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Abstract

A one-counter automatonconsists of a finite-state control operating on a single
counter ranging over the nonnegative integers; transitions of the automaton are
labelled from some finite alphabet, and may increment, decrement, or ignore the
counter value, possibly depending on whether or not the counter value is zero, but
may not decrement the counter when it is zero. The class of one-counter automata
is equivalent to the class of pushdown automata with a single stack symbol (apart
from a special bottom-of-stack marker). Aone-counter netis a one-counter
automaton which cannot test for zero: any transition which can be performed when
the counter is zero can equally be performed when the counter is non-zero. The
class of one-counter nets is equivalent to the class of labelled Petri nets with a
single unbounded place.

We show an effective construction of (a periodicity description of) the maximal
simulation relation for a given one-counter net. Then we demonstrate how to re-
ducesimulationproblems over one-counter nets to analogousbisimulationprob-
lems over one-counter automata. This requires a close analysis of a recent proof
of the decidability of the simulation relation over one-counter nets resulting in an
effective construction of (a semilinearity description of) the (maximal) simulation
relation. We use this to demonstrate the decidability of various problems, specif-
ically testing regularity and strong regularity of one-counter nets with respect to
simulation equivalence, and testing simulation equivalence between a one-counter
net and a deterministic pushdown automaton. Various obvious generalisations of
these problems are known to be undecidable.
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grant GAČR No. 201/98/P046.
xPartially supported by TFR grant No. 221-98-103 and Np. 201/97/275.



1 Introduction

In concurrency theory, aprocessis typically defined to be a state in atransition system, which
is a tripleT = hS; �;!i whereS is a set ofstates, � is a set ofactions(assumed to befinite in
this paper) and!� S���S is atransition relation. We writes

a! t instead ofhs; a; ti 2!,
and we extend this notation in the natural way to elements of��. A statet is reachablefrom
a states iff s

w! t for somew 2 ��. T is image-finite iff for all s 2 S anda 2 � the set
ft : s

a! tg is finite;T is deterministicif each such set is of size at most 1.
In this paper, we consider such processes generated byone-counter automata, nonde-

terministic finite-state automata operating on a single counter variable ranging over the set
N of nonnegative integers. Formally this is a tupleM = hQ;�; �=; �>i whereQ is a fi-
nite set ofcontrol states, � is a finite set ofactions, and�= : Q � � ! P(Q � f0; 1g),
�> : Q � � ! P(Q � f-1; 0; 1g) are transition functions (whereP(A) denotes the set of
subsets ofA). �= represents the transitions which are enabled when the counter value is zero,
and�> represents the transitions which are enabled when the counter value is positive.M is a
one-counter netiff 8q 2 Q; 8a 2 � : �=(q; a) � �>(q; a). ToM we associate the (image-
finite) transition systemTM = hS; �;!i, whereS = fp(n) : p 2 Q;n 2 N g and! is defined
as follows:

p(n)
a! p 0(n+ i) iff

�
n=0; and(p 0; i) 2 �=(p; a); or

n>0; and(p 0; i) 2 �>(p; a):

Note that any transition increments, decrements, or leaves unchanged the counter value; and a
decrementing transition is only possible if the counter value is positive. Also observe that when
n>0 the transitions ofp(n) do not depend on the actual value ofn. Finally, note that a one-
counternetcan in a sense test if its counter is nonzero (that is, it can perform some transitions
only on the proviso that its counter is nonzero), but it cannot test in any sense if its counter is
zero.

As an example, we might takeQ = fpg, � = fa; zg, and take the only non-empty
transition function values to be�>(p; a) = f(p;+1); (p;-1)g, �=(p; a) = f(p;+1)g, and
�=(p; z) = f(p; 0)g. This one-counter automaton gives rise to the infinite-state transition system
depicted in Fig. 1; if we eliminate thez-action, then this would be a one-counter net. The class
of transition systems which are generated by one-counter nets is the same (up to isomorphism)
as that generated by the class of labelled Petri nets with (at most) one unbounded place. (This
is immediately clear if we consider Petri nets with arc weights 1; however, the correspondence
is true even with general arcweights, which we formally prove in the Appendix). The class
of transition systems which are generated by one-counter automata is the same (up to isomor-
phism) as that generated by the class of realtime pushdown automata with a single stack symbol
(apart from a special bottom-of-stack marker).

