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Abstract

We prove that weak bisimilarity is decidable in polynomial time be-

tween BPA and �nite-state processes, and between normed BPP and

�nite-state processes. To the best of our knowledge, these are the

�rst polynomial algorithms for weak bisimilarity with in�nite-state

systems.

Keywords: concurrency, in�nite-state systems, process algebras, veri�ca-
tion, bisimulation

1 Introduction

Recently, a lot of attention has been devoted to the study of decidability

and complexity issues for in�nite-state systems. In our paper we concen-

trate on decidability of weak bisimilarity between certain in�nite-state pro-
cesses and �nite-state ones. We prove that weak bisimilarity (and also other

bisimulation-like equivalences) is decidable in polynomial time between BPA
and �nite-state processes, and between normed BPP and �nite-state ones.

BPA processes can be seen as simple sequential programs (due to the binary

�Supported by a Research Fellowship granted by the Alexander von Humboldt Foun-
dation and by a Post-Doc grant GA �CR No. 201/98/P046.
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sequential composition operator), while BPP model simple parallel systems

(due to the binary parallel composition operator). A process is normed i� at

every reachable state it can terminate via a �nite sequence of computational

steps.

The state of the art. BPA and BPP have been studied very intensively

and many decidability and complexity results about them are known today

(especially in the areas of equivalence-testing and model-checking [22, 10]).

Here we brie
y mention some of the results which are closely related to the

subject of our paper.

The �rst positive result about BPA processes is due to Baeten, Bergstra, and

Klop [2]. They proved that strong bisimilarity [23] is decidable for normed

BPA processes. A much simpler proof of this has later been given in [15],

and there is even a polynomial-time algorithm [12]. The decidability result
has later been extended to the class of all (not necessarily normed) BPA

processes in [8], but the best known algorithm is doubly exponential [5].
Decidability of strong bisimilarity for BPP processes has been established
in [7], but the algorithm has non-elementary complexity. However, there

is also a polynomial-time algorithm for the subclass of normed BPP [13].
Strong bisimilarity between normed BPA and normed BPP processes is also

decidable [6]. A more general result [17] says that strong bisimilarity remains
decidable if we consider parallel compositions of normed BPA and normed
BPP processes.

As for weak bisimilarity, much less is known. Semidecidability of weak bi-
similarity for BPP processes is due to [9]. In [11] it is shown that weak

bisimilarity is decidable for those BPA and BPP processes which are `totally
normed' (a process is totally normed if it can terminate at any moment via a
�nite sequence of computational steps, but in addition at least one of those

steps must be `visible', i.e. non-internal). The weak bisimilarity problem
for general BPA and BPP is open; those problems might be decidable, but

they are surely intractable (assuming P 6= NP)|in case of BPP we have

NP-hardness, and in case of BPA even PSPACE -hardness [24].

The situation is dramatically di�erent if we consider weak bisimilarity be-

tween certain in�nite-state processes and �nite-state ones. This study is

motivated by the fact that the intended behavior of a process is often easy

to specify (by a �nite-state system), but a `real' implementation can con-

tain components which are in�nite-state (e.g. counters or bu�ers). In [19]

it is shown that weak bisimilarity between BPP and �nite-state processes is

decidable. A more general result has recently been obtained in [16], where

it is shown that many bisimulation-like equivalences (including the strong
and weak ones) are decidable between PAD and �nite-state processes. The

2



PAD class strictly subsumes not only BPA and BPP, but also PA [3] and

pushdown processes. The result is obtained by a general reduction to the

model-checking problem for the simple branching-time temporal logic EF.

As the model-checking problem for EF is hard (for example, it is known to

be PSPACE -complete for BPP [19] and BPA [4, 20]), the algorithm is not

practically usable.

Our contribution. In Section 3.1 we show that weak (and hence also

strong) bisimilarity is decidable between BPA and �nite-state processes in

polynomial time. The proof can be divided in two parts. First we show the

existence of a �nite bisimulation base, which in some sense generates the

greatest weak bisimulation|all pairs of bisimilar processes can be `gener-

ated' from that base. It is interesting that we can design such a base in spite

of the fact that weak bisimilarity is not a congruence w.r.t. sequential com-
position, and hence the possibility to derive `new' pieces of information from

`old' ones is rather limited (actually, all what we need is the fact that weak
bisimilarity is a left congruence). Then we take a su�ciently large relation G
which surely subsumes the base and `clean' it. The size of G is cubic in the

size of problem instance, and each step of the cleaning procedure possibly
deletes some of the elements of G. If nothing is deleted, we have found the

base. To be able to perform this cleaning procedure, we have to overcome
the fundamental problem that the set of states which are reachable from a
given BPA state in one `

a
)' move (see Section 2) is in�nite. We employ a

`symbolic' technique to represent those in�nite sets, taking advantage of the
fact that they have a simple (regular) structure which can be encoded by
�nite-state automata. Moreover, we can also encode the pairs of processes

which can be generated from the currently computed approximation of the
base by means of �nite-state automata. This allows to compute the base in

polynomial time, and it is actually all what we need to establish our result.

The fact that weak bisimilarity is not a congruence w.r.t. sequential compo-
sition is rather unpleasant; each equivalence called `behavioral' should have

this property. In Section 3.1.1 we propose a natural re�nement of weak

bisimilarity (called termination-sensitive bisimilarity) which preserves the

nice properties of weak bisimilarity, but it also takes into account some of

the main features of sequencing which are not re
ected by weak bisimila-
rity (e.g. the distinction between termination and livelock). Consequently,

termination-sensitive bisimilarity is a congruence w.r.t. sequential composi-

tion. Moreover, it is also decidable between BPA and �nite-state processes

in polynomial time (we use the same method as in case of weak bisimilarity).

In Section 3.2 we show that weak bisimilarity between normed BPP and
�nite-state processes is also decidable in polynomial time. The basic scheme
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of our proof is similar as in case of BPA. The bisimulation base is simpler

(due to the normedness assumption), but there are some `new' complica-

tions caused by commutativity of the parallel operator. Moreover, the set

of states which are reachable from a given BPP state in one `
a
)' move is no

longer regular; however, it can be in some sense represented by a context-free

grammar.

In the �nal section we discuss further applicability of our results, and we give

an informal comparison with the techniques which have been used for strong

bisimilarity in [12, 13].

2 De�nitions

2.1 Process Rewrite Systems

Let Act = fa; b; c; : : :g be a countably in�nite set of actions. Let Const =
fX; Y; Z; : : :g be a countably in�nite set of process constants such that Act \
Const = ;. The class of process expressions, denoted E , is de�ned by the

following abstract syntax equation:

E ::= � j X j EkE j E:E

Here X ranges over Const and � is a special constant that denotes the empty
expression. Intuitively, the `:' operator corresponds to a sequential composi-

tion, while the `k' operator models a simple form of parallelism.

In the rest of this paper we do not distinguish between expressions related by
structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold:

� associativity for `:' and `k'

� commutativity for `k'

� `�' as a unit for `:' and `k'.

