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1 Introduction

Verification of infinite-state systems is a very active research field (see, e.g.,
[1–5] for surveys of some subfields). In this area, researchers consider a large va-
riety of models suited to different kinds of applications, and three main kinds
of verification problems: (1) specific properties like reachability or termina-
tion, (2) model checking of modal formulae, and (3) semantic equivalences or
preorders between two systems. With most models, termination and reachabil-
ity are investigated first. Positive results lead to investigations of more general
model checking problems. Regarding equivalence problems, positive decidabil-
ity results exist mainly for strong bisimilarity (some milestones in the study
include [6–11]). For other behavioral equivalences, results are usually negative.

1.1 Regular Equivalence Problem

Recently, the problem of comparing an infinite-state process g with its finite-
state specification f has been identified as an important subcase 3 of the
general equivalence checking problem [4]. Indeed, in equivalence-based veri-
fication, one usually compares a real-life system with an abstract behavioral
specification. Faithful models of real-life systems often require features like
counters, subprocess creation, or unbounded buffers, that make the model
infinite-state. On the other hand, the behavioral specification is usually ab-
stract, hence naturally finite-state. Moreover, infinite-state systems are of-
ten abstracted to finite-state systems even before applying further analytical
methods. This approach naturally subsumes the question if the constructed ab-
straction is correct (i.e., equivalent to the original system). It quickly appeared
that regular equivalence problems are computationally easier than comparing
two infinite-state processes, and a wealth of positive results exist [4].

The literature offers two generic techniques for deciding regular equivalences.
First, Abdulla et al. show how to check regular simulation on well-structured
processes [12]. Their algorithm is generic because a large collection of infinite-
state models are well-structured [13].

The second approach is even more general: one expresses equivalence with f
via a formula ϕf of some modal logic L. ϕf is called a characteristic formula
for f wrt. the given equivalence. This reduces regular equivalence problems
to more familiar model checking problems. It entails decidability of regular

3 We refer to this subcase as “the regular equivalence problem” in the rest of this
paper. For example, if we say that “regular weak bisimilarity is decidable for PA
processes”, we mean that weak bisimilarity is decidable between PA processes and
finite-state ones.
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equivalences for all systems where model checking with the logic L is decidable.
It is easy to give characteristic formulae wrt. bisimulation-like equivalences if
one uses the modal µ-calculus [14,15]. Browne et al. constructed characteristic
formulae wrt. bisimilarity and branching-bisimilarity in the logic CTL [16].
Unfortunately, CTL (or µ-calculus) model checking is undecidable on many
process classes like PA, Petri nets, lossy channel systems, etc. Later, it has
been shown that characteristic formulae wrt. strong and weak bisimilarity
can be constructed even in the L(EXα,EF,EFτ ) fragment of CTL [17]. This
logic is substantially simpler than CTL, and its associated model-checking
problem is decidable in many classes of infinite-state systems (including PA,
lossy channel systems, and pushdown automata) [18].

1.2 Our contribution

In Section 2 we introduce the notion of full regular equivalence. Compared
to the “ordinary” regular equivalence discussed in previous paragraphs, full
regular equivalence has the additional requirement that the state-space of the
infinite system must be included in the state-space of the finite system up to
the given equivalence. We argue that full regular equivalence is as natural as
regular equivalence in most practical situations (additionally the two variants
turn out to coincide in many cases). Then, we present a generic reduction
of the full regular equivalence problem to the model checking problem for
(essentially) the EF fragment of modal logic 4 .

We offer two main reductions. The first reduction, presented in Section 3, ap-
plies to a family of equivalences defined via a “transfer property” (which means
that the equivalence or preorder between a given pair of states can be trans-
fered to their successors). This family includes bisimulation-like, simulation-
like, and contrasimulation-like equivalences, which are abstracted and unified
into a single notion of “MTB equivalence”. The M , T , and B are parameters
which hide the difference among the individual equivalences. Our reduction
is generic in the sense that it works for an arbitrary MTB equivalence. The
constructed modal formula is of exponential size, but can be efficiently repre-
sented by a circuit of polynomial size. This influences some of our complexity
estimations presented later in Section 6.

The other reduction, presented in Section 4, applies to a family of equiv-
alences based on sets of “enriched traces”. A trace is a finite sequence of
actions performable from a given state. Such a trace can be “enriched” by ad-
ditional information about properties of states that are passed through along
the trace. Similarly as in Section 3, we consider a single unified notion of “PS

4 In fact, we provide reductions to L(EXα,EF,EFτ ) and to L(EUα,EF), two
different fragments of modal logic that have incomparable expressive power.
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equivalence”, where the P and S are parameters of the definition. The re-
duction is technically different from the one of Section 3, but there are some
similarities. The constructed modal formula is of exponential size, even if it
is represented by a circuit. Hence, the complexity results for PS equivalences
are generally worse than the ones for MTB equivalences, which is consistent
with the known complexity bounds for concrete models and equivalences (see
Section 6 for more details).

The MTB and PS equivalences together cover virtually all process equiva-
lences used in verification [19]. For all of these, full regular equivalence with
some f is reduced to EF model checking, hence shown decidable for a large
family of infinite-state models. Thus, as an important outcome we obtain
that full regular equivalence is “more decidable and tractable” than regular
equivalence. For example, regular trace equivalence is undecidable for BPA
processes (and hence also for pushdown and PA processes), while full regular
trace equivalence is decidable for these models. Similar examples can be given
for simulation-like equivalences. At the same time, we should note that our
generic algorithms based of reduction to EF model checking are not neces-
sarily optimal for a given model. For example, it has been shown in [20] that
full regular equivalence with PDA processes can be decided by a PDA-specific
algorithm which needs only polynomial time for some MTB equivalences and
some subclasses of PDA processes. See Section 2 and Section 6.2 for further
comments.

A closer look at the presented reductions reveals that the constructions ac-
tually output a characteristic formula for f wrt. a given equivalence, which
expresses the property of “being fully equivalent to f”. In particular, this
works for bisimulation-like equivalences (weak, delay, early, branching). Thus,
we also obtain a refinement of the result presented in [16] which states that a
characteristic formula wrt. branching bisimilarity is constructible in CTL.

Another contribution of this paper is a model-checking algorithm for the logic
L(EXα,EF,EFτ ,EU,EUα) and lossy channel systems given in Section 5.
This allows one to apply the previous abstract results also to processes of
lossy channel systems (for other models like, e.g., pushdown automata, PA
processes, or PAD processes, the decidability of EF model checking is already
known).

Specific corollaries to our abstract results are summarized in Section 6.
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2 (Full) Regular Equivalence

We start by recalling basic definitions. Let Act = {a, b, c, . . . } be a countably
infinite set of actions, and let τ 6∈ Act be a distinguished silent action. For
A ⊆ Act , Aτ denotes the set A ∪ {τ}. We use α, β, . . . to range over Act τ .

Definition 1 A transition system is a triple T = (S,−→,A) where S is a set
of states, A ⊂ Act τ is a finite alphabet, and −→ ⊆ S ×A× S is a transition
relation.

We write s
α−→ t instead of (s, α, t) ∈ −→, and we extend this notation to

elements of A∗ in the standard way. We say that a state t is reachable from a
state s, written s −→∗ t, if there is w ∈ A∗ such that s

w−→ t. Further, for every
α ∈ Act τ we define the relation

α⇒ ⊆ S × S as follows:

• s
τ⇒ t iff there is a sequence of the form s = p0

τ−→ · · · τ−→ pk = t where
k ≥ 0;

• s
a⇒ t where a 6= τ iff there are p, q such that s

τ⇒ p
a−→ q

τ⇒ t.

From now on, a process is formally understood as a state of (some) transition
system. Intuitively, transitions from a given process s model possible com-
putational steps, and the silent action τ is used to mark those steps which
are internal (i.e., not externally observable). Since we sometimes consider pro-
cesses without explicitly defining their associated transition systems, we also
use A(s) to denote the alphabet of (the underlying transition system of) the
process s. A process s is τ -free if τ 6∈ A(s).

Let ∼ be an arbitrary process equivalence, g a (general) process, F a finite-
state system, and f a process of F .

Definition 2 (Full Regular Equivalence) We say g is fully equivalent to
f (in F) iff:

• g ∼ f (g is equivalent to f), and
• for all g −→∗ g′, there is some f ′ in F such that g′ ∼ f ′ (every process

reachable from g has an equivalent in F).

Observe that the equivalent f ′ does not have to be reachable from f .

In verification settings, requiring that some process g is fully equivalent to a
finite-state specification F puts some additional constraints on g: its whole
state-space must be accounted for in a finite way. To get some intuition
why this is meaningful, consider, e.g., the finite-state system with four states
f, f ′, f ′′, f ′′′ of Fig. 1 (right). Suppose that all transitions of a given infinite-
state system g are labeled by a. Then regular trace equivalence to f means
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Fig. 1. Processes g and f .

that g can do infinitely many a’s (assuming that g is finitely branching), while
full regular trace equivalence to f means that g can do infinitely many a’s
and whenever it decides to terminate, it can reach a terminated state in at
most two transitions (for example, the process g of Fig. 1 (left) is fully trace
equivalent to f). This property cannot be encoded as regular bisimulation
equivalence or regular simulation equivalence by any finite-state system. Let
us also note that when ∼ is an equivalence of the bisimulation family, then
regular equivalence is automatically “full”.