Given a transition systemT = hS; �;!i, a simulation is a binary relationR � S � S

satisfying: wheneverhs; ti 2 R, if s
a! s 0 thent

a! t 0 for somet 0 with hs 0; t 0i 2 R. s is
simulatedby t, writtens 4 t, iff hs; ti 2 R for some simulationR; ands andt aresimulation
equivalent, written s4< t, iff s 4 t and t 4 s. (The relation4, being the union of all
simulation relations, is in fact the maximal simulation relation.) Abisimulation is a symmetric
simulation relation, ands andt arebisimulation equivalent, or bisimilar, writtens � t, if they
are related by a bisimulation. Simulations and bisimulations can also be used to relate states of
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Figure 1: A one-counter automata process and a simulation-equivalent finite-state process.

differenttransition systems; formally, we can consider two transition systems to be a single one
by taking the disjoint union of their state sets.

There are various other equivalences over processes which have been studied within the
framework of concurrency theory; an overview and comparison of these is presented in [15].
Each has its specific advantages and disadvantages, and consequently none is universally ac-
cepted as the “best” one, although it seems that simulation and bisimulation equivalences
are of particular importance as their accompanying theory has been intensively developed.
Bisimilarity is especially mathematically tractable, having the best polynomial-time algorithms
over finite-state transition systems (while all language-based equivalences by comparison are
PSPACE-complete), and the only one which is decidable for various classes of infinite-state
systems such as context-free processes and commutative context-free processes (see [13] for a
survey of such results).

Let s be a state of a transition systemT and� be an equivalence over the class of all
processes (that is, all states of all transition systems).s is �-regular, or regular w.r.t.�, iff
s � f for some statef of a finite-state transition system; ands is strongly�-regular, orstrongly
regular w.r.t.�, iff only finitely many states, up to�, are reachable froms. For bisimilarity,
these two concepts coincide, but this is not true in general for other equivalences. For example,
the statep(0) of the infinite-state transition system depicted in Fig. 1 is4<-regular, being
simulation equivalent to the stateU of the depicted finite-state system. However, it is not
strongly4<-regular (nor�-regular) asp(i) 64 p(j) wheneveri < j. The conditions of regularity
and strong regularity say that a process can in some sense be finitely represented (up to the
equivalence): in the first case there is an equivalent finite-state process; and in the second
case the quotient of its state-space under the equivalence is finite. As all “reasonable” process
equivalences are preserved under their respective quotients [9] (that is, each state is equivalent
to its equivalence class in the automaton produced by collapsing equivalent states [2]), strong
regularity in fact guarantees the existence of a finite-state process whose state-space is the same
(up to the equivalence); this process provides a more robust description of the original process
as it preserves strictly more logical properties than a process which is just equivalent [10].

Finite descriptions of infinite-state processes are important from the point of view of auto-
matic formal verification. Verification tools typically work only for finite-state systems, and the
types of systems which they analyze, such as protocols, are typicallysemanticallyfinite-state.
However, these systems are often expressedsyntacticallyas infinite-state systems, for example
maintaining a count of how many unacknowledged messages have been sent, so it is advanta-
geous to develop algorithms which replace infinite-state processes with equivalent finite-state
systems (when they exist). Examples of such algorithms appear in [2, 4, 5, 9, 12]

In Section 2 we show an effective construction of (a periodicity description of) the max-
imal simulation relation for a given one-counter net. Then, in Section 3, we study the con-
nection between simulation and bisimulation relations, and demonstrate the decidability of the
4<-regularity and strong4<-regularity problems forone-counter nets, a restricted form of Petri
nets; the4<-regularity problem is reduced to the�-regularity problem for the more general
class ofone-counter automata, which is known to be decidable [3]. Note that the4<-regularity
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problem is known to be undecidable for general Petri nets [5] and an incomparable class of PA
processes [11]. Finally, we demonstrate how to decide simulation equivalence between (a pro-
cess related to) a one-counter net and (a process related to) a deterministic pushdown automaton.
Here note that simulation equivalence between a (nondeterministic) one-counter automaton and
a deterministic one-counter automaton (i.e., a special deterministic pushdown automaton) can
be demonstrated to be undecidable [7].

2 Simulation on One-Counter Nets

In this section we fix a one-counter net with control state setQ, and present an algorithm which
constructs a (simple) description of the set

S = f hp(m); q(n)i : p; q 2 Q; m;n 2 N ; p(m) 4 q(n) g

i.e., the maximal simulation relation on the transition system associated to the net.S can
be viewed as a collection ofjQj2 subsets ofN�N : to eachp; q 2 Q we associateShp;qi =

f hm;ni : p(m) 4 q(n) g. Observe that ifp(m) 4 q(n) thenp(m 0) 4 q(n 0) for all
m 0�m andn 0�n since the setf hp(m 0); q(n 0)i : p(m) 4 q(n) for somem�m 0; n�n 0 g is a
simulation relation.

