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Abstract

We study the problem of bisimilarity-checking between processes of one-counter au-
tomata and finite-state processes. We show that deciding weak bisimilarity between
processes of one-counter nets (which are ‘restricted’ one-counter automata where
the counter cannot be tested for zero) and finite-state processes is DP-hard. In
particular, this means that the problem is both NP and co-NP hard. The same
technique is used to demonstrate co-NP-hardness of strong bisimilarity between
processes of one-counter nets. Then we design an algorithm which decides weak
bisimilarity between processes of one-counter automata and finite-state processes in
time which is polynomial for a large subclass of instances, giving a kind of charac-
terization of all hard instances as a byproduct. Moreover, we show how to efficiently
estimate the time which is needed to solve a given instance. Finally, we prove that
the problem of strong bisimilarity between processes of one-counter automata and
finite-state processes is in P.
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1 Introduction

In concurrency theory, processes are typically understood as (being associated
with) states in transition systems, a fundamental and widely accepted model
of discrete systems.

Definition 1 A transition system is a triple T = (S, Σ,→) where S is a set
of states, Σ is a finite set of actions (or labels), and → ⊆ S × Σ × S is a
transition relation.
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We write s
a
→ t instead of (s, a, t) ∈ → and we extend this notation to elements

of Σ∗ in the natural way. A state t is reachable from a state s, written s →∗ t,
iff there is w ∈ Σ∗ such that s

w
→ t. A system T is finite-state iff the set of

states of T is finite.

1.1 Formal Verification of Concurrent Systems

The equivalence approach to formal verification of concurrent systems is based
on the following scheme: One describes the specification (the intended be-
haviour) S and the implementation I of a given system in some ‘higher’ for-
malism whose semantics is defined in terms of transition systems, and then
it is shown that S and I are equivalent. Here, the notion of process equiva-
lence can be captured in many ways (see, e.g., [47]). It seems, however, that
bisimulation equivalence [40,37] is of special importance because its accompa-
nying theory has been developed very intensively and found its way to many
practical applications.

Definition 2 Let T = (S, Σ,→) be a transition system. A binary relation
R ⊆ S × S is a bisimulation iff whenever (s, t) ∈ R, then

• for each s
a
→ s′ there is some t

a
→ t′ such that (s′, t′) ∈ R,

• for each t
a
→ t′ there is some s

a
→ s′ such that (s′, t′) ∈ R.

States s, t are bisimulation equivalent (or bisimilar), written s ∼ t, iff there
is a bisimulation relating them.

Bisimulations can also be used to relate states of different transition systems;
formally, two systems can be considered as a single one by taking their dis-
joint union (the labeling of transitions is preserved). An important variant of
bisimilarity is weak bisimilarity introduced by Milner in his work on CCS [37].
This relation distinguishes between ‘external’ and ‘internal’ computational
steps, and allows to ‘ignore’ the internal steps (which are usually denoted by
a distinguished action τ) to a certain extent.

Definition 3 Let T = (S, Σ,→) be a transition system. We define the ex-
tended transition relation ⇒ ⊆ S × Σ × S as follows:

• s
τ
⇒ t iff t is reachable from s via a finite (and possibly empty) sequence of

transitions labeled by τ (note that s
τ
⇒ s for each s),

• s
a
⇒ t where a 6= τ iff there are states u, v such that s

τ
⇒ u

a
→ v

τ
⇒ t.

The relation of weak bisimulation is defined in the same way as bisimulation,
but ‘⇒’ is used instead of ‘→’. Processes s, t are weakly bisimilar, written
s ≈ t, iff there is a weak bisimulation relating them.
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To prevent a confusion about bisimilarity and weak bisimilarity, we refer to
bisimilarity as strong bisimilarity in the rest of this paper.

1.2 One-Counter Automata and One-Counter Nets

In this paper we study the complexity of certain bisimulation problems for
processes of transition systems generated by one-counter automata and one-
counter nets. These models are formally seen as restricted classes of pushdown
automata.