A process rewrite system [18] is speci�ed by a �nite set � of rules which are

of the form E
a
! F , where E; F 2 E and a 2 Act . We use Const(�) and

Act(�) to denote the sets of process constants and actions which are used in
rules of �, respectively (note that Const(�) and Act(�) are �nite).

Each process rewrite system � determines a unique transition system where

states are process expressions over Const(�), Act(�) is the set of labels, and

transitions are determined by � and the following inference rules (remember
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that `k' is commutative):

(E
a
! F ) 2 �

E
a
! F

E
a
! E 0

E:F
a
! E 0:F

E
a
! E 0

EkF
a
! E 0kF

We extend the notation E
a
! F to elements of Act� in an obvious way.

Moreover, we say that F is reachable from E if E
w
! F for some w 2 Act�.

The set of initial actions of E, denoted I(E), is de�ned by I(E) = fa 2
Act j E

a
! F for some Fg.

The classes of �nite-state, BPA, and BPP systems are subclasses of process

rewrite systems obtained by certain restrictions on the form of the expressions

which can appear on the left-hand and the right-hand side of rules. To

specify those restrictions, we �rst de�ne the classes of sequential and parallel

expressions, composed of all process expressions which do not contain the `k'
and the `:' operator, respectively. Finite-state, BPA, and BPP allow only a
single constant on the left-hand side of rules, and a single constant, sequential
expression, and parallel expression on the right-hand side, respectively.

In the rest of this paper we consider processes as (being associated with)

states in transition systems generated by process rewrite systems. A constant
X 2 Const(�) is normed i� X

w
! � for some w 2 Act�. A process is normed,

i� all constants of its underlying system � are normed.

2.2 Weak Bisimilarity

The semantical equivalence we are interested in here is weak bisimilarity

[21]. This relation distinguishes between `observable' and `internal' moves

(computational steps); the internal moves are modeled by a special action
which is denoted `� ' by convention. In the following we assume that all

process expressions are built over Const(�) where � is some �xed process
rewrite system.

De�nition 2.1. The extended transition relation `
a
)' is de�ned by E

a
)

F i� E
��

! E 0 a
! E 00 ��

! F for some E 0; E 00. Moreover, we also have E
�
) E

for every state E. A binary relation R over process expressions is a weak

bisimulation i� whenever (E; F ) 2 R then for every a 2 Act

� if E
a
! E 0 then there is F

a
) F 0 s.t. (E 0; F 0) 2 R

� if F
a
! F 0 then there is E

a
) E 0 s.t. (E 0; F 0) 2 R

Processes E; F are weakly bisimilar, written E � F , i� there is a weak
bisimulation relating them.
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Weak bisimilarity can be approximated by the family of �i relations, which

are de�ned as follows:

� E �0 F for every E; F

� E �i+1 F i� E �i F and the following conditions hold:

{ if E
a
! E 0 then there is F

a
) F 0 s.t. E 0 �i F

0

{ if F
a
! F 0 then there is E

a
) E 0 s.t. E 0 �i F

0

It is worth noting that�i is not an equivalence for i � 1, as it is not transitive.

It is possible to approximate weak bisimilarity in a di�erent way so that the

approximations are equivalences (see [16]). However, we do not need this for

our purposes.

Let � be a �nite-state system with n states, f; g 2 Const(�). It is not hard

to show that the problem whether f � g is decidable in O(n3) time. We use
this fact in Section 3.2.

Sometimes we also consider weak bisimilarity (and its approximations) be-
tween processes of di�erent process rewrite systems, say � and �. Formally,
� and � can be considered as a single system by taking their disjoint union.

3 Weak Bisimilarity with In�nite-State Pro-

cesses

3.1 BPA Processes

We prove that weak bisimilarity is decidable between BPA and �nite-state
processes in polynomial time.

Let E be a BPA process with the underlying system �, F a �nite-state

process with the underlying system � s.t. Const(�) \ Const(�) = ;. To

simplify our considerations, we assume that E is an element of Const(�); if
it is not the case, i.e. if E is of the form Y � where � 2 Const(�)+, we take
a new (fresh) constant X and for every Y

a
! � 2 � we add to � the rule

X
a
! ��. Obviously X � E, because the transition systems generated by X

and E are even isomorphic.

As for �, we also need one special assumption; for all f; g 2 Const(�), a 2 Act

s.t. f 6= g or a 6= � we assume that whenever f
a
) g, then f

a
! g 2 �. If those

`
a
!' transitions are missing in �, we can add them safely. This procedure does

not change � `signi�cantly' in the sense that each state of � remains weakly
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bisimilar to itself after the modi�cation. The number of transitions in � can

of course increase, but it does not in
uence our complexity estimations, since

we always consider the worst case when for all f; g 2 Const(�); a 2 Act there

is a rule f
a
! g in �. The reason why we do not want to add new transitions

of the form f
�
! f will become clear in Section 3.1.1.

In this section, we use upper-case letters X; Y; : : : to denote elements of

Const(�), and lower-case letters f; g; : : : to denote elements of Const(�).

Greek letters �; �; : : : are used to denote the elements of Const(�)�. The

size of � is denoted by n, and the size of � by m (we measure the complexity

of our algorithm in (n;m)).

The set Const(�) can be divided into two disjoint subsets of normed and

unnormed constants (remember that X 2 Const(�) is normed i� X
w
! �

for some w 2 Act�). The set of all normed constants of � is denoted by
Normed(�). In our constructions we also use processes of the form �f ; they
should be seen as BPA processes with the underlying system � [ �.

Our proof can be divided into two parts: �rst we show that the greatest weak
bisimulation between processes of � and � is �nitely representable. There

is a �nite relation of size O(nm2) (called bisimulation base) such that each
pair of weakly bisimilar processes can be generated from that base. It is
interesting that we can design such a relation in spite of the fact that weak

bisimilarity is not a congruence w.r.t. sequential composition for unnormed
processes|to see this, it su�ces to de�ne

X
�
! X; Y

�
! �; Z

a
! Z

Now X � Y , but XZ 6� Y Z. Fortunately, weak bisimilarity is a left-
congruence; whenever � � 
, we also have that �� � �
. Another (trivial)

algebraic law says that whenever X is unnormed, it holds that �X� � �X.
As we shall see, these two properties of weak bisimilarity su�ce for our

purposes. Then we show that the bisimulation base can be computed in

polynomial time. To do that, we have to overcome the fundamental problem

that the set of states which are reachable from a given BPA process in one `
a
)'

step is generally in�nite. We employ a `symbolic' technique to represent such

in�nite sets, taking advantage of the fact that they have a simple (regular)

structure which can be encoded by �nite-state automata.

