4 S n
§(1,60,1) = {aﬁ@nﬂ A =0U (0omo ATa(1h)) ifi = ntl

One can readily confirm that the X-depth of 7,,(p) is n. We need to prove
that if Lf is n-stutter closed, then ¢ is equivalent to 7,(y). Since ¢ and
Tn(p) cannot distinguish between letters which do not belong to ©, we can
assume that ¥ C © U {o}, where o ¢ O represents all letters not occurring
in .

As both L, and L, () are n-stutter closed (in the case of L, () we
apply Theorem 2), it actually suffices to prove that ¢ and 7,(¢) cannot be

distinguished by any n-stutter free w-word o € X (an w-word « is n-stutter

14

free if a has no n-redundant letters). That is, for every n-stutter free a € X%

we

show that a |= ¢ iff a |= 7, (). We proceed by induction on the structure

of . All subcases except for p = Xt are trivial. Here we distinguish two
possibilities:

a = p¥ for some p € Y. Then oy = a and thus we get a | X iff
ay E ¢ iff oy |= 7,(¢) (by induction hypothesis) iff « |= 7,,(¢). Hence,
this subcase is ‘covered’ by the formula ®(¢) saying that « is of the form
p* and that 7,(¢) holds (the particular case when o = 0“ corresponds to
G—0).

a=p'qB where p, € X, p#q,1<i<n+1,and § € Zv.

Let us first consider the case when p = o. Then piq3 | X¢ iff p' 1¢8 E ¢
iff p'~1¢B | 10 (1)) (we use induction hypothesis). If i < n, then the last
condition is equivalent to

P'aB E oeie AN—0U (0-pi-10 A Ta(¥))
If i = n+1, then the condition is equivalent to
P B gognir A=OU (0-0n0 A Ta(1))

In both cases, the resulting formula corresponds to £(¢, =0, 1).
The case when p € © is handled similarly; we have that p'qS3 E X iff
p1qB | ¢ iff p1qB | 7.(¢¥) (by induction hypothesis). If i < n then
the last condition is equivalent to

piqﬁ |: Opi—p ApU (Upifl—'p A Tn(¢))

If i = n+1 then the condition is equivalent to

p"B E oy A pU(opn—p ATa(1))

In both cases, the resulting formula corresponds to (Y, p,i).
To sum up, the case when a = p'qf is ‘covered’ by the formula I'(¢p). O

In general, the size of 7,(¢p) is exponential in X (). However, the size of the
circuit® representing 7, () is only O((n + 1) - |p|?). To see this, realize the
following;:

(1)

(2)

(3)

The total size of all circuits representing the formulae opn—p,5,n+1 (for
allp € ©) and 0_one, 0-gn+1 is O((n+1)-|p|). Moreover, all circuits rep-
resenting the formulae o, and 6_gig (for all 0 <4 < n) are contained
in the circuits representing op»—, or o-erg, respectively.

Assuming that the circuits of (1) and the circuit representing 7, (1)) are
at our disposal, we only need to add a constant number of new nodes
to represent the formulae £(1,—0,4) and £(v,p,) for given p € © and
1 <4 < n+1. This means that we need to add O((n+ 1) - ||) new nodes
when constructing the circuit for 7, (X¢)).

Since ¢ contains O(|p|) subformulae of the form X¢, the circuit repre-
senting ¢ has O((n + 1) - |¢|?) nodes in total.

3

A circuit (or DAG) representing a given LTL formula ¢ is obtained from the

syntax tree of ¢ by identifying all nodes which correspond to the same subformula.

15

Theorem 11 Let ¢ be an LTL formula and n € Ny. The problem whether
there is a formula 1p € LTL(U, X") equivalent to ¢ is PSPACE-complete (as-
suming unary encoding of n).

Proof Tt suffices to show that the problem whether a given LTL formula ¢
defines an n-stutter closed language is PSPACE-complete. The proof for n = 0
has been presented in [10].

Similarly as in [10], the PSPACE-lower bound is obtained by reducing
the validity problem for LTL formulae, which is known to be PSPACE-
complete [13]. For every LTL formula g we define a formula

n

——
7(0) =pAXPAXXPA ... AXX... X(p A Xg A XX—p).