Definition 4 A pushdown automaton is a tuple P = (Q, Γ, Σ, δ) where Q is
a finite set of control states, Γ is a finite stack alphabet, Σ is a finite input
alphabet, and δ : (Q × Γ) → 2Σ×(Q×Γ∗) is a transition function such that
δ(p, X) is finite for all p ∈ Q and X ∈ Γ.

We can assume (w.l.o.g.) that each transition increases the height (or length)
of the stack at most by one (every PDA can be efficiently transformed to
this kind of normal form). To P we associate the transition system TP where
Q × Σ∗ is the set of states, Σ is the set of actions, and the transition relation
is determined by

(p, Aα)
a
→ (q, βα) iff (a, (q, β)) ∈ δ(p, A).

As usual, we write pγ instead of (p, γ) and we use ε to denote the empty word.
The size of P is the length of the string which is obtained by writing all ele-
ments of the tuple linearly in binary. The size of a process pα of P is the length
of its corresponding binary encoding. Pushdown processes (i.e., processes of
pushdown automata) have their origin in theory of formal languages [21]. In
the last decade, they attracted further attention as a natural model of sequen-
tial systems which is suitable for purposes of formal verification [15,14,16].
Note that Definition 4 actually introduces the so-called real-time PDA, i.e.,
PDA without ε-transitions. However, it is still possible to model the silent
(externally unobservable) computational steps by τ -labeled transitions; the
way how weak bisimilarity treats τ -transitions is very similar to the original
treatment of ε-transitions (cf., e.g., [21]).

In this paper we mainly concentrate on a subclass of pushdown automata
where the stack behaves like a counter. The resulting model naturally cor-
responds to finite-state programs operating on a single unbounded variable.
For example, network protocols can maintain the count on how many unac-
knowledged messages have been sent, a printer spool should know how many
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processes are waiting in the input queue, etc.

Definition 5 A one-counter automaton (OC automaton) A is a pushdown
automaton with just two stack symbols I and Z; the transition function δ of
A is a union of functions δZ and δI where δZ : (Q × {Z}) → 2Σ×(Q×({I}∗{Z}))

and δI : (Q × {I}) → 2Σ×(Q×{I}∗).

Hence, Z works like a bottom-of-stack symbol (which cannot be removed),
and the number of pushed I’s represents the counter value. Processes of A
(i.e., states of TA) are of the form pI iZ. In the rest of this paper, we often
write p(i) instead of pI iZ. It is worth to note that the size of p(i) is O(i) and
not O(log i), because p(i) is just a symbolic abbreviation for pαZ where α is a
string of i symbols I (i.e., we keep using the standard measure introduced for
PDA). Again, we assume (w.l.o.g) that each transition increases the counter
at most by one.

A proper subclass of one-counter automata of its own interest are one-counter
nets. Intuitively, OC nets are ‘restricted’ OC automata which cannot test for
zero explicitly. They are equivalent to a subclass of Petri nets [41] with (at
most) one unbounded place. Here, the word ‘equivalent’ means that the two
models generate the same class of transition systems up to isomorphism.

Definition 6 A one-counter net N is a one-counter automaton such that
whenever (a, qI iZ) ∈ δZ(p, Z), then (a, qI i+1) ∈ δI(p, I).

In other words, each transition which is enabled at zero-level is also enabled
at (each) non-zero-level. Hence, there are no ‘zero-specific’ transitions which
could be used to ‘test for zero’.

As a simple example, we might take A = ({p}, {I, Z}, {a}, δ), where

δ(pZ) = {(b, pZ), (a, pIZ)}, δ(pI) = {(a, pII), (a, pε)}

Note that A is not a one-counter net; however, A becomes a OC net as soon
as we delete the (only) b-transition, or, alternatively, add the (b, pI) transition
to δ(pI). The associated infinite-state transition system TA looks as follows:

a a a a

a a a a

b

p(0) p(1) p(2) p(3)

Observe that the out-going transitions of a OC process q(i) where i > 0 do
not depend on the actual value of i. Hence, the structure of transition systems
which are associated with OC automata (and, in particular, with OC nets) is
rather regular—they consist of a ‘zero pattern’ and a ‘non-zero pattern’ which
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is repeated infinitely often. Despite this regularity, bisimilarity-checking for
OC automata (and even for OC nets) is computationally hard, as we shall see
in Section 2.

