
Under consideration for publication in Theory and Practice of Logic Programming 1

Equivalence-Checking on Infinite-State Systems:

Techniques and Results

ANTONÍN KUČERA∗

Faculty of Informatics, Masaryk University, Botanická 68a,

CZ-602 00 Brno, Czech Republic.

(e-mail: tony@fi.muni.cz)

PETR JANČAR†

Dept. of Computer Science, FEI, Technical University of Ostrava, 17. listopadu 15,

CZ-708 33 Ostrava, Czech Republic.

(e-mail: Petr.Jancar@vsb.cz)

submitted 28 November 2003; revised 20 September 2004; accepted 10 May 2005

Abstract

The paper presents a selection of recently developed and/or used techniques for equivalence-
checking on infinite-state systems, and an up-to-date overview of existing results (as of
September 2004).

1 Introduction

A reactive system is a system which continuously interacts with its environment

and whose behavior is strongly influenced by this interaction. Reactive systems usu-

ally consist of several asynchronous (but communicating) processes which run in

parallel. This asynchrony, together with unpredictable actions of the environment,

contribute to a high degree of non-determinism. Another characteristic feature is

divergence; a reactive system is often supposed to run forever, though its processes

can be dynamically created and terminated. Since reactive systems control poten-

tially dangerous devices like power plants, airports, weapon systems, etc., there is

a strong need for rigorous methods which allow to prove correctness (or at least

safety) of such systems.

Two popular approaches to formal verification of reactive systems are model-

checking and equivalence-checking. In the model-checking approach, desired prop-

erties of the verified implementation are defined as a formula of a suitable modal

logic, and then it is shown that (a formal model of) the implementation satisfies

the formula. In the equivalence-checking approach, one constructs a formal model

of the intended behavior of the verified system (called specification) and then it is

shown that the implementation is equivalent to the specification.

∗ Supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0021620808.

† Supported by the grant No. 1ET101940420 of the Czech national program “Information society”.

A principal difficulty of automated formal verification is that reactive systems

tend to have a very large state space. There are various strategies for tackling

this problem. For example, the technique of symbolic model-checking introduced

in (Burch et al. 1992) uses a symbolic state-space representation based on OBDD’s

(ordered binary decision diagrams). This method was successfully used for for-

mal verification of hardware circuits. Partial-order reduction (as described, e.g., in

(Clark et al. 1999)) enables a practical verification of concurrent software based on

model-checking with the logic LTL. Though these methods handle systems with

large state spaces, they are still limited to finite-state systems. However, many sys-

tems are (or should be seen as) unbounded, i.e., having a potentially infinite state

space. For example, unbounded data types such as counters, stacks, channels, or

queues, require an infinite number of states. Parametrized systems (e.g., N philoso-

phers, N /M readers/writers, etc.) should also be seen as infinite-state if we want to

show their correctness for every choice of parameters. Another example are systems

with a dynamically evolving structure (e.g., mobile networks).

Model-checking and equivalence-checking on infinite-state systems is a popular

research field which has been attracting attention for almost two decades. Conse-

quently, the collection of achieved results is large and diverse today. There have

been several surveys presenting various subfields of this research area, like (Moller

1996; Esparza 1997; Jančar and Moller 1999; Bouajjani 2001; Srba 2002a), includ-

ing a major Handbook chapter (Burkart et al. 1999). This paper is intended as a

contribution to the collection of surveys, and its aim is twofold. First, it presents a

selection of some recently developed techniques for equivalence-checking on infinite-

state systems which have not yet been fully covered in the existing surveys. The

emphasis is on explaining the core of underlying principles rather than presenting

full proofs of particular results. Second, the paper gives an up-to-date overview of

existing results for equivalence-checking on infinite-state systems (as of September

2004).

The style of presentation adopted in this paper reflects the authors’ intention

to explain “proof techniques” rather than particular proofs. Ideally, this would be

achieved by first formulating a given technique “abstractly”, and then showing how

it applies in concrete situations. In most cases, we provide a detailed explanation

just for the “abstract” part, and then indicate how and where the principle can

be applied without going much into details (just pointing to the relevant litera-

ture). When we feel that the abstract formulation is too vague, the functionality is

demonstrated on concrete examples.

The paper is organized as follows. Section 2 contains basic definitions. Sec-

tion 3 is devoted to the presentation of selected proof techniques. In particular,

Section 3.1 presents general results about the relationship between simulation pre-

order/equivalence and bisimulation equivalence. Subsection 3.1.1 starts by a simple

observation about a specific power of the defender in simulation games. This ob-

servation is then used in a general reduction scheme which allows to (efficiently)

reduce bisimilarity problems to their simulation counterparts. In Subsection 3.1.2

it is shown that there is also a generic “reduction” of the simulation equivalence

problem to the bisimilarity problem. Although this “reduction” is rarely effective

2

(due to fundamental reasons), it reveals a simple and generic relationship between

simulation equivalence and bisimilarity.

Section 3.2 is devoted to selected techniques which have recently been used to

establish new decidability results and upper complexity bounds for equivalence-

checking problems. In Subsection 3.2.1, the technique of bisimulation bases is re-

called (in a somewhat “abstracted” form) and then it is shown how this technique

applies to checking weak bisimilarity between infinite and finite-state systems. In

Subsection 3.2.2, the problem of effective constructibility of characteristic formulae

which express the equivalence with a given finite-state system is examined. First,

well-known results about the constructibility of characteristic formulae in the modal

µ-calculus are recalled. Then, it is shown how to construct characteristic formulae

w.r.t. (strong and weak) bisimilarity in the simpler logic EF. In Subsection 3.2.3,

the so-called DD-functions are presented. This is a recently discovered “tool” used

for several decidability and complexity results.

In Section 3.3 we discuss techniques for undecidability and lower complexity

bounds. A common principle which is used in almost all undecidability and hard-

ness proofs for bisimilarity- and simulation-checking problems is the ability of the

defender to “force” the attacker to perform a specific transition. The variant for

simulation-checking is, in fact, discussed already in Subsection 3.1.1; a similar prin-

ciple exists also for bisimilarity. Since the abstract formulation of the two techniques

does not say much about their applicability, we demonstrate them on selected ex-

amples.

Section 4 contains an up-to-date overview of existing results.

2 Basic Definitions

The set of all non-negative integers 0, 1, 2, . . . is denoted by IN. The symbol ω is

used to denote an infinite amount.

The first step of formal verification is to create a formal model of the verified

system. The low-level semantics of such a model is given by its associated transition

system; in our framework we assume that transitions (between states) are labelled

by actions taken from a finite set.

Definition 1

A transition system is a triple T = (S , Act,→) where S is a set of states, Act is a

finite set of actions, and → ⊆ S×Act×S is a transition relation.

Processes are formally understood as states in transition systems; from now on we

do not distinguish between “states” and “processes”. The dynamics of processes,

i.e., possible computational steps, are defined by the transition relation. We write

s
a
→ t instead of (s , a, t) ∈ →, and say that t is an a-successor of s . This notation

is extended to finite strings over Act in the natural way. A state t is reachable from

a state s , written s →∗ t , if there is w ∈ Act∗ such that s
w
→ t . A transition system

is image-finite if each state has only finitely many a-successors for every a ∈ Act.

The branching degree of a transition system T , denoted d(T), is the least k ∈ IN

3

s t u

a aa
a

a
a

b bbbc c cc

Fig. 1. Processes s, t , and u.

such that every state of T has at most k successors (if there is no such k then

d(T) = ∞).

2.1 Behavioral Equivalences

The notion of process equivalence can be formalized in many different ways (van

Glabbeek 1999; van Glabbeek 1993). A straightforward idea is to employ the clas-

sical notion of language equivalence from automata theory (here we consider all

states as accepting):

Definition 2

Let T = (S , Act,→) be a transition system, s ∈ S . We say that w ∈ Act∗ is a trace

of s iff s
w
→ s ′ for some s ′. Let tr(s) be the set of all traces of s . We write s ⊑tr t iff

tr(s) ⊆ tr(t). Moreover, we say that s and t are trace equivalent, written s =tr t ,

iff tr(s) = tr(t).

In concurrency theory, trace equivalence is usually considered as being too coarse.

For example, the processes s and t of Fig. 1 are trace equivalent but their behavior

is different—s can do either b or c (but not both) after performing a, while t can

always choose between b and c after a. A finer level of “semantical sameness” of

two processes can be defined by formalizing the ability of one process to “mimic”

(or simulate) computational steps of another process.

Definition 3

Let T = (S , Act,→) be a transition system, s , t ∈ S . A binary relation R over S is

a simulation iff whenever (s , t) ∈ R then for every a ∈ Act

if s
a
→ s ′ then t

a
→ t ′ for some t ′ such that (s ′, t ′) ∈ R.

A process s is simulated by a process t , written s ⊑sm t , iff there is a simulation R

such that (s , t) ∈ R. Note that the relation ⊑sm is a preorder. We say that s and

t are simulation equivalent, written s =sm t , iff s ⊑sm t and t ⊑sm s .

For example, for processes of Fig. 1 we have that s ⊑sm t , t 6⊑sm s , and t =sm u.

Simulation preorder and equivalence can also be defined in terms of games (Stir-

ling 2001; Thomas 1993). Imagine there are two tokens put on states s and t . Two

players, the attacker and the defender, start to play a simulation game which con-

sists of (possibly infinite) sequence of rounds, where each round is performed as

follows:

1. the attacker takes the first token (the one which was put on s originally) and

moves it along an arbitrary transition labeled by some a ∈ Act;

4

2. the defender has to respond by moving the other token along some transition

with the same label a.

One player wins if the other player cannot move. Moreover, the defender wins every

infinite play. It is easy to see that s ⊑sm t iff the defender has a universal winning

strategy. Simulation equivalence can be understood similarly; we simply allow the

attacker to choose his token at the beginning of the first round.

The finest (and probably the most important) behavioral equivalence we consider

is bisimulation equivalence (Park 1981; Milner 1989).

Definition 4

Let T = (S , Act,→) be a transition system, s , t ∈ S . A binary relation R over S is

a bisimulation iff whenever (s , t) ∈ R then for every a ∈ Act

• if s
a
→ s ′ then t

a
→ t ′ for some t ′ such that (s ′, t ′) ∈ R,

• if t
a
→ t ′ then s

a
→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Processes s , t are bisimulation equivalent (or bisimilar), written s ∼ t , iff there is

a bisimulation R such that (s , t) ∈ R.

A bisimulation game is defined in the same way as the simulation game. The only

difference is that the attacker can choose his token at the beginning of every round

(the defender has to respond with the other token). Again we have that s ∼ t iff

the defender has a universal winning strategy in the bisimulation game initiated

in s , t . For example, one can check that the processes s , t , u of Fig. 1 are pairwise

non-bisimilar.

Internal computational steps which are not directly observable are by convention

denoted by a special action τ . The notion of weak bisimilarity (Milner 1989) allows

to “ignore” the internal steps to some extent.

Definition 5

Let T = (S , Act,→) be a transition system. The extended transition relation ⇒ ⊆

S×Act×S is defined as follows: s
a
⇒ t iff one of the two conditions holds:

• a 6= τ and there are s ′, s ′′ ∈ S , i , j ∈ IN such that s
τ i

→ s ′
a
→ s ′′

τ j

→ t .

• a = τ and there is i ∈ IN such that s
τ i

→ t .

Here s
τ0

→ s ′ iff s = s ′. In particular, this means that s
τ
⇒ s for every s ∈ S . A

binary relation R over S is a weak bisimulation iff whenever (s , t) ∈ R then for

every a ∈ Act

• if s
a
⇒ s ′ then t

a
⇒ t ′ for some t ′ such that (s ′, t ′) ∈ R,

• if t
a
⇒ t ′ then s

a
⇒ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Processes s , t are weakly bisimulation equivalent (or weakly bisimilar), written

s ≈ t , iff there is a weak bisimulation R such that (s , t) ∈ R.

A weak bisimulation game is defined in the same way as the bisimulation game,

but both players now use the extended transitions.

We say that processes s and t are bisimilar up to i ∈ IN, written s ∼i t , if the

defender has a winning strategy for the first i rounds of the bisimulation game

5

initiated in s and t . It is easy to see that ∼i is an equivalence relation and that

∼i+1 refines ∼i for every i ∈ IN. Also note that s ∼0 t for all processes s , t . An

important observation, taken from (Baeten et al. 1987), is

Theorem 1

Let T = (S , Act,→) be a transition system and let s , t be processes of T such that

each state t ′ reachable from t has only finitely many a-successors for every a ∈ Act

(note that there is no assumption about the process s). Then s ∼ t iff s ∼i t for

every i ∈ IN.

Proof

The “=⇒” is obvious. For the other direction, one can check that the relation

R = {(s ′, t ′) | (∀i ∈ IN : s ′ ∼i t ′) ∧ t →∗ t ′} is a bisimulation: Since t ′ has

finitely many a-successors, for each s ′
a
→ s ′′ there must be some t ′

a
→ t ′′ such that

∀i ∈ IN : s ′′ ∼i t ′′. Now consider a move t ′
a
→ t ′′. Obviously, for each i ∈ IN

there is s ′
a
→ si such that si ∼i t ′′. Each of the s ′

a
→ si moves must be matched

by some transition of t ′. Since t ′ has only finitely many a-successors, there is a

transition t ′
a
→ t ′′′ which was used infinitely many times. That is, there is an

infinite sequence si1 , si2 , . . . such that for each sij we have ∀i ∈ IN : sij ∼i t ′′′. This

means ∀i ∈ IN : t ′′′ ∼i t ′′, and hence for every sij we have ∀i ∈ IN : sij ∼i t ′′.