De�nition 3.1. A relation K is fundamental i� it is a subset of

((Normed(�) � Const(�))� Const(�)) [ (Const(�)� Const(�))

[ ((f�g [ Const(�))� Const(�))

The greatest fundamental relation is denoted by G.
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Note that the size of any fundamental relation is O(nm2). One of the fun-

damental relations is of special importance:

De�nition 3.2. The bisimulation base for � and �, denoted B, is de�ned
as follows:

B = f(Y f; g) j Y f � g; Y 2 Normed(�)g [ f(X; g) j X � gg

[ f(f; g) j f � gg [ f(�; g) j � � gg

As weak bisimilarity is a left congruence w.r.t. sequential composition, we

can `derive' from B new pairs of weakly bisimilar processes by substitution.

This derivation procedure can be de�ned for any fundamental relation as

follows:

De�nition 3.3. Let K be a fundamental relation. The closure of K, de-

noted Cl(K), is the least relationM which satis�es the following conditions:

1. K �M

2. if (f; g) 2 K and (�; f) 2M , then (�; g) 2 M

3. if (f; g) 2 K and (�h; f) 2M , then (�h; g) 2M

4. if (Y f; g) 2 K and (�; f) 2M , then (Y �; g) 2M

5. if (Y f; g) 2 K and (�h; f) 2M , then (Y �h; g) 2M

6. if (�; g) 2M and � contains an unnormed constant, then (��; g),
(��h; g) 2M for every � 2 Const(�)� and h 2 Const(�).

Note that Cl(K) contains elements of just two forms { (�; g) and (�f; g).
The set Cl(K) can be approximated as follows:

� Cl(K)0 = K

� Cl(K)i+1 consists of those pairs which are either contained in Cl(K)i

or can be derived from pairs of Cl(K)i by an immediate application of

one of the rules 2{6 of De�nition 3.3.

Clearly Cl(K) =
S
1

i=0Cl(K)i. We use the Cl(K)i family in some inductive

proofs.

Although the closure of a fundamental relation can be in�nite, its structure

is in some sense regular. This fact is precisely formulated in the following

theorem:
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Theorem 3.4. Let K be a fundamental relation. For each g 2 Const(�)

there is a �nite-state automaton Ag of size O(nm
2) constructible in O(nm2)

time s.t. L(Ag) = f� j (�; g) 2 Cl(K)g [ f�f j (�f; g) 2 Cl(K)g

Proof: We construct a regular grammar of size O(nm2) which generates

the mentioned language. Let Gg = (N;�; �; g) where

� N = ff j f 2 Const(�)g [ fUg

� � = Const(�) [ Const(�)

� � is de�ned as follows:

{ for each (�; h) 2 K we add the rule h! �.

{ for each (f; h) 2 K we add the rules h! f , h! f .

{ for each (Y f; h) 2 K we add the rules h! Y f; h! Y f .

{ for each (X; h) 2 K we add the rule h! X and if X is unnormed,
then we also add the rule h! XU .

{ for each X 2 Const(�), f 2 Const(�) we add the rules U ! XU ,
U ! X, U ! f .

The proof that Gg indeed generates the mentioned language is routine. Now
we translate Gg to Ag (see e.g. [14]). Note that the size of Ag is the same as
the size of Gg; Ag is non-deterministic and can contain �-rules.

As an immediate consequence of the previous theorem we obtain that the
membership to Cl(K) for any fundamental relation K is easily decidable in
polynomial time. Another property of Cl(K) is speci�ed in the lemma below.

Lemma 3.5. Let (�f; g) 2 Cl(K). If (�h; f) 2 Cl(K), then also (��h; g) 2
Cl(K). Similarly, if (�; f) 2 Cl(K), then also (��; g) 2 Cl(K).

Proof: We just give the proof for the �rst claim (the second one is similar).

Let (�f; g) 2 Cl(K)i. By induction on i.

� i = 0. Then (�f; g) 2 K and we can immediately apply the rule 3 or 5

of De�nition 3.3 (remember that � can be �).

� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities

(cf. De�nition 3.3).
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I. There is r s.t. (�f; r) 2 Cl(K)i, (r; g) 2 K. By induction hypoth-

esis we know (��h; r) 2 Cl(K), hence (��h; g) 2 Cl(K) due to

the rule 3 of De�nition 3.3.

II. � = Y 
 and there is r s.t. (Y r; g) 2 K, (
f; r) 2 Cl(K)i. By

induction hypothesis we have (
�h; r) 2 Cl(K), and hence also

(Y 
�h; r) 2 Cl(K) by the rule 5 of De�nition 3.3.

III. � = 
� where (
; g) 2 Cl(K)i and 
 contains an unnormed con-

stant. Then (
��h; g) 2 Cl(K) by the last rule of De�nition 3.3.

The importance of the bisimulation base is clari�ed by the following theorem.

It says that Cl(B) subsumes the greatest weak bisimulation between processes

of � and �.

Theorem 3.6. For all �; f; g we have � � g i� (�; g) 2 Cl(B), and �f � g

i� (�f; g) 2 Cl(B).

Proof: The `if' part is obvious in both cases, as B contains only weakly

bisimilar pairs and all the rules of De�nition 3.3 produce pairs which are again
weakly bisimilar. The `only if' part can, in both cases, be easily proved by
induction on the length of � (we just give the �rst proof; the second one is

similar).

� � = �. Then (�; g) 2 B, hence (�; g) 2 Cl(B).

� � = Y �. If Y is unnormed, then Y � g and (Y; g) 2 B. By the
rule 6 of De�nition 3.3 we obtain (Y �; g) 2 Cl(B). If Y is normed,
then Y �

w
! � for some w 2 Act� and g must be able to match the

sequence w by some g
w
) g0 s.t. � � g0. By substitution we now obtain

that Y g0 � g. Clearly (Y g0; g) 2 B, and (�; g0) 2 Cl(B) by induction

hypothesis. Hence (�; g) 2 Cl(B) due to rule 4 of De�nition 3.3.

Now we concentrate on the problem how to construct the bisimulation base.
Intuitively, the base is computed by `cleaning' G (the greatest fundamental

relation) in a polynomial number of `cleaning steps'. Each such step possibly
deletes some pairs of G (if nothing is deleted, we have found B). The next

de�nition speci�es the condition on which a given pair is not deleted in one

cleaning step from the currently computed approximation of B.

De�nition 3.7. Let K be a fundamental relation. We say that a pair (X; g)

of K expands in K i� the following two conditions hold:
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� for each X
a
! � there is some g

a
) g0 s.t. (�; g0) 2 Cl(K)

� for each g
a
! g0 there is some X

a
) � s.t. (�; g0) 2 Cl(K)

The expansion of a pair of the form (Y f; g), (f; g), (�; g) in K is de�ned in

the same way|for each `
a
!' move of the left component there must be some

`
a
)' move of the right component such that the resulting pair of processes

belongs to Cl(K), and vice versa (note that �
�
) �). The set of all pairs of

K which expand in K is denoted Exp(K).

The notion of expansion is in some sense `compatible' with the de�nition of

weak bisimulation. This intuition is formalized in the following lemma:

Lemma 3.8. Let K be a fundamental relation s.t. Exp(K) = K. Then

Cl(K) is a weak bisimulation.