The language L (,) = p"TlqL_, is n-stutter closed iff L, is empty. That is,
Ly (,) is n-stutter closed iff g is valid.

The matching PSPACE-upper bound is obtained by applying a similar
argument as in [2]—due to the (proof of) Theorem 10 we have that L, is
n-stutter closed iff ¢ is equivalent to 7,(y). First, we construct the circuit
representing 7,,(¢) (its size is O((n + 1) - |¢|?) as shown above). Then we
check the validity of the formula ¢ < 7,(p) (represented as a circuit), which
can be also done in polynomial space [13]. O

Finally, let us note that the condition (b) of Theorem 10 cannot be weak-
ened to “L is an n-stutter closed w-regular language”, because there are w-
regular languages which are n-stutter closed for all n € Ny, yet not definable
in LTL. A concrete example of such a language is L = {(pT¢*)%*r* | i € N}
which is clearly n-stutter closed for every n € Ny, but not (m,n)-stutter
closed for any m,n € Ny (and hence not definable in LTL).

3.2 General stuttering

In Section 3.1 we have shown that LTL(U, X") languages are exactly n-stutter
closed LTL languages. A natural question is whether LTL(U™, X™) languages
are fully characterized by the closure property induced by (m,n)-stuttering.
In this section we show that this is not the case. Nevertheless, regular (m,n)-
stutter closed languages are inevitably moncounting, and hence expressible
in LTL. This means that if L is w-regular and (m,n)-stutter closed, then
L € LTL(U™ | X"') for some m',n'. In this section we also show that there is
no functional relationship between (m’,n') and (m,n).

Definition 12 A language L C X“ is noncounting if there is k € Ny such
that for all n > k and z,y, z,u € X* we have the following:

— zuyz¥ € L < zu"tlyzv €L,
— z(yuz2)¥ € L < =z(yu"*t'2)¥ € L.

Theorem 13 Let L C X“. The following conditions are equivalent:
(a) L is definable in LTL,

16

(b) L is w-regular and noncounting,
(¢) L is w-regular and (m,n)-stutter closed for some m,n € Ny.

Proof The equivalence of (a) and (b) is a consequence of several results;
Kamp [5] proved that languages (of infinite words) definable in LTL are ex-
actly the languages expressible in first-order logic. Using the results presented
in [14] and [1], Perrin [11] showed that a language is definable in first-order
logic iff it is w-regular and noncounting.

The implication (a) = (c) is given by Theorem 9. The implication
(c) = (b) follows from a straightforward observation that a language violat-
ing noncounting property is not (m,n)-stutter closed for any m,n € Ny. O

A natural question is whether the condition (c) of Theorem 13 can be
weakened to “L is (m,n)-stutter closed for some m,n € Ny”. The answer is
given in our next theorem.

Theorem 14 For all m > 2 and n > 1 there is an (m,n)-stutter closed

language L C {o,p,q,r}* which is not definable in LTL.

Proof Due to Lemma 7 (i), we just need to consider the case when m =

2 and n = 1. We say that a word w € X* is square-free if it does not
contain a subword of the form wu, where |u| > 1. It is known that there are
infinitely many square-free words® wo, w1, . .. over the alphabet {o,p,q} [16].

Now observe that for each of these w; there is no other word v € {o, p, ¢}* such
that w;r" > 1) vr* or vr* »(1) w;r*. This means that L = {w;rY | i €
No} is (2, 1)-stutter closed. Obviously, L is not w-regular by using standard
arguments (pumping lemma, for w-regular languages). Thus, L is not definable
in LTL. a

Due to Theorem 13, we know that if L is w-regular and (m,n)-stutter
closed, then L is definable in LTL, i.e., there are m/,n’ € N such that L is
definable in LTL(Um’,X”’). However, it is not clear what is the relationship
between m,n and m’,n’. One might be tempted to think that m’,n’ can
be expressed (or at least bounded) by some simple functions in m,n, for
example m' = m and n’ = n. Our next theorem says that there is no such
relationship.