3 MTB Preorder and Equivalence

In this paper, we aim to prove general results about equivalence-checking
between infinite-state and finite-state processes. To achieve that, we con-
sider two parameterized families of process preorders and process equiva-
lences. The first family of “MTB preorders/equivalences” corresponds to
preorders/equivalences defined via a transfer property, such as bisimulation
equivalence or simulation preorder/equivalence.

A transfer is one of the three operators on binary relations defined as follows
(R denotes a binary relation):

• sim(R) = R,
• bisim(R) = R ∩R−1,
• contrasim(R) = R−1.

A mode is a subset of {η, d} (the η and d are just two different symbols). A basis
is an equivalence over processes satisfying the following property: whenever
(s, u) ∈ B and s

τ⇒ t
τ⇒ u, then also (s, t) ∈ B.

Definition 3 Let S be a binary relation over processes and M a mode. A
move s

α⇒ t is tightly S-consistent with M if either α = τ and s = t, or there
is a sequence s = s0

τ−→ · · · τ−→ sk
α−→ t0

τ−→ · · · τ−→ t` = t, where k, ` ≥ 0, such
that the following holds:
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(1) if η ∈M , then (si, sj) ∈ S for all 0 ≤ i, j ≤ k;
(2) if d ∈M , then (ti, tj) ∈ S for all 0 ≤ i, j ≤ `.

The loose S-consistency of s
α⇒ t with M is defined in the same way, but the

conditions (1), (2) are weakened—we only require that (s0, sk), (sk, s0) ∈ S,
and (t0, t`), (t`, t0) ∈ S.

Definition 4 Let T be a transfer, M a mode, and B a basis. A binary re-
lation R over processes is a tight (or loose) MTB-relation if it satisfies the
following:

• R ⊆ B
• whenever (p, q) ∈ R, then for every tightly (or loosely, resp.) R-consistent

move p
α⇒ p′ there is a tightly (or loosely, resp.) R-consistent move q

α⇒ q′

such that (p′, q′) ∈ T (R).

We write s v t (or s 4 t, resp.), if there is a tight (or loose, resp.) MTB-
relation R such that (s, t) ∈ R. We say that s, t are tightly (or loosely, resp.)
MTB-equivalent, written s ∼ t (or s ≈ t, resp.), if s v t and t v s (or s 4 t
and t 4 s, resp.).

It is standard that such a definition entails that v and 4 are preorders, and ∼
and ≈ are equivalences over the class of all processes. The relationship between
v and 4 relations is clarified in the next lemma (this is where we need the
defining property of a basis).

Lemma 5 We have that v = 4 (and hence also ∼ = ≈).

PROOF. (v ⊆ 4). We show that v is a loose MTB-relation. So, let s v t
and let s

α⇒ s′ be a loosely v-consistent move. If this move is also tightly
v-consistent, there must be (due to s v t) a tightly (and hence also loosely)
v-consistent move t

α⇒ t′ where (s′, t′) ∈ T (v) and we are done immediately.
If the move s

α⇒ s′ is only loosely v-consistent, it is of the form s = p0
τ⇒

pk
α−→ q0

τ⇒ q` = s′, where k, ` ≥ 0, and

• if η ∈M , then s ∼ pk;
• if d ∈M , then s′ ∼ q0.

Now consider the subsequence x
α⇒ y of the sequence s = p0

τ⇒ pk
α−→ q0

τ⇒
q` = s′ where

• if η ∈M , then x = pk, otherwise x = p0 = s;
• if d ∈M , then y = q0, otherwise y = q` = s′.

Observe that x ∼ s, y ∼ s′, and the move x
α⇒ y is tightly v-consistent. Since
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x ∼ s and s v t, there is a tightly (and hence also loosely) v-consistent move
t

α⇒ t′ such that (y, t′) ∈ T (v). Since s′ ∼ y, we have (s′, t′) ∈ T (v) as needed.

(4 ⊆ v). We show that 4 is a tight MTB-relation. Let s 4 t and let s
α⇒ s′

be a tightly 4-consistent move. Since s 4 t, there is a loosely 4-consistent
move t

α⇒ t′ such that s′ 4 t′. We prove that t
α⇒ t′ is in fact tightly

4-consistent. To do that, consider the relation R defined as follows: (p, q) ∈ R
iff there are processes p1, p2, q1, q2 such that p1 ≈ p2 ≈ q1 ≈ q2, p1

τ⇒ p
τ⇒ p2,

and q1
τ⇒ q

τ⇒ q2. Observe that R is reflexive and symmetric. Further, 4 ⊆ R
which means that if we manage to prove that R is a loose MTB-relation, we
can conclude that 4 = R. This suffices for our purposes, because then we
can readily justify the tight 4-consistency of the move t

α⇒ t′ — all of the
intermediate states we wish to be related by 4 are clearly related by R. First,
let us realize that R ⊆ B (here we need the defining property of B). Now let
(p, q) ∈ R and let p1, p2, q1, q2 be the four processes which witness the member-
ship of (p, q) toR. Further, let p

α⇒ p′ be a looselyR-consistent move. We need
to show that there is an R-consistent move q

α⇒ q′ such that (p′, q′) ∈ T (R).
Observe that the move p1

τ⇒ p
α⇒ p′ is also loosely R-consistent, because

p1
τ⇒ p passes through states which are all mutually related by R. As p1 ≈ q2,

there is a loosely 4-consistent (and hence also R-consistent) move q2
α⇒ q′

such that (p′, q′) ∈ T (4) (hence also (p′, q′) ∈ T (R)). Since q
τ⇒ q2 passes

through states which are mutually related by R, the move q
τ⇒ q2

α⇒ q′ is also
loosely R-consistent and we are done. 2

Before presenting further technical results, let us briefly discuss and justify
the notion of MTB equivalence. The class of all MTB equivalences can
be partitioned into the subclasses of simulation-like, bisimulation-like, and
contrasimulation-like equivalences according to the chosen transfer T . Addi-
tional conditions which must be satisfied by equivalent processes can be spec-
ified by an appropriately defined basis. For example, we can put B to be true,
ready, terminate, or simulate, where

• (s, t) ∈ true for all s and t;
• (s, t) ∈ ready iff {a ∈ Act τ | ∃s′ : s a⇒ s′} = {a ∈ Act τ | ∃t′ : t a⇒ t′};
• (s, t) ∈ terminate iff s and t are either both terminating, or both non-

terminating (a process p is terminating iff p
α⇒ p′ implies α = τ and p

cannot perform an infinite sequence of τ -transitions).
• (s, t) ∈ simulate iff s and t are simulation equivalent (see below).

The mode specifies the level of “control” over the states that are passed
through by

α⇒ transitions. In particular, by putting T = bisim, B = true,
and choosing M to be ∅, {η}, {d}, or {η, d}, one obtains weak bisimilarity
[21], η-bisimilarity [22], delay-bisimilarity, and branching bisimilarity [23], re-
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spectively. 5 “Reasonable” refinements of these bisimulation equivalences can
be obtained by redefining B to something like terminate—sometimes there is
a need to distinguish between, e.g., terminated processes and processes which
enter an infinite internal loop. If we put T = sim, B = true, and M = ∅, we
obtain weak simulation equivalence; and by redefining B to ready and simulate
we yield ready simulation equivalence and 2-nested simulation equivalence, re-
spectively. The equivalence where T = contrasim, B = true, and M = ∅ is
known as contrasimulation (see, e.g., [24]).

Remark 6 Contrasimulation can also be seen as a generalization of coupled
simulation [25,26], which was defined only for the subclass of divergence-free
processes (where it coincides with contrasimulation). It is worth noting that
contrasimulation coincides with strong bisimilarity on the subclass of τ -free
processes (to see this, realize that one has to consider the moves s

τ⇒ s even
if s is τ -free). This is (intuitively) the reason why contrasimulation has some
nice properties also in the presence of silent moves.

The definition of MTB equivalence allows to combine all of the three param-
eters arbitrarily, and our results are valid for all such combinations (later we
adopt some natural effectiveness assumptions about B, but this will be the
only restriction).

Definition 7 For every k ∈ N0, the binary relations vk, ∼k, 4k, and ≈k are
defined as follows:

• s v0 t iff (s, t) ∈ B.
• s vk+1 t iff (s, t) ∈ B and for every tightly vk-consistent move s

α⇒ s′ there
is some tightly vk-consistent move t

α⇒ t′ such that (s′, t′) ∈ T (vk).

The 4k relations are defined in the same way, but we require only loose
4k-consistency of moves in the inductive step. Finally, we put s ∼k t iff s vk t
and t vk s, and similarly s ≈k t iff s 4k t and t 4k s.

A trivial observation is that 4k ⊇ 4k+1 ⊇ 4, vk ⊇ vk+1 ⊇ v, ∼k ⊇
∼k+1 ⊇ ∼, and ≈k ⊇ ≈k+1 ⊇ ≈ for each k ∈ N0. In general, vk 6= 4k;
however, if we restrict ourselves to processes of some fixed finite-state system,
we can prove the following:

Lemma 8 Let F = (F,−→,A) be a finite-state system with n states. Then
vn2−1 = vn2 = v = 4 = 4n2−1 = 4n2, where all of the relations are
considered as being restricted to F × F .