Proof: We prove that every pair (�; g); (�f; g) of Cl(K)i has the property
that for each `

a
!' move of one component there is a `

a
)' move of the other

component s.t. the resulting pair of processes belongs to Cl(K) (we consider
just pairs of the form (�f; g); the other case is similar). By induction on i.

� i = 0. Then (�f; g) 2 K; as K = Exp(K), the claim follows directly
from the de�nitions.

� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities:

I. There is an h s.t. (�f; h) 2 Cl(K)i, (h; g) 2 K.

Let �f
a
! 
f (note that � can be empty; in this case we have to

consider moves of the form f
a
! f 0. It is done in a similar way

as below). As (�f; h) 2 Cl(K)i, we can use induction hypothesis
and conclude that there is h

a
) h0 s.t. (
f; h0) 2 Cl(K). We

distinguish two cases:
1) a = � and h0 = h. Then (
f; h) 2 Cl(K) and as (h; g) 2 K, we

obtain (
f; g) 2 Cl(K) due to Lemma 3.5. Hence g can use the

move g
�
) g.

2) a 6= � or h 6= h0. Then there is a transition h
a
! h0 (see

the beginning of this section) and as (h; g) 2 K, by induction

hypothesis we know that there is some g
a
) g0 s.t. (h0; g0) 2 Cl(K).

Hence, (
f; g0) 2 Cl(K) due to Lemma 3.5.

Now let g
a
! g0. As (h; g) 2 K, there is h

a
) h0 s.t. (h0; g0) 2

Cl(K). We distinguish two possibilities again:
1) a = � and h0 = h. Then �f can use the move �f

�
) �f ; we have

11



(h; g0) 2 Cl(K) and (�f; h) 2 Cl(K), hence also (�f; g0) 2 Cl(K).

2) a 6= � or h 6= h0. Then h
a
! h0 and as (�f; h) 2 Cl(K)i, there

is �f
a
) 
f (or �f

a
) f 0; it is handled in the same way) s.t.

(
f; h0) 2 Cl(K). Hence also (
f; g0) 2 Cl(K) by Lemma 3.5.

II. � = Y � and there is h s.t. (Y h; g) 2 K, (�f; h) 2 Cl(K)i.

Let Y �f
a
! 
�f . As (Y h; g) 2 K, we can use induction hypoth-

esis and conclude that there is g
a
) g0 s.t. (
h; g0) 2 Cl(K). As

(�f; h) 2 Cl(K), we obtain (
�f; g0) 2 Cl(K) by Lemma 3.5.

Let g
a
! g0. As (Y h; g) 2 K, by induction hypothesis we know

that Y h can match the move g
a
! g0; there are two possibilities:

1) Y h
a
) 
h s.t. (
h; g0) 2 Cl(K). Then also Y �f

a
) 
�f .

As (�f; h) 2 Cl(K), we immediately have (
�f; g0) 2 Cl(K) as

required.

2) Y h
a
) h0 s.t. (h0; g0) 2 Cl(K). The transition Y h

a
) h0 can

be `decomposed' into Y h
x
) h, h

y
) h0 where x = a ^ y = � or

x = � ^ y = a. If y = � and h0 = h, we are done immediately
because then Y �

a
) � and as (h; g0); (�; h) 2 Cl(K), we also have

(�; g0) 2 Cl(K) as needed. If y 6= � or h0 6= h, there is a transition

h
y
! h0. As (�f; h) 2 Cl(K)i, due to induction hypothesis we

know that there is some �f
y
) 
f (or �f

y
) f 0; this is handled

in the same way) with (
f; h0) 2 Cl(K). Clearly Y �f
a
) 
f . As

(h0; g0); (
f; h0) 2 Cl(K), we also have (
f; g0) 2 Cl(K).

III. � = �
 where � contains an unnormed variable and (�; g) 2
Cl(K)i.

Let �
a
! �0. Then �0 = �
 and �

a
! �. As (�; g) 2 Cl(K)i, there

is g
a
) g0 s.t. (�; g0) 2 Cl(K) due to the induction hypothesis.

Clearly � contains an unnormed constant, hence (�
; g0) 2 Cl(K)

by the last rule of De�nition 3.3.

Let g
a
! g0. As (�; g) 2 Cl(K)i, there is �

a
) � s.t. (�; g0) 2

Cl(K) and � contains an unnormed constant. Hence �
a
) �
 and

(�
; g0) 2 Cl(K) due to the last rule of De�nition 3.3.

The notion of expansion also allows to approximate B in the following way:

B0 = G

Bi+1 = Exp(Bi)

Theorem 3.9. There is a j 2 N, bounded by O(nm2), such that Bj = Bj+1.

Moreover, Bj = B.

12



Proof: The Exp (viewed as a function on the complete lattice of fundamen-

tal relations) is monotonic, hence the greatest �xed-point exists and must be

reached after O(nm2) steps, as the size of G is O(nm2). We prove that

Bj = B.

`�:' First, let us realize that B = Exp(B) (it follows immediately from Def-

inition 3.2, De�nition 3.7, and Theorem 3.6). The inclusion B � Bj can be

proved by a simple inductive argument; clearly B � B0, and if B � Bi, we

also have B � Bi+1 by de�nition of the expansion and the fact B = Exp(B).

`�:' As Exp(Bj) = Bj, we know that Cl(Bj) is a weak bisimulation due to

Lemma 3.8. Thus, processes of every pair in Bj are weakly bisimilar.

In other words, B can be obtained from G in O(nm2) cleaning steps which

correspond to the construction of the expansion. The only thing which re-
mains to be shown is that Exp(K) is e�ectively constructible in polynomial

time. To do that, we employ a `symbolic' technique which allows to represent
in�nite subsets of BPA state-space in an elegant and succinct way.

Theorem 3.10. For all X 2 Const(�), a 2 Act(�) there is a �nite-state

automaton A(X;a) of size O(n
2) constructible in O(n2) time s.t. L(A(X;a)) =

f� j X
a
) �g

Proof: We de�ne a left-linear grammarG(X;a) of sizeO(n
2) which generates

the mentioned language. This grammar can be converted to A(X;a) by a
standard algorithm known from automata theory (see e.g. [14]). Note that

the size of A(X;a) is the same as the size of G(X;a). First, let us realize
that we can compute in O(n2) time the sets M� and Ma consisting of all
Y 2 Const(�) s.t. Y

�
) � and Y

a
) �, respectively. Let G(X;a) = (N;�; �; S)

where

� N = fY a; Y � j Y 2 Const(�)g [ fSg. Intuitively, the index indicate

whether the action `a' has been already emitted.

� � = Const(�)

� � is de�ned as follows:

{ we add the rule S ! Xa to �, and if X
a
) � then we also add the

rule S ! �.