By a colouring we mean a functionC : (Q�Q) ! (N�N)!fblack;whiteg, where we
write the function applications asC hp;qi(m;n). We further stipulate that a colouring must sat-
isfy the following monotonicity condition: ifC hp;qi(m;n)=black thenC hp;qi(m

0; n 0)=black
for all m 0�m andn 0�n. With this proviso, eachC hp;qi is determined by thefrontier func-
tion fChp;qi : N ! N [ f!g defined by: fChp;qi(n) = min fm : C hp;qi(m;n)=whiteg; we
put fChp;qi(n)=! if C hp;qi(m;n)=black for allm. Note that this function is nondecreasing,
i.e., eachstepfChp;qi(n+1) - fChp;qi(n) is nonnegative. Whenfhp;qi(n) 2 N , we call the pair
hfhp;qi(n); ni a frontier point and the set of all frontier points constitutes thefrontier (in C hp;qi ).

We useG to denote the following distinguished colouring:

G hp;qi(m;n) =

�
black; if p(m) 4 q(n);
white; if p(m) 64 q(n).

The observation aboutS from above confirms that this is a valid colouring, i.e., that the re-
quired monotonicity condition holds. We usefhp;qi to denote the frontier function ofG hp;qi ,
and we understand the termsfrontier functionandfrontier to be related toG when not specified
otherwise.

The following “Belt Theorem” gives a crucial fact about frontiers; by abeltwe mean the set
of points of the (first quadrant of the) plane lying between two parallel lines.

Belt Theorem. Every frontier lies within a belt with nonnegative rational or infinite slope.

This theorem is central for the decidability of simulation over one-counter nets. It was proven
in [6] by a combination of short and intuitive arguments; the theorem is also present (though
not so explicitly) in [1] but the proof outlined there is formidable.

Note that if, for a frontier functionf, f(n)=! for somen then the respective frontier is
finite and lies within a horizontal belt (i.e., with slope 0). Otherwisef (as a functionN ! N)
is almost linear, though its steps

�
f(n+1)-f(n)

�
need not be constant. Nevertheless, we shall

show thatf is periodic, i.e., from somen0 a finite sequence of steps is repeated forever; and
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moreover, itsperiodicity description—i.e., n0, the sequence of steps to be repeated, and the
values off(n) for all n�n0—can be effectively computed, yielding the simple description of
the setS. (Note that the decision algorithms in both [1] and [6] only approximate the setS,
or equivalently the colouringG , to a sufficient level to answer the relevant question; effective
constructability of the functionsfhp;qi does not follow from there.)

We now show how the frontier functionsfhp;qi can be stepwise approximated. First
we say that a pointhm;ni (in N�N) is locally correct in a colouring C iff the follow-
ing holds for all p; q 2 Q: if C hp;qi(m;n)=black andp(m)

a! p 0(m 0) then there is
q(n)

a! q 0(n 0) with C hp 0 ;q 0i(m
0; n 0)=black. Note that the local correctness of a point

hm;ni depends only on the restriction ofC to theneighbourhoodof hm;ni, i.e., to the set
f hm 0; n 0i : jm 0-mj�1; jn 0-nj�1 g; this follows from the fact that a transition in a one-counter
net can change the counter value by at most 1. We say thatC isk-admissible, wherek 2 N[f!g,
iff each pointhm;ni with m;n < k is locally correct inC . In particular, note thatG is !-
admissible.

The functionG k : (Q�Q)! (N�N)!fblack;whiteg defined by

G k
hp;qi(m;n) = black iff C hp;qi(m;n) = black for somek-admissible colouringC

is easily seen to be ak-admissible colouring, and is in fact themaximal (i.e.,maximally-black)
k-admissiblecolouring; furthermore, the maximal!-admissible colouringG ! is clearlyG .
For k 2 N , we denote the frontier function ofG k

hp;qi by fkhp;qi, and note that the range of
fkhp;qi is f 0; 1; : : : ; k-1 g [ f!g and thatfkhp;qi(n) = ! for all n�k. The description of each
functionfkhp;qi, i.e., (a table of) its values for0; 1; : : : ; k-1, is effectively computable, for ex-
ample, by an exhaustive search. AsG k is i-admissible for anyi�k, we have, for eachp; q,
f0hp;qi�f