1.3 The State of the Art

In this section we give a short summary of known results about relevant veri-
fication problems for PDA and OC automata.

In the context of concurrency theory, the subclass of stateless pushdown
automata is usually referred to as ‘BPA’ (which stands for Basic Process
Algebra). Important subclasses of PDA and BPA can be further obtained by
an extra restriction of normedness. We say that a pushdown automaton P is
normed if each configuration pα of P can empty its stack in a finite number
of transitions (i.e., pα →∗ qε for some control state q). It is worth to note that
the classes of BPA processes and processes of OC nets are incomparable w.r.t.
bisimulation semantics. In particular,

• the “standard” example of a PDA process which is not bisimilar to any BPA
process [6], i.e., the process pIZ of a PDA P = ({p, q, r, s}, {I, Z}, {a, b, c, d}, δ)
where

δ = { pI
a
→ pII, pI

b
→ rε, pI

c
→ qε, qI

d
→ sI, sI

d
→ qε, rI

d
→ rε }

is in fact an OC net process;
• the (normed) BPA process X of a stateless PDA P = ({−}, {X, Y }, {a, b, c}, δ)

where

δ = { X
a
→ Y X, X

a
→ XX, X

b
→ ε, Y

a
→ XY, Y

a
→ Y Y, Y

c
→ ε }

is not bisimilar to any OC process. To see this, realize that X can reach
2n pairwise non-bisimilar states in n transitions, while any OC process p(i)
can reach at most k · (2n+1) states in n transitions, where k is the number
of control states.

1.3.1 Bisimilarity-Checking

The first positive result indicating that the decidability/complexity issues for
bisimilarity are substantially different from the ones for language equivalence
was obtained by Baeten, Bergstra, and Klop [5]. They proved that strong
bisimilarity is decidable for normed BPA processes. Simpler proofs were given
later in [11,22,18], and there is even a polynomial-time algorithm due to Hir-
shfeld, Jerrum, and Moller [20]. The decidability result was extended to all
BPA processes in [12]. However, the best known algorithm for this generalized
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case is of elementary complexity [10]; recently, the PSPACE lower bound
was presented in [43]. The decidability of strong bisimilarity for normed PDA
processes was demonstrated by Stirling in [46]. As his result is obtained by
a combination of two semi-decision procedures, it does not allow for a rea-
sonable complexity analysis. Another (incomparable) positive result from [23]
says that strong bisimilarity is decidable for processes of OC automata. Later,
Sénizergues [42] presented a rather involved proof demonstrating that strong
bisimilarity is decidable for all PDA processes. The EXPTIME lower com-
plexity bound for the problem of strong bisimilarity over (normed) PDA pro-
cesses was recently given in [31]. The problem of weak bisimilarity for PDA is
already undecidable [44].

The situation becomes substantially simpler if (at least) one of the two pro-
cesses being compared is finite-state. In [25] it was shown that the problem
of strong/weak bisimilarity (and, in fact, many bisimulation-like equivalences)
between processes of some class C and finite-state processes can be reduced to
the model-checking problem with processes of C and a slightly generalized ver-
sion of the logic EF in which the ‘3’ modality can impose certain constraints
on action sequences. This reduction is not polynomial and therefore it cannot
be used to transfer complexity bounds; however, it allows to conclude that
strong/weak bisimilarity is decidable for a large class of processes known as
‘PAD’ [36] which properly subsumes all PDA and also PA [7] processes. The
problem of strong/weak bisimilarity between PDA and finite-state processes
is PSPACE-hard [35], and in fact PSPACE-complete [31]. Another related
result from [33] is that strong/weak bisimilarity between BPA and finite-state
processes is in P.