5 Our definition of MTB equivalence does not directly match the definitions of η-,
delay-, and branching bisimilarity that one finds in the literature. However, it is
easy to show that one indeed yields exactly these equivalences.
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PROOF. Since every binary relation over F has at most n2 elements and
vk+1 refines vk for each k, we immediately obtain vn2−1 = vn2 . This means
that vn2 is a tight MTB-relation and hence vn2 = v. For the same reason,
4n2−1 = 4n2 = 4. Note that v = 4 by Lemma 5. 2

Theorem 9 Let F = (F,−→,A) be a finite-state system with n states, f a pro-
cess of F , and g some (arbitrary) process. Then the following three conditions
are equivalent.

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g ∼n2 f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼n2 f ′.
(c) g ≈n2 f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ≈n2 f ′.

PROOF. Clearly (a) ⇒ (b) and (a) ⇒ (c) (for the second implication we
need Lemma 5). We prove that (b) ⇒ (a) and (c) ⇒ (a).

(b) ⇒ (a): Let G = {g′ | g −→∗ g′}. We show that the relation vn2 restricted
to (G × F ) ∪ (F × G) is a tight MTB-relation. So, let ḡ ∈ G, f̄ ∈ F be
processes such that

(i) ḡ vn2 f̄ . Let ḡ
α⇒ ḡ′ be a tightly vn2-consistent move. By definition of

vn2 , there is a tightly vn2−1-consistent move f̄
α⇒ f̄ ′ such that (ḡ′, f̄ ′) ∈

T (vn2−1). First, realize that the move f̄
α⇒ f̄ ′ is also tightlyvn2-consistent,

because vn2−1 = vn2 over F × F (see Lemma 8). Now we prove that
(ḡ′, f̄ ′) ∈ T (vn2). Since ḡ′ is reachable from g, there is some f ′ ∈ F
such that ḡ′ ∼n2 f ′. As (ḡ′, f̄ ′) ∈ T (vn2−1) and ḡ′ ∼n2 f ′, we have
that (f ′, f̄ ′) ∈ T (vn2−1). However, this means that (f ′, f̄ ′) ∈ T (vn2) by
Lemma 8. As (f ′, f̄ ′) ∈ T (vn2) and ḡ′ ∼n2 f ′, we obtain (ḡ′, f̄ ′) ∈ T (vn2)
as needed.

(ii) f̄ vn2 ḡ. Let f̄
α⇒ f̄ ′ be a tightly vn2-consistent move. Then there is

(by definition of vn2) a tightly vn2−1-consistent move ḡ
α⇒ ḡ′ such that

(f̄ ′, ḡ′) ∈ T (vn2−1). Now it suffices to show that
(1) the move ḡ

α⇒ ḡ′ is in fact tightly vn2-consistent. This is justified by
observing that for any two states g1, g2 which appear along the move
ḡ

α⇒ ḡ′ we have that g1 ∼n2−1 g2 implies g1 ∼n2 g2. To see this, realize
that g1, g2 are reachable from g and hence there are some f1, f2 ∈ F
such that g1 ∼n2 f1 and g2 ∼n2 f2. Since f1 ∼n2 g1 ∼n2−1 g2 ∼n2 f2,
we obtain f1 ∼n2−1 f2 and hence also f1 ∼n2 f2 by Lemma 8. Now
g1 ∼n2 f1 ∼n2 f2 ∼n2 g2, thus g1 ∼n2 g2.

(2) (f̄ ′, ḡ′) ∈ T (vn2). This follows from (f̄ ′, ḡ′) ∈ T (vn2−1) by using the
same argument as in (i).

(c) ⇒ (a): Using the same technique as above, one can prove that 4n2 re-
stricted to (G×F )∪ (F ×G) is a loose MTB-relation. The claim then follows
by applying Lemma 5. 2

10



3.1 Encoding MTB Equivalence into Modal Logic

In this section we show that the conditions (b) and (c) of Theorem 9 can be
expressed in modal logic. Let us consider a class of modal formulae defined by
the following abstract syntax equation (where α ranges over Act τ ):

ϕ ::= tt | ϕ1 ∧ ϕ2 | ¬ϕ | EXα ϕ | EFϕ | EFτ ϕ | ϕ1 EU ϕ2 | ϕ1 EUα ϕ2

The semantics (over processes) is defined inductively as follows:

• s |= tt for every process s.
• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.
• s |= ¬ϕ iff s 6|= ϕ.
• s |= EXα ϕ iff there is s

α−→ s′ such that s′ |= ϕ.
• s |= EFϕ iff there is s −→∗ s′ such that s′ |= ϕ.
• s |= EFτ ϕ iff there is s

τ⇒ s′ such that s′ |= ϕ.
• s |= ϕ1 EU ϕ2 iff either s |= ϕ2, or there is a sequence s = s0

a1−→ · · · am−→
sm, where m ≥ 0, ai ∈ Act τ for every 1 ≤ i ≤ m, si |= ϕ1 for all 0 ≤ i < m,
and sm |= ϕ2.

• s |= ϕ1 EUα ϕ2 iff either α = τ and s |= ϕ2, or there is a sequence s =
s0

τ−→ · · · τ−→ sm
α−→ s′, where m ≥ 0, such that si |= ϕ1 for all 0 ≤ i ≤ m and

s′ |= ϕ2.

The dual operator to EF is AG, defined by AGϕ ≡ ¬EF¬ϕ.

Let M1, . . . ,Mk range over {EXα,EF,EFτ ,EUα}. The (syntax of the) logic
L(M1, . . . ,Mk) consists of all modal formulae built over the modalitiesM1, . . . ,Mk.
For example,

• L(EXα) is the well-known Hennessy-Milner logic [21];
• L(EUα) is the logic proposed by de Nicola and Vaandrager in [27] which

modally characterizes branching bisimilarity;
• L(EXα,EF,EFτ ) is the logic used in [17] to construct characteristic for-

mulae wrt. full and weak bisimilarity for finite-state systems. As opposed
to other modal logics, the model-checking problem with L(EXα,EF,EFτ )
is decidable for many classes of infinite-state systems (e.g., BPA, BPP, and
PA process algebras, pushdown automata, lossy channel systems, etc.)

Let ∼ be an MTB equivalence. Our aim is to show that for every finite f
there are formulae ϕf of L(EF,EUα) and ψf of L(EXα,EF,EFτ ) such that
for every process g where A(g) ⊆ A we have that g |= ϕf (or g |= ψf ) iff the
processes g and f satisfy the condition (b) (or (c), resp.) of Theorem 9. Clearly
such formulae cannot always exist without some additional assumptions about
the basis B. Actually, all we need is to assume that the full B-equivalence
with processes of a given finite-state system F = (F,−→,A) is definable in the
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aforementioned logics. More precisely, for each f ∈ F there should be formu-
lae Ξt

f and Ξ`
f of the logics L(EF,EUα) and L(EXα,EF,EFτ ), respectively,

such that for every process g where A(g) ⊆ A we have that g is fully B-
equivalent to f iff g |= Ξt

f iff g |= Ξ`
f . Note that g is fully B-equivalent to f

iff (g, f) ∈ B and for every g −→∗ g′ there is f ′ ∈ F such that (g′, f ′) ∈ B. At
first glance, it seems that full B-equivalence with f is harder to express that
just B-equivalence with f . In fact, the opposite holds—if %f is the formula
expressing the B-equivalence with a given f ∈ F , then %f ∧AG

∨
f ′∈F %f ′ is

the formula expressing the full B-equivalence with the state f . On the other
hand, there are B’s for which full B-equivalence with a given f ∈ F is ex-
pressible in L(EF,EUα) and L(EXα,EF,EFτ ), but B-equivalence with f is
not expressible. A concrete example is the simulate basis introduced in the
previous subsection. As we shall see, full simulation equivalence with a given f
is expressible in L(EF,EUα) and L(EXα,EF,EFτ ), while simulation equiv-
alence with f is not (otherwise we would immediately derive a contradiction
with known decidability results [4]). Since we are also interested in complexity
issues, we further assume that the formulae Ξt

f and Ξ`
f are efficiently com-

putable from F . An immediate consequence of this assumption is that B over
F × F is efficiently computable. This is because the model-checking problem
with L(EF,EUα) and L(EXα,EF,EFτ ) is decidable in polynomial time over
finite-state systems. To simplify the presentation of our complexity results, we
adopt the following definition:

Definition 10 We say that a basis B is well-defined if there is a polynomial
P (in two variables) such that for every finite-state system F = (F,−→,A) the
set {Ξt

f ,Ξ
`
f | f ∈ F} can be computed, and the relation B ∩ (F × F ) can be

decided, in time O(P(|F |, |A|)).

Remark 11 In fact, the Ξt
f formulae are only required for the construction of

ϕf , and the Ξ`
f formulae are required only for the construction of ψf . (This is

why we provide two different formulae for each f .) Note that there are bases
for which we can construct only one of the Ξt

f and Ξ`
f families, which means

that for some MTB equivalences we can construct only one of the ϕf and ψf

formulae. A concrete example is the terminate basis of the previous section,
which is definable in L(EXα,EF,EFτ ) but not in L(EF,EUα).

For the rest of this section, we fix some MTB-equivalence ∼ where B is well-
defined, and a finite-state system F = (F,−→,A) with n states.