Weak bisimilarity up to i ∈ IN, denoted ≈i , is defined in the same way (we use the

weak bisimulation game). The aforementioned observations about ∼i are valid also

for ≈i (incl. Theorem 1 where the a-successors are considered w.r.t.
a
⇒).

Behavioral equivalences can also be used to relate processes of different transition

systems. Formally, we can consider two transition systems to be a single one by

taking their disjoint union (the labeling of transitions is preserved).

The relationship among the introduced equivalences is given by =tr ⊃ =sm ⊃ ∼.

Weak bisimilarity properly subsumes ∼ and is incomparable with =tr and =sm. (We

do not consider weak versions of trace equivalence and simulation equivalence in this

paper.) There are also other behavioral preorders and equivalences studied within

the framework of concurrency theory. It seems, however, that trace, simulation,

and especially (weak) bisimulation equivalence are of special importance as their

accompanying theories are developed very intensively. Moreover, each equivalence

in the linear/branching time spectrum of (van Glabbeek 1999) can be classified

either as trace-like or as simulation-like. This means that =tr, =sm, and ∼ are

good representatives for the whole spectrum; techniques and results achieved for

these equivalences usually extend to others.

2.2 Formal Models of Infinite-State Systems

In this section we formally introduce some of the studied models of infinite-state

systems. At a certain level of abstraction, most of them can be seen as various types

of term rewriting systems. The structure of terms represents both control and data

of the system, and the individual rewriting steps model atomic computational steps.

We start with the definition of a general process rewrite system (PRS) (Mayr

6

2000c). Then, we define various subclasses of PRS by imposing certain restrictions

on the introduced formalism.

We assume a countable infinite set C of (process) constants. The abstract syntax

of general process expressions is given by

E ::= X | ε | E · E | E‖E

where the (meta)variable X ranges over C and ε denotes the empty expression.

Intuitively, “·” corresponds to sequencing, while “‖” models a simple form of par-

allelism. From now on we do not distinguish between expressions related by the

structural congruence, which is the smallest congruence over E satisfying the fol-

lowing laws: “·” and “‖” are associative, ε is the unit for both operators, and “‖”

is also commutative.

The set of all process expressions is denoted by E . The sets of sequential and

parallel expressions, denoted S and P , are formed by all process expressions which

do not contain any “‖” and “·”, respectively. Observe that parallel expressions can

also be seen as multisets of constants. Given C′ ⊆ C, we use S(C′), P(C′), and E(C′)

to denote the set of all sequential expressions, parallel expressions, and general

expressions, respectively, which contain only the constants from C′.

We also assume a countable infinite set A of actions, ranged over by a, b, c,

A process rewrite system (PRS) is a finite subset ∆ of E × A × E . Elements of ∆

are called rules (a rule (α, a, β) is usually written α
a
→ β). Given a PRS ∆, we

use C(∆) to denote the set of all constants appearing in the rules of ∆. We also

use S(∆), P(∆), and E(∆) to denote S(C(∆)), P(C(∆)), and E(C(∆)) respectively.

Moreover, A(∆) denotes the set of actions which are used in the rules of ∆.

Each PRS ∆ determines a unique transition system T∆ where E(∆) is the set

of states, A(∆) is the set of actions, and the transition relation is determined by

the following inference rules (which should be understood modulo the structural

congruence over expressions introduced above):

(E
a
→ F) ∈ ∆

E
a
→ F

E
a
→ F

E · G
a
→ F · G

E
a
→ F

E‖G
a
→ F‖G

Various subclasses of PRS can be obtained by imposing certain restrictions on the

form of the rules. Such a restriction is formally specified by a pair (A,B), where

A and B are the subsets of expressions which can appear at the left-hand side

and the right-hand side of rules, respectively. It has been argued in (Mayr 2000c)

that “reasonable” restrictions should satisfy A ⊆ B . Moreover, if ∆ is an (A,B)-

restricted PRS, then the set of states of T∆ is restricted to B ∩ E(∆). Some of the

most important subclasses of PRS are listed below.

• Finite state (FS) systems. These are (C, C)-restricted PRS which correspond

to “ordinary” nondeterministic finite automata; the only difference is that

there are no initial/final states.

• BPA systems. The restriction is (C,S). This model corresponds to the BPA

(Basic Process Algebra) fragment of ACP (Baeten and Weijland 1990).

• BPP systems. The restriction is (C,P). BPP (Basic Parallel Processes) first

appeared in the work (Christensen 1993).

7

• PA systems. The restriction is (C, E). PA (Process Algebra) systems subsume

both BPA and BPP systems and correspond to another natural fragment of

ACP (Baeten and Weijland 1990).

• PDA systems. The restriction is (S,S). It has been shown in (Caucal 1992)

that every PDA system ∆ can be efficiently transformed to a “normal form”

∆′ where

— the set C(∆′) can be partitioned into two disjoint subsets Control(∆′) and

Stack(∆′);

— the rules are of the form p · X
a
→ q · β where p, q ∈ Control(∆′), X ∈

Stack(∆′), and β ∈ S(Stack(∆′));

— the set of states of T∆′ is restricted to those elements of S(∆′) which are

of the form p · α where p ∈ Control(∆′) and α ∈ S(Stack(∆′)).

Hence, PDA systems correspond to pushdown automata (Hopcroft and Ull-

man 1979). Consistently with the standard notation, we write pα instead of

p ·α. Observe that BPA can be also seen as PDA with just one control state.

• PN systems. The restriction is (P ,P). PN systems correspond to the well-

known model of Petri nets. Here the elements of C(∆) are referred to as places

and the states of T∆ (i.e., multisets of places) as markings. In the rest of this

paper we use the standard graphical representation of Petri nets to define

PN systems—places are depicted as circles, and for every rule X1‖ . . . ‖Xn
a
→

Y1‖ . . . ‖Yn we draw a new square labeled by “a”. The square is connected

to every Xi by an arrow pointing to the square, and to every Yj by an arrow

pointing to Yj . For example, the middle part of Fig. 6 represents the rule

Qi‖Cj
dec
→ Ql , the right-hand part represents the rules Qi

zer
→ Qk , Qi‖Cj

zer
→

Q ′
k‖Cj etc.

• PPDA systems. This is a subclass of PN known as “Parallel PushDown Au-

tomata” (Moller 1996). A system ∆ is PPDA if the set C(∆) can be partitioned

into two disjoint subsets Control(∆) and Stack(∆) so that every rule of ∆

is of the form p‖X
a
→ q‖β where p, q ∈ Control(∆), X ∈ Stack(∆), and

β ∈ P(Stack(∆)).

For a PPDA system ∆, the set of states of T∆ is restricted to those elements of

P(∆) which are of the form p‖α where p ∈ Control(∆) and α ∈ P(Stack(∆)).

Usually we write pα instead of p‖α.

• OC-A systems. These are PDA systems in normal form such that Stack(∆) =

{I ,Z} and all transitions are of the form pZ
a
→ qI iZ or rI

a
→ sI j , where

i , j ≥ 0. Here I i denotes the sequential composition of i copies of the symbol

I . The set of states of T∆ is restricted to Q×{I iZ | i ≥ 0}. Hence, OC-A

systems are one-counter automata where the counter ranges over nonnegative

values. The counter can be incremented, decremented (if positive), and tested

for zero.

• OC-N systems. These are OC-A systems which in addition satisfy the follow-

ing condition: if pZ
a
→ qI iZ is a rule of ∆, then also pI

a
→ qI iI is a rule of ∆.

In other words, there are no “zero-specific” transitions which could be used

8

to test the counter for zero. OC-N systems are equivalent to Petri nets with

at most one unbounded place.

Let C be one of the just defined subclasses of PRS. A C-process is a state in T∆

where ∆ is a member of C. The class of all C-processes is denoted C. Important

subclasses of BPA, BPP, and PA systems can be obtained by an extra condition

of normedness. A BPA, BPP, or PA system ∆ is normed if for every X ∈ C(∆) we

have X →∗ ε. Hence, a system is normed if each of its processes can terminate via

a finite number of transitions. The normed subclasses of BPA, BPP, and PA are

denoted by nBPA, nBPP, and nPA, respectively.

Let ≤ be an ordering over process classes defined by C1 ≤ C2 iff for every

C1-process there is a bisimilar C2-process. The relationship among the introduced

subclasses of processes (w.r.t. ≤) is shown in the following figure (we refer to (Moller

1996) for results about expressiveness).

FS

BPPBPA OC-N

OC-A

PA PNPDA

PPDA

Let ≃ be a relation over processes. The problem of deciding ≃ between processes of

process classes A and B is denoted A ≃ B. For example, the problem of deciding

bisimilarity between BPA and BPP processes is denoted BPA ∼ BPP, and the

problem of deciding simulation preorder between PA a FS processes is denoted

PA ⊑sm FS.

3 Some Recent Techniques and Results

In this section we explain some techniques which have recently been used to estab-

lish new decidability/complexity results for equivalence-checking on infinite-state

systems. The material is divided into three (sub)sections. In Section 3.1 we ex-

plore the relationship between bisimilarity and simulation equivalence. Section 3.2

sketches some techniques for decidability and upper complexity bounds. Section 3.3

deals with techniques for undecidability and lower complexity bounds.

The generality and versatility of proof techniques is of course hard to measure. In

the context of equivalence-checking on infinite-state systems, one good indication of

a wider applicability of a given technique is a possibility to formulate its underlying

principle in terms of transition systems (then we can say that the technique is “im-

plemented” in a given syntax). However, such a formulation is not always possible

despite a clear feeling that many proofs are just “instances” of the same idea. Here,

we have to rely on an informal explanation and present an example which uses the

technique in its simple and “clean” form.

9

3.1 The Relationship Between Simulation and Bisimulation

Since formal definitions of simulation and bisimulation are quite similar, a natu-

ral question is whether the decidability/complexity results achieved for one of the

equivalences carry over to the other one. In this section we examine the question

in greater detail.

3.1.1 Reducing Bisimilarity to Simulation Preorder/Equivalence.

According to the known decidability/complexity results for simulation and bisimi-

larity (which will be presented in Section 4), the problems A ⊑sm B and A =sm B

are computationally harder than the problem A ∼ B for all major process classes A

and B. The aim of this section is to show that this is not a pure coincidence—there

are general techniques which allow to (polynomially) reduce bisimilarity to simula-

tion preorder/equivalence over many classes of infinite-state systems. The material

presented in this section is based mainly on (Kučera and Mayr 2002d).

We start with a simple observation about a specific power of the defender in

simulation games. Although the defender moves only his token during a play, his

choice of a defending move can indirectly “force” the attacker to do a specific tran-

sition (with the attacker’s token) in the next round. To illustrate this, we consider

the first two rounds of the simulation game for the states s and t in the transition

system of Fig. 2 (left and middle). After the attacker plays his only a-move, the

s tt

aa aa
a

bb
b

cc
c

tb tc

Act\{b} Act\{c}

ActAct ActAct

Fig. 2. The defender can enforce b or c in the second round.

defender can choose between moving to tb or tc. When he moves to tb, he forces the

attacker to use a b-move in the next round—if the attacker plays any other action,

the defender moves to a state which enables all actions forever and therefore wins.

Similarly, when the defender moves to tc , he forces the attacker to use a c-move. We

say that the b- and c− transitions are enforced by tb and tc , respectively. To sim-

plify our figures, we indicate the states which enforce the actions of their out-going

transitions by black-filled circles. So, the middle part of Fig. 2 can be simplified to

the right-hand part of Fig. 2.

The defender’s ability to enforce the next attacker’s transition is a crucial ingre-

dient of several “hardness proofs” for simulation preorder/equivalence. (We address

this issue in greater detail in Section 3.3 where we also deal with a similar tech-

nique for bisimilarity). Moreover, this was used in (Kučera and Mayr 2002d) to

show that there are general “reduction schemes” allowing for efficient reductions of

the A ∼ B problem to the A ⊑sm B problem for certain process classes A and B.

10

More specifically, such a “reduction scheme” defines for every pair of processes s , t

a new pair of processes s ′, t ′ so that s ∼ t iff s ′ ⊑sm t ′. The scheme is “applicable”

to process classes A and B if for all processes s ∈ A and t ∈ B we have that the s ′

and t ′ are efficiently definable in the syntax of A and B, respectively.

The existing reduction schemes are based on a possibility to emulate one round

of the bisimulation game by one or two rounds of the simulation game. Here, the

above discussed enforcing of transitions is used to emulate the “exchange of tokens”

which can take place in the bisimulation game. To get a better idea on how this

can be done, consider two states s , t of transition systems S and T which have the

same set of actions Act and max{d(S), d(T)} ≤ 3 (i.e., the branching degrees are

at most 3). Further, let us suppose that s and t have just two successors s1, s2 and

t1, t2, respectively (see top of Fig. 3). We show how to emulate one round of the

bisimulation game initiated in s and t by at most two rounds of the simulation

game initiated in (other) states s ′ and t ′ of transition systems S′ and T ′ so that

s ∼ t iff s ′ ⊑sm t ′.

s t

s′ t′

s1

s1 t1

s2

s2 t2

t1 t2

a

a

a a

a

a

a, δa
1

a, δa
2

X

δa
1

δa
1

δa
2

δa
2

δa
3δa

3

δa
3

λa
1
, λa

2
, λa

3

δa
1
, δa

2
, δa

3
, λa

3

Act′

λa
1 λa

1 λa
1

λa
2λa

2λa
2

Fig. 3. The reduction of bisimilarity to simulation preorder. The systems S and T are in
the first row (left and right, resp.), and the systems S ′ and T ′ are in the second row (left
and right, resp.).