Theorem 15 Let m > 2 and n > 1. For all m',n’ € Ny there is an
(m,n)-stutter closed LTL language L C {o,p,q,r}* which is not definable

in LTL(U™ X™).

Proof First, realize that for all m’,n’ € Ny there are only finitely many
pairwise non-equivalent LTL(UmI , X”I) formulae over the alphabet {o,p, q,7}.
Hence, it suffices to show that for all m > 2 and n > 1 there are infinitely
many (m,n)-stutter closed LTL languages over the alphabet {o,p, ¢,7}. Due
to Lemma 7 (i), we just need to consider the case when m = 2 and n = 1.
Let L be the language constructed in the proof of Theorem 14. Now realize
that each of the infinitely many finite subsets of L is a (2, 1)-stutter closed
LTL language. O

% The sequence wp, w1, - is defined inductively by wo = o and wi+1 = f(w;),
where f is a word homomorphism given by f(o) = opqop, f(p) = oqopqp, f(q) =
ogpgogp. The proof in [16] reveals that if w is square-free, then so is f(w).

17

Finally, let us note that possible generalizations of Theorem 14 and The-
orem 15 cannot cross certain limits—they do not hold for all m,n € Ny
and every alphabet X. For example, every (1,0)-stutter closed language over
the alphabet {p, ¢} is definable in LTL(U?,X%). To see this, realize that the
quotient of {p,q}* under (1,0)-stutter equivalence has exactly eight equiv-
alence classes represented by words (pq)“, (¢p)¥, p*, ¢, pg“, qp*, pap*,
and gpq”. Hence, there are exactly 2% = 256 languages over {p, ¢} which are
(1,0)-stutter closed. Since each equivalence class of the quotient is a language
definable in LTL(U?,X°%), we can conclude that each of these 256 languages
is definable in LTL(U?,X?).

4 Answers to Questions 1, 2, and 3

Now we are ready to provide answers to Questions 1, 2, and 3 which were
stated in Section 1 (though Question 3 will be left open in fact). We start
with a simple observation.

Lemma 16 For each n > 1 there is a formula ¢ € LTL(U% X"™) which
cannot be expressed in LTL(U,X"~1).

Proof Let ¥ = {p,q} and n > 1. Consider the formula

——

We show that L, is not closed under (n—1)-stutter equivalence (which suffices
due to Theorem 2). This is easy; realize that p"T'¢¥ € L, and the first
occurrence of p in this word is (n—1)-redundant. Since p"¢* ¢ L, we are
done. O

A ‘dual’ fact is proven below (this is already non-trivial).

Lemma 17 For each m > 1 there is a formula ¢ € LTL(U™,X%) which

cannot be expressed in LTL(U™1 X).

Proof Let m > 1 and let ¥ = {q,p1,...,pm}. We define a formula ¢ €
LTL(U™,X%) as follows:

o=Fpi ANF(p2 A .. .AF(Pm—1 AFpp)...))

Let us fix an arbitrary n € Ny, and define a word o« € X by

n+1 m . w

a=(q""" PpmPm-1-..D1)

Clearly a |= ¢ and the subword a(0, n+14+m) is (m—1,n)-redundant. As the
word § obtained from « by removing «(0,n+1+m) does not model ¢, the
language L is not (m—1,n)-stutter closed. As this holds for every n € Ny,
the formula ¢ is not expressible in LTL(U™~!, X). O

The last technical lemma which is needed to formulate answers to Questions 1
and 2 follows.

18

Lemma 18 For all m,n € Ny there is a formula ¢ € LTL(U™,X")
which is expressible neither in LTL(U™~1 X") (assuming m > 1), nor in
LTL(U™, X" 1) (assumingn > 1).