1
hp;qi�f

2
hp;qi� : : :�fhp;qi (wheref 0�f 00 means8n 2 N : f 0(n) � f 00(n)). Therefore

the functionghp;qi = limn!1 f
n
hp;qi is well-defined, andghp;qi�fhp;qi. But since the colouring

defined by these limit functionsghp;qi (as the frontier functions) is!-admissible (recall the “lo-
cality” of the local correctness condition), andG is themaximal!-admissible colouring, we
haveghp;qi�fhp;qi. Thusghp;qi=fhp;qi, and therefore we get the following.

Lemma 1 For eachn 2 N there isk � n such that eachfkhp;qi coincides withfhp;qi on the set
f0; 1; 2; : : : ; ng.

Our algorithm will constructG k for k = 0; 1; 2; : : : ; Lemma 1 guarantees that larger and
larger initial portions of (the graphs of)G hp;qi are appearing during the run of the algorithm
(though we do not know the extent of the portion ofG in G k ). To show when our algorithm can
terminate, recognizing an initial portion ofG and providing a description of the wholeG , we
now explore a certain “repeatable pattern” which is guaranteed to appear inG .

By the Belt Theorem, we can fix a set of belts with nonnegative rational or infinite slopes
such that each frontier is contained in one of them. We assume that the belts are “sufficiently”
thick; thus we can, for instance, suppose that the belt slopes are pairwise distinct (merging
parallel belts into one thicker).

Now we can chooseh1; h2; i 2 N , where0<h1<h2<i, such that (see Fig. 2):

1. for each frontier functionf with f(h2)<!, all frontier pointshf(n); ni between levels
h1 andh2, (i.e., withh1�n�h2) lie in one of the belts (this follows trivially from our
assumption; note that Fig. 2 depicts just one frontier in each belt, though in general there
can be several frontiers in a single belt);
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Figure 2: Graphs ofG hp;qi displaying a repeatable pattern, superimposed onto each other

2. the belts are pairwise disjoint at and above levelh1-1 (i.e., we chooseh1 large enough
so that at levelh1-1 each belt is to the right of any other belt with greater slope);

3. for each frontier functionf: if f(h1-1)�1 thenf(h2)=f(h1-1); and if f(h2)=! then
f(h1-1)=! (this is satisfied whenh1 andh2 are chosen large enough);

4. for each frontier functionf and eachn�h2: if f(n)<! thenf(n)<i (this is satisfied by
choosingi large enough after the choice ofh1 andh2).

Each frontier pointhf(n); ni has a certain (horizontal)distanceto the left border line of the belt
in which it lies. Since the slope of each belt is rational, it is clear that such distances range over
finitely many possible values. So, by a straightforward use of the pigeonhole principle, we can
additionally suppose (i.e., we could chooseh1; h2; i so) that the frontier points of all frontiers
inside a single belt have the same relative positions at levelsh2 andh2-1 as at levelsh1 and
h1-1, respectively. More precisely:

5. for each frontier functionf with f(h2)<!, the slope of the belt in which the respec-
tive frontier appears between levelsh1 andh2 is (h2-h1)=(f(h2)-f(h1)); moreover,
f(h2)-f(h2-1) = f(h1)-f(h1-1)

The number of possible distances would allow us to calculate a boundb such that we can even
suppose (i.e., choose so) thath2-h1�b. Note thatb does not depend on how thick the belts
are chosen. In particular, we can assume each belt to be so thick that for each frontier point
hf(n); ni in the belt, withn�h1, the pointhf(n); n+bi is still an interior point of the belt,
i.e., its whole neighbourhood lies in the belt. Informally we say that the belt has asufficiently
thick monochromatic left subbelt(aboveh1); monochromatic means that eachG hp;qi is constant
(either black or white) on the subbelt. Therefore we could choose belts andh1; h2 andi so that
the following additional condition is satisfied:

5



6. for each frontier pointhf(n); ni with h1�n�h2, the pointhf(n); n+(h2-h1)i is an
interior point of the belt in which the respective frontier lies between levelsh1 andh2.