Here the systems S′ and T ′ (see Fig. 3) are obtained just by extending S and

T by other states and transitions labeled by fresh actions (the set of actions of S′

and T ′ is denoted by Act′). The definition of S′ (or T ′) depends just on S (or T),

Act, and max{d(S), d(T)}. The rules of the bisimulation game allow the attacker

to choose his token at the beginning of every round. If he plays with the token put

on s (e.g., by performing s
a
→ s1), the emulation is trivial and takes just one round

of the simulation game initiated in s ′ and t ′ (in our case, the attacker would play

s ′
a
→ s ′1 and the defender could also just mimic the response from the bisimulation

game between s and t). Now suppose that the attacker takes the other token and

plays, e.g., t
a
→ t2. In this case, the emulation is slightly more complicated and takes

two rounds. First, the attacker performs the λa
2 -loop on s ′. By doing so, he in fact

says that he wants to emulate the second a-transition of t in T (hence, the λ has a

and 2 as its upper and lower index, respectively). To enable that the attacker can

11

emulate moves from any state (not just t), we provide max{d(S), d(T)} distinct

λx
i -loops for each action x ∈ Act. In Fig. 3 we indicated just those successors of s ′

and t ′ which handle the action a; if there was another b ∈ Act, there would be a

family of analogously constructed λb
i and δbi transitions of s ′ and t ′ even if s and t

have no outgoing b-transitions. As a response to the λa
2 -loop played by the attacker,

the defender can choose a state which enforces either δa1 , δa2 , or δa3 . Intuitively, he

says that he wants to emulate the move to the first/second/third a-successor of s

in S. The δa3 is needed because the defender must be able to act accordingly for any

position of the attacker’s token. This finishes the first round, i.e., the first emulation

phase where each of the two players makes his choice. The purpose of the second

round is to ensure that the resulting position of tokens (after performing the second

round) really corresponds to the choice which has been made. In our scenario, the

attacker is forced to play the chosen δai action; and the only possibility available to

the defender is to go to the state which was previously selected by the λa
2 action,

i.e., to t ′2.

If one of the two players cheats in the first round by trying to emulate a transition

which does not really exist in s or t , the other player wins. For example, if the

attacker performs the λa
3 -loop on s ′ (i.e., he chooses the third a-successor of t

which does not exist), the defender can respond by going to a state which can

simulate everything. Similarly, if the attacker plays λa
1 and the defender enforces

δa3 , the attacker wins in two rounds by performing δa3 and then X. It follows that

s ∼ t iff s ′ ⊑sm t ′.

The above scheme is applicable to process classes A and B if the syntax of

A and B allows to “test for non-enabledness” of transitions. Examples include

PDA, BPA, OC-A, 1-safe Petri nets, finite-state automata, etc. This means that,

e.g., the problem PDA ∼ FS is polynomially reducible to PDA ⊑sm FS and

FS ⊑sm PDA. Moreover, simulation preorder is easily reducible to simulation

equivalence as follows: given processes s and t , we define other processes s ′ and t ′

which have (exactly) the transitions s ′
a
→ s , s ′

a
→ t , and t ′

a
→ t . We see that s ⊑sm t

iff s ′ =sm t ′. This reduction is easily applicable to almost all process classes (thus,

e.g., PDA ∼ FS is polynomially reducible to PDA =sm FS). However, there

are also process classes to which the above scheme is not applicable. For example,

general Petri nets cannot test a place for non-emptiness and therefore we cannot

implement the families of λ and δ transitions in the syntax of Petri nets. However,

the bisimilarity problem for Petri nets is still polynomially reducible to the problem

of simulation preorder/equivalence by employing a different reduction scheme (also

presented in (Kučera and Mayr 2002d)). There are also models (like, e.g., BPP

or PA) where none of the known schemes works. An interesting question is if the

existing schemes can be further generalized so that they cover all “reasonable”

classes of infinite-state systems. A more detailed discussion can be found in (Kučera

and Mayr 2002d).

12

3.1.2 Reducing Simulation Equivalence to Bisimilarity.

The results which will be presented in Section 4 indicate that there cannot be any

general scheme for an efficient reduction of simulation equivalence to bisimilarity.

Nevertheless, there is a general principle which can, in some sense, be seen as such

a “reduction”. Of course, this “reduction” is not effective in general. It can be

effectively applied only in some restricted cases. Nevertheless, it also reveals an in-

teresting relationship between simulation equivalence and bisimilarity and therefore

we present it shortly. This subsection is based on (Kučera and Mayr 2002b).

Let T = (S , Act,→) be an image-finite transition system. A transition s
a
→ t is

maximal iff for every transition of the form s
a
→ t ′ we have that if t ⊑sm t ′ then

also t ′ ⊑sm t . In other words, s
a
→ t is maximal if t is maximal w.r.t. simulation

preorder among all a-successors of s . Note that if the set of all a-successors of s

is nonempty, there must be at least one maximal a-transition from s because T is

image-finite. For example, the only maximal transition of the process u of Fig. 1 is

the middle one.

Definition 6

Let T = (S , Act,→) be an image-finite transition system. We define the system

T̄ = (S̄ , Act, 7→) where S̄ = {s̄ | s ∈ S} and s̄
a
7→ t̄ iff s

a
→ t is a maximal transition

of T .

Hence, T̄ is obtained from T by renaming its states and deleting all non-maximal

transitions. Now consider a simulation game between states s and s̄ . Intuitively,

none of the two players can gain anything by using the non-maximal transitions

because they are surely not the most optimal attacks/defenses. Thus, we obtain

that s =sm s̄ for every s ∈ S . From this we immediately get that s =sm t iff

s̄ =sm t̄ for all s , t ∈ S . Finally, note that if s̄ =sm t̄ then also s̄ ∼ t̄ . To see this,

one can readily check that the relation R = {(s̄, t̄) | s̄ =sm t̄} is a bisimulation. As

a simple consequence of presented observations, we obtain

Theorem 2

Let T be an image-finite transition system. For all s , t ∈ S we have that s =sm t

iff s̄ ∼ t̄ , where s̄ and t̄ are the “twins” of s and t in T̄ , respectively.

Using the previous theorem one can “reduce” certain simulation problems to their

bisimulation counterparts. For example, instead of deciding simulation equivalence

between s and t , we can (in principle) decide bisimilarity between s̄ and t̄ . However,

this “reduction” is rarely effective. If T is generated by a PRS ∆, one cannot

compute another PRS ∆̄ which generates the system T̄ in general. It is not even

clear if such a ∆̄ exists. Nevertheless, the effective construction is possible in some

restricted cases. For example, if ∆ is deterministic, then trivially ∆̄ = ∆. If ∆ is a

FS system, then ∆̄ is constructible in polynomial time because simulation preorder

between the states of T∆ is computable in polynomial time. A less trivial example

are OC-N systems—if ∆ is an OC-N system, then ∆̄ is an effectively definable

OC-A system (Jančar et al. 2000). Hence, certain simulation problems for OC-N

processes are effectively reducible to the corresponding bisimulation problems over

13

OC-A processes, and the decidability of some of them has indeed been established

in this way (Jančar et al. 2000).

3.2 Decidability and Upper Complexity Bounds

3.2.1 Bisimulation Bases.

The technique of bisimulation bases was pioneered by Caucal in (Caucal 1990).

We start by explaining the underlying principle which is to some extent model-

independent. The introduced notions are then illustrated on a concrete example.

Finally, we show how the method applies to weak bisimilarity.

Since the “classical” results about bisimulation bases are carefully presented in

(Burkart et al. 1999), we mention them just shortly. The main point of this section

is the part about weak bisimilarity which is based on recent results (Kučera and

Mayr 2002c).

Definition 7

Let T1 = (S1, Act,→1) and T2 = (S2, Act,→2) be two transition systems; we will

write just → instead of →1, →2. Let R ⊆ S1×S2. We say that a pair (s , t) ∈ S1×S2

expands in R if

• for every s
a
→ s ′ there is some t

a
→ t ′ such that (s ′, t ′) ∈ R;

• for every t
a
→ t ′ there is some s

a
→ s ′ such that (s ′, t ′) ∈ R.

Now let P ,R ⊆ S1×S2. We say that P expands in R if all pairs of P expand in R.

Let C1 and C2 be subclasses of process rewrite systems (not necessarily different),

and let ∆1 ∈ C1 and ∆2 ∈ C2. Further, let

Bis = {(α, β) | α ∈ T∆1
, β ∈ T∆2

, α ∼ β}

be the bisimilarity relation between the processes of ∆1 and ∆2. A bisimulation base

B (for ∆1 and ∆2) is a finite subset of Bis consisting only of “crucial” bisimilar

pairs from which the whole relation Bis can be generated in some “syntactic” way.

More precisely, one defines an operator Gen which for each relation R ⊆ T∆1
×T∆2

returns another relation Gen(R) ⊆ T∆1
× T∆2

so that the following conditions are

satisfied:

(1) Gen(B) = Bis.

(2) Gen is monotonic, i.e., if R ⊆ R′ then Gen(R) ⊆ Gen(R′).

(3) If R is a relation which expands in Gen(R), then also Gen(R) expands in

Gen(R). (In other words, if R expands in Gen(R) then Gen(R) is a bisimu-

lation.)

Of course, finite bisimulation bases, and the associated Gen operators, exist only

for some subclasses C1 and C2 of PRS. If the question whether (α, β) ∈ Gen(R)

is semidecidable (R being finite), then the question whether R expands in Gen(R)

is also semidecidable. Therefore, the problem C1 ∼ C2 is semidecidable—to verify

that α ∼ β, we can run a semidecision procedure which is guaranteed to find a finite

relation R which expands in Gen(R) and for which (α, β) ∈ Gen(R) (on condition

14

that such a relation R exists). If α ∼ β, then this procedure halts because the finite

base B must eventually be found (observe that B has all the required properties).

And if the procedure halts because some relation R satisfying all of the required

properties is found, we can conclude that Gen(R) is a bisimulation (due to (3)

above), hence α ∼ β.

Since the negative subcase C1 6∼ C2 is semidecidable due to generic reasons (see

Theorem 1), we in fact obtain the decidability of the C1 ∼ C2 problem.

Now assume that the membership in Gen(R) is even decidable for every R,

and that for all ∆1 and ∆2 there is an effectively computable relation G which is

guaranteed to subsume the base. Then the base is computable by the algorithm

of Fig. 4. Note that if B ⊆ R, then B expands in Gen(R), because B expands

in Gen(B) and Gen is monotonic (see (2) above). This means that B ⊆ B is an

invariant of the repeat-until loop of the algorithm of Fig. 4. Moreover, if G is

computable in polynomial time (in the size of ∆1 and ∆2), and the membership in

Gen(R) is decidable in polynomial time, then the base is computable in polynomial

time.

Input: Process Rewrite Systems ∆1 ∈ C1, ∆2 ∈ C2.
Output: The base B.

B := G;
repeat

R := B ; B := ∅
for all (α, β) ∈ R do

if (α, β) expands in Gen(R) then B := B ∪ {(α, β)} fi

od;
until B = R

B := B ;

Fig. 4. An algorithm for computing B

Example 1

If C1 = C2 = nBPA and ∆1 = ∆2 = ∆, one can put

B = {(X , α) | X ∈ C(∆), α ∈ S(∆),X ∼ α}

and Gen(R) = Congr(R), where Congr(R) is the least congruence over S(∆) w.r.t.

“·” subsuming R. The B can be over-approximated by a finite relation

G = {(X , α) | X ∈ C(∆), α ∈ S(∆), norm(X) = norm(α)}

where norm(α) is the length of the shortest sequence w ∈ Act∗ such that α
w
→ ε.

Realize that B and G are finite relations because bisimilar processes must have the

same norm and there are only finitely many processes with a given finite norm.

To get some idea on how all this works, let us prove that Gen(B) = Bis. Clearly

Gen(B) ⊆ Bis, because bisimilarity is a congruence over S(∆) w.r.t. “·”. To prove

Bis ⊆ Gen(B), consider some α ∼ β; by induction on norm(α) = norm(β) we

prove that (α, β) ∈ Gen(B). If norm(α) = 1, then α = X for some X and hence

(α, β) ∈ B. Now let norm(α) > 1. Then α = X · γ and β = Y · δ; let us assume

15

that norm(X) ≤ norm(Y) (the other case is symmetric). Let X · γ
w
→ γ where

length(w) = norm(X). The bisimilar process Y · δ must be able to match this

sequence of transitions by some Y · δ
w
→ ξ · δ so that γ ∼ ξ · δ. Observe that

(γ, ξ · δ) ∈ Gen(B) by induction hypothesis. As X · γ ∼ Y · δ and γ ∼ ξ · δ, we also

have X ·ξ ·δ ∼ Y ·δ and thus X ·ξ ∼ Y by applying the right cancellation law which

is admitted by normed BPA processes. This means that (Y ,X · ξ) ∈ B. To sum up,

(γ, ξ ·δ) ∈ Gen(B) and (Y ,X ·ξ) ∈ B, which means that also (X ·γ,Y ·δ) ∈ Gen(B).

The operator Gen is clearly monotonic, and one can show that the condition (3)

above is also satisfied.

From the previous example, it follows that the problem nBPA ∼ nBPA is

decidable. This proof is essentially due to Caucal (Caucal 1990). Later, the structure

of B was further simplified so that its size (and the size of G) became polynomial

in the size of ∆, and a suitable Gen was designed so that the algorithm of Fig. 4

terminates in polynomial time (Hirshfeld et al. 1996a). Hence, nBPA ∼ nBPA

is in P. In (Christensen et al. 1995), it has been shown that a finite bisimulation

base exists also for general (not necessarily normed) BPA processes. This implies the

semidecidability (and hence also the decidability) of the BPA ∼ BPA problem. An

algorithm for computing the bisimulation base for general BPA processes appeared

in (Burkart et al. 1995), and this result led to an elementary upper complexity

bound for the BPA ∼ BPA problem (a later result due to Srba (Srba 2002c)

shows that the problem is PSPACE-hard).