Let 〈α, ϕη, ϕd〉t and 〈α, ϕη, ϕd〉` be unary modal operators whose semantics is
defined as follows:

• s |= 〈α, ϕη, ϕd〉tϕ iff either α = τ and s |= ϕ, or there is a sequence of the
form s = p0

τ−→ · · · pk
α−→ q0

τ−→ · · · τ−→ qm, where k,m ≥ 0, such that pi |= ϕη

for all 0 ≤ i ≤ k, qj |= ϕd for all 0 ≤ j ≤ m, and qm |= ϕ.

12



• s |= 〈α, ϕη, ϕd〉`ϕ iff either α = τ and s |= ϕ, or there is a sequence of
the form s = p0

τ−→ · · · pk
α−→ q0

τ−→ · · · τ−→ qm, where k,m ≥ 0, such that
p0 |= ϕη, pk |= ϕη, q0 |= ϕd, qm |= ϕd, and qm |= ϕ.

We also define [α, ϕη, ϕd]
tϕ as an abbreviation for ¬〈α, ϕη, ϕd〉t¬ϕ, and simi-

larly [α, ϕη, ϕd]
`ϕ is used to abbreviate ¬〈α, ϕη, ϕd〉`¬ϕ.

Lemma 12 The 〈α, ϕη, ϕd〉t and 〈α, ϕη, ϕd〉` modalities are expressible in L(EUα)
and L(EXα,EFτ ), respectively:

PROOF. It suffices to realize that

〈α, ϕη, ϕd〉tϕ ≡




ϕη ∧ (ϕη EUα(ϕd EUτ (ϕd ∧ ϕ))) if α 6= τ

(ϕη ∧ (ϕη EUα(ϕd EUτ (ϕd ∧ ϕ)))) ∨ ϕ if α = τ

〈α, ϕη, ϕd〉`ϕ ≡




ϕη ∧EFτ (ϕη ∧EXα(ϕd ∧EFτ (ϕd ∧ ϕ))) if α 6= τ

(ϕη ∧EFτ (ϕη ∧EXα(ϕd ∧EFτ (ϕd ∧ ϕ)))) ∨ ϕ if α = τ

2

Since the conditions (b) and (c) of Theorem 9 are encoded into L(EF,EUα)
and L(EXα,EF,EFτ ) along the same scheme, we present both construc-
tions at once by adopting the following notation: 〈α, ϕη, ϕd〉 stands either
for 〈α, ϕη, ϕd〉t or 〈α, ϕη, ϕd〉`, Ξf denotes either Ξt

f or Ξ`
f , $k denotes either

∼k or ≈k, and 6k denotes either vk or 4k, respectively. Moreover, we write

s
α,k−→ t to denote that there is either a tightly vk-consistent move s

α⇒ t, or a
loosely 4k-consistent move s

α⇒ t, respectively.

Definition 13 For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k,
and Θf,k inductively as follows:

Φf,0 = Ψf,0 = Ξf

Θf,k = Φf,k ∧Ψf,k

Φf,k+1 = Ξf ∧
(
AG

∨

f ′∈F

Θf ′,k

)
∧ ∧

f
α,k−→f ′

∨

f1,f2∈F

〈α, ϕf1,k, ψf2,k〉ξf ′,k

Ψf,k+1 = Ξf ∧
(
AG

∨

f ′∈F

Θf ′,k

)
∧ ∧

α∈Aτ
f1,f2∈F

(
[α, ϕf1,k, ψf2,k]

∨

f
α,k−→f ′

%f ′,k

)

where
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• if η ∈M , then ϕf1,k = Θf1,k, otherwise ϕf1,k = tt;
• if d ∈M , then ψf2,k = Θf2,k, otherwise ψf2,k = tt;
• if T = sim, then ξf ′,k = Φf ′,k and %f ′,k = Ψf ′,k;
• if T = bisim, then ξf ′,k = %f ′,k = Θf ′,k;
• if T = contrasim, then ξf ′,k = Ψf ′,k and %f ′,k = Φf ′,k.

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The meaning of the constructed formulae is explained in the next theorem.
Intuitively, what we would like to have is that for every process g whereA(g) ⊆
A it holds that g |= Φf,k iff f 6k g, and g |= Ψf,k iff g 6k f . However, this is
(provably) not achievable—the 6k preorder with a given finite-state process
is not directly expressible in the logics L(EF,EUα) and L(EXα,EF,EFτ ).
The main trick (and subtlety) of the presented inductive construction is that
the formulae Φf,k and Ψf,k actually express stronger conditions.

Theorem 14 Let g be an (arbitrary) process such that A(g) ⊆ A. Then for
all f ∈ F and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f 60 g; further, g |= Φf,k+1 iff f 6k+1 g and for each g −→∗ g′

there is f ′ ∈ F such that g′ $k f
′.

(b) g |= Ψf,0 iff g 60 f ; further, g |= Ψf,k+1 iff g 6k+1 f and for each g −→∗ g′

there is f ′ ∈ F such that g′ $k f
′.

(c) g |= Θf,0 iff g $0 f ; further, g |= Θf,k+1 iff f $k+1 g and for each g −→∗ g′

there is f ′ ∈ F such that g′ $k f
′.

PROOF. We prove (a) and (b) by induction on k (the (c) follows immediately
then). The base case when k = 0 is trivial. It remains to show the inductive
step of (a) and (b).

(a) We start with the “⇐” direction. Since f 6k+1 g and for each g −→∗ g′

there is f ′ ∈ F such that g′ $k f
′, we can apply the induction hypothesis

to conclude that g |= Ξf ∧ (AG
∨

f ′∈F Θf ′,k). It remains to prove that g
satisfies also the formula

∧

f
α,k−→f ′

(
∨

f1,f2∈F

〈α, ϕf1,k, ψf2,k〉ξf ′,k).

To see this, realize that for each f
α,k−→ f ′ there is some g

α,k−→ g′ such that
(f ′, g′) ∈ T (6k). Since g, g′ are reachable from g, there are some f1, f2 ∈ F
such that g $k f1 and g′ $k f2. As g

α,k−→ g′, we can apply the induction
hypothesis and conclude that g |= 〈α, ϕf1,k, ψf2,k〉ξf ′,k. This works for ar-

bitrary f
α,k−→ f ′, hence g |= ∧

f
α,k−→f ′

(
∨

f1,f2∈F 〈α, ϕf1,k, ψf2,k〉ξf ′,k) as needed.
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For the “⇒” direction, let us suppose that g |= Ξf ∧ (AG
∨

f ′∈F Θf ′,k).
Since g |= AG

∨
f ′∈F Θf ′,k, we can apply the induction hypothesis to

conclude that for every g −→∗ g′ there is some f ′ ∈ F such that g′ $k f
′.

It remains to show that f 6k+1 g. Clearly (f, g) ∈ B because g |= Ξf . Let

f
α,k−→ f ′. As g |= ∨

f1,f2∈F 〈α, ϕf1,k, ψf2,k〉ξf ′,k, there are f1, f2 ∈ F such that
g |= 〈α, ϕf1,k, ψf2,k〉ξf ′,k. By applying the induction hypothesis we obtain

that there is g
α,k−→ g′ such that g′ |= ξf ′,k, which means (f ′, g′) ∈ T (6k).

(b) “⇐”: Let us assume that g 6k+1 f and for each g −→∗ g′ there is
f ′ ∈ F such that g′ $k f ′. Then g |= Ξf ∧ (AG

∨
f ′∈F Θf ′,k) by in-

duction hypothesis. Now let α ∈ Aτ and f1, f2 ∈ F . We show that g |=
[α, ϕf1,k, ψf2,k](

∨
f

α,k−→f ′
%f ′,k). Suppose the converse, i.e., g |= 〈α, ϕf1,k, ψf2,k〉(∧

f
α,k−→f ′

¬%f ′,k).

By applying the induction hypothesis we obtain that there is g
α,k−→ g′ such

that for every f
α,k−→ f ′ we have g′ 6|= %f ′,k, i.e., (g′, f ′) 6∈ T (6k). Hence,

g 66k+1 f which is a contradiction.
“⇒”: As g |= AG

∨
f ′∈F Θf ′,k, for every g −→∗ g′ there is some f ′ ∈ F

such that g′ $k f
′ (by induction hypothesis). We show that g 6k+1 f . Let

g
α,k−→ g′. Since g, g′ are reachable from g, there are f1, f2 ∈ F such that

g $k f1 and g′ $k f2. Since g |= [α, ϕf1,k, ψf2,k](
∨

f
α,k−→f ′

%f ′,k), we have

that g′ |= ∨
f

α,k−→f ′
%f ′,k by using the induction hypothesis. Hence, there

is f
α,k−→ f ′ such that g′ |= %f ′,k, which means (g′, f ′) ∈ T (6k) (again by

induction hypothesis). 2

In general, the 6k-consistency of moves g
α⇒ g′ can be expressed in a given

logic only if one can express the $k equivalence with g and g′. Since g and
g′ can be infinite-state processes, this is generally impossible. This difficulty
was overcome in Theorem 14 by using the assumption that g and g′ are $k

equivalent to some f1 and f2 of F . Thus, we only needed to encode the $k

equivalence with f1 and f2 which is (in a way) achieved by the Θf1,k and Θf2,k

formulae. An immediate consequence of Theorem 9 and Theorem 14 is the
following:

Corollary 15 Let g be an (arbitrary) process such that A(g) ⊆ A, and let
f ∈ F . Then the following two conditions are equivalent:

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g |= Θf,n2 ∧AG(

∨
f ′∈F Θf ′,n2).