We now say that a colouringC has arepeatable pattern, based onh1, h2 andi, iff there are
belts such that the above conditions 1.– 6. are satisfied (where the termsfrontier and frontier
functionare understood as those related toC ). We have thus demonstrated thatG has a repeat-
able pattern. Our algorithm which constructsG

0 ; G 1 ; G 2 ; : : : terminates when it finds someG j

which has a repeatable pattern based on someh1, h2 andi with i<j; such a condition is clearly
decidable; and Lemma 1, together with the fact thatG has a repeatable pattern, guarantees ter-
mination of the algorithm. Having discovered a repeatable pattern forG j based onh1, h2 and
i with i<j, we define the colouringG � by defining its frontier functionsf�hp;qi inductively as
follows:

f�hp;qi(n) =

8<
: f

j

hp;qi(n); if n � h2

f�hp;qi(n-c) + d; if n > h2

wherec = h2-h1 andd = f
j

hp;qi(h2) - f
j

hp;qi(h1). Hence eachf�hp;qi is periodic, arising

from f
j

hp;qi by repeating the sequence of steps betweenh1 andh2 forever. Also note that if

f
j

hp;qi(n)=! for somen�h2 thenf�hp;qi=f
j

hp;qi. We shall show (Lemma 3) thatG � is in factG .
To this end, we make some considerations and introduce some auxiliary notions.

First recall that the local correctness of a pointhm;ni in a colouringC depends only on
the restriction ofC to the neighbourhood ofhm;ni. Also recall that the possible transitions
from a statep(m) do not depend onm whenm>0. ThereforeG � is surely!-admissible:
each pointhm;ni in theverified area, i.e., withm<j andn<h2, is locally correct since it is
(by definition) locally correct inG j , andG j andG � coincide on the neighbourhood ofhm;ni.
Furthermore, each point outside the verified area obviously has a corresponding point in the
verified area whose neighbourhood is coloured identically. By the fact thatG is the maximal
!-admissible colouring, we havef�hp;qi�fhp;qi. Sincefhp;qi�f

j

hp;qi, we havef�hp;qi(n)=fhp;qi(n)

for all n�h2 (wheref�hp;qi coincides withfjhp;qi). The only possibility thatG � andG are not
equal is iff�hp;qi(n)<fhp;qi(n) for somen>h2. Due to the next result (Lemma 2), this will be
lead to a contradiction in the proof of Lemma 3.

Let ~v = hv1; v2i 2 Z�Z be a vector with integer entries. A pointhm;ni 2 N�N with
m+v1; n+v2 � 0 is lit by ~v in G hp;qi iff G hp;qi(m;n) = black andG hp;qi(m+v1; n+v2) =

white; if hm;ni is lit by ~v in some G hp;qi , then we say thathm;ni is lit by ~v. For
points hm;ni; hm 0; n 0i 2 N�N we write hm;ni $

~v hm 0; n 0i iff both are lit by ~v, and
jm-m 0j � 1 and jn-n 0j � 1. The transitive closure of$

~v is denoted by$�
~v. Note

that hm;ni $�
~v hm

0; n 0i can be demonstrated by giving atrajectory, a sequence of points
hm0; n0i; hm1; n1i; : : : ; hmk; nki such that

hm;ni = hm0; n0i$~v hm1; n1i$~v � � �$~v hmk; nki = hm 0; n 0i:

Lemma 2 Leth>0 and~v = hv1; v2i with v1�0 andv2<0. If a pointhm0; n0i withn0+v2 > h

is lit by~v then there is a pointhm 0
0; n

0
0i withn 0

0+v2 = h such thathm0; n0i$�
~v hm

0
0; n

0
0i.

Proof: Supposehm0; n0i satisfies the assumption but there is no requiredhm 0
0; n

0
0i; then

n 0+v2 > h for eachhm 0; n 0i such thathm0; n0i$�
~v hm

0; n 0i. Define the colouringG by
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Figure 3: The assumptionG 6= G � leads to a contradiction.

G hp;qi(m;n) = black iff G hp;qi(m;n) = black, or

hm-v1; n-v2i is lit by ~v in G hp;qi and

hm0; n0i$�
~v hm-v1; n-v2i.

G obviously satisfies the monotonicity property of colourings, and we can easily check that
each point is locally correct inG . HenceG is !-admissible, which contradicts the fact thatG

is themaximal!-admissible colouring. 2

Lemma 3 G � is equal toG .

Proof: We have already shown that eachf�hp;qi coincides withfhp;qi on the setf0; 1; 2; : : : ; h2g,
so we only have to exclude the possibility thatf�hp;qi(n)<fhp;qi(n) for somen>h2.

Recall that our algorithm stops by finding a repeatable pattern, forh1; h2; i, in G j (i<j). Let
us fix a corresponding set of belts required by the definition of a repeatable pattern (note that
each frontier ofG � lies in one of the belts aboveh1).