Finite bisimulation bases exist also for BPP processes (Christensen et al. 1993).

In the case of normed BPP processes, the base is small and can be computed in

polynomial time (Hirshfeld et al. 1996b). The general problem BPP ∼ BPP is

PSPACE-hard (Srba 2002b), and in fact PSPACE-complete (Jančar 2003) (see

also Section 3.2.3).

The technique of bisimulation bases works also for weak bisimilarity, if the notion

of expansion is modified as follows:

Definition 8

Let T1 = (S1, Act,→) and T2 = (S2, Act,→) be transition systems, and let R ⊆

S1×S2 be relations. A pair (s , t) ∈ S1 × S2 weakly expands in R if

• for every s
a
→ s ′ there is some t

a
⇒ t ′ such that (s ′, t ′) ∈ R;

• for every t
a
→ t ′ there is some s

a
⇒ s ′ such that (s ′, t ′) ∈ R.

Let P ,R ⊆ S1×S2. We say that P weakly expands in R if all pairs of P weakly

expand in R.

The “asymmetry” which appears in the definition of weak expansion matches the

original definition of weak bisimilarity used in (Milner 1989). The principle would

work also for the “symmetric version” of weak expansion, but the introduced asym-

metry leads to important algorithmic simplifications.

Example 2

Let C1 = BPA, C2 = FS, ∆ be a BPA system and ∆2 a FS system such that

16

C(∆) ∩ C(∆2) = ∅. For technical convenience, we put ∆1 = ∆ ∪ ∆2. Note that ∆1

is a BPA system. Now let

B = {(AX ,Y) | A ∈ C(∆), X ,Y ∈ C(∆2), AX ≈ Y }

∪ {(A,Y) | A ∈ C(∆), Y ∈ C(∆2), A ≈ Y }

∪ {(ε,Y) | Y ∈ C(∆2), ε ≈ Y }

Note that B can be over-approximated by a relation G of size O(|∆1| · |∆2|2) which

consists of all syntactically conformable pairs.

For every relation R ⊆ G we define Gen(R) to be the least relation K (between

states of T∆1
and states of T∆2

) subsuming R such that

• whenever (αX ,Y) ∈ K and (β,X) ∈ K , then also (αβ,Y) ∈ K ;

• whenever (β,X) ∈ K where norm(β) = ∞, then also (βγ,X) ∈ K for all

γ ∈ S(∆1).

One can readily check that Gen(B) = Bis and that Gen is monotonic. The proof

that the condition (3) is also satisfied is more involved and can be found in (Kučera

and Mayr 2002c).

Since the membership in Gen(R) is easily decidable in polynomial time, one is

tempted to conclude that the algorithm of Fig. 4 computes the base in polynomial

time. This is indeed the case, but an additional problem has to be solved first.

Let us consider, e.g., a pair of the form (A,Y) where A ∈ C(∆) and Y ∈ C(∆2).

According to Definition 8, (A,Y) weakly expands in Gen(R) if for every “
a
→” move

of one of the two processes there is a “
a
⇒” move of the other process such that

the resulting pair belongs to Gen(R). The problem is that A can have infinitely

many
a
⇒ successors and hence we cannot simply try them one by one. If we denote

Reacha
A = {α | A

a
⇒ α} and GenX (R) = {α | (α,X) ∈ Gen(R)}, the question

whether for a given Y
a
→ X there is some A

a
⇒ α such that (α,X) ∈ Gen(R)

reduces to the problem of checking whether Reacha
A ∩ GenX (R) = ∅. Since both

sets can be infinite, the key is to find a suitable finite representation for them.

In this case, it suffices to employ finite-state automata—both sets are regular and

the associated finite-state automata are small and efficiently computable. Now the

emptiness of Reacha
A ∩ GenX (R) can be decided in polynomial time by standard

methods of automata theory (Hopcroft and Ullman 1979).

The details can be found in (Kučera and Mayr 2002c), where a similar method is

used to show that also the problem nBPP ∼ FS is decidable in polynomial time.

In this case, the set of states which are reachable from a given BPP process in one

“
a
⇒” move is represented by a context-free grammar. Since the structure of the base

is still regular, one can rely on the standard result saying that the emptiness of the

intersection of a given CF-language and a given regular language can be decided in

polynomial time. Recently, the method for BPA and FS processes described in Ex-

ample 2 was generalized to PDA and FS systems and other behavioral equivalences

(Kučera and Mayr 2004). In (Brázdil et al. 2004), it is shown that the technique of

bisimulation bases is applicable also to probabilistic bisimilarity and probabilistic

extensions of BPA, BPP, and PDA processes.

17

3.2.2 Characteristic Formulae for Finite-State Processes.

The problem of checking a given behavioral equivalence between an infinite-state

process g and a finite-state specification f has recently been identified as an im-

portant subcase of the general equivalence-checking problem. There are two main

reasons why this question attracts a special attention. First, in equivalence-based

verification, one usually compares a “real-life” system with an abstract behav-

ioral specification. A faithful model of the real-life system often requires features

like counters, or subprocess creation, or unbounded buffers, that make the model

infinite-state. On the other hand, the behavioral specification is usually abstract,

hence naturally finite-state. Moreover, infinite-state systems are often abstracted to

finite-state systems even before applying further analytical methods. This approach

naturally subsumes the question if the constructed abstraction is correct (i.e., equiv-

alent to the original system). The second reason is that checking equivalence be-

tween an infinite and a finite-state process is computationally easier than comparing

two infinite-state processes (as also demonstrated by results of Section 4).

In this section we first recall the notion of a characteristic formula and show

how to construct characteristic formulae in the modal µ-calculus (Steffen and

Ingólfsdóttir 1994). Then, we concentrate on bisimulation-like equivalences. We

present a simple theorem which reformulates the problem of bisimilarity between

an infinite and a finite-state process to some kind of “reachability question”. This

approach originated in (Jančar and Moller 1995; Abdulla and Kindahl 1995; Jančar

and Kučera 1997). A more abstract formulation which applies also to weak bisimi-

larity is due to (Jančar et al. 2001). Using this result, we show that characteristic

formulae for finite-state systems w.r.t. bisimulation-like equivalences can also be

constructed in the branching-time logic EF. This logic is much simpler than the

modal µ-calculus, and consequently the model-checking problem with the logic EF

is decidable for many classes of infinite-state systems. Thus, a number of decidabil-

ity/complexity results about checking bisimilarity between infinite and finite-state

processes have been obtained (Jančar et al. 2001).

Definition 9

Let F = (F , Act,→) be a finite-state system, f ∈ F , and ↔ an equivalence over

the class of all processes. Let Cf be the class of all processes s such that the set of

actions of s (in its underlying transition system) is included in Act. A formula ϕ is

characteristic for f w.r.t. ↔ if for every s ∈ Cf we have that s ↔ f iff s satisfies ϕ.

Characteristic formulae w.r.t. ∼i (for given i ∈ IN and Act) are easily definable in

Hennessy-Milner (H.M.) logic (Milner 1989). The syntax of H.M. logic is given by

ϕ ::= tt | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ

where a ranges over actions. Formulae are interpreted over processes; the proposi-

tional connectives have the standard meaning and s |= 〈a〉ϕ iff there is some s
a
→ t

such that t |= ϕ. A formula ¬〈a〉¬ϕ is usually abbreviated to [a]ϕ.

Now consider the transition system of Fig. 5. The behavior of f and h is de-

scribed (up to bisimilarity) by the following recursively defined properties ϕf and

18

a
a, b

b

bf h

Fig. 5. Processes f and h.

ϕh , respectively.

ϕf ≡ 〈a〉ϕf ∧ 〈a〉ϕh ∧ 〈b〉ϕh ∧ [a](ϕf ∨ ϕh) ∧ [b]ϕh

ϕh ≡ 〈b〉ϕf ∧ 〈b〉ϕh ∧ [a]ff ∧ [b](ϕf ∨ ϕh)

These equations can be used to construct characteristic formulae for f and h w.r.t.

∼i ; we inductively define the family of ξfi and ξhi formulae as follows:

ξf0 = tt ξh0 = tt

ξfi+1 = ϕf [ξ
f
i /ϕf , ξ

h
i /ϕh] ξhi+1 = ϕh [ξfi /ϕf , ξ

h
i /ϕh]

Here ϕ[ξ/ψ] denotes the formula obtained from ϕ by replacing each occurrence

of subformula ψ with formula ξ. A straightforward proof confirms that for every

process s ∈ Cf and i ∈ IN we have that s ∼i f iff s |= ξfi , and s ∼i h iff s |= ξhi .

By Theorem 1, this means that
∧∞

i=0 ξ
f
i and

∧∞
i=0 ξ

h
i are characteristic formulae for

f and h w.r.t. ∼, respectively. These infinite conjunctions can be encoded in the

modal µ-calculus (Kozen 1983) by translating the recursive dependence between ϕf

and ϕh into an explicit greatest fixed-point definition; thus, we obtain the formula

Φf .

Φf ≡ νS · 〈a〉S ∧ 〈a〉ϕh ∧ 〈b〉ϕh ∧ [a](S ∨ ϕh) ∧ [b]ϕh where

ϕh ≡ νT · 〈b〉S ∧ 〈b〉T ∧ [a]ff ∧ [b](S ∨ T)

An analogous construction works also for weak bisimilarity. Instead of the “〈a〉”

modality of H.M. logic we employ its “weak form” 〈〈a〉〉 defined by 〈〈a〉〉ϕ ≡ 3τ 〈a〉3τϕ

where s |= 3τϕ iff there is s
τ
⇒ t such that t |= ϕ. Since the “3τ” is expressible

in the modal µ-calculus, one can construct characteristic formulae w.r.t. ≈ in this

logic.

Characteristic formulae w.r.t. simulation equivalence are also easily definable in

the modal µ-calculus. To see this, examine the recursively defined properties ψf , ψh

and ̺f , ̺h :

ψf ≡ 〈a〉ψf ∧ 〈a〉ψh ∧ 〈b〉ψh ̺f ≡ [a](̺f ∨ ̺h) ∧ [b]̺h
ψh ≡ 〈b〉ψf ∧ 〈b〉ψh ̺h ≡ [a]ff ∧ [b](̺f ∨ ̺h)

A closer look reveals that for every s ∈ Cf we have s |= ψf iff f ⊑sm s , and s |= ̺f
iff s ⊑sm f . Hence, s =sm f iff s |= ψf ∧̺f . The formulae ψf and ̺f can be encoded

in the modal µ-calculus similarly as the formula ϕf above.

To sum up, the modal µ-calculus is sufficiently powerful to express characteristic

formulae w.r.t. bisimilarity and simulation equivalence, and the size of these formu-

lae is essentially the same as the size of the underlying transition system of f . Thus,

the problem of checking bisimilarity and simulation equivalence with a finite-state

process is polynomially reducible to the model-checking problem with the modal

µ-calculus. This is applicable to PDA and BPA processes where model-checking

19

the modal µ-calculus is known to be EXPTIME-complete (Walukiewicz 2001);

hence, the problems PDA ∼ FS, PDA ≈ FS, PDA ⊑sm FS, FS ⊑sm PDA, and

PDA =sm FS are in EXPTIME. The bounds for simulation are already tight,

because these problems are also EXPTIME-hard (Kučera and Mayr 2002a). Ac-

tually, this holds even for BPA. However, we can do better for bisimilarity; the

problems PDA ∼ FS and PDA ≈ FS are PSPACE-complete (Mayr 2000b;

Kučera and Mayr 2002a). This requires an application of a different method which

is described below.

If C is a class of processes such that ∼i−1 = ∼i over C × C, then ∼i is a

bisimulation relation and hence ∼i−1 = ∼i = ∼ over C × C. For example, if C

is the set of processes of a finite-state transition system with k states, then surely

∼k−1 = ∼k because any equivalence over C has at most k equivalence classes and

∼i+1 ⊆ ∼i for every i ∈ IN. The same holds for ≈i . The following theorem (Jančar

et al. 2001) presents a simple (but important) observation about the problem of

bisimilarity-checking with finite-state processes.

Theorem 3

Let G = (G, Act,→) be a (general) transition system and F = (F , Act,→) a finite-

state transition system with k states. States g ∈ G and f ∈ F are bisimilar iff the

following conditions hold:

• g ∼k f ;

• for each state g ′ such that g →∗ g ′ there is a state f ′ ∈ F such that g ′ ∼k f ′.

Proof

“=⇒” is obvious. To prove the “⇐=” direction, we show that the relation R ⊆ G×F

given by

R = {(g ′, f ′) | g →∗ g ′ and g ′ ∼k f ′}

is a bisimulation. Let (g ′, f ′) ∈ R and let g ′ a
→ g ′′ for some a ∈ Act (the case when

f ′
a
→ f ′′ is handled in the same way). By definition of ∼k , there is an f ′′ such that

f ′
a
→ f ′′ and g ′′ ∼k−1 f ′′. It suffices to show that g ′′ ∼k f ′′; as g →∗ g ′′, there is a

state f̄ of F such that g ′′ ∼k f̄ . By transitivity of ∼k−1 we have f̄ ∼k−1 f ′′, hence

f̄ ∼k f ′′ (remember that ∼k−1 = ∼k over F × F). Now g ′′ ∼k f̄ ∼k f ′′ and thus

g ′′ ∼k f ′′ as required. Clearly (g, f) ∈ R and the proof is finished.