Since the formula Θf,n2 ∧ AG(
∨

f ′∈F Θf ′,n2) is effectively constructible, the
problem (a) of the previous corollary is effectively reducible to the problem (b).

Remark 16 An important consequence of Corollary 15 is that the problem of
full regular equivalence is generally “more decidable and tractable” than the
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problem of regular equivalence. For example, regular weak simulation equiva-
lence for PA, PAN, and lossy channel systems is undecidable[28], while model-
checking with the logic L(EXα,EF,EFτ ) (and thus also the problem of full
regular MTB equivalence) is still decidable for these models [18,29]. Another
example are pushdown processes. Model-checking L(EXα,EF,EFτ ) for PDA
is in PSPACE [30]. As we shall see, this means that the full regular MTB
equivalence problem for PDA is also in PSPACE. However, the regular weak
simulation equivalence problem for PDA is EXPTIME-complete [31]. Fur-
ther examples are given below. Hence, the “extra” reachability condition given
in the definition of full regular equivalence problem is a crucial ingredient of
our result, and not just a handy technical assumption which could possibly be
avoided.

A natural question is what is the complexity of the reduction from (a) to (b)
in Corollary 15. At first glance, it seems to be exponential because the size
of Θf ′,n2 is exponential in the size of F . However, the number of distinct
subformulae in Θf ′,n2 is only polynomial. This means that if we represent the
formula Θf,n2 ∧ AG(

∨
f ′∈F Θf ′,n2) by a circuit 6 , then the size of this circuit

is only polynomial in the size of F . This is important because the complexity
of many model-checking algorithms actually depends on the size of the circuit
representing a given formula rather than on the size of the formula itself. The
size of the circuit for Θf,n2 ∧AG(

∨
f ′∈F Θf ′,n2) is estimated in Lemma 18. We

start by proving an auxiliary technical lemma:

Lemma 17 For every k ∈ N0, the relation
α,k+1−−→ over F ×F can be computed

in O(n4 · |A|) time, assuming that the relation 6k over F ×F has already been
computed.

PROOF. We assume that binary relations are stored as bit matrices, which
means that testing the membership to 6k for a given pair of processes f1, f2 ∈
F can be done in constant time.

First we show how to compute
α,k−→ from 6k in O(n4 ·|A|) time. This is easy—for

every α ∈ A we examine O(n2) pairs f1, f2 ∈ F and decide if f1
α,k−→ f2. Since

testing the membership to 6k is for free, this is not harder than reachability
which can be done in O(n2) time. Hence, we need O(n4 · |A|) time in total.

Now we show that 6k+1 can be computed from
α,k−→ and 6k in O(n4 · |A|) time.

By definition of 6k+1, we need to examine O(n2) pairs f1, f2 ∈ F and for each

of O(n · |A|) moves f1
α,k−→ f ′1 we check O(n) possible responses f2

α,k−→ f ′2 and

6 A circuit (or a DAG) representing a formula ϕ is basically the syntax tree for ϕ
where the nodes representing the same subformula are identified.
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look if (f1, f2) ∈ T (6k) (the membership to T (6k) is also for free if 6k is
stored as a bit matrix). Hence, O(n4 · |A|) time suffices.

Now
α,k+1−−→ is computed from 6k+1 as above (i.e., in O(n4 · |A|) time) and we

are done. 2

Lemma 18 The formula Θf,n2 ∧ AG(
∨

f ′∈F Θf ′,n2) can be represented by a
circuit constructible in O(n6 · |A|+P(n, |A|)) time. (Here P is the polynomial
introduced in Definition 10.)

PROOF. We show that for every k ∈ N0, one only needs O(n4 · |A| · k +
P(n, |A|)) time to compute

• the relation 6k over F × F , and
• a circuit such that all Φf,k, Ψf,k, and Θf,k, where f ∈ F , are represented by

some nodes of the circuit.

We proceed by induction on k. The case when k = 0 follows immediately—we
just compute 60 over F × F and the circuits for all Ξf . This takes P(n, |A|)
time. In the inductive step we first compute

α,k+1−−→ and 6k+1 over F × F . This
can be done in O(n4 · |A|) time, because the relation 6k has been computed
in the previous step and hence we can apply Lemma 17. Now observe that if
we already have a circuit representing all Φf,k, Ψf,k and Θf,k, then we need
to add only O(n3 · |A|) new nodes to obtain a circuit representing Φf̄ ,k+1 for
a given f̄ ∈ F , and this procedure does not take more than O(n3 · |A|) time.
This follows immediately from the definition of Φf̄ ,k+1 and the fact that the

problem if f1
α,k+1−−→ f2 for given f1, f2 ∈ F can now be decided in constant time

(because we have computed
α,k+1−−→ over F×F ). The same actually holds for the

formula Ψf̄ ,k+1. Hence, we only add O(n4 · |A|) new nodes in O(n4 · |A|) time
to obtain a circuit representing all Φf,k+1, Ψf,k+1, and Θf,k+1. By applying
the induction hypothesis, we obtain that O(n4 · |A| · (k+ 1) +P(n, |A|)) time
suffices to compute 6k+1 and the circuit representing all Φf,k+1, Ψf,k+1, and
Θf,k+1. 2

Corollary 15 and Lemma 18 can also be applied to finite-state processes (i.e.,
to processes of some finite-state system F).

Corollary 19 Let ∼ be an MTB equivalence where B is well-defined. The
problem of checking ∼ between finite-state processes is efficiently reducible to
the model checking problems with the logics L(EXα,EF,EFτ ) and L(EF,EUα)
over finite-state processes.
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The previous corollary is actually interesting only for those MTB equivalences
where M = ∅, because otherwise we must compute the 6n2 = 6 relation over
F ×F just to construct the formula given in Corollary 15 (b). If M = ∅, there

is no need to construct the 6k relations, because
α,k−→ =

α⇒ for every k ∈ N0.
Hence, the construction of the formula of Corollary 15 (b) is rather simple in
this case. Thus, one might re-use existing model-checking tools for finite-state
processes to experiment with MTB equivalences over finite-state processes.

4 PS Preorder and Equivalence

In this section we consider another parameterized family of process preorders/equivalences
whose definitions are based on inclusion/equality of sets of decorated traces.

Definition 20 Let P be a process preorder and S ∈ {γ, λ} a scope (here
γ and λ stands for “global” and “local”, respectively). For each k ∈ N0 we
define the relation vk over processes as follows: s vk t iff for every sequence
s = s0

α1⇒ s1
α2⇒ · · · αi⇒ si, where 0 ≤ i ≤ k, there is a matching sequence

t = t0
α1⇒ t1

α2⇒ · · · αi⇒ ti such that

• if S = λ, then (si, ti) ∈ P ;
• if S = γ, then (sj, tj) ∈ P for all 0 ≤ j ≤ i.

PS preorder, denoted v, is defined by s v t iff s vk t for every k ∈ N0. PS
equivalence, denoted ∼, is defined by s ∼ t iff s v t and t v s.

For example, let us consider the preorders T,D, F,R, U defined as follows
(where I(s) = {a ∈ Act | s a⇒ t for some t}):

• (s, t) ∈ T for all s, t (true).
• (s, t) ∈ D iff both I(s) and I(t) are either empty or non-empty (deadlock

equivalence).
• (s, t) ∈ F iff I(s) ⊇ I(t) (failure preorder).
• (s, t) ∈ R iff I(s) = I(t) (ready equivalence).
• (s, t) ∈ U iff s and t are trace equivalent (that is, iff {w ∈ Act∗ | ∃s w⇒ s′} =
{w ∈ Act∗ | ∃t w⇒ t′}).

Now one can readily check that Tλ, Dλ, Fλ, Fγ, Rλ, Rγ, and Uλ equivalence
is in fact trace, completed trace, failure, failure trace, readiness, ready trace,
and possible futures equivalence, respectively. Other trace-like equivalences
can be defined similarly.

For the rest of this section, let us fix a process preorder P and a scope S. Now
we give another characterization of PS preorder/equivalence which is more
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convenient for our purposes.

Let M,N be sets of processes. We write M
α⇒ N iff for every t ∈ N there is

some s ∈M such that s
α⇒ t.

Definition 21 For every i ∈ N0 we inductively define the relation 4i between
processes and non-empty sets of processes as follows:

• s 40 M for every process s and every non-empty set of processes M such
that
· if S = γ, then (s, t) ∈ P for every t ∈M ;
· if S = λ, then (s, t) ∈ P for some t ∈M .

• s 4i+1 M iff s 4i M and for every s
α⇒ t there is M

α⇒ N such that t 4i N .

We put s 4 M iff s 4i M for every i ∈ N0. Slightly abusing notation, we write
s 4i t and s 4 t instead of s 4i {t} and s 4 {t}, respectively. We also write
s ≈ t iff s 4 t and t 4 s.

Lemma 22 For every i ∈ N0 and all processes s, t we have that s vi t iff
s 4i t (hence, s v t iff s 4 t, and s ∼ t iff s ≈ t).

PROOF. First, let us extend the vk relations so that they also relate pro-
cesses to non-empty sets of processes—by writing s vk M we mean that for
every sequence s = s0

α1⇒ s1
α2⇒ · · · αi⇒ si, where 0 ≤ i ≤ k, there is t ∈ M and

a sequence t = t0
α1⇒ t1

α2⇒ · · · αi⇒ ti such that

• if S = λ, then (si, ti) ∈ P ;
• if S = γ, then (sj, tj) ∈ P for all 0 ≤ j ≤ i.