1.3.2 Other Results for One-Counter Processes

The problem of simulation equivalence [47] between processes of OC nets has
been shown decidable in [1]. It was the first (and rather tight) result demon-
strating that also simulation equivalence can be decidable in a non-trivial
class of infinite-state processes (otherwise, simulation tends to be undecid-
able [19], unless one of the two processes is finite-state [32]). A simpler proof
was later given in [29] where it is also proved that simulation equivalence
between processes of OC automata is already undecidable. The relationship
between simulation and bisimulation equivalence is studied in [26] where it is
shown that certain ‘simulation-problems’ for OC nets are effectively reducible
to their ‘bisimulation-counterparts’ for OC automata. Further evidence sup-
porting the claim that OC automata are generally harder to analyze than OC
nets is provided in [30] – simulation equivalence with a finite-state process is
co-NP-hard for processes of OC automata, while the same problem is in P
for processes of OC nets.
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1.4 Plan of the Paper

In this paper we concentrate on the complexity of checking strong and weak
bisimilarity between processes of OC automata and FS processes. Our motiva-
tion is that the specification or the implementation of a system which is to be
verified (see above) can often be specified as a finite-state process. Moreover, a
number of ‘classical’ verification problems (e.g., liveness, safety) can be easily
reduced to the problem of weak bisimilarity with a finite-state system. For
example, if we want to check that the action a is live for a process g (i.e., each
state which is reachable from g can reach a state which can emit a), we can
rename all actions of g except a to τ and then check weak bisimilarity between
g and f where f is a one-state process with the only transition f

a
→ f .

In Section 2, it is shown that the problem of weak bisimilarity between pro-
cesses of OC nets and FS processes is DP-hard, even for a fixed finite-state
process (intuitively, the class DP [39] is expected to be somewhat larger than
the union of NP and co-NP; however, it is still contained in the ∆2 = PNP

level of the polynomial hierarchy). Here we have to devise a special technique
for encoding, guessing, and checking assignments of Boolean variables in the
structure of OC nets. As transition systems which are associated with OC
nets are rather regular, the method is not straightforward (observe that as-
signments are easy to handle with a stack; it is not so easy if we only have a
counter at our disposal). Using the same technique we also prove that strong
bisimilarity between processes of OC nets is co-NP-hard (strong bisimilar-
ity between processes of OC automata and finite-state processes is already
polynomial—see below).

Assuming the expected relationship among complexity classes, the DP-hardness
result for weak bisimilarity actually says that any deterministic algorithm
which decides the problem requires exponential time in the worst case. In
Section 3 we design an algorithm which decides weak bisimilarity between a
process p(i) of a OC automaton A and a process f of a finite-state system
F in O(n7 · m5 · z5 · (i + 1)) time where n is the size of A, m is the size of
F , and z is a special parameter which depends only on A. Note that if there
was no z, or if z was always ‘small’, the problem would be in P. In general,
z can be exponentially larger than n. However, it follows from the definition
of z that the automaton A must be rather ‘special’ to make its associated z

large (a good example is the automaton constructed in the DP-hardness proof
of Section 2). Hence, we conclude that our algorithm is actually efficient in a
large subclass of instances, and we also give a sort of ‘characterization’ of hard
instances as a byproduct. The algorithm also works for strong bisimilarity, but
in this case it only needs polynomial time—we obtain (as a simple corollary)
that the problem of strong bisimilarity between OC processes and finite-state
ones is in P.
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As z is the only factor which can blow-up the time complexity of our algorithm,
it can be seen as a kind of ‘hardness measure’; the time needed to solve a given
instance can be estimated by evaluating z. Unfortunately, a straightforward
algorithm (which just ‘implements’ the definition of z) requires exponential
time. Therefore, in Section 3.3 we design another parameter Z computable in
O(n7) time such that Z ≤ z < Z ·(|Q|+1) (where |Q| is the number of control
states of A). Thus, the value of z can be efficiently approximated.

Finally, in Section 4 we draw our conclusions and comment on the obtained
results.

In the next sections we use N and N0 to denote the sets of positive and non-
negative integers, respectively.

2 Lower Bounds

In this section we prove that the problem of weak bisimilarity between pro-
cesses of OC nets and finite-state processes is DP-hard and that the problem
of strong bisimilarity between processes of OC nets is co-NP-hard.

a b

ba

ba

1a

a2

1

2

A

AP

P

P

D

c

c

τd

d

d

B

B

Fig. 1. The finite-state system F used in the proof of Theorem 7

Theorem 7 The problem of weak bisimilarity between processes of one-counter
nets and finite-state processes is DP-hard.