The previous theorem holds also for weak bisimilarity (we use ≈k instead of ∼k ,

and
a
⇒ instead of

a
→).

Theorem 3 is applicable to a variety of models. Since ∼k is decidable for all “rea-

sonably defined” classes of processes, the problem of bisimilarity-checking between

infinite-state processes of a class C and finite-state processes reduces to a kind of

reachability problem for C—all we need is an algorithm which, for a given process

s of C, decides if s can reach a state s ′ which is not related by ∼k to any state of

the considered finite-state system. In some cases, this is quite easy.

20

Example 3

Let pα be a PDA process. The behavior of PDA processes up to ∼k is determined

by the current control state and the top k symbols of the stack. Hence, for all

processes qβ where the length of β is bounded by k we do the following (re-using the

computational space for each of the exponentially many qβ’s): first we decide if there

is some state f of the given finite-state system such that qβ ∼k f (note that this can

be done in polynomial space). If not, we either decide if pα→∗ qβ (when |β| < k),

or if pα →∗ qβγ for some γ (when |β| = k). This can be done in polynomial time

by employing standard techniques for pushdown automata (Hopcroft and Ullman

1979). Thus, we obtain a polynomial-space algorithm for the problem PDA ∼ FS

(the PSPACE-hardness is due to (Mayr 2000b)).

Similarly, one can handle other models like BPP, PA, or Petri nets; proofs are still

simple but not completely immediate (Jančar and Moller 1995; Jančar and Kučera

1997).

With help of Theorem 3 one can also construct characteristic formulae w.r.t.

strong and weak bisimilarity in the logic EF. This logic is obtained by extending

the H.M. logic with the “3” (reachability) operator; s |= 3ϕ iff there is s →∗ s ′

such that s ′ |= ϕ. For the construction of characteristic formulae w.r.t. ≈, we also

need the aforementioned “3τ” operator to express the “〈〈a〉〉” modality. The dual

operators are 2ϕ ≡ ¬3¬ϕ and 2τϕ ≡ ¬3τ¬ϕ. A characteristic formula Φf for the

process f of Fig. 5 w.r.t. ∼ (or ≈) in the logic EF looks as follows:

Φf ≡ ξfk ∧ 2(ξfk ∨ ξhk) (1)

Here ξfk and ξhk are characteristic formulae for f and h w.r.t. ∼k (or ≈k). Note that,

in general, the size of the formula (1) is exponential in the size of the underlying

transition system of f . However, the size of the DAG1 representing this formula is

only polynomial. This is important because the complexity of many model-checking

algorithms depends on the size of the DAG rather then on the size of the for-

mula itself. Moreover, the DAG representing Φf is computable in polynomial time.

Thus, results about model-checking with the logic EF carry over to the problem of

strong/weak bisimilarity with a finite-state process. For example, model-checking

the logic EF is decidable for PA processes (Mayr 2001) (while model-checking the

modal µ-calculus is undecidable already for BPP), and thus we obtain the decid-

ability of PA ∼ FS and even PA ≈ FS. Since model-checking the logic EF for

PDA is PSPACE-complete (Walukiewicz 2000), we obtain that the PDA ∼ FS

and PDA ≈ FS problems are in PSPACE and hence PSPACE-complete (Kučera

and Mayr 2002a).

Recently, Theorem 3 and the corresponding results about characteristic formulae

have been generalized also to other behavioural equivalences (Kučera and Schnoe-

belen 2004).

1 A DAG (directed acyclic graph or “circuit”) representing a formula ϕ is obtained from the
syntax tree of ϕ by identifying the nodes corresponding to the same subformula.

21

3.2.3 DD-functions

The technique of DD-functions was introduced in (Jančar 2003) in order to show

that the problem BPP ∼ BPP is in PSPACE. Combined with Srba’s result (Srba

2002b), PSPACE-completeness has thus been established. The technique of DD-

functions was then also used in demonstrating the decidability of BPA ∼ BPP

(Jančar et al. 2003).

Let T = (S , Act,→) be a transition system. Stipulating that min ∅ = ω, for all

s , t ∈ S we define the distance from s to t by

dist(s , t) = min
{

length(w) | s
w
→ t

}

.

Here ω denotes an infinite amount. The set IN ∪ {ω} is denoted INω, and we put

ω − n = ω for each n ∈ INω.

DD-functions are defined inductively. First, for every action a we define a function

dda which, for every process s , gives the “distance to disabling” the action a.

Formally,

dda (s) = min
{

dist(s , t) | t has no a-successor
}

.

Given a tuple of (so far defined) DD-functions F = (d1, . . . , dk), we observe that

each transition s
a
→ t determines a change of F , denoted F(t) − F(s), which is a

k -tuple of values from {−1} ∪ INω given by

F(t) −F(s) =
(

d1(t) − d1(s), . . . , dk (t) − dk (s)
)

.

Note that di (s) = ω implies di(t) = ω. For technical reasons, we can then view

di(t) − di(s) as undefined, being interested only in changes of (so far) finite DD-

functions.

The notion of change is used in the inductive step of the definition of DD-

functions. For each triple (a,F , δ), where a is an action, F is a k -tuple of DD-

functions, and δ is a k -tuple of values from {−1}∪ INω, the function dd(a,F ,δ) (dis-

tance to disabling the action a causing the change δ of F) is also a DD-function,

defined by

dd(a,F ,δ)(s) = min
{

dist(s , t) | ∀r : if t
a
→ r then F(r) −F(t) 6= δ

}

.

Here we (implicitly) assume that all functions from F are finite on t , which means

that F(r)−F(t) is defined. Note that the dda functions can be viewed as dd(a,F ,δ)

where F and δ are the empty tuples (i.e., 0-tuples).

It is easy to show that all DD-functions are bisimulation invariant, i.e., s ∼ t

implies d(s) = d(t) for all DD-functions d . So, equality of the values of all DD-

functions is a necessary condition for two states being bisimilar. For image-finite

transition systems, this condition is also sufficient.

Let ∆ be a BPP system. A key observation in (Jančar 2003) reveals that DD-

functions on states of ∆ coincide with “norms” w.r.t. effectively constructible sub-

sets of C(∆). For all Q ⊆ C(∆) and α ∈ P(∆) we define

normQ(α) = min
{

dist(α, β) | β does not contain any constant from Q
}

.

The result of (Jančar 2003) says that for every DD-function d there is some Q ⊆

22

C(∆) such that d(α) = normQ (α) for every α ∈ P(∆). Since there are only finitely

many subsets of C(∆), there are only finitely many DD-functions which are pairwise

different on the states of ∆.

So, to find out if α ∼ β, it suffices to construct the relevant Q ’s and check whether

normQ (α) = normQ (β) for each of them. Although there can be exponentially

many relevant Q ’s, there is an algorithm performing the mentioned checking in

polynomial space (Jančar 2003).

DD-functions were also used in (Jančar et al. 2003) to demonstrate the decid-

ability of BPA ∼ BPP. A key point was to prove that DD-functions are prefix-

encoded over BPA processes, which, roughly speaking, means that large finite values

of DD-functions on BPA processes are tightly related to (i.e., represented by) large

prefixes of these processes. More precisely, given a BPA system ∆, for each DD-

function d there is a constant c such that if c < d(Xα) < ω and X → γ then

d(γα)− d(Xα) = ‖γ‖− ‖X ‖ (where ‖ · ‖ denotes the norm, i.e., ‖β‖ = dist(β, ε)).

Hence, a BPA process cannot perform a (short) sequence of moves causing a differ-

ent change of two large finite DD-values. We say that DD-functions are dependent

over BPA processes, i.e., for every two DD-functions d1, d2 there is c such that if

c < d1(α) < ω, c < d2(α) < ω and α→ β then d1(β) − d1(α) = d2(β) − d2(α).

If we are to find out whether α ∼ β for a BPA process α and a BPP process

β, we can proceed as follows. By using the above mentioned results from (Jančar

2003), one can use standard methods from Petri net theory to show that we can

effectively check whether there are two DD-functions which are not dependent over

the states reachable from β. If there are two such (independent) DD-functions then

β is not bisimilar to any BPA process. If all DD-functions are (pairwise) dependent

then we can show that there is a constant C such that for every γ reachable from

β all finite DD-values which are larger than C coincide (i.e., if c < d1(γ) < ω

and c < d2(γ) < ω, then d1(γ) = d2(γ)). Hence, all “large” DD-values can be

represented by a single number. One can even effectively construct a one-counter

process β′ which is bisimilar to β—the counter is used to represent the “large”

DD-values, while “small” DD-values are remembered in the finite control unit. The

process β′ is generally not definable in the OC-A syntax, because there can be a need

to reset the counter back to zero in a single transition (when the “large” DD-values

change to ω). However, the reset can be easily modeled in PDA syntax by pushing

a new bottom-of-stack symbol. Hence, β′ can be seen as an (effectively definable)

PDA process. In (Jančar et al. 2003), the decidability proof was finished by resorting

to the involved result by Sénizergues (Sénizergues 1998) enabling to verify if α ∼ β′.

(This “heavy machinery” is certainly not necessary for establishing the decidability

of BPA ∼ BPP; the reduction was used just for technical convenience.)

3.3 Undecidability Results and Lower Complexity Bounds

Almost all existing undecidability and hardness proofs for simulation- and bisimilarity-

checking take advantage of the defender’s ability to (indirectly) force the attacker

to do a specific transition. In a simulation game, the defender can “threaten” the

attacker by a possibility to go to a universal state in the way indicated in Fig. 2 (see

23

Section 3.1.1 for further comments). A similar principle can be used also in bisimu-

lation games. Here, the “threat” is based on a possibility to enter a bisimilar state.

Consider processes s , t with transitions s
a
→ s ′, t

a
→ t ′, and t

a
→ t ′′ where s ′ ∼ t ′.

Under these assumptions, the move t
a
→ t ′′ can be seen as the only (hopeful) option

available to the attacker; the other options clearly lead to the defender’s winning.

This simple idea was used implicitly, e.g., in (Jančar 1995a). An explicit formulation

is due to Srba (Srba 2003) who used this technique to establish PSPACE-hardness

of the BPP ∼ BPP and BPA ∼ BPA problems (Srba 2002b; Srba 2002c).

To demonstrate the use (and power) of the above principles, we present selected

undecidability and hardness proofs for concrete models. In Section 3.3.1 we show

that the problem PN ≈ PN is highly undecidable (more concretely, Σ1
1-complete),

and that the problem PA ⊑sm FS is undecidable.

3.3.1 Encodings of Minsky Machines.

As can be expected, the undecidability results in the surveyed area have been

obtained by reductions from the halting problem. As an example, we will recall

the result for bisimilarity over Petri nets from (Jančar 1995b). This example is not

really recent but we will expand it to show how the high undecidability result for

weak bisimilarity from (Jančar 1995a) can be strengthened and made much more

elegant using a recent technique of Srba (Srba 2004).

Minsky counter machines (with their halting problem) are a universal model

which is technically convenient for our reduction. A counter machine M with non-

negative counters c1, · · · , cm is a sequence of instructions

1 : INS1; 2 : INS2; · · · n−1 : INSn−1; n : halt

where each INSi (i = 1, 2, · · ·,n − 1) is in one of the following two forms (assuming

1 ≤ k , l ≤ n, 1 ≤ j ≤ m)

• cj := cj + 1; goto k

• if cj = 0 then goto k else (cj := cj − 1; goto l)

Example 4

PN ∼ PN is undecidable.

Proof

Given a counter machine M with m counters and n instructions, we construct a

Petri net NM with places C1, . . . ,Cm ,Q1, . . . ,Qn ,Q
′
1, . . . ,Q

′
n . Intuitively, C1, . . . ,Cm

correspond to the counters (the number of tokens in Cj represents the value of cj)

and Q1, . . . ,Qn correspond to the control places (i.e., to the instructions)—the

presence of the “control token” in Qi means that INSi is now to be performed.

The places Q ′
1, . . . ,Q

′
n are “copies” of the control places Q1, . . . ,Qn ; their purpose

becomes clear later. The (labelled) transitions of NM are constructed as follows.

• For each instruction i : cj := cj + 1; goto k we add a transition depicted in

Fig. 6 (left); an analogous transition will be also added for the “copy” places

Q ′
i ,Q

′
k .

24

inc dec zerzerzerzer

Cj

Cj Cj

Qi Qi

QℓQk

Qi

Qk

Q ′
i

Q ′
k

Fig. 6. Transitions of the Petri net NM of Example 4

• For each instruction i : if cj = 0 then goto k else (cj := cj −1; goto l)

we add a transition depicted in Fig. 6 (middle), together with an analogous

transition for Q ′
i ,Q

′
ℓ. We also add four transitions with label zer as depicted

in Fig. 6 (right). Note that the two “middle” zer -transitions can be performed

only when Cj is positive but leave Cj unchanged.

• Finally, we add a transition

Qn hlt

which has no counterpart for Q ′
n .

Having the constructed net NM, it is a simple exercise to verify that the marking

with one token in Q1 and zero elsewhere is bisimilar to the marking with one token

in Q ′
1 and zero elsewhere iff the counter machine M halts for the zero initial values

in the counters (which is an undecidable problem). In particular, observe the role

of the previously mentioned forcing—if the attacker performs a move which does

not correspond to a faithful simulation of M (i.e., uses a zer -transition when the

respective cj is nonzero), the defender can “punish” him by reaching an identical

pair of markings (which is clearly a winning position for the defender). So, the only

reasonable option for the attacker is to simulate the computation of the counter

machine. The defender must mimic, and thus the attacker wins exactly when the

machine halts.