{ for every transition Y
a
! Z1: � � � :Zk of � and every i s.t. 1 � i � k

we test whether Zj
�
) � for every 0 � j < i. If this is the case, we

add to � the rules

Y a ! Zi � � �Zk; Y
a ! Z�

i Zi+1 � � �Zk

13



{ for every transition Y
�
! Z1: � � � :Zk of � and every i s.t. 1 � i � k

we do the following:

� we test whether Zj
�
) � for every 0 � j < i. If this is the

case, we add to � the rules

Y a ! Za
i Zi+1 � � �Zk; Y � ! Z�

i Zi+1 � � �Zk; Y � !
Zi � � �Zk

� we test whether there is a t < i such that Zt
a
) � and Zj

�
) �

for every 0 � j < i, j 6= t. If this is the case, we add to � the

rules

Y a ! Z�
i Zi+1 � � �Zk; Y

a ! Zi � � �Zk

The fact that G(X;a) generates the mentioned language is intuitively clear

and a formal proof of that is easy. The size of G(X;a) is O(n
2), as � contains

O(n) basic transitions of length O(n).

The crucial part of our algorithm (the `cleaning procedure') is presented in
the proof of the next theorem. Our complexity analysis is based on the

following facts: Let A = (Q;�; �; q0; F ) be a non-deterministic automaton
with �-rules, and let t be the total number of states and transitions of A.

� The problem whether a given w 2 �� belongs to L(A) is decidable in
O(jwj � t) time.

� The problem whether L(A) = ; is decidable in O(t) time.

Theorem 3.11. Let K be a fundamental relation. The relation Exp(K) can
be e�ectively constructed in O(n4m5) time.

Proof: First we construct the automata Ag of Theorem 3.4 for every g 2
Const(�). This takes O(nm3) time. Then we construct the automata A(X;a)

of Theorem 3.10 for all X; a. This takes O(n4) time. Furthermore, we also

compute the set of all pairs of the form (f; g); (�; g) which belong to Cl(K).

It can be done in O(m2) time. Now we show that for each pair of K we can

decide in O(n3m3) time whether this pair expands in K.

The pairs of the form (f; g) and (�; g) are easy to handle; there are at most
m states f 0 s.t. f

a
! f 0, and at most m states g0 with g

a
) g0, hence we

need to check only O(m2) pairs to verify the �rst (and consequently also

the second) condition of De�nition 3.7. Each such pair can be checked in
constant time, because the set of all pairs (f; g); (�; g) which belong to Cl(K)

has been already computed at the beginning.

14



Now let us consider a pair of the form (Y; g). First we need to verify that

for each Y
a
! � there is some g

a
) h s.t. (�; h) 2 Cl(K). This requires

O(nm) tests whether � 2 L(Ah). As the length of � is O(n) and the size of

Ah is O(nm
2), each such test can be done in O(n2m2) time, hence we need

O(n3m3) time in total. As for the second condition of De�nition 3.7, we need

to �nd out whether for each g
a
! h there is some X

a
) � s.t. (�; h) 2 Cl(K).

To do that, we simply test the emptiness of L(A(X;a)) \ L(Ah). The size of

the product automaton is O(n3m2) and we need to perform only O(m) such

tests, hence the time O(n3m3) su�ces.

Pairs of the form (Y f; g) are handled in a similar way; the �rst condition of

De�nition 3.7 is again no problem, as we are interested only in the `
a
!' moves

of the left component. Now let g
a
! g0. An existence of a `good'

a
) move of

Y f can be veri�ed by testing whether one of the following conditions holds:

� L(A(Y;a)) � ffg \ L(Ag0) is nonempty.

� Y
a
) � and there is some f

�
) f 0 s.t. (f 0; g0) 2 Cl(K).

� Y
�
) � and there is some f

a
) f 0 s.t. (f 0; g0) 2 Cl(K).

All those conditions can be checked in O(n3m3) time (the required analysis

has been in fact done above).

As K contains O(nm2) pairs, the total time which is needed to compute

Exp(K) is O(n4m5).

As the BPA process E (introduced at the beginning of this section) is an
element of Const(�), we have that E � F i� (E; F ) 2 B. To compute B,
we have to perform the computation of the expansion O(nm2) times (see
Theorem 3.9). This gives us the following main theorem:

Theorem 3.12. Weak bisimilarity is decidable between BPA and �nite-state

processes in O(n5m7) time.

3.1.1 Termination-Sensitive Bisimilarity

As we already mentioned in the previous section, weak bisimilarity is not a

congruence w.r.t. sequential composition. This is a major drawback, as any
equivalence which is to be considered as `behavioral' should have this prop-

erty. We propose a solution to this problem by designing a natural re�nement

of weak bisimilarity called termination-sensitive bisimilarity. This relation
respects some of the main features of sequencing which are `overlooked' by
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weak bisimilarity; consequently, it is a congruence w.r.t. sequential com-

position. We also show that termination-sensitive bisimilarity is decidable

between BPA and �nite-state processes in polynomial time by adapting the

method of the previous section.

In our opinion, any `reasonable' model of sequential behaviors should be able

to express (and distinguish) the following `basic phenomenons' of sequencing:

� successful termination of the process which is currently being executed.

The system can then continue to execute the next process in the queue.

� unsuccessful termination of the executed process (deadlock). This mod-

els a severe error which causes the whole system to `get stuck'.

� entering an in�nite internal loop (livelock).

The di�erence between successful and unsuccessful termination is certainly

signi�cant. The need to distinguish between termination and livelock has
also been recognized in practice; major examples come e.g. from the theory

of operating systems.

BPA processes are a very natural model of recursive sequential behaviors.
Successful termination is modeled by reaching `�'. There is also a `hidden'

syntactical tool to model deadlock|note that by de�nition of BPA systems
there can be X 2 Const(�) s.t. � does not contain any rule of the formX

a
!

� (let us call such constants unde�ned). A state X� models the situation

when the executed process reaches a deadlock|there is no transition (no
computational step) from X�, the process is `stuck'. It is easy to see that

we can safely assume that � contains at most one unde�ned constant (the
other ones can be simply renamed to X), which is denoted � by convention
[3]. Note that � is unnormed by de�nition. States of the form �� are called

deadlocked.

In case of �nite-state systems, we can distinguish between successful and

unsuccessful termination in a similar way. Deadlock is modeled by a dis-

tinguished unde�ned constant �, and the other unde�ned constants model
successful termination.

Note that � � � by de�nition of weak bisimilarity. As `�' represents a suc-

cessful termination, this is de�nitely not what we want. Before we de�ne

the promised relation of termination-sensitive bisimilarity, we need to clar-
ify what is meant by livelock; intuitively, it is the situation when a process

enters an in�nite internal loop. In other words, it can do `� ' forever with-

out a possibility to do anything else or to terminate (either successfully or

unsuccessfully).
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De�nition 3.13. A process E is livelocked i� every state F which is reach-

able from E satis�es I(F ) = f�g.

Note that it is easily decidable in quadratic time whether a given BPA process

is livelocked; in case of �nite-state systems we only need linear time.