Proof If m = 0 or n = 0, we can apply Lemma 16 or Lemma 17, respectively.
Now let m,n > 1, and let ¥ = {py,...,pr,q} where k = max{m,n+1}. We
define formulae ¢ and ¢ as follows:

) = P AX"Dp ifm>n
T\ AX"pgr ifm<n

_{F¢ ifm=1
Y= VF(pr AF(ps AF(ps A .. AF(pmt AF)..))) ifm>1

l

—
where X! abbreviates XX...X. The formula ¢ belongs to LTL(U™, X"). Let
us consider the w-word «a defined by

(PmPm—1-+-P1)"Pm Pm—1 - - - Pm—n+14* ifm>n
a = (pn+1pn---p1)m+1q“ ifm=n

(Prt1Pn 21" Pt P+ o Pmg24” ifm<n

It is easy to check that a € L, and that the subword «(0,%) (where k =
max{m,n+1}) is (m,n—1)-redundant as well as (m—1, n)-redundant. As the
word £ obtained from a by removing «(0, k) does not satisfy ¢, the language
L, is neither (m,n—1)-stutter closed, nor (m—1,n)-stutter closed. O

The knowledge presented in the three lemmata above allows to conclude the
following;:

Corollary 19 (Answer to Question 1) The LTL(U™, X"), LTL(U™,X),
and LTL(U, X™) hierarchies are strict.

Corollary 20 (Answer to Question 2) Let A and B be classes of
LTL(U™, X™), LTL(U™,X), or LTL(U,X") hierarchy (not necessarily of the
same one) such that A is syntactically not included in B. Then there is a
formula ¢ € A which cannot be expressed in B.

Although we cannot provide a full answer to Question 3, we can at least
reject the aforementioned ‘natural’ hypotheses (see Section 1).

Lemma 21 (About Question 3) For all m,n € Ny there is a language
definable in LTL(U™+2,X™) as well as in LTL(U™HL X"*t1) which is not
definable in LTL(U™H! X").

Proof We start with the case when m = n = 0. Let ¥ D {p,q}, and let
Y1 = F(g A (qU=q)) and 1> = F(q A X—q). Note that ¢; € LTL(U?,X°)
and ¢ € LTL(U',X'). Moreover, 1; and 1), are equivalent as they define
the same language L = X*q¢(X \ {q})X“. This language is not definable in
LTL(U!, X%) as it is not (1,0)-stutter closed; for example, the w-word a =
pgpq® € L contains a (1,0)-redundant subword «(0,2) but s = pg¥ & L.

19

The above example can be generalized to arbitrary m,n (using the
designed formulae 1,v5). For given m,n we define formulae ¢ €
LTL(U™*F2 X") and ¢y € LTL(U™T! X"1) both defining the same lan-
guage L over ¥ = {q,p,p1,-..,Pm+1}, and we give an example of an w-word
a € L with an (m + 1,n)-redundant subword such that « without this sub-
word is not from L. We distinguish three cases.

—m=mn>0. Forie{l,2} we define
m-times
i =XF(pAXF(pAXF(pA...AXF(pAw;)...)))

The w-word a = (pg)™+2¢¥ € L, a(0,2) is (m + 1,n)-redundant, and
as = (pg)"*'q” ¢ L.
— m>mn. Forie {1,2} we define

n-times

0i = XF(gAXF(gA ... AXF(gAp)...)

where
(m—n)-times
A

@i =F(p1 AF(p2 Ao AF(Pm—nA i))
The w-word & = (¢Pm-—nPm-—n_1---P1)™1¢” € L, a(0,m —n + 1) is
(m + 1,n)-redundant, and ay,—pi1 & L.
— m<n. Foriée{l1,2} we define

m-times n

- - ~ —N—
0i=F(pi AF(pa A ... AF(pmAXX ... X)) ...))

The w-word a = (¢" "™ Pm+1Pm ---p1)™ 2¢* € L, a(0,n+1) is (m+1,n)-
redundant, and a1 &€ L. O

In fact, the previous lemma says that if we take two classes LTL(U™!, X™1)
and LTL(U™2,X") which are syntactically incomparable and where
mi,my > 1, then their semantical intersection (i.e., the intersection of
the corresponding classes of languages) is strictly greater than the class
of languages definable in LTL(U™,X™) where m = min{m,m2} and n =
min{ni, ns}. Another consequence of Lemma 21 is that there is generally no
“best” way how to minimize the nesting depths of X and U modalities in a
given LTL formula.