The “level of undecidability” of PN ∼ PN is low; this is just a Π0
1-complete

problem in the arithmetical hierarchy (the negative subcase, i.e., the existence of

a winning strategy for the attacker, is easily seen to be semidecidable). Perhaps

somewhat surprisingly, the problem PN ≈ PN turns out to be highly undecidable.

In (Jančar 1995a), it was shown that the problem is beyond the arithmetical hier-

archy, though clearly in the class Σ1
1 of the analytical hierarchy. Now we show that

PN ≈ PN is in fact a Σ1
1-complete problem. This is achieved by modifying the

construction recently presented by Srba (Srba 2004).

A well-known Σ1
1-complete problem is the question whether a given nondetermin-

istic counter machine allows an infinite computation performing the first instruction

infinitely often (the “recurrence problem”). Now we formulate another Σ1
1-complete

problem which better suits our purposes.

Consider “extended” Minsky machines which are defined in the same way as

25

τ

ττ

ττ

τ

τ

a

a

aa

a

Cj

Qi

Q ′
i

Qk

Q ′
k

ver

ver

ver

r i
1 r i

2

r i
3 r i

4

r i
5

Fig. 7. Modelling the instruction i : set cj ; goto k in Example 5

“ordinary” (deterministic) Minsky machines, but the instruction set is extended by

allowing instructions of the form

i : set cj ; goto k

The instruction set cj sets the counter cj to a nondeterministically chosen value

(which can be an arbitrary nonnegative integer). Hence, we have unbounded nonde-

terminism. It is a routine programming exercise to show that the recurrence problem

can be reduced to the problem if there is an infinite computation of our extended

counter machine: The (bounded) nondeterminism can be easily simulated; and we

can add a special counter step which is (programmed to be) set to an arbitrary

value before each performing of the (original) first instruction, and is decremented

before each other (original) instruction—if this is not possible (since step is 0), a

jump to the halting state is performed.

Example 5

PN ≈ PN is Σ1
1-complete.

Proof

Let M be an extended Minsky machine. We construct a Petri net NM by taking the

same sets of places and transitions as in Example 4, and adding further auxiliary

places and transitions to handle instructions of the form i : set cj ; goto k . The

places (r i
1 , r

i
2, r

i
3 , r

i
4, r

i
5) and transitions which are added for a given instruction

i : set cj ; goto k are shown in Fig. 7 (their role is explained in the following

paragraphs).

Let us take two copies N ,N ′ of the constructed net NM, and assume that the

control token is in Qi in N and in Q ′
i in N ′, and the values of counters are the same

in both nets. If the attacker wants to avoid reaching an identical pair of markings,

he is forced to start by the a-move from Qi in N (he moves the control token to r i
1).

The defender then has to move the control token in N ′ from Q ′
i to r i

4 , via the place

r i
3. Observe that while having the control token in r i

3 , the defender could perform a

26

sequence of the respective two τ -transitions and thus set any chosen value to Cj (in

N ′). Now, when the control tokens are in r i
1 (in N) and in r i

4 (in N ′), the attacker

is forced to make the a-move in N ′, shifting the token from r i
4 to Q ′

k (otherwise

the defender could immediately reach an identical pair of markings). The defender

answers by moving the token from r i
1 to Qk (in N) via r i

2 , where he can set Cj (in

N) to any chosen value. (We can safely assume that the instruction k is not another

set-instruction and thus no τ -moves are possible from Qk , Q ′
k . The defender does

not gain anything by leaving the token in r i
2, because the attacker could move the

token to Qk in the next round anyway.) Now, the control tokens are in Qk , Q ′
k and

it was the defender who set values to Cj in both N , N ′. If the defender has set two

different values, the attacker can obviously win by performing a sequence of actions

ver. Otherwise, the correct simulation of a computation of M continues.

Hence, starting with markings M of N and M ′ of N ′, where M and M ′ has just

a token in Q1 and Q ′
1, respectively, it is clear that M ≈ M ′ iff M has an infinite

computation.

Reductions of the halting problem to simulation problems are usually simpler,

because the constructed processes do not have to be “coupled” so tightly as in the

case of bisimilarity. This is demonstrated in the last example of this subsection.

Example 6

PA ⊑sm FS is undecidable.

Proof

Let M be a counter machine with two counters initialized to zero. We construct

a (deterministic) PA process Z1‖Z2 and a deterministic FS process f1 such that

Z1‖Z2 ⊑sm f1 iff M does not halt.

The rules of the underlying system of Z1‖Z2 look as follows:

Z1
z1→ Z1, Z1

i1→ C1 · Z1, C1
i1→ C1 · C1, C1

d1→ ε,

Z2
z2→ Z2, Z2

i2→ C2 · Z2, C2
i2→ C2 · C2, C2

d2→ ε

Hence, Z1‖Z2 is a parallel composition of two counters initialized to zero. The

underlying FS system ∆ of f1 corresponds to the finite control of M. For every

instruction of the form i : cj := cj+1; goto k we have a rule fi
ij
→ fk . For every

instruction of the form i : if cj = 0 then goto k else cj := cj−1; goto l we have

the rules fi
zj
→ fk and fi

dj

→ fl . Then we “enforce” these transitions. That is,

• we add a new constant u together with rules u
a
→ u for every action a;

• for every fi , where i < n, and every action a: If there is no rule fi
a
→ fj for

any fj , then we add a rule fi
a
→ u.

The attacker (who plays with Z1‖Z2) can choose a counter and perform one of

the available operations on it. Since the defender “enforces” the right choice, the

only attacker’s chance is to faithfully emulate the machine M; if M halts, then the

defender is eventually forced to enter the state fn where he loses the game. Hence,

Z1‖Z2 ⊑sm f1 iff M does not halt.

27

3.3.2 Hardness Results.

The use of the “enforced” transitions in hardness proofs will be demonstrated on

two examples. We show that the problems PDA ∼ FS and PDA ⊑sm FS are

PSPACE-hard by reducing the QBF (Quantified Boolean Formula) problem to

each of them. Our objective is to show what has to be done differently in the

two respective cases, i.e., how the two “enforcing” techniques are implemented for

the same models. (Note that the problems PDA ∼ FS and PDA ⊑sm FS are

in fact PSPACE-complete and EXPTIME-complete, respectively (Kučera and

Mayr 2002a)).

For the rest of this section, let us fix a quantified Boolean formula

ϕ ≡ ∀x1∃x2 · · · ∀xn−1∃xn : C1 ∧ · · · ∧Cm

where every Ci is a clause, i.e., a disjunction of possibly negated propositions from

{x1, . . . , xn}. We can safely assume that n is even. The problem whether a given

quantified Boolean formula holds is known to be PSPACE-complete; see, e.g.,

(Papadimitriou 1994).

Example 7

PDA ⊑sm FS is PSPACE-hard.

Proof

Let us consider a process gL1Z of a PDA system with rules

• gLi
a
→ gLi+1Xi , gLi

a
→ gLi+1X̄i for all odd i such that 1 ≤ i < n;

• gLi
b
→ gLi+1Xi , gLi

c
→ gLi+1X̄i for all even i such that 1 ≤ i ≤ n;

• gLn+1
d
→ cj ε for every 1 ≤ j ≤ m;

• cjXi
d
→ cjXi , cj X̄i

d
→ cj ε for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that xi

appears in the clause Cj ;

• cjXi
d
→ cj ε, cj X̄i

d
→ cj X̄i for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that ¬xi

appears in the clause Cj ;

• cjZ
e
→ cjZ for all 1 ≤ j ≤ m.

We claim that the fixed quantified Boolean formula ϕ holds iff gL1Z ⊑sm f , where

f is a finite-state process of the following system:

f

aa

b c

d

Here, the black-filled circles denote the states which enforce the actions of their

outgoing transitions (see Section 3.1). Intuitively, the attacker (who plays with

gL1Z) is responsible for choosing the assignment for variables with odd index, while

the defender (who plays with f) chooses the assignment for variables with even index

by forcing the attacker to do b or c in the next round. After the guessing phase,

the attacker chooses a clause by performing one of the gLn+1
d
→ cj ε transitions and

starts to pop symbols from the stack, trying to find a symbol which witnesses the

28

validity of the chosen clause. If no such symbol is found, the attacker eventually

emits the action e and thus wins the game. Otherwise, he just performs an infinite

number of d ’s and hence the defender wins.

Example 8
The problem PDA ∼ FS is PSPACE-hard.

Proof
For purposes of this proof, let us assume (wlog) that ϕ contains a clause which is

true for every assignment. Let gL1Z be a PDA process defined by

• gLi
a
→ gLi+1Xi , gLi

a
→ gLi+1X̄i for all 1 ≤ i ≤ n;

• gLn+1
c
→ cj ε for every 1 ≤ j ≤ m;

• cjXi
d
→ pε, cj X̄i

d
→ cj ε for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that xi appears

in the clause Cj ;

• cjXi
d
→ cj ε, cj X̄i

d
→ pε for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that ¬xi

appears in the clause Cj ;

• pXi
d
→ pε, pX̄i

d
→ pε for all 1 ≤ i ≤ n;

• cjZ
e
→ cjZ for all 1 ≤ j ≤ m.

Moreover, we also add transitions gLi
a
→ f̄i+1Li for every even i where 1 ≤ i ≤

n, and another family of transitions which ensure that every process of the form

f̄i+1Liα, where 1 ≤ i ≤ n, is bisimilar to the state f̄i+1 in the following finite-state

system:
f1 f2 f3 f4 f5 fn+1

f̄n+1f̄1 f̄2 f̄3 f̄4 f̄5

c

c̄

g1

ḡ1

g2

ḡ2

gn+1

ḡn+1

a

a

aaaaa

aaaaa

c

c d

dd

d

d

d

e

a aa c

We argue that ϕ holds iff gL1Z ∼ f1. The “ideal” scenario for bisimulation game

between the two processes looks as follows: the assignment for variables with odd

index is chosen by the attacker who performs an appropriate a-move in the PDA

process; the defender has to reply by the only available a-move in the finite-state

system. If a variable xi with an even index is to be assigned a value, the attacker

performs the move fi
a
→ fi+1 in the finite-state system. Now we distinguish two

possibilities.

• the formula ∃xi∀xi+1 · · · ∃xn : C1 ∧ · · · ∧ Cm is false after substituting each

occurrence of xj (for all j < i) with its previously assigned value. Then,

the defender chooses some assignment for xi by performing an a-move in

the PDA process, but it does not really matter which one—from this point

on, the attacker can always choose such an assignment for variables with

odd index so that the above given formula is false for every even i . Hence,

the attacker can enforce the game situation when one token is on c and the

chosen assignment falsifies some clause Cj . Then, the attacker performs the

transition gLn+1
c
→ cj ε and the defender has to respond by c

c
→ g1. Now, the

attacker pops symbols from the stack, and since there is no symbol witnessing

the validity of Cj , he eventually emits e and thus he wins.

29

FSFS

BPPBPP BPABPA OC-NOC-N

OC-AOC-A

PAPA PNPN PDAPDA

PPDAPPDA

∼ FS

⊑sm FS, FS ⊑sm, =sm FS

≈ FS

∼

⊑sm, =sm

≈

Fig. 8. The Decidability Border for Equivalence-Checking Problems

• otherwise, the defender chooses the “right” value for xi , keeping a chance that

the final assignment will satisfy all clauses. If the formula ϕ holds, he can thus

enforce the game situation when one token is on c and the assignment stored

in the PDA processes satisfies every clause Cj ; it is easy to check that the

defender wins the game from this configuration.

The construction ensures that the two players do not gain anything by violating the

just specified scenario (a full justification requires a detailed analysis). For example,

the attacker cannot use the transitions fi
a
→ f̄i+1 in the finite-state system because

the defender could go to a bisimilar PDA state.

4 An Overview of Existing Results

In this section we give a brief overview of existing decidability and complexity results

from the area of equivalence-checking on infinite-state processes. Results about the

related regularity problem are also presented (given a process s and a behavioral

equivalence ↔, we ask if s is “regular”, i.e., equivalent to some unspecified finite-

state process).

The decidability border for equivalence-checking on infinite-state processes has

already been determined for some behavioral equivalences. The left-hand part of

Fig. 8 shows the decidability border for the problem C ↔ C, where C is a subclass

of PRS and ↔ one of the ∼, ≈, and =sm equivalences (the decidability of PA ∼

PA, BPA ≈ BPA, and BPP ≈ BPP is still open; this is indicated by dashed

circles because it is not known whether the bordering line goes above or below the

considered class). The right-hand side of Fig. 8 shows the decidability border for

the C ↔ FS problem. Detailed comments are split into several subsections.

4.1 Results for (Weak) Bisimilarity

4.1.1 Bisimilarity-Checking between Infinite-State Systems

The first result indicating that bisimilarity is “more decidable” than trace/language

equivalence is due to Baeten, Bergstra, and Klop (Baeten et al. 1993) who estab-

lished the decidability of bisimilarity for normed BPA processes. The proof is based

on isolating a complex periodicity hidden in the structure of transition systems gen-

erated by normed BPA processes. A simpler proof of this result was later given by

30

Caucal in (Caucal 1990), where the technique of bisimulation bases was introduced.

Another short proof is (Groote 1992). In (Hüttel and Stirling 1998), a sound and

complete tableau-based deductive system for bisimilarity on normed BPA processes

has been designed. The complexity of the problem was first addressed by Huynh

and Tian (Huynh and Tian 1994) who gave a ΣP
2 = NPNP upper bound. Later,

Hirshfeld, Jerrum, and Moller demonstrated that the problem is decidable in poly-

nomial time (Hirshfeld et al. 1996a). The decidability result has been extended to

all (not necessarily normed) BPA processes by Christensen, Hüttel, and Stirling in

(Christensen et al. 1995). Again, it is shown that bisimilarity over all states of a

given BPA system can be represented by a finite bisimulation base. As the decid-

ability result is obtained by a combination of two semidecision procedures, it does

not allow for any complexity estimations. An algorithm with elementary complexity

was given in (Burkart et al. 1995) (the authors mention that some straightforward

optimizations would lead to a doubly exponential algorithm). A technical core of

the result is a procedure which computes a finite bisimulation base for general BPA

processes. Recently, a PSPACE lower bound for the problem BPA ∼ BPA has

been established by Srba in (Srba 2002c). The exact complexity classification is still

missing.