De�nition 3.14. A binary relationR over process expressions is a termination-

sensitive bisimulation i� whenever (E; F ) 2 R then the following conditions

hold:

� E is deadlocked i� F is deadlocked

� E is livelocked i� F is livelocked

� if E
a
! E 0, then there is F

a
) F 0 s.t. (E 0; F 0) 2 R

� if F
a
! F 0, then there is E

a
) E 0 s.t. (E 0; F 0) 2 R

Processes E; F are termination-sensitive bisimilar, written E ' F , i� there
is a termination-sensitive bisimulation relating them.

The family of 'i approximations is de�ned in the same way as in case of
weak bisimilarity; the only di�erence is that '0 relates exactly those pro-

cesses which satisfy the �rst two requirements of De�nition 3.14. Now it is
straightforward to prove the following theorem:

Theorem 3.15. Termination-sensitive bisimilarity is a congruence w.r.t.

sequential composition.

The technique which has been used in the previous section also works for

termination-sensitive bisimilarity.

Theorem 3.16. Termination-sensitive bisimilarity is decidable between BPA

and �nite-state processes in O(n5m7) time.

Proof: First, all assumptions about � and � which were mentioned at the

beginning of Section 3.1 are also safe w.r.t. termination-sensitive bisimilarity;

note that it would not be true if we also assumed an existence of a � -loop
f

�
! f for every f 2 Const(�). This explains why the assumptions about �

are formulated so carefully. The only thing which has to be modi�ed is the
notion of fundamental relation; it is de�ned in the same way, but in addition

we require that processes of every pair which is contained in a fundamental

relation K are related by '0. It can be easily shown that processes of pairs
contained in Cl(K) are then also related by '0. In other words, we do not

have to take care about the �rst two requirements of De�nition 3.14 in our

constructions anymore; everything works without a single change.
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The previous proof indicates that the `method' of Section 3.1 can be adapted

to other bisimulation-like equivalences. See the �nal section for further com-

ments.

3.2 Normed BPP Processes

In this section we prove that weak bisimilarity is decidable in polynomial time

between normed BPP and �nite-state processes. The basic structure of our

proof is similar to the one for BPA; however, some of the arguments become

more subtle because of commutativity of the parallel operator. Moreover, the

set of states which are reachable from a given BPP state in one `
a
)' move is

no longer regular. As we shall see, it can, in some sense, be represented by

a context-free grammar (in our algorithm we use the facts that emptiness of
a CF language is decidable in polynomial time, and that CF languages are

closed under intersection with regular languages).

Let E be a BPP process and F a �nite-state process with the underlying
systems � and �, respectively. We can assume w.l.o.g. that E 2 Const(�).
Elements of Const(�) are denoted by X; Y; Z; : : :, elements of Const(�) by

f; g; h; : : : The set of all parallel expressions over Const(�) (i.e. the set of all
potentially reachable states of �) is denoted by Const(�)
 and its elements

by Greek letters �; �; : : : The size of � is denoted by n, and the size of � by
m.

In our constructions we represent certain subsets of Const(�)
 by �nite au-
tomata and CF grammars. The problem is that elements of Const(�)
 are

considered modulo commutativity; however, �nite automata and CF gram-
mars of course distinguish between di�erent `permutations' of the same word.
As the classes of regular and CF languages are not closed under permutation,

this problem is important (to see that the mentioned closure properties fail,
consider the grammar S ! abcS j abc. The `permutation' of L(S) consists of
exactly those words in which a; b; c appear equally many times). As we want

to clarify the distinction between � and its possible `linear representations',

we de�ne for each � the set Lin(�) as follows:

Lin(X1k � � � kXk) = fXp(1) � � �Xp(k) j p is a permutation of the set f1; � � � ; kgg

For example, Lin(XkY kZ) = fXY Z; XZY; Y XZ; Y ZX; ZXY; ZY Xg. We
also assume that for each � there is some (unique) element of Lin(�) called

canonical form of � (it is not important how the canonical form is chosen;

we need it just to make some constructions deterministic).

We also need one special assumption on �|for each f 2 Const(�) there is

some f
w
! f 0 s.t. f 0 � �. If E � f , then each state which is reachable from f
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must have this property due to the normedness of � (if this condition is not

satis�ed, we can conclude E 6� f). Those elements of Const(�) which are

not reachable from f can safely be deleted. An immediate consequence of

this assumption is the fact that whenever f1k � � � kfk � g, then there is an h

s.t. f2k � � � kfk � h (remember that `k' is commutative). To see this, realize

that f1k � � � kfk
v
! f 01kf2k � � � kfk for some v 2 Act� s.t. f 01 � �. Hence there

is g
v
) h s.t. f 01kf2k � � � kfk � h. Clearly f 01kf2k � � � kfk � f2k � � � kfk.

De�nition 3.17. A relation K is fundamental i� it is a subset of

(Const(�) [ f�g) � Const(�)

The greatest fundamental relation is denoted by G. The bisimulation base

for � and �, denoted B, is de�ned as follows:

B = f(X; f) j X � fg [ f(�; f) j � � fg

De�nition 3.18. Let K be a fundamental relation. The closure of K, de-
noted Cl(K), is the least relation M which satis�es

1. K �M

2. if (X; g) 2 K, (�; h) 2 M , and f � gkh, then (�kX; f) 2M

3. if (�; g) 2 K, (�; h) 2 M , and f � gkh, then (�; f) 2M

The family of Cl(K)i approximations is de�ned in the same way as in the
previous section.

Lemma 3.19. Let (�; f) 2 Cl(K), (�; g) 2 Cl(K), fkg � h. Then (�k�; h) 2
Cl(K).

Proof: Let (�; f) 2 Cl(K)i. By induction on i.

� i = 0. Then (�; f) 2 K and we can immediately apply the rule 2 or 3

of De�nition 3.18.

� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.

I. � = Xk
 and there are r; s s.t. (X; r) 2 K, (
; s) 2 Cl(K)i,

and rks � f . Clearly rkskg � h, hence also skg � t for some

t. By induction hypothesis we have (
k�; t) 2 Cl(K). Now
(Xk
k�; h) 2 Cl(K) due to the second rule of De�nition 3.18

(note that rkt � h).
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II. (�; r) 2 Cl(K)i and there is some s s.t. (�; s) 2 K and rks � f . As

rkskg � h, there is some t s.t. rkg � t. By induction hypothesis

we obtain (�k�; t) 2 Cl(K), and hence (�k�; h) 2 Cl(K) due to

the third rule of De�nition 3.18.

Again, the closure of the bisimulation base is the greatest weak bisimulation

between processes of � and �.

Theorem 3.20. Let � 2 Const(�)
, f 2 Const(�). We have that � � f

i� (�; f) 2 Cl(B).

Proof: The `if' part is obvious. The `only if' part can be proved by induc-

tion on length(�).

� � = �. Then (�; f) 2 B.