We say that a beltB is valid iff G � coincides withG when restricted toB. (In particular, the
horizontal belt, if it was chosen, is surely valid.) If all belts are valid, then surelyG � is equal to
G . Otherwise, letB be therightmostbelt (i.e., the belt with the least slope) which is not valid.
Consider aninvalid pointhm0; n0i in B, i.e.,G �

hp;qi(m0; n0)=white andG hp;qi(m0; n0)=black,
for somep; q; moreover we supposen0 to be minimal (i.e.,B is valid belown0). Note that
n0>h2.

Let � be the slope ofB, and let~v = hv1; v2i, wherev1 = (h1-h2)=� andv2 = h1-h2
(~v corresponds to the “period ofB” in G

� ; see Fig. 3). Due to the choice of~v (as the pe-
riod of B) we haveG �

hp;qi(m0+v1; n0+v2) = white, and sinceB is valid belown0, we have
G hp;qi(m0+v1; n0+v2) = white. This means that the pointhm0; n0i is lit by ~v in G hp;qi .
Due to Lemma 2 (forh1 in the place ofh) there is a pointhm 0

0; n
0
0i (lit by ~v) such that
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hm0; n0i $�
~v hm

0
0; n

0
0i andn 0

0+v2=h1, i.e., n 0
0=h2. Recall that the restrictions ofG � and

G to N � f0; 1; 2; : : : ; h2g coincide. Hence if there is no belt to the right ofB then there is
clearly no pointhm 0; h2i which would be lit by~v. Otherwise letB 0 be the first belt to the right
of B. Any point hm 0; h2i which is lit by~v can lie only in, or to the right of,B 0. Nevertheless
any trajectory demonstratinghm0; n0i$�

~v hm
0; h2i would have to cross the (sufficiently thick)

monochromatic left subbelt of (the valid)B 0, which is impossible. (The first point on such a
trajectory which is inB 0, and is thus not an interior point ofB 0, cannot be lit by~v.) 2

We can summarize the preceding argument in the following.

Theorem 1 There is an algorithm which, given a one counter net, constructs a description of
the respective maximal simulation relation; more concretely, it gives periodicity descriptions
for the corresponding frontier functions.

3 Applications

In this section we show how Theorem 1 can be applied to obtain new decidability results for
one-counter nets. The following one comes almost for free.

Theorem 2 The problem of strong4<-regularity of one-counter nets is decidable.

Proof: Let p(i) be a process of the one-counter netN = hQ;�; �=; �>i. Define the set
M = fq 2 Q j p(i) !� q(j) for infinitely manyj 2 Ng. Observe thatM is effectively
constructible using standard techniques for pushdown automata. AsQ is finite, we see thatp(i)
can reach infinitely many pairwise non-equivalent states iff there isq 2 M such that for every
i 2 N there is somej > i such thatq(j) 64 q(i). In other words,p(i) is not strongly regular
w.r.t. simulation equivalence iff there isq 2 M such that the frontier functionfhq;qi has no
!-values (8n 2 N : fhp;qi(n) < !). 2

Next we show that a number ofsimulationproblems for processes of one-counter nets can be
reduced to the correspondingbisimulationproblems for processes of one-counter automata. In
this way we obtain further (original) decidability results. The basic tool which enables the
mentioned reductions is taken from [11] and is described next.

For every image-finite transition systemT = hS;Act;!i we define the transition system
B(T) = hS;Act; 7!i where7! is given by

s
a
7! t iff s

a! t and8u 2 S : (s
a! u^ t 4 u) =) u 4 t

Note thatB(T) is obtained fromT by deleting certain transitions (preserving only the “maximal”
ones). Also note thatT andB(T) have the same set of states; as we often need to distinguish
between processes “s of T” and “s of B(T)”, we denote the latter one bysB. A proof of the next
(crucial) theorem, relating simulation equivalence and bisimulation equivalence, can be found
in [11].

Theorem 3 Let s andt be processes of image-finite transition systemsT andT 0, respectively.
It holds thats4< sB andt4< tB; moreover,s4< t iff sB � tB.

The next theorem provides the technical basis for the aforementioned reductions.
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Figure 4: The structure ofTN (left) andB(TN) (right)

Theorem 4 LetN be a one-counter net. Then the transition systemB(TN) is effectively defin-
able within the syntax of one-counter automata, i.e., one can effectively construct a one-counter
automatonM such thatTM is isomorphic toB(TN). Moreover, for every states = p(i) of TN
we can effectively construct a statep 0(i 0) of TM which is isomorphic to the statesB ofB(TN).