The observation that bisimilarity over processes of a given BPP system is finitely

generated by a bisimulation base is due to Christensen, Hirshfeld, and Moller (Chris-

tensen et al. 1993) who proved the decidability of bisimilarity for BPP processes.

A polynomial-time algorithm for normed BPP processes has been given in (Hir-

shfeld et al. 1996b). The complexity of the general case was addressed by Mayr

in (Mayr 2000a) who gave a coNP-lower bound for the problem, which has been

improved to PSPACE by Srba (Srba 2002b). This result has recently been comple-

mented by Jančar who gave a matching PSPACE upper complexity bound (Jančar

2003), which means that the BPP ∼ BPP problem is PSPACE-complete. When

Jančar’s algorithm is carefully implemented for normed BPP processes, it runs in

time O(n3), as shown in (Jančar and Kot 2004).

The decidability of bisimilarity between normed BPA and normed BPP processes

was proved by Blanco (Blanco 1995) and independently in (Černá et al. 1999). Later,

the result was extended to parallel compositions of normed BPA and normed BPP

processes in (Kučera 2000a). Recently, the decidability of BPA ∼ BPP has been

established in (Jančar et al. 2003). A deep result (Hirshfeld and Jerrum 1999) due

to Hirshfeld and Jerrum says that bisimilarity is decidable for normed PA processes.

The proof is based on the unique decomposition property of normed processes w.r.t.

“·” and “‖”, and hence the method is not applicable to general PA processes.

The semilinear structure of bisimilarity over one-counter processes has been iden-

tified in (Jančar 2000); it allows to conclude that bisimilarity is semidecidable (and

thus decidable) for one-counter processes. However, the problem is computation-

ally intractable even for one-counter nets—DP-hardness of OC-N ∼ OC-N was

demonstrated in (Kučera 2003) (the class DP is expected to be somewhat larger

than the union of NP and coNP). In (Sénizergues 1998), Sénizergues proved that

bisimilarity is decidable for general PDA processes. This also extends a previous

result due to Stirling (Stirling 1998) which says that bisimilarity is decidable for

31

a subclass of PDA processes which can always empty their stack. Sénizergues’s

proof is obtained by adapting the method which previously led to the decidability

of language equivalence for deterministic pushdown automata (Sénizergues 2001).

Recently, Stirling presented a primitive recursive algorithm for the same problem

(Stirling 2002). As for lower bounds, the PDA ∼ PDA problem is known to be

EXPTIME-hard (Kučera and Mayr 2002a).

The undecidability of bisimilarity for Petri nets is due to Jančar (Jančar 1995b).

In fact, the proof (see Example 4) also works for PPDA processes. A related unde-

cidability result is (Schnoebelen 2001) where Schnoebelen proved that bisimilarity

as well as other process equivalences are undecidable for lossy channel systems.

As for weak bisimilarity, many problems are still open. Weak bisimilarity is known

to be semilinear, and thus semidecidable for BPP processes (Esparza 1995). Al-

though the general case is still open, there is a decidability result for the subclass

of totally normed BPP processes (Hirshfeld 1996) (a process is totally normed if

it can reach ε in a finite sequence of transitions, but each such sequence must

contain at least one action different from τ). The best known lower bound for

the BPP ≈ BPP problem is PSPACE (Srba 2003), which is valid also for the

normed subcase (previously, there was an NP (Stř́ıbrná 1998) and ΠP
2 = coNPNP

lower bound (Mayr 2000a)). Weak bisimilarity between totally normed BPA pro-

cesses is also decidable (Hirshfeld 1996). The problem BPA ≈ BPA is known to

be PSPACE-hard (Stř́ıbrná 1998), even in the normed subcase (Srba 2003). Re-

cently, the lower complexity bound for weak bisimilarity on normed BPA has been

improved to EXPTIME in (Mayr 2004). The problem PDA ≈ PDA is already

undecidable (Srba 2002e). This result has been generalized in (Mayr 2003) where it

is shown that even the problem OC-N ≈ OC-N is undecidable. An incomparable

result of (Srba 2002d) shows that PA ≈ PA is also undecidable (Srba 2002d). Weak

bisimilarity between Petri nets is even highly undecidable (i.e., beyond arithmeti-

cal hierarchy) (Jančar 1995a); this result has been strengthened to Σ1
1-completeness

and achieved also for PDA and PA in (Jančar and Srba 2004).

4.1.2 Bisimilarity-Checking between an Infinite and a Finite-State System

The problem has been considered in (Jančar and Moller 1995) where it is shown

that PN ∼ FS is decidable. However, PN ≈ FS is already undecidable (Jančar

and Esparza 1996). The decidability of BPP ≈ FS was shown in (Mayr 1996).

Theorem 3 has been explicitly formulated in (Jančar and Kučera 1997) and (in

a more abstract form) in (Jančar et al. 2001) where it is also shown that weak

bisimilarity is decidable between so-called PAD processes and finite-state ones (the

PAD class subsumes both PA and PDA processes). Complexity results followed—in

(Kučera and Mayr 2002c) it was shown that the problems BPA ≈ FS and nBPP ≈

FS are solvable in polynomial time. The problem BPP ≈ FS is in PSPACE

(Jančar et al. 2001), and the problem BPP ∼ FS is in P(Kot and Sawa 2004). The

problem PDA ∼ FS is PSPACE-hard (Mayr 2000b), and the matching upper

bound for PDA ≈ FS was given in (Kučera and Mayr 2002a), which means that

the problems PDA ∼ FS and PDA ≈ FS are PSPACE-complete. Bisimilarity

32

between one-counter processes and finite-state processes was studied in (Kučera

2003). It is shown that OC-N ≈ FS is DP-hard, while OC-A ∼ FS is solvable in

polynomial time. The decidability of bisimilarity between lossy channel systems and

finite-state systems is due to (Abdulla and Kindahl 1995). However, this problem

(and in fact all non-trivial problems related to formal verification of lossy channel

systems) are of nonprimitive recursive complexity (Schnoebelen 2002).

4.1.3 Regularity-Checking

The decidability of regularity w.r.t. ∼ for Petri nets is due to (Jančar and Esparza

1996). The regularity problem is also decidable for BPA processes (Burkart et al.

1996) and OC-A processes (Jančar 2000). For normed processes, regularity w.r.t.

∼ usually coincides with “syntactical boundedness”, i.e., the question if a given

process can reach infinitely many syntactically distinct states. This condition can

be in some cases checked in polynomial time; it applies, e.g., to normed PA (Kučera

1999) and normed PDA processes. There are also some lower complexity bounds—

regularity-checking w.r.t. ∼ is known to be PSPACE-hard for BPA (Srba 2002c)

and BPP (Srba 2002b) (previously, there was coNP-lower bound for BPP (Mayr

2000a) and PSPACE-lower bound for PDA (Mayr 2000b)). For Petri nets, one

can easily establish the EXPSPACE-lower bound by employing the simulation

of a deterministic exponentially bounded machine due to Lipton (Lipton 1976).

The problem is still open for general PA and PDA processes, though it is clearly

semidecidable because bisimilarity with a (given) finite-state process is decidable

for these models. Regularity w.r.t. ≈ is undecidable for Petri nets (Jančar and Es-

parza 1996) and EXPTIME-hard for PDA (Mayr 2004); for other major models of

infinite-state systems, the problem remains open (it is again at least semidecidable

by applying the same argument as above).

4.2 Results for Simulation and Trace Preorder/Equivalence

4.2.1 Simulation Preorder/Equivalence

As opposed to bisimilarity, simulation preorder/equivalence between infinite-state

processes tends to be undecidable. Since trace preorder and simulation preorder co-

incide over deterministic processes, the undecidability of simulation preorder/equivalence

for BPA processes follows immediately from Friedman’s result (Friedman 1976)

which says that the language inclusion problem for simple grammars is undecid-

able. As for BPP, simulation preorder/equivalence is also undecidable as shown by

Hirshfeld (Hirshfeld 1994). The only known class of infinite-state processes where

simulation preorder/equivalence remains decidable are one-counter nets. The result

has been achieved by Abdulla and Čerāns (Abdulla and Čerāns 1998). A simpler

proof was later given in (Jančar et al. 1999), where it is also shown that simulation

preorder/equivalence for one-counter processes is already undecidable. A DP lower

bound for the OC-N ⊑sm OC-N and OC-N =sm OC-N problems is given in

(Jančar et al. 2004).

33

Deciding simulation between an infinite and a finite-state system is computa-

tionally easier. The decidability of PN ⊑sm FS, FS ⊑sm PN (and thus also

PN =sm FS) is due to (Jančar and Moller 1995). Simulation between lossy chan-

nel systems and finite systems is also decidable (in both directions) (Abdulla and

Kindahl 1995). The result of (Schnoebelen 2002) implies that this problem is of non-

primitive recursive complexity A more general argument showing the decidability

of simulation between processes of the so-called well-structured transition systems

and finite-state processes has been presented in (Abdulla et al. 1996).

The decidability/tractability border for the problem has been established in

(Kučera and Mayr 2002b). It is shown that PDA ⊑sm FS and FS ⊑sm PDA

are in EXPTIME, and that PA ⊑sm FS and FS ⊑sm PA are already un-

decidable. Moreover, the following lower bounds are given: FS ⊑sm BPA and

FS ⊑sm BPP are PSPACE-hard, and BPA ⊑sm FS and BPP ⊑sm FS (thus

also for BPA =sm FS and BPP =sm FS) are coNP-hard. Recently (Kučera and

Mayr 2002a), the simulation preorder/equivalence problem between a BPA/PDA

process and a finite-state process was shown to be EXPTIME-complete (for both

directions of simulation preorder). In this case, the only difference between PDA and

BPA (from the complexity point of view) is that simulation preorder/equivalence

between PDA and FS is EXPTIME-complete even for a fixed finite-state pro-

cess, while simulation between a BPA and any fixed finite-state process f is decid-

able in polynomial time (Kučera and Mayr 2002a). Other tractable problems are

OC-N ⊑sm FS, FS ⊑sm OC-N, and OC-N =sm FS, which are all decidable

in polynomial time (Kučera 2000b). However, OC-A ⊑sm FS, FS ⊑sm OC-A,

and OC-A =sm FS are already DP-hard (Kučera 2000b; Jančar et al. 2004). As

for regularity-checking w.r.t. =sm, the problem is known to be decidable for OC-N

processes (Jančar et al. 2000), and undecidable for Petri nets (Jančar and Moller

1995) and PA processes (Kučera and Mayr 2002b).

4.2.2 Trace Preorder/Equivalence

Since trace preorder/equivalence are closely related to language inclusion/equivalence

of automata theory (Hopcroft and Ullman 1979), all (un)decidability results about

BPA and PDA processes follow easily from the “classical” ones. It means that al-

most all problems are undecidable; the only notable exception is the PDA ⊑tr FS

problem which is decidable. The undecidability of trace preorder/equivalence be-

tween BPP processes is due to (Hirshfeld 1994).

Trace preorder/equivalence with a finite-state system is undecidable for BPA and

PDA, but decidable for Petri nets; PN ⊑tr FS and FS ⊑tr PN are decidable as

shown in (Jančar and Moller 1995). In the same paper it is shown that regularity

w.r.t. =tr is undecidable for Petri nets.

4.2.3 Acknowledgment

We thank Jǐŕı Srba for his many useful comments and suggestions.

34

References

Abdulla, P. and Čerāns, K. 1998. Simulation is decidable for one-counter nets. In
Proceedings of CONCUR’98. Lecture Notes in Computer Science, vol. 1466. Springer,
253–268.

Abdulla, P., Čerāns, K., Jonsson, B., and Tsay, Y.-K. 1996. General decidability
theorems for infinite-state systems. In Proceedings of LICS’96. IEEE Computer Society
Press, 160–170.

Abdulla, P. and Kindahl, M. 1995. Decidability of simulation and bisimulation between
lossy channel systems and finite state systems. In Proceedings of CONCUR’95. Lecture
Notes in Computer Science, vol. 962. Springer, 333–347.

Baeten, J., Bergstra, J., and Klop, J. 1987. On the consistency of Koomen’s fair
abstraction rule. Theoretical Computer Science 51, 1, 129–176.

Baeten, J., Bergstra, J., and Klop, J. 1993. Decidability of bisimulation equival-
ence for processes generating context-free languages. Journal of the Association for
Computing Machinery 40, 3, 653–682.

Baeten, J. and Weijland, W. 1990. Process Algebra. Number 18 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press.

Blanco, J. 1995. Normed BPP and BPA. In Proceedings of ACP’94. Workshops in
Computing. Springer, 242–251.

Bouajjani, A. 2001. Languages, rewriting systems, and verification of infinite-state sys-
tems. In Proceedings of ICALP’2001. Lecture Notes in Computer Science, vol. 2076.
Springer, 24–39.

Brázdil, T., Kučera, A., and Stražovský, O. 2004. Deciding probabilistic bisimilarity
over infinite-state probabilistic systems. In Proceedings of CONCUR 2004. Lecture
Notes in Computer Science, vol. 3170. Springer, 193–208.