� � = Xk�. As � is normed and Xk� � f , there are w; v 2 Act� s.t.
Xk�

w
! �, Xk�

v
! X. The process f must be able to match the

sequences w; v by entering weakly bisimilar states|there are g; h 2
Const(�) s.t. � � g, X � h, and consequently also f � gkh (here

we need the fact that weak bisimilarity is a congruence w.r.t. the par-
allel operator). Clearly (X; h) 2 B and (�; g) 2 Cl(B) by induction
hypothesis, hence (Xk�; f) 2 Cl(B) by De�nition 3.18.

The closure of any fundamental relation can in some sense be represented by
a �nite-state automaton, as stated in the next theorem. In its construction

we assume that the set f(fkg; h) j fkg � hg has already been computed;
as weak bisimilarity is decidable in cubic time for �nite-state processes (see
Section 2.2) and the size of fkg is O(m2), we need O(m6) time to check

whether fkg � h. As there are O(m3) pairs of this form, the total needed
time is O(m9). As we shall see, the complexity of our algorithm which

decides weak bisimilarity between normed BPP and �nite-state processes is

O(n12m9) even if we were given this set for free. Hence we do not try to

improve the O(m9) bound (although it seems to be possible).

Theorem 3.21. Let K be a fundamental relation. For each g 2 Const(�)
there is a �nite-state automaton Ag of size O(nm) constructible in O(nm)

time s.t. the following conditions hold:

� whenever Ag accepts an element of Lin(�), then (�; g) 2 Cl(K)

� if (�; g) 2 Cl(K), then Ag accepts at least one element of Lin(�)
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Proof: We design a regular grammar of size O(nm) s.t. L(Gg) has the

mentioned properties. Let Gg = (N;�; �; S) where

� N = Const(�) [ fSg

� � = Const(�)

� � is de�ned as follows:

{ for each (X; f) 2 K we add the rule S ! Xf .

{ for each (�; f) 2 K we add the rule S ! f .

{ for all f; r; s 2 Const(�), X 2 Const(�) s.t. (X; r) 2 K, f � rks
we add the rule s! Xf .

{ for all f; r; s 2 Const(�) s.t. (�; r) 2 K, f � rks we add the rule
s! f .

{ we add the rule g ! �.

The �rst claim follows from an observation that whenever we have � 2 Lin(�)
s.t. �f is a sentence of Gg, then (�; f) 2 Cl(K). This can be easily proved

by induction on the length of the derivation of �f . For the second part, it
su�ces to prove that if (�; f) 2 Cl(K)i, then there is � 2 Lin(�) s.t. �f is
a sentence of Gg. It can be done by a straightforward induction on i.

It is important to realize that if (�; g) 2 Cl(K), then Ag does not necessarily

accept all elements of Lin(�). For example, if K = f(X; f); (Y; r); (Z; h)g,
Const(�) = ff; g; h; r; sg with fkr � s, skh � g, and fkh 6� p for any

p 2 Const(�), then Ag accepts the string XY Z but not the string XZY .
Generally, Ag cannot be `repaired' to accept all elements of Lin(�) (see the
beginning of this section). However, there is actually no need to do that,

because Ag has the following nice property:

Lemma 3.22. Let K be a fundamental relation s.t. B � K. If � � g, then

Ag accepts all elements of Lin(�).

Proof: Let Gg be the grammar of the previous proof. First we prove that

for all s; r; f 2 Const(�), 
 2 Const(�)
 s.t. 
 � r, skr � f there is a

derivation s!� 
f in Gg for every 
 2 Lin(
). By induction on length(
).

� 
 = �. As � � r, the pair (�; r) belongs to B. Hence s! f by de�nition

of Gg.
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� Let length(
) = i + 1 and let X� 2 Lin(
). Then 
 is of the form

Xk� where � 2 Lin(�). As Xk� � r and � is normed, there are

u; v 2 Const(�) s.t. X � u, � � v, and ukv � r. Hence we also have

skukv � f , thus sku � t for some t 2 Const(�). As X � u, the pair

(X; u) belongs to B. Clearly s! Xt by de�nition of Gg. As � � v and

vkt � f , we can use the induction hypothesis and conclude t !� �f .

Hence s!� X�f as required.

Now let � � g. As � is normed, there is some r 2 Const(�) s.t. � � r.

Hence (�; r) 2 B and S ! r by de�nition of Gg. Clearly rkg � g and due to

the above proved property we have r!� �g for every � 2 Lin(�). As g ! �

is a rule of Gg, we obtain S ! r !� �g ! �.

The set of states which are reachable from a given X 2 Const(�) in one `
a
)'

move is no longer regular. The next theorem says that this set can, in some
sense, be represented by a CF grammar.

Theorem 3.23. For all X 2 Const(�), a 2 Act(�) there is a context-free

grammar G(X;a) in 3-GNF of size O(n4) constructible in O(n4) time s.t. the

following two conditions hold:

� if G(X;a) generates an element of Lin(�), then X
a
) �

� if X
a
) �, then G(X;a) generates at least one element of Lin(�)

Proof: Let G(X;a) = (N;�; �; Xa) where

� N = fY a; Y � j Y 2 Const(�)g [ fSg

� � = Const(�)

� � is de�ned as follows:

{ the rule S ! Xa is added to �.

{ for each transition Y
a
! Z1k � � � kZk of � we add the rule

Y a ! Z�
1 � � �Z

�
k

(if k = 0, we add the rule Y a ! �).

{ for each transition Y
�
! Z1k � � � kZk of � we add the rule

Y � ! Z�
1 � � �Z

�
k

(if k = 0, we add Y � ! �). Moreover, if k � 1 then for each
1 � i � k we also add the rule

Y a ! Z�
1 � � �Z

a
i � � �Z

�
k
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{ for each Y 2 Const(�) we add the rule

Y � ! Y .

The fact that G(X;a) satis�es the above mentioned conditions follows directly

from its construction. Note that the size of G(X;a) is O(n
2) at the moment.

Now we transform G(X;a) to 3-GNF by a standard procedure of automata

theory (see [14]). It can be done in O(n4) time and the size of resulting

grammar is O(n4).

The notion of expansion is de�ned in a di�erent way (when compared to the

one of the previous section).

De�nition 3.24. Let K be a fundamental relation. We say that a pair

(X; f) 2 K expands in K i� the following two conditions hold:

� for each X
a
! � there is some f

a
) g s.t. � 2 L(Ag), where � is the

canonical form of �.

� for each f
a
! g the language L(Ag) \ L(G(X;a)) is non-empty.

A pair (�; f) 2 K expands in K i� I(f) = f�g and for each f
�
! g we have

that � 2 L(Ag). The set of all pairs of K which expand in K is denoted by

Exp(K).

Theorem 3.25. Let K be a fundamental relation. The set Exp(K) can be

computed in O(n11m8) time.

Proof: First we compute the automata Ag of Theorem 3.21 for all g 2
Const(�). This takes O(nm2) time. Then we compute the grammars G(X;a)

of Theorem 3.23 for all X 2 Const(�), a 2 Act . This takes O(n6) time.