We also require that M is minimal in the sense that each non-empty proper
subset of M violates the condition above.

Note that s vi t iff s vi {t}. Also note that if s vi M , then there is some
t ∈M such that (s, t) ∈ P ; and if S = γ, then (s, t) ∈ P for every t ∈M (this
is where we need the minimality of M). Now we prove that s vi M iff s 4i M
for every process s and every non-empty set of processes M . We proceed by
induction on i. The case when i = 0 follows directly from definitions. Now
suppose that s vi+1 M . We need to show that also s 4i+1 M , i.e., for each
s

α⇒ t there is some M
α⇒ N such that t 4i N . Since s vi+1 M and s

α⇒ t,
there must be a minimal subset N consisting of (some)

α⇒ successors of states
in M such that t vi N . Hence, M

α⇒ N , and t 4i N by induction hypothesis.
Similarly, one can also show that if s 4i+1 M , then s vi+1 M . 2
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Due to Lemma 22 we can safely consider the relations 4i, 4, and ≈ instead of
the relations vi, v, and ∼, respectively. The next two lemmas are immediate:

Lemma 23 Let F = (F,−→,A) be a finite-state system with n states. Then
4n2n−1 = 4n2n = 4, where all of the relations are considered as being
restricted to F × 2F .

Lemma 24 For all processes s, t, and non-empty sets of processes M,N , and
every i ∈ N0 we have that

(a) if s 4i t and t 4i M , then also s 4i M ;
(b) if s 4i M and for every u ∈ M there is some v ∈ N such that u 4i v,

then also s 4i N .

Now we can state and prove the crucial theorem:

Theorem 25 Let F = (F,−→,A) be a finite-state system with n states, f a
process of F , and g some (arbitrary) process. Then the following two conditions
are equivalent.

(a) g ≈ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ≈ f ′.
(b) g ≈n2n f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ≈n2n f ′.

PROOF. (a) ⇒ (b) is immediate. For the other direction, suppose that (b)
holds and (a) does not hold. Since (a) does not hold, there is g −→∗ g′ such
that g′ 6≈ f ′ for every f ′ ∈ F ; and as (b) holds, there is some f̄ ∈ F such
that g′ ≈n2n f̄ . To sum up, we have that g′ 6≈m f̄ for some m > n2n. Now we
distinguish two possibilities:

g′ 64m f̄ . By definition of 4i (and the fact that m > n2n), there must be
some g′ −→∗ g′′ and M ⊆ F such that g′′ 4n2n−1 M and g′′ 64n2n M . We
show that this is impossible. To see this, realize that g −→∗ g′′ and due to (b)
there is some f ′ ∈ F such that g′′ ≈n2n f ′. So, f ′ 4n2n g′′ 4n2n−1 M , which
means f ′ 4n2n−1 M by Lemma 24 (a). Hence, f ′ 4n2n M by Lemma 23. Now
g′′ 4n2n f ′ 42n M and thus we obtain g′′ 4n2n M by applying Lemma 24 (a),
which is a contradiction.

f̄ 64m g′. Then there must be some f̄ −→∗ f ′ and a set of processes M such
that every g′′ ∈M is reachable from g′, f ′ 4n2n−1 M , and f ′ 64n2n M . Again,
this will be led to a contradiction. Since every process of M is reachable from
g, due to (b) there is a set N ⊆ F such that for every g′′ ∈M there is f ′′ ∈ N
such that g′′ ≈n2n f ′′, and vice versa. Hence, f ′ 4n2n−1 N by Lemma 24 (b),
which means that f ′ 4n2n N by Lemma 23. Thus, we obtain f ′ 4n2n M
again by applying Lemma 24 (b) (the roles of M,N are interchanged now),
which is a contradiction. 2
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Now we show how to encode the condition (b) of Theorem 25 into modal logic.
To simplify our notation, we introduce the 〈〈α〉〉 operator defined as follows:
〈〈α〉〉ϕ stands either for EFτ ϕ (if α = τ), or EFτ EXα EFτ ϕ (if α 6= τ).
Moreover, [[α]]ϕ ≡ ¬〈〈α〉〉¬ϕ. Similarly as in the case of MTB equivalence, we
need some effectiveness assumptions about the preorder P , which are given in
our next definition.

Definition 26 We say that P is well-defined if for every finite-state system
F = (F,−→,A) and every f ∈ F the following conditions are satisfied:

• There are effectively definable formulae Ξf ,Γf of the logic L(〈〈α〉〉,EF) such
that for every process g where A(g) ⊆ A we have that g |= Ξf iff (f, g) ∈ P ,
and g |= Γf iff (g, f) ∈ P .

• There is a polynomial P (in two variables) such that for every finite-state
system F = (F,−→,A) the set {Ξf ,Γf | f ∈ F} can be computed, and the
relation P ∩ (F × F ) can be decided, in time O(2P(|F |,|A|)).

Note that the T , D, F , and R preorders are clearly well-defined. However, the
U preorder is (provably) not well-defined. Nevertheless, our results do apply
to possible-futures equivalence, as we shall see in Remark 31.

Lemma 27 If P is well-defined, then the relation vi over F × 2F can be
computed in time which is exponential in n and polynomial in i.

4.1 Encoding PS Preorder into Modal Logic

Definition 28 For all i ∈ N0, f ∈ F , and M ⊆ F we define the sets

• F(f,4i) = {M ⊆ F | f 4i M}
• F(4i,M) = {f ∈ F | f 4i M}

For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k, and Θf,k induc-
tively as follows:

• Φf,0 = Ξf , Ψf,0 = Γf

• Θf,k = Φf,k ∧Ψf,k

• Φf,k+1 = Ξf ∧
(
AG

∨

f ′∈F

Θf ′,k

)
∧ ∧

f
α⇒f ′

∨

M∈F(f ′,4k)

∧

f ′′∈M

〈〈α〉〉Θf ′′,k

• Ψf,k+1 = Γf ∧
(
AG

∨

f ′∈F

Θf ′,k

)
∧ ∧

α∈Aτ

[[α]]
( ∨

f
α⇒M

∨

f ′∈F(4k,M)

Θf ′,k

)

The empty conjunction is equivalent to tt, and the empty disjunction to ff.
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The F(. . .) sets are effectively constructible in time exponential in n and
polynomial in i (Lemma 27), hence the Φf,k, . . . , formulae are effectively
constructible too.

Theorem 29 Let g be an (arbitrary) process such that A(g) ⊆ A. Then for
all f ∈ F and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f 40 g; further, g |= Φf,k+1 iff f 4k+1 g and for each g −→∗ g′

there is f ′ ∈ F such that g′ ≈k f
′.

(b) g |= Ψf,0 iff g 40 f ; further, g |= Ψf,k+1 iff g 4k+1 f and for each g −→∗ g′

there is f ′ ∈ F such that g′ ≈k f
′.

(c) g |= Θf,0 iff g ≈0 f ; further, g |= Θf,k+1 iff g ≈k+1 f and for each g −→∗ g′

there is f ′ ∈ F such that g′ ≈k f
′.

PROOF. The (a), (b), and (c) are proved simultaneously by induction on k.
We give explicit arguments just for (a) and (b); the (c) follows immediately
then.

• k = 0. Immediate.
• Induction step.

“(a), ⇒” Let g |= Φf,k+1. Then g |= AG
∨

f ′∈F Θf ′,k and hence for every
g −→∗ g′ there is some f ′ ∈ F such that g′ ≈k f

′ by applying the induction
hypothesis. We show that f 4k+1 g. As g |= Ξf , we have that (f, g) ∈ P . Let
f

α⇒ f ′. Since g |= ∧
f

α⇒f ′(
∨

M∈F(f ′,4k)(
∧

f ′′∈M〈〈α〉〉Θf ′′,k)), there is M ⊆ F

such that f ′ 4k M (this follows from the definition of F(f ′,4k)). Let M =
{f1, . . . , fm}. As g |= ∧

f ′′∈M〈〈α〉〉Θf ′′,k, we can use the induction hypothesis
to conclude that there is a set N = {g1, · · · , gm} where for every 0 ≤ i ≤ m
we have that g

a⇒ gi and gi ≈k fi. Note that g
α⇒ N . We claim that f ′ 4k N .

However, this follows immediately from Lemma 24 (b).

“(a),⇐” Let us assume that f 4k+1 g and for every g −→∗ g′ there is f ′ ∈ F
such that g′ ≈k f

′. Then g |= Ξf ∧AG
∨

f ′∈F Θf ′,k by applying the definition

of 4k+1 and the induction hypothesis. Since f 4k+1 g, for every f
α⇒ f ′

there is some g
α⇒ N such that f ′ 4k N . Now let M = {f ′′ ∈ F | f ′′ ≈k

g′′ for some g′′ ∈ N}. Since every state of N is reachable from g, for every
g′′ ∈ N there is at least one f ′′ ∈ M such that g′′ ≈k f

′′. As f ′ 4k N , we
also have that f ′ 4k M by applying Lemma 24 (b). Hence, M ∈ F(f ′,4k).
To sum up, we obtain that g |= ∧

f
α⇒f ′(

∨
M∈F(f ′,4k)(

∧
f ′′∈M〈〈α〉〉Θf ′′,k)) and

we are done.