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. 1992. Symbolic
model checking: 1020 states and beyond. Information and Computation 98, 2, 142–170.

Burkart, O., Caucal, D., Moller, F., and Steffen, B. 1999. Verification on infinite
structures. Handbook of Process Algebra, 545–623.

Burkart, O., Caucal, D., and Steffen, B. 1995. An elementary decision procedure for
arbitrary context-free processes. In Proceedings of MFCS’95. Lecture Notes in Computer
Science, vol. 969. Springer, 423–433.

Burkart, O., Caucal, D., and Steffen, B. 1996. Bisimulation collapse and the process
taxonomy. In Proceedings of CONCUR’96. Lecture Notes in Computer Science, vol.
1119. Springer, 247–262.

Caucal, D. 1990. Graphes canoniques des graphes algébriques. Informatique Théorique
et Applications (RAIRO) 24, 4, 339–352.

Caucal, D. 1992. On the regular structure of prefix rewriting. Theoretical Computer
Science 106, 61–86.

Černá, I., Křet́ınský, M., and Kučera, A. 1999. Comparing expressibility of normed
BPA and normed BPP processes. Acta Informatica 36, 3, 233–256.

Christensen, S. 1993. Decidability and decomposition in process algebras. Ph.D. thesis,
The University of Edinburgh.

Christensen, S., Hirshfeld, Y., and Moller, F. 1993. Bisimulation is decidable for
all basic parallel processes. In Proceedings of CONCUR’93. Lecture Notes in Computer
Science, vol. 715. Springer, 143–157.

Christensen, S., Hüttel, H., and Stirling, C. 1995. Bisimulation equivalence is
decidable for all context-free processes. Information and Computation 121, 143–148.

Clark, E., Grumberg, O., and Peled, D. 1999. Model Checking. The MIT Press.

35

Esparza, J. 1995. Petri nets, commutative context-free grammars, and basic parallel
processes. In Proceedings of FCT’95. Lecture Notes in Computer Science, vol. 965.
Springer, 221–232.

Esparza, J. 1997. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica 34, 85–107.

Friedman, E. 1976. The inclusion problem for simple languages. Theoretical Computer
Science 1, 4, 297–316.

Groote, J. 1992. A short proof of the decidability of bisimulation for normed BPA
processes. Information Processing Letters 42, 167–171.

Hirshfeld, Y. 1994. Petri nets and the equivalence problem. In Proceedings of CSL’93.
Lecture Notes in Computer Science, vol. 832. Springer, 165–174.

Hirshfeld, Y. 1996. Bisimulation trees and the decidability of weak bisimulations. Elec-
tronic Notes in Theoretical Computer Science 5.

Hirshfeld, Y. and Jerrum, M. 1999. Bisimulation equivalence is decidable for normed
process algebra. In Proceedings of ICALP’99. Lecture Notes in Computer Science, vol.
1644. Springer, 412–421.

Hirshfeld, Y., Jerrum, M., and Moller, F. 1996a. A polynomial algorithm for decid-
ing bisimilarity of normed context-free processes. Theoretical Computer Science 158, 1–
2, 143–159.

Hirshfeld, Y., Jerrum, M., and Moller, F. 1996b. A polynomial algorithm for decid-
ing bisimulation equivalence of normed basic parallel processes. Mathematical Struc-
tures in Computer Science 6, 3, 251–259.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Hüttel, H. and Stirling, C. 1998. Actions speak louder than words: Proving bisimi-
larity for context-free processes. Journal of Logic and Computation 8, 4, 485–509.

Huynh, D. and Tian, L. 1994. Deciding bisimilarity of normed context-free processes is
in ΣP

2 . Theoretical Computer Science 123, 183–197.

Jančar, P. 1995a. High undecidability of weak bisimilarity for Petri nets. In Proceedings
of CAAP’95. Lecture Notes in Computer Science, vol. 915. Springer, 349–363.

Jančar, P. 1995b. Undecidability of bisimilarity for Petri nets and some related problems.
Theoretical Computer Science 148, 2, 281–301.

Jančar, P. 2000. Decidability of bisimilarity for one-counter processes. Information and
Computation 158, 1, 1–17.

Jančar, P. 2003. Strong bisimilarity on basic parallel processes is PSPACE-complete. In
Proceedings of LICS 2003. IEEE Computer Society Press, 218–227.

Jančar, P. and Esparza, J. 1996. Deciding finiteness of Petri nets up to bisimilarity.
In Proceedings of ICALP’96. Lecture Notes in Computer Science, vol. 1099. Springer,
478–489.

Jančar, P. and Kot, M. 2004. Bisimilarity on normed Basic Parallel Processes can be
decided in time O(n3). In Proceedings of Third International Workshop on Automated
Verification of Infinite-State Systems (AVIS’04).

Jančar, P. and Kučera, A. 1997. Bisimilarity of processes with finite-state systems.
Electronic Notes in Theoretical Computer Science 9.

Jančar, P., Kučera, A., and Mayr, R. 2001. Deciding bisimulation-like equivalences
with finite-state processes. Theoretical Computer Science 258, 1–2, 409–433.

Jančar, P., Kučera, A., and Moller, F. 2000. Simulation and bisimulation over one-
counter processes. In Proceedings of STACS’2000. Lecture Notes in Computer Science,
vol. 1770. Springer, 334–345.

36

Jančar, P., Kučera, A., and Moller, F. 2003. Deciding bisimilarity between BPA and
BPP processes. In Proceedings of CONCUR 2003. Lecture Notes in Computer Science,
vol. 2761. Springer, 159–173.

Jančar, P., Kučera, A., Moller, F., and Sawa, Z. 2004. DP lower bounds for
equivalence-checking and model-checking of one-counter automata. Information and
Computation 188, 1, 1–19.

Jančar, P. and Moller, F. 1995. Checking regular properties of Petri nets. In Proceed-
ings of CONCUR’95. Lecture Notes in Computer Science, vol. 962. Springer, 348–362.

Jančar, P. and Moller, F. 1999. Techniques for decidability and undecidability of
bisimilarity. In Proceedings of CONCUR’99. Lecture Notes in Computer Science, vol.
1664. Springer, 30–45.

Jančar, P., Moller, F., and Sawa, Z. 1999. Simulation problems for one-counter
machines. In Proceedings of SOFSEM’99. Lecture Notes in Computer Science, vol.
1725. Springer, 404–413.

Jančar, P. and Srba, J. 2004. Highly undecidable questions for process algebras. In
Proceedings of IFIP TCS’2004. Kluwer, 507–520.

Kot, M. and Sawa, Z. 2004. Bisimulation equivalence of a BPP and a finite state system
can be decided in polynomial time. In Proceedings of INFINITY’2004, J. Bradfield and
F. Moller, Eds. 73–82.

Kozen, D. 1983. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence 27, 333–354.

Kučera, A. 1999. Regularity of normed PA processes. Information Processing Let-
ters 72, 1–2, 9–17.

Kučera, A. 2000a. Effective decomposability of sequential behaviours. Theoretical Com-
puter Science 242, 1–2, 71–89.

Kučera, A. 2000b. On simulation-checking with sequential systems. In Proceedings of
ASIAN 2000. Lecture Notes in Computer Science, vol. 1961. Springer, 133–148.

Kučera, A. 2003. The complexity of bisimilarity-checking for one-counter processes.
Theoretical Computer Science 304, 1–3, 157–183.

Kučera, A. and Mayr, R. 2002a. On the complexity of semantic equivalences for push-
down automata and BPA. In Proceedings of MFCS 2002. Lecture Notes in Computer
Science, vol. 2420. Springer, 433–445.

Kučera, A. and Mayr, R. 2002b. Simulation preorder over simple process algebras.
Information and Computation 173, 2, 184–198.

Kučera, A. and Mayr, R. 2002c. Weak bisimilarity between finite-state systems and
BPA or normed BPP is decidable in polynomial time. Theoretical Computer Sci-
ence 270, 1–2, 677–700.

Kučera, A. and Mayr, R. 2002d. Why is simulation harder than bisimulation? In
Proceedings of CONCUR 2002. Lecture Notes in Computer Science, vol. 2421. Springer,
594–609.

Kučera, A. and Mayr, R. 2004. A generic framework for checking semantic equiva-
lences between pushdown automata and finite-state automata. In Proceedings of IFIP
TCS’2004. Kluwer, 395–408.

Kučera, A. and Schnoebelen, P. 2004. A general approach to comparing infinite-state
systems with their finite-state specifications. In Proceedings of CONCUR 2004. Lecture
Notes in Computer Science, vol. 3170. Springer, 371–386.

Lipton, R. 1976. The reachability problem requires exponential space. Technical re-
port 62, Yale University.

Mayr, R. 1996. Weak bisimulation and model checking for basic parallel processes. In

37

Proceedings of FST&TCS’96. Lecture Notes in Computer Science, vol. 1180. Springer,
88–99.

Mayr, R. 2000a. On the complexity of bisimulation problems for basic parallel processes.
In Proceedings of ICALP 2000. Lecture Notes in Computer Science, vol. 1853. Springer,
329–341.

Mayr, R. 2000b. On the complexity of bisimulation problems for pushdown automata. In
Proceedings of IFIP TCS’2000. Lecture Notes in Computer Science, vol. 1872. Springer,
474–488.

Mayr, R. 2000c. Process rewrite systems. Information and Computation 156, 1, 264–286.

Mayr, R. 2001. Decidability of model checking with the temporal logic EF. Theoretical
Computer Science 256, 1–2, 31–62.

Mayr, R. 2003. Undecidability of weak bisimulation equivalence for 1-counter processes.
In Proceedings of ICALP 2003. Lecture Notes in Computer Science, vol. 2719. Springer,
570–583.

Mayr, R. 2004. Weak bisimilarity and regularity of context-free processes is EXPTIME-
hard. Electronic Notes in Theoretical Computer Science 96, 153–172.

Milner, R. 1989. Communication and Concurrency. Prentice-Hall.

Moller, F. 1996. Infinite results. In Proceedings of CONCUR’96. Lecture Notes in
Computer Science, vol. 1119. Springer, 195–216.

Papadimitriou, C. 1994. Computational Complexity. Addison-Wesley.

Park, D. 1981. Concurrency and automata on infinite sequences. In Proceedings 5th GI
Conference. Lecture Notes in Computer Science, vol. 104. Springer, 167–183.

Schnoebelen, P. 2001. Bisimulation and other undecidable equivalences for lossy channel
systems. In Proceedings of TACS’2001. Lecture Notes in Computer Science, vol. 2215.
Springer, 385–399.

Schnoebelen, P. 2002. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83, 5, 251–261.

Sénizergues, G. 1998. Decidability of bisimulation equivalence for equational graphs of
finite out-degree. In Proceedings of FOCS’98. IEEE Computer Society Press, 120–129.

Sénizergues, G. 2001. L(A)=L(B)? Decidability results from complete formal systems.
Theoretical Computer Science 251, 1–2, 1–166.

Srba, J. 2002a. Roadmap of infinite results. EATCS Bulletin 78, 163–175.

Srba, J. 2002b. Strong bisimilarity and regularity of basic parallel processes is PSPACE-
hard. In Proceedings of STACS’2002. Lecture Notes in Computer Science, vol. 2285.
Springer, 535–546.

Srba, J. 2002c. Strong bisimilarity and regularity of basic process algebra is PSPACE-
hard. In Proceedings of ICALP 2002. Lecture Notes in Computer Science, vol. 2380.
Springer, 716–727.

Srba, J. 2002d. Undecidability of weak bisimilarity for PA-processes. In Proceedings of
DLT 2002. Lecture Notes in Computer Science. Springer, 197–208.

Srba, J. 2002e. Undecidability of weak bisimilarity for pushdown processes. In Pro-
ceedings of CONCUR 2002. Lecture Notes in Computer Science, vol. 2421. Springer,
579–593.

Srba, J. 2003. Complexity of weak bisimilarity and regularity for BPA and BPP. Math-
ematical Structures in Computer Science 13, 4, 567–587.

Srba, J. 2004. Completeness results for undecidable bisimilarity problems. Electronic
Notes in Theoretical Computer Science 98, 5–19.

Steffen, B. and Ingólfsdóttir, A. 1994. Characteristic formulae for processes with
divergence. Information and Computation 110, 1, 149–163.

38

Stirling, C. 1998. Decidability of bisimulation equivalence for normed pushdown pro-
cesses. Theoretical Computer Science 195, 113–131.

Stirling, C. 2001. Modal and Temporal Properties of Processes. Springer.

Stirling, C. 2002. Deciding DPDA equivalence is primitive recursive. In Proceedings of
ICALP 2002. Lecture Notes in Computer Science, vol. 2380. Springer, 821–832.

Stř́ıbrná, J. 1998. Hardness results for weak bisimilarity of simple process algebras.
Electronic Notes in Theoretical Computer Science 18.

Thomas, W. 1993. On the Ehrenfeucht-Fräıssé game in theoretical computer science. In
Proceedings of TAPSOFT’93. Lecture Notes in Computer Science, vol. 668. Springer,
559–568.

van Glabbeek, R. 1993. The linear time—branching time spectrum II: The semantics
of sequential systems with silent moves. In Proceedings of CONCUR’93. Lecture Notes
in Computer Science, vol. 715. Springer, 66–81.

van Glabbeek, R. 1999. The linear time—branching time spectrum. Handbook of
Process Algebra, 3–99.

Walukiewicz, I. 2000. Model checking CTL properties of pushdown systems. In Pro-
ceedings of FST&TCS’2000. Lecture Notes in Computer Science, vol. 1974. Springer,
127–138.

Walukiewicz, I. 2001. Pushdown processes: Games and model-checking. Information
and Computation 164, 2, 234–263.

39