PROOF. For purposes of this proof, we first fix the finite-state system F of
Fig. 1. We show DP-hardness by reduction of the DP-complete problem Sat-

Unsat. An instance of the Sat-Unsat problem is a pair (ϕ1, ϕ2) of Boolean
formulae in CNF. The question is whether ϕ1 is satisfiable and ϕ2 unsatisfiable.
First, we describe a polynomial-time algorithm which for a given formula ϕ

in CNF constructs a one-counter net Nϕ and its process sϕ(0) such that ϕ is
satisfiable iff sϕ(0) ≈ P1, and ϕ is unsatisfiable iff sϕ(0) ≈ P2, where P1, P2 are
the (fixed) FS processes of the system F . It clearly suffices for our purposes,
because then we can also construct a one-counter net N by taking the disjoint
union of Nϕ1

, Nϕ2
and adding a new control state s together with transitions

sZ
a1→ sϕ1

Z, sI
a1→ sϕ1

I and sZ
a2→ sϕ2

Z, sI
a2→ sϕ2

I (the non-zero transitions
are added just to fulfill the constraints of the definition of OC nets). Clearly
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(ϕ1, ϕ2) is a positive instance of the Sat-Unsat problem iff s(0) ≈ P where
P is the fixed FS process of the system F (see Fig. 1).

In our proof we use the following theorem of number theory (see, e.g., [4]): Let
πi be the ith prime number, and let f : N → N be a function which assigns
to each n the sum

∑n
i=1 πi. Then f is O(n3). (In our case, it suffices to know

that the sum is asymptotically bounded by a polynomial in n.) With the help
of this fact we can readily confirm that the construction described below is
indeed polynomial.

Let ϕ ≡ C1 ∧ · · · ∧Cm be a formula in CNF where Ci are clauses over propo-
sitional variables x1, · · · , xn. We assume (w.l.o.g.) that for every assignment
ν : {x1, · · · , xn} → {true, false} there is at least one clause Ci such that
ν(Ci) = true (this can be achieved, e.g., by adding the clause (x1 ∨ ¬x1) to
ϕ). Furthermore, we also assume that ϕ is not a tautology, i.e., there is at
least one assignment ν such that ν(ϕ) = false (this just means that there is
a clause where no variable appears both positively and negatively). The con-
struction of Nϕ will be described in a stepwise manner. First, for each clause
C of ϕ we define the OC net NC = (QC , {I, Z}, {c, d, τ}, δC), where

QC = {p, q} ∪ {〈j, k〉 | 1 ≤ j ≤ n and 0 ≤ k < πj}

consists of O(n4) states, and δC defines the following transitions:

• qI
c
→ qI

• pI
d
→ qI

• pI
d
→ 〈j, 0〉I (for every 1 ≤ j ≤ n)

• 〈j, k〉I
c
→ 〈j, k〉I (for all 1 ≤ j ≤ n and 0 ≤ k < πj)

• 〈j, k〉I
τ
→ 〈j, (k+1) mod πj〉ε (for all 1 ≤ j ≤ n and 0 ≤ k < πj)

• 〈j, 0〉Z
c
→ 〈j, 0〉Z (for every 1 ≤ j ≤ n) if xj is not a literal in C

• 〈j, k〉Z
c
→ 〈j, k〉Z (for all 1 ≤ j ≤ n and 1 ≤ k < πj) if ¬xj is not a literal

in C

As an example, the transition system generated by NC , where C ≡ ¬x1 ∧ x3

and n = 3, is shown in Fig. 2. To understand this picture, observe that tran-
sition systems associated to OC automata can be viewed as two-dimensional
‘tables’ where column-indexes are control states and row-indexes are counter
values (0, 1, 2, . . .). As the out-going transitions of a state q(i) where i > 0 do
not depend on the actual value of i, it suffices to depict the out-going tran-
sitions at zero and (some) non-zero level. Note that in Fig. 2, some of the
c-loops disappear at zero level. In particular, the state 〈1, 1〉Z has no c-loop
because ¬x1 is a literal in C. Similarly, 〈3, 0〉Z has no c-loop because x3 is a
literal in C. Finally, all states 〈2, k〉Z have a c-loop because C does not have
literals x2,¬x2.
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d

d

d

d

c

c

τ τ

c

τ τ τ

c c c c

τ τ τ
τ

τ

c c c c

c c c c c c c c

i+1 :

i :