Now we show that it is decidable in O(n10m7) time whether a pair (X; f) of

K expands in K.

The �rst condition of De�nition 3.24 can be checked in O(n3m2) time, as
there are O(n) transitions X

a
! �, O(m) states g s.t. f

a
) g, and for each

such pair (�; g) we verify whether � 2 L(Ag) where � is the canonical form

of �; this membership test can be done in O(n2m) time, as the size of � is
O(n) and the size of Ag is O(nm).

The second condition of De�nition 3.24 is more expensive. To test the empti-
ness of L(Ag)\L(G(X;a)), we �rst construct a pushdown automaton P which

recognizes this language. P has O(m) control states and its total size is

O(n5m). Furthermore, each rule pX
a
! q� of P has the property that
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length(�) � 2, because G(X;a) is in 3-GNF. Now we transform this automa-

ton to an equivalent CF grammar by a well-known procedure described e.g.

in [14]. The size of the resulting grammar is O(n5m3), and its emptiness

can be thus checked in O(n10m6) time (cf. [14]). This construction has to

be performed O(m) times, hence we need O(n10m7) time in total.

Pairs of the form (�; f) are handled in a similar (but less expensive) way. As

K contains O(nm) pairs, the computation of Exp(K) takes O(n11m8) time.

It remains to show that Exp really does what we need.

Theorem 3.26. Let K be a fundamental relation s.t. Exp(K) = K. Then

Cl(K) is a weak bisimulation.

Proof: Let (�; f) 2 Cl(K)i. We prove that for each �
a
! � there is some

f
a
) g s.t. (�; g) 2 Cl(K) and vice versa. By induction on i.

� i = 0. Then (�; f) 2 K, and we can distinguish the following two
possibilities:

1. � = X

Let X
a
! �. By De�nition 3.24 there is f

a
) g s.t. � 2 L(Ag) for

some � 2 Lin(�). Hence (�; g) 2 Cl(K) due to the �rst part of
Theorem 3.4.

Let f
a
! g. By De�nition 3.24 there is some string w 2 L(Ag) \

L(G(X;a)). Let w 2 Lin(�). We have X
a
) � due to the �rst part

of Theorem 3.23, and (�; g) 2 Cl(K) due to Theorem 3.4.

2. � = �

Let f
a
! g. Then a = � and � 2 L(Ag) by De�nition 3.24. Hence

(�; g) 2 Cl(K) due to Theorem 3.4.

� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.

I. � = Xk
 and there are r; s s.t. (X; r) 2 K, (
; s) 2 Cl(K)i, and

rks � f .

Let Xk�
a
! �. The action `a' can be emitted either by X or by

�. We distinguish the two cases.

1) Xk

a
! �k
. As (X; r) 2 K and X

a
! �, there is some r

a
) r0

s.t. (�; r0) 2 Cl(K). As rks � f and r
a
) r0, there is some f

a
) g

s.t. r0ks � g. To sum up, we have (�; r0) 2 Cl(K), (
; s) 2 Cl(K),

r0ks � g, hence (�k
; g) 2 Cl(K) due to Lemma 3.19.
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2) Xk

a
! Xk�. As (
; s) 2 Cl(K)i and 


a
! �, there is s

a
) s0

s.t. (�; s0) 2 Cl(K). As rks � f and s
a
) s0, there is f

a
) g s.t.

(rks0) � g. Due to Lemma 3.19 we obtain (Xk�; g) 2 Cl(K).

Let f
a
! g. As rks � f , there are r

x
) r0, s

y
) s0 where x = a^y =

� or x = � ^ y = a s.t. r0ks0 � g. As (X; r) 2 K, (
; s) 2 Cl(K)i,

there are X
x
) �, 


y
) � s.t. (�; r0); (�; s0) 2 Cl(K). Clearly

Xk

a
) �k� and (�k�; g) 2 Cl(K) due to Lemma 3.19.

II. (�; r) 2 Cl(K)i and there is some s s.t. (�; s) 2 K and rks � f .

The proof can be completed along the same lines as above.

Now we can approximate (and compute) the bisimulation base in the same

way as in the previous section.

Theorem 3.27. There is a j 2 N, bounded by O(nm), such that Bj = Bj+1.

Moreover, Bj = B.

Proof: `�:' It su�ces to show that Exp(B) = B (cf. the proof of Theo-
rem 3.9). Let (�; f) 2 B. Then � � f , and � = X for some X 2 Const(�)

or � = �. We show that (X; f) expands in B (a proof for the pair (�; f) is
similar).

Let X
a
! �. As X � f , there is f

a
) g s.t. � � g. Let � be the canonical

form of �. Due to Lemma 3.22 we have � 2 L(Ag).

Let f
a
! g. As X � f , there is X

a
) � s.t. � � g. Due to Theorem 3.23 there

is � 2 Lin(�) s.t. � 2 L(G(X;a)). Moreover, � 2 L(Ag) due to Lemma 3.22.
Hence, L(Ag) \ L(G(X;a)) is nonempty.

`�:' It follows directly from Theorem 3.26.

We �nish this section with the following (main) theorem:

Theorem 3.28. Weak bisimilarity between normed BPP and �nite-state pro-

cesses is decidable in O(n12m9) time.

Proof: By Theorem 3.27 the computation of the expansion of Theorem 3.25

(which costs O(n11m8) time) has to be done O(nm) times.

4 Conclusions

We have proved that weak bisimilarity is decidable between BPA and �nite-

state processes in O(n5m7) time, and between normed BPP and �nite-state
processes in O(n12m9) time. Although the degrees are rather high, it does
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not necessarily mean that our algorithms are ine�cient; the complexity of

the worst case is not a reliable measure of practical usability. It follows

from the employed techniques that the algorithms are easy to implement

and might be thus evaluated in existing software tools. There are many

possibilities how to improve their performance, and we argue that further

development based on practical experience should bring highly satisfactory

results. The algorithms might be especially useful is those situations when

the intended behavior of a process is easy to specify (by a �nite-state system),

but its actual implementation contains components which are in�nite-state

(e.g. counters or bu�ers).

The technique of bisimulation bases has also been used in [12, 13]. However,

those bases are di�erent from ours; the way how they generate `new' bisimilar

pairs of processes is more complicated, and additional algebraic properties of

strong bisimilarity are exhausted. The main di�culty of those proofs is to
show that the membership to the `closure' of the de�ned bases is decidable in
polynomial time. Our bases are simple, and the main point of the proofs is

the `symbolic' representation of in�nite subsets of BPA and BPP state-space.

We would also like to mention that our proofs can be easily adapted to other

bisimulation-like equivalences, where the notion of `bisimulation-like' equiv-
alence is the one of [16]. A concrete example is termination-sensitive bisimi-
larity of Section 3.1.1. Intuitively, almost every bisimulation-like equivalence

has the algebraic properties which are needed for the construction of the bi-
simulation base, and the `symbolic' technique for state-space representation
can also be adapted. See [16] for details.
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