Proof: Let N = hQ;�; �=; �>i be a one-counter net, and let7! be the transition relation of
B(TN). Let us define the functionMaxTran: Q� �� N ! P(Q� f-1; 0; 1g) as follows:

hq; ji 2 MaxTran(p; a; i) iff p(i)
a
7! q(i+ j)

where7! is the transition relation ofB(TN). In fact,MaxTran(p; a; i) represents all “maximal”
a-transitions ofp(i). Our aim is to show that the functionMaxTranis, in some sense, periodic—
we prove that there (effectively) existsn > 0 such that for allp 2 Q, a 2 �, andi � n we
have thatMaxTran(p; a; i) = MaxTran(p; a; i+n). It clearly suffices for our purposes because
then we can construct a one-counter automatonM = hQ� f0; : : : ; n-1g; �; =; >i where=

and> are the least sets satisfying the following conditions:

� if p(i)
a
7! q(j) where0 � i; j < n, then(hq; ji; 0) 2 =(hp; ii; a)

� if p(n- 1)
a
7! q(n), then(hq; 0i;+1) 2 =(hp; n- 1i; a)

� if p(n+ i)
a
7! q(n + j) where0 � i; j < n, then(hq; ji; 0) 2 >(hp; ii; a)

� if p(n)
a
7! q(n- 1), then(hq; n- 1i;-1) 2 >(hp; 0i; a)

� if p(2n- 1)
a
7! q(2n), then(hq; 0i;+1) 2 >(hp; n- 1i; a)

Note that the definition ofM is effective, because the constantn can be effectively found and
for every transitionp(i)

a! p(j) of TN we can effectively decide whetherp(i)
a
7! p(j) (here

we need the decidability of simulation for one-counter nets). The fact thatTM is isomorphic to
B(TN) is easy to see as soon as we realize thatB(TN) can be viewed as a sequence of “blocks”
of heightn, where all “blocks” except for the initial one are the same. The structure of the two
(types of) blocks is encoded in the finite control ofM, and the number of “current” blocks is
stored in its counter (see Fig. 4). Note thatM indeed needs the test for zero in order to recognize
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that the initial block has been entered.
Now we show how to construct the constantn. First, we prove that for allp 2 Q, a 2 �

one can effectively find two constantsk(p; a) andl(p; a) such that for everyi > k(p; a) we
haveMaxTran(p; a; i) = MaxTran(p; a; i+ l(p; a)). We start by reminding ourselves that the
out-going transitions ofp(i) andp(j), wherei; j � 1, are the “same” in the following sense
(see Fig. 4):

p(i)
a! q(i+m) iff p(j)

a! q(j +m) iff (q;m) 2 �>(p; a).

Hence, the setMaxTran(p; a; i), wherei � 1, is obtained by selecting certain elements from
�>(p; a). In order to find these elements, we must (by the definition ofB(T)) take all pairs
hhq;mi; hr; nii 2 �>(p; a) � �>(p; a), determine whetherq(i +m) 4 r(i + n), and select
only the “maximals”. For each such pairhhq;mi; hr; nii we define an infinite binary sequence
S as follows: S(i) = 1 if G hq;ri(i + m; i + n) = black, andS(i) = 0 otherwise. As (a
description of)G hq;ri can be effectively constructed, and the frontier functionfhq;ri is periodic
(see Theorem 1), we can conclude thatS = ��! where�; � are finite binary strings. Note that
� and� can be “read” from the constructed description ofG hq;ri and thus they are effectively
constructible. As�>(p; a) is finite, there are only finitely many pairs to consider and hence we
obtain only finitely many�’s and�’s. Now we letk(p; a) be the length of the longest�, and let
l(p; a) be the product of lengths of all�’s. In this way we achieve that the whole information
which determines the selection of “maximal” elements of�>(p; a) during the construction of
MaxTran(p; a; i) is periodic (w.r.t.i) with periodl(p; a) after a finite “initial segment” of length
k(p; a). Let K = maxfk(p; a) j p 2 Q;a 2 �g, andL =

Q
p2Q;a2� l(p; a). Finally, let

n = K � L.
To finish the proof, we need to show that for every states = p(i) of TN one can construct

a statep 0(i 0) of TM which is isomorphic to the statesB of B(TN). This is straightforward; we
simply takep 0 = hp; i modni and i 0 = i div n. 2

Two concrete examples of how Theorems 3 and 4 can be applied to obtain (new and nontrivial)
positive decidability results on one-counter nets are given next.