0 :

p q 〈1, 0〉 〈1, 1〉 〈2, 0〉 〈2, 1〉 〈2, 2〉 〈3, 0〉 〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉

Fig. 2. The structure of TNC
for C = ¬x1 ∨ x3, assuming n = 3.

We can then make the following observations.

• c-transitions never change the state.

• The only “completed”
d
⇒-transition sequences from pIℓZ, that is, those

ending in states from which no τ -transition is possible, are

· pIℓZ
d
→ qIℓZ and

· pIℓZ
d
→ 〈j, 0〉IℓZ

τ
→ 〈j, 1〉Iℓ−1Z

τ
→ · · ·

τ
→ 〈j, ℓ mod πj〉Z

• A c-transition is available at every state within the above
d
⇒-transition

sequences after the initial d-transition, except possibly from the last state
〈j, ℓ mod πj〉Z. Hence, referring to the system F of Fig. 1, either
· pIℓZ ≈ B̄ (if for every 1 ≤ j ≤ n, the state 〈j, ℓ mod πj〉Z has a c-

transition); or
· pIℓZ ≈ B (otherwise).

• Thus,
· pIℓZ ≈ B̄ iff for every 1 ≤ j ≤ n:

if πj |ℓ then xj is not a literal of C; and
if πj ∤ℓ then ¬xj is not a literal of C;

· pIℓZ ≈ B otherwise; that is, iff for some 1 ≤ j ≤ n:
πj |ℓ and xj is a literal of C; or
πj ∤ℓ and ¬xj is a literal of C.

With these observations in mind, we define the assignment νℓ by:

νℓ(xj) =







true, if πj |ℓ;

false, otherwise.

Note that any assignment ν is equal to νℓ where ℓ = Π1≤j≤n{πj | ν(xj) =
true}. We can then easily verify that
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a

τ

τ

τ

τ

b

b b

τ τ

> 0 :

0 :

sϕ r p1 p2 pm

NC1
NC2

NCm

Fig. 3. The structure of TNϕ

νℓ(C) =







true, if pIℓZ ≈ B;

false, if pIℓZ ≈ B̄.
(1)

Finally, the OC net Nϕ = (Q, {I, Z}, {a, b, c, d, τ}, δ) is defined by taking Q

to be the disjoint union of the QCi
(we shall subscript states associated with

clause Ci with the index i, thus getting states pi, qi, and 〈j, k〉i), along with
the two new states sϕ and r; and taking δ to be the disjoint union of the δCi

along with the following further transitions:

• sϕZ
τ
→ sϕIZ,

• sϕI
τ
→ sϕII,

• sϕI
τ
→ sϕε,

• sϕI
a
→ rI, and

• rI
b
→ piI (for every 1 ≤ i ≤ m).

(The third rule is not strictly necessary, but it simplifies the proof.) The tran-
sition system generated by Nϕ is pictured in Fig. 3. We can then make the
following sequence of observations.

• νℓ(ϕ) = true

iff νℓ(Ci) = true for every 1 ≤ i ≤ m

iff piI
ℓZ ≈ B for every 1 ≤ i ≤ m (by (1) above)

iff rIℓZ ≈ A.

• νℓ(ϕ) = false
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iff νℓ(Ci) = false for some 1 ≤ i ≤ m

iff piI
ℓZ ≈ B̄ for some 1 ≤ i ≤ m (by (1) above)

iff rIℓZ ≈ Ā.

For the final step of this argument, we used the assumption that νℓ(Ci′) =

true for some clause Ci′ of ϕ, so that the transition Ā
b
→ B can be matched

by rIℓZ
b
→ pi′I

ℓZ.
• ϕ is unsatisfiable

iff νℓ(ϕ) = false for all ℓ

iff rIℓZ ≈ Ā for all ℓ

iff sϕZ ≈ P2.