“(b), ⇒” Let g |= Ψf,k+1. Then g |= AG
∨

f ′∈F Θf ′,k and hence for every
g −→∗ g′ there is some f ′ ∈ F such that g′ ≈k f

′ by applying the induction
hypothesis. We show that g 4k+1 f . As g |= Γf , we have that (g, f) ∈ P .
Let g

α⇒ g′. Since g |= ∧
α∈Aτ

[[α]](
∨

f
α⇒M

∨
f ′∈F(4k,M) Θf ′,k), there are f

α⇒M

and f ′ ∈ F such that f ′ 4k M and g′ ≈k f
′ (here we apply the definition of
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F(4k,M) and the induction hypothesis). Since g′ 4k f
′ 4k M , we obtain

g′ 4k M by Lemma 24 (a).

“(b), ⇐” Let us assume that g 4k+1 f and for every g −→∗ g′ there is
f ′ ∈ F such that g′ ≈k f

′. Then g |= Γf ∧AG
∨

f ′∈F Θf ′,k by applying the
definition of 4k+1 and the induction hypothesis. Since g 4k+1 f , for every
g

α⇒ g′ there is some f
α⇒M such that g′ 4k M . Further, as g′ is reachable

from g, there is some f ′ ∈ F such that g′ ≈k f
′. Since f ′ 4k g

′ 4k M , we
obtain f ′ 4k M by Lemma 24 (a). This means that f ′ ∈ F(4k,M). To sum
up, we have that g |= ∧

α∈Aτ
[[α]](

∨
f

α⇒M

∨
f ′∈F(4k,M) Θf ′,k) and the proof is

finished. 2

Corollary 30 Let g be an (arbitrary) process such that A(g) ⊆ A, and let
f ∈ F . Then the following two conditions are equivalent:

(a) g ≈ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ≈ f ′.
(b) g |= Θf,n2n ∧AG(

∨
f ′∈F Θf ′,n2n).

Note that the size of the circuit representing the formula Θf,n2n∧AG(
∨

f ′∈F Θf ′,n2n)
is exponential in n and can be constructed in exponential time.

Remark 31 As we already mentioned, the U preorder is not well-defined, be-
cause trace equivalence with a given finite-state process f is not expressible
in modal logic (even monadic second order logic is (provably) not sufficiently
powerful to express that a process can perform every trace over a given finite al-
phabet). Nevertheless, in our context it suffices to express the condition of full
trace equivalence with f , which is achievable. So, full possible-futures equiv-
alence with f is expressed by the formula Θf,n2n ∧ AG(

∨
f ′∈F Θf ′,n2n) where

for every f ′ ∈ F we define Ξf ′ and Γf ′ to be the formula which expresses full
trace equivalence with f ′. This “trick” can be used also for other trace-like
equivalences where the associated preorder is not well-defined.

5 Model Checking Lossy Channel Systems

In this section we show that the model checking of L(EXα,EF,EFτ ,EU,EUα)
formulae is decidable for lossy channel systems (LCS’s). This result was in-
spired by [32] and can be seen as a natural extension of known results.

Definition 32 [33] A channel system is a tuple S = (Q,C,Σ,A,∆), where
Q is a finite set control states, C = {c1, · · · , ck} is a finite set of channels,
A is a finite alphabet of actions, Σ is a finite alphabet of messages, and ∆ is
a finite set of transition rules, each of which is a triple of the form (q, op, q′),
where q, q′ ∈ Q and op is an operation of one of the forms
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• c!u, where c ∈ C and u ∈ Σ,
• c?u, where c ∈ C and u ∈ Σ,
• α ∈ Aτ .

A configuration of S is a tuple σ = 〈q, w1, · · · , wk〉, where q ∈ Q is a control
state and w1, · · · , wk ∈ Σ∗ are words denoting the sequences of messages
stored in channels. The transition rules in ∆ state how S can move from one
configuration to another. Formally, S has a “perfect” step σ

α−→p σ
′ iff σ is

some 〈q, w1, · · · , wk〉, σ′ is some 〈q′, w1, · · · , wi−1, v, wi+1, · · · , wk〉, and one of
the following conditions is satisfied:

• α = τ and there is a rule (q, ci!u, q
′) ∈ ∆ such that v = wiu (i.e., u has been

written to ci);
• α = τ and there is a rule (q, ci?u, q

′) ∈ ∆ such that wi = uv (i.e., u has
been read from ci);

• v = wi and there is a rule (q, α, q′) ∈ ∆ (i.e., the action α has been performed
without changing the contents of channels).

These steps are called perfect because no messages are lost. Assuming perfect
steps, channel systems (even systems with just one channel) can faithfully
simulate an arbitrary Turing machine with quadratic overhead [34]. Hence all
non-trivial verification problems are undecidable for LCS’s.

Saying that a channel system is lossy means that messages can be lost while
they are in the channels. This is formally captured by introducing an ordering
between configurations. We write u v v if u is a “scattered subword” of v, i.e.,
if one can obtain u by erasing some letters in v (possibly all letters, possibly
none). This ordering is extended to configurations as follows: 〈q, w1, · · · , wk〉 ≤
〈q′, w′1, · · · , w′k〉 when q = q′ and wi v w′i for all 1 ≤ i ≤ k. By Higman’s
lemma, ≤ is a well-quasi-ordering (a wqo), i.e., it is well-founded and every
set of incomparable configurations is finite.

Now the lossy steps of a given channel system S are defined as follows: σ
α−→ σ′

iff either θ
α−→p θ

′ for some configurations θ, θ′ such that σ ≥ θ and θ′ ≥ σ′,
or α = τ and σ 6= σ′ ≤ σ. Note that σ1 ≥ σ2

α−→ σ3 ≥ σ4 entails σ1
α−→ σ4.

The transition system associated with a LCS S = (Q,C,Σ,A,∆) as above is
T = (Q× Σ∗k,−→,A), where the lossy steps are taken into account.

We are interested in sets of configurations denoted by some simple expressions.
For a configuration σ we let ↑σ denote the upward-closure of σ, i.e., the set
{θ | σ ≤ θ}. A restricted set is denoted by an expression % of the form

↑σ − ↑θ1 − . . .− ↑θn

where σ, θ1, . . . , θn are some configurations. This denotes the set ↑σ minus the
“restrictions” ↑θi.
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An expression % is trivial if it denotes the empty set. Clearly ↑σ−↑θ1−· · ·−↑θn

is trivial iff θi ≤ σ for some i. A constrained set is a finite union of restricted
sets, denoted by an expression γ of the form %1 ∨ · · · ∨ %m (if m = 0, i.e.,
when the disjunction is empty, we may write just false). Such an expression
is reduced if no %i is trivial and it is easy to transform any constrained set
in an equivalent reduced one. For a set M of configurations and α ∈ Aτ ,
let Preα(M) = {σ | σ α−→ σ′ for some σ′ ∈ M} be the set of all immediate
α-predecessors of configurations in M .

In the rest of this section we do not strictly distinguish between sets of config-
urations and expressions denoting these sets. For example, if % is an expression
denoting a constrained set M , we write Preα(%) instead of Preα(M).

Now we show that constrained sets are closed under Boolean operations, and
that expressions like γ1∧γ2 or ¬γ can effectively be transformed into equivalent
reduced expressions. Additionally, constrained sets are effectively closed under
Preα. These results enable symbolic model-checking of L(EXα,EF,EFτ ,EU,EUα)
formulae for LCS’s, where reduced expressions are used to represent sets of
configurations that satisfy individual subformulae. For the rest of this section,
let us fix a channel system S = (Q,C,Σ,A,∆) where C = {c1, · · · , ck}.

Lemma 33 Constrained sets are closed under intersection. Furthermore, from
reduced expressions γ1 and γ2, one can compute a reduced expression for γ1∧γ2.

PROOF. For all v, w ∈ Σ∗, let v‖w be the set consisting of all u ∈ Σ∗ such
that

• v v u, w v u,
• for every word u′ 6= u such that v v u′, w v u′ we have that u′ 6v u.

In other words, u ∈ v‖w iff u is a minimal upper bound of {v, w} w.r.t. v.
For example, aba‖cab = {caba, abcab, abcba}. Note that |u| ≤ |v|+ |w|. Hence,
the set v‖w is finite and effectively computable (e.g., by exhaustive search).

The intersection ↑〈q, w1, · · · , wk〉 ∧ ↑〈q′, w′1, · · · , w′k〉 of two upward-closures is
empty when q 6= q′. Otherwise, it is equal to

∨

u1∈w1‖w′1
· · · ∨

uk∈wk‖w′k
↑〈q, u1, · · · , uk〉

For example, ↑〈q, aba〉 ∧ ↑〈q, cab〉 = ↑〈q, caba〉 ∨ ↑〈q, abcab〉 ∨ ↑〈q, abcba〉.

The intersection of restricted sets follows easily—assuming

↑σ ∧ ↑σ′ = ↑σ1 ∨ . . . ∨ ↑σ`,
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one derives

(↑σ−↑θ1−. . .−↑θn)∧(↑σ′−↑θn+1−. . .−↑θm) =
m∨

i=1

(
↑σi−↑θ1−. . .−↑θm

)
. (1)

This allows intersecting constrained sets: (
∨

i %i)∧ (
∨

j %j) =
∨

i

∨
j(%i∧%j). 2

Lemma 34 Constrained sets are closed under complementation. Furthermore,
from a reduced expression γ, one can compute a reduced expression for ¬γ.