Corollary 1 The problem of4<-regularity of one-counter nets is decidable.

Proof: It suffices to realize that a processs of a transition systemT is4<-regular iff the process
sB of B(T) is �-regular. As�-regularity is decidable for processes of one-counter automata [3],
we are done. 2

Corollary 2 Let p� be a process of a deterministic pushdown automaton� and q(i) be a
process of a one-counter netN. The problem whetherp�4<q(i) is decidable.

Proof: First, realize that ifT is a deterministic transition system thenB(T) = T. Hence,
p�4<q(i) iff p� � q 0(i 0) whereq 0(i 0) is the process of Theorem 4. As one-counter automata
are (special) pushdown automata, we can apply the result of [14] which says that bisimilarity is
decidable for pushdown processes. 2

The previous corollary touches, in a sense, the decidability/undecidability border for simulation
equivalence, because the problem whetherp�4<q(i) wherep� is a process of a deterministic
PDA � andq(i) is a process of a one-counter automatonM is undecidable [7] (in fact, it is
undecidable even if we require� to be a deterministic one-counter automaton).
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Appendix

In this appendix we show that the model of one-counter nets which has been introduced in
Section 1 exactly corresponds to Petri nets with at most one unbounded place.

A Petri net is a tupleN = (P; T; F;Act; `) where

� P andT are finite disjoint sets ofplacesandtransitions, respectively.

� F : (P�T)[(T�P)! N is theflow function. A placep is aninput placefor a transition
t iff F(p; t) � 1. Similarly,p is anoutput placefor t iff F(t; p) � 1.

� Act is a finite set ofactions.

� ` : T! Act is thelabellingwhich associates an action with every transition.

A markingM is a functionM : P! N which associates a number oftokenswith every place.
A transitiont is enabledat a markingM iff M(p) � F(p; t) for every placep. A netN
determines a unique transition systemTN where the set of states is the set of all markings,Act
is the set of actions, and transitions are determined as follows:M

a!M 0 iff there ist 2 T such
thatt is enabled atM, `(t) = a, andM 0(p) =M(p)- F(p; t)+ F(t; p) for all p 2 P (we say
thatt firesatM reachingM 0). LetM be a marking. A placep is boundedfor M iff there is
k 2 N such thatM 0(p) � k for every markingM 0 which is reachable fromM. The set of all
bounded places forM can be effectively constructed [8].

Theorem 5 Let N = (P; T; F;Act; `) be a Petri net,M a marking such thatN has at
most one unbounded place forM. Then we can effectively construct a one-counter net
N = hQ;�; �=; �>i and its processp(i) such that the parts ofTN andTN which are reach-
able fromp(i) andM, respectively, are isomorphic.

Here we give only a brief sketch of the crucial argument which allows to prove the previous
theorem. Letn = maxfF(s; t); F(t; s) j s 2 P; t 2 Tg. First we construct fromN another
netN 0 which is isomorphic toN and where each transition changes the value stored in the
‘counter’ (i.e., the number of tokens in the only unbounded place) at most by one, taking at
most one token from it. To do that, we first add toN new placesp0; : : : ; pn-1. Intuitively,
the idea is to ‘encode’ the valuei of the counter ofN by storingi divn tokens in the counter
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of N 0 and putting a token to the placepimodn. Each transitiont of N is then replaced with
a set of transitionsti, where0 � i � n - 1, such that eachti has the same label and the
same ‘connections’ to the bounded places ofN ast, but the operation on the counter is ‘re-
implemented’ using the newly added placesp0; : : : ; pn-1 — eachti takes one token frompi,
puts one token to (some)pj, and possibly increments/decrements the counter by one. A concrete
example is given is Fig. 5. Then, the netN 0 is transformed into a netN 00 where each transition
has exactly one bounded place among its input and output places (observe that the netN 0 of
Fig. 5 already has this property and hence it need not be further transformed). It is achieved by
introducing a special place for each of the finitely many reachable ‘states’ of the bounded part
of N 0 and replacing each transitiont of N 0 with a family of transitions which have the same
label and the same ‘connectivity’ to the counter ast, and which implement the state-change in
the bounded part ofN 0 caused byt ‘explicitly’ by shifting only one token. The netN 00 can
then be ‘translated’ to a one-counter netN in a straightforward way.
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