5 Conclusions

The main technical contributions of this paper are the theorems about n-
stuttering and general stuttering presented in Section 2. With their help we
were able to construct (short) proofs of other results. In particular, we gave
an alternative characterization of LTL(U,X™) languages (which are exactly
n-stutter closed languages), proved the strictness of the three hierarchies of
LTL formulae introduced in Section 1, and we also showed several related

20

facts about the relationship among the classes in the three hierarchies. All of
the presented results carry over to LTL interpreted over finite words.

Some problems are left open. For example, the exact characterization of

the semantical intersection of LTL(U™', X"!) and LTL(U™2,X"2) classes (in
the case when they are syntactically incomparable) surely deserves further
attention. Another interesting question is whether Theorem 9 can serve as a
basis for new state-space reduction methods in the model-checking area.

References

10.

11.

12.

13.
14.

15.

16.

. Arnold, A.: A syntactical congruence for rational w-languages. Theoretical

Computer Science 39, 333-335 (1985)

Etessami, K.: A note on a question of Peled and Wilke on stutter-invariant
LTL. Information Processing Letters 75(6), 261-263 (2000)

Etessami, K., Wilke, Th.: An until hierarchy and other applications of an
Ehrenfeucht-Fraissé game for temporal logic. Information and Computation
160, 83-108 (2000)

. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fair-

ness. In: Conference Record of the 7th ACM Symposium on Principles of
Programming Languages, pp. 163-173. ACM Press (1980)

Kamp, J.A.W.: Tense logic and the theory of linear order. Ph.D. thesis, Uni-
versity of California, Los Angeles (1968)

Kucera, A., Strejcek, J.: The stuttering principle revisited: On the expressive-
ness of nested X and U operators in the logic LTL. In: J. Bradfield (ed.)
CSL ’02: 11th Annual Conference of the European Association for Computer
Science Logic, Lecture Notes in Computer Science, vol. 2471, pp. 276-291.
Springer-Verlag (2002)

Kucera, A., Strejéek, J.: An effective characterization of properties definable
by LTL formulae with a bounded nesting depth of the next-time operator.
Tech. Rep. FIMU-RS-2004-4, Faculty of Informatics, Masaryk University Brno
(2004)

Lamport, L.: What good is temporal logic? In: R. E. A. Mason (ed.) Pro-
ceedings of the IFIP Congress on Information Processing, pp. 657-667. North-
Holland, Amsterdam (1983)

Peled, D., Wilke, Th.: Stutter-invariant temporal properties are expressible
without the next-time operator. Information Processing Letters 63(5), 243
246 (1997)

Peled, D., Wilke, Th., Wolper, P.: An algorithmic approach for checking closure
properties of w-regular languages. Theoretical Computer Science 195(2), 183—
203 (1998)

Perrin, D.: Recent results on automata and infinite words. In: M.P. Chytil,
V. Koubek (eds.) Proceedings of the 11th Symposium on Mathematical Foun-
dations of Computer Science, Lecture Notes in Computer Science, vol. 176, pp.
134-148. Springer (1984)

Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science, pp. 46-57. IEEE Com-
puter Society Press (1977)

Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics.
Journal of the ACM 32, 733-749 (1985)

Thomas, W.: Star-free regular sets of w-sequences. Information and Control
42(2), 148-156 (1979)

Thomas, W.: Automata on infinite objects. In: J. van Leeuwen (ed.) Handbook
of Theoretical Computer Science, vol. B, Formal models and semantics, pp.
133-191. Elsevier (1990)

Thue, A.: Uber unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter, I. Mat.
Nat. K1. 1906(7), 1-22 (1906)

21

17. Wilke, Th.: Classifying discrete temporal properties. In: C. Meinel, S. Tison
(eds.) STACS ’99: Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, vol. 1563, pp. 32—46. Springer-
Verlag (1999)

18. Wolper, P.: Temporal logic can be more expressive. Information and Control
56, 72-99 (1983)