PROOF. Complementation is easy for upward-closures:

¬↑〈q, w1, · · · , wk〉 =
(
↑〈q, ε, · · · , ε〉 − ↑〈q, w1, · · · , wk〉

)
∨ ∨

q′ 6=q

↑〈q′, ε, · · · , ε〉.

This allows complementing restricted sets:

¬(↑σ − ↑θ1 − . . .− ↑θn) = ↑θ1 ∨ · · · ∨ ↑θn ∨ ¬↑σ.

We use intersection (Lemma 33) for complementing constrained sets:

¬(%1 ∨ · · · ∨ %m) = (¬%1) ∧ · · · ∧ (¬%m). 2

Lemma 35 Constrained sets are closed under Preα. Furthermore, from a re-
duced expression γ, one can compute a reduced expression for Preα(γ).

PROOF. Since Preα(
∨

i %i) =
∨

i Preα(%i), it is enough to compute Preα(%)
for % a restricted set. If % has the reduced form ↑σ − ↑θ1 − . . . − ↑θn, then
Preα(%) = Preα(↑σ) = Preα(σ) (cf. the definition of lossy steps). We assume
σ = 〈q, w1, . . . , wk〉 and show how to express Preα(σ) as a finite union of
upward closures. There are two cases:

α 6= τ : Let Γ contains all configurations 〈q′, w1, . . . , wn〉 for q′ ∈ Q such that
(q′, α, q) ∈ ∆.

α = τ : Here constructing Γ is a bit more involved. For all rules (q′, ci?u, q) ∈
∆, we put 〈q′, w1, . . . , uwi, . . . , wk〉 in Γ. For all rules (q′, ci!u, q) ∈ ∆, the
configuration we put in Γ is 〈q′, w1, . . . , wi, . . . , wk〉 if wi does not end with
u, or 〈q′, w1, . . . , v, . . . , wk〉 if wi = vu. Finally, we put in Γ all configurations
σ′ > σ s.t. σ′ differs from σ by just one message.

In both cases, Preα(σ) =
∨

θ∈Γ ↑θ. We conclude by noting that Γ is finite and
effectively constructible. 2

We can now compute the set of configurations that satisfy an EUα formula:
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Lemma 36 Let S1 and S2 be two constrained sets. Then the set S of config-
urations that satisfy S1 EUα S2 is constrained too. Furthermore, from reduced
expressions for S1 and S2, one can compute a reduced expression for S.

PROOF. We inductively define a sequence (Ui)i∈N0 of sets of configurations
as follows:

• U0 =





Preα(S2) if α 6= τ

S2 otherwise.

• Ui+1 = Ui ∪ (Preτ (Ui) ∩ S1)

Then S =
⋃

i∈N0
Ui.

By the previous Lemmas, every Ui is a constrained set and one can compute,
for each S1 ∩ Pre(Ui), a reduced expression

∨
j %i,j with %i,j having the form

↑σi,j−↑θi,j,1− . . .−↑θi,j,`. The crucial point in our proof is that all restrictions
θi,j,k already occur in the expression for S1. Indeed, the algorithm for Preα

(Lemma 35) does not use restrictions, and the algorithm for intersection (see
Equation (1) in Lemma 33) only uses restrictions that were already present.

Assume now that the sequence of Ui’s is strictly increasing. Then for every
i there is some ji such that %i,ji

is not included in Ui. Extract from the se-
quence (%i,ji

)i an infinite subsequence where the restrictions are always the
same (this can be done since the restrictions come from a finite set). Now
the wqo property of ≤ entails that some %i,ji

in this sequence is included in a
previous %i′,ji′ , contradicting the assumption that %i,ji

is not included in Ui, a
superset of Ui′+1.

Hence, the sequence of Ui’s eventually stabilize. Since it is possible to compare
Ui+1 with Ui when we compute it, stabilization can be detected. At stabiliza-
tion, we have computed a reduced expression for S. 2

The EU operator can be handled similarly as EUα. We just treat all actions
as if they were τ and use the algorithm for EUτ . Thus, we obtain the following:

Lemma 37 Let S1 and S2 be two constrained sets. Then the set S of config-
urations that satisfy S1 EU S2 is constrained too. Furthermore, from reduced
expressions for S1 and S2, one can compute a reduced expression for S.

By combining Lemmas 34, 35, 36, and 37, we obtain the result we were aiming
at:

Theorem 38 The model checking problem for L(EXα,EF,EFτ ,EU,EUα)
formulae is decidable for lossy channel systems.
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PROOF. First note that EFϕ ≡ ttEU ϕ and EFτ ϕ ≡ ttEUτ ϕ. For a
given formula ϕ ∈ L(EXα,EF,EFτ ,EU,EUα), the model checking algorithm
computes a reduced expression which encodes the set of all configurations
that satisfy ϕ. This is achieved by replacing each subformula of ϕ with its
associated reduced expression in a bottom-up fashion, using algorithms of
Lemmas 34, 35, 36, and 37. 2

6 Applications

6.1 A Note on Semantic Quotients

Definition 39 Let T = (S,−→,A) be a transition system, g ∈ S, and ∼ a
process equivalence. Let Reach(g) = {s ∈ S | g −→∗ s}. The ∼-quotient of g is
the process [g] of the transition system (Reach(g)/∼,−→,A) where [s]

α−→ [t] iff
there are s′, t′ ∈ Reach(g) such that s ∼ s′, t ∼ t′, and s′ α−→ t′.

For most of the existing process equivalences we have that s ∼ [s] for every
process s (see [35,36]). In general, the class of modal properties preserved under
∼-quotients is larger than the class of ∼-invariant properties [36]. Hence, ∼-
quotients are rather robust descriptions of the original systems. Some questions
related to formal verification can be answered by examining the properties of
∼-quotients, which is particularly advantageous if the ∼-quotient is finite (so
far, mainly bisimilarity-quotients have been used for this purpose). This raises
two natural problems:

(a) Given a process g and an equivalence ∼, is the ∼-quotient of g finite?
(b) Given a process g, an equivalence ∼, and a finite-state process f , is f the

∼-quotient of g?

Question (a) is known as the strong regularity problem (see, e.g., [37] where
it is shown that strong regularity wrt. simulation equivalence is decidable for
one-counter nets). For bisimulation-like equivalences, question (a) coincides
with the standard regularity problem.

Using the results of previous sections, problem (b) is reducible to the model-
checking problem with the logic L(EXα,EF,EFτ ). Let F = (F,−→,A) be
a finite state system and ∼ an MTB or PS equivalence. Further, let us as-
sume that the states of F are pairwise non-equivalent (this can be effectively
checked). Consider the formula

%f ≡ ξf ∧
∧

f ′∈F

EF ξf ′ ∧
∧

f ′
α−→f ′′

(in F)

EF
(
ξf ′∧EXα ξf ′′

)
∧ ∧

f ′ 6
α−→f ′′

(in F)

AG
(
ξf ′ ⇒ AXα ¬ξf ′′

)
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where ξf is the formula expressing full ∼-equivalence with f . It is easy to see
that for every process g such that A(g) ⊆ A(f) we have that g |= %f iff f is
the ∼-quotient of g.

Observe that if problem (b) above is decidable for a given class of processes,
then problem (a) is semi-decidable for this class. So, for all those models
where model-checking with the logic L(EXα,EF,EFτ ) is decidable we have
that the positive subcase of the strong regularity problem is semi-decidable
due to rather generic reasons, while establishing the semi-decidability of the
negative subcase is a model-specific part of the problem.

6.2 Results for Concrete Process Classes

All of the results presented so far are applicable to those process classes where
model-checking the relevant fragment of modal logic is decidable. In particular,
model-checking L(EXα,EF,EFτ ) is decidable for

• pushdown processes. In fact, this problem is PSPACE-complete [30]. More-
over, the complexity of the model-checking algorithm depends on the size
of the circuit which represents a given formula (rather than on the size of
the formula itself) [38];

• PA (and in fact also PAD) processes [18,29]. The best known complexity
upper bound for this problem is non-elementary.

• lossy channel systems (see Section 5). Here the model-checking problem is
of nonprimitive recursive complexity [39].

From this we immediately obtain that the problem of full MTB-equivalence,
where B is well-defined, is

• decidable in polynomial space for pushdown processes. For many concrete
MTB-equivalences, this bound is optimal (for example, all bisimulation-
like equivalences between pushdown processes and finite-state processes are
PSPACE-hard [40]);

• decidable for PA and PAD processes;
• decidable for lossy channel systems. For most concrete MTB-equivalences,

the problem is of nonprimitive recursive complexity (this can be easily de-
rived using the results of [39]).

Similar results hold for PS equivalences where P is well-defined (for push-
down processes we obtain EXPSPACE upper complexity bound). Finally,
the remarks about the problems (a),(b) of the previous paragraph also apply
to the mentioned process classes.
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[17] P. Jančar, A. Kučera, R. Mayr, Deciding bisimulation-like equivalences with
finite-state processes, Theoretical Computer Science 258 (1–2) (2001) 409–433.

[18] R. Mayr, Decidability of model checking with the temporal logic EF, Theoretical
Computer Science 256 (1–2) (2001) 31–62.

[19] R. van Glabbeek, The linear time—branching time spectrum II: The semantics
of sequential systems with silent moves, in: Proceedings of CONCUR’93, Vol.
715 of Lecture Notes in Computer Science, Springer, 1993, pp. 66–81.
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