• ϕ is satisfiable

iff νℓ(ϕ) = true for some ℓ

iff rIℓZ ≈ A for some ℓ

iff sϕZ ≈ P1.

For the final step of this argument, we used the assumption that ϕ is not
a tautology, that is, that νℓ′(ϕ) = false for some ℓ′, so that the transition
P1

a
→ Ā can be matched by sϕZ

a
⇒ rIℓ′Z. Also note that each transition

sϕZ
τ
⇒ sϕIkZ is matched by P1

τ
⇒ P1, since sϕZ

τ
⇔ sϕIkZ so sϕZ ≈ sϕIkZ

for all k. 2

The main reason why we could not extend the hardness result to some higher
complexity class (e.g., PSPACE) is that there is no apparent way how to
implement a ‘stepwise-guessing’ of Boolean variables which would allow to
encode, e.g., the PSPACE-complete quantified boolean formulae problem;
each such attempt resulted in an exponential blow-up in the number of control
states.

A natural question is whether the proof of Theorem 7 can be modified so that
it also works for strong bisimilarity. In the next section we show it is not the
case 2 —it turns out that the problem is in P. However, we can still re-use our
technique to establish a lower bound for the ‘symmetric’ case:

Theorem 8 The problem of strong bisimilarity between processes of one-counter
nets is co-NP-hard.

PROOF. We use a similar construction as in the proof of Theorem 7. Given a
formula ϕ in CNF, we construct two one-counter nets N ,N and their processes

2 Unless DP= P.
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s(0), s(0) such that ϕ is unsatisfiable iff s(0) ∼ s(0). The net N is just a slight
modification of the net Nϕ of Theorem 7 – we only rename all τ -labels to
c (in fact, it would suffice to rename those τ transitions which decrease the
counter). A key observation is that ϕ is unsatisfiable iff after each sequence
of transitions of the form c∗a (i.e., after each choice of an assignment) there
is a b-transition to a state which, after emitting a d-transition, can only emit
an infinite sequence of c actions without a possibility to terminate (i.e., at
least one clause is false for any assignment). The net N is a ‘copy’ of N but

we also add new control states u, v and transitions rI
b
→ uI, uI

d
→ vI, and

vI
c
→ vI, where r is a ‘twin’ of the state r of Nϕ. We put s and s to be the

corresponding twins of the state sϕ of Nϕ. Now we can easily check that ϕ is
unsatisfiable iff s(0) ∼ s(0) — the crucial argument is stated above. 2

It is worth to note that the technique of Theorem 7 can also be applied to
other problems related to formal verification of OC processes. For example,
it was used in [30] to show NP and co-NP hardness of the model-checking
problem with (fixed) formulae of the logic EF and processes of OC nets; in the
same paper, it was also shown that simulation equivalence between processes
of OC automata and finite-state processes is co-NP-hard.

3 Upper Bounds

Since the problem of weak bisimilarity between processes of OC nets and
finite-state processes is DP-hard (Theorem 7), it is likely that any determin-
istic algorithm solving the problem requires exponential time in the worst
case. Existing algorithms for checking weak bisimilarity between PDA and
finite-state processes have this complexity, and can be thus seen as ‘essen-
tially time-optimal’. These algorithms are usually based on reductions to the
model-checking problem—for example, given a PDA process P and a finite-
state process F , one can construct a characteristic formula [45,38] for F in the
modal µ-calculus and then decide whether P satisfies the formula. A charac-
teristic formula for F can also be constructed in the logic EF [25] (more pre-
cisely, in a slightly extended version of EF which can also impose restrictions
on sequences of atomic actions; even this extended logic still forms a simple
fragment of the modal µ-calculus). This ‘model-checking approach’ has two
disadvantages. First, it does not give any idea on what actually makes the
problem of bisimilarity-checking between OC and finite-state processes hard.
Second, it results in an exponential-time algorithm even in the case of strong
bisimilarity. It seems to be inevitable for PDA (strong bisimilarity between
PDA and finite-state processes is PSPACE-hard [35]), but there is no lower
bound for the problem of strong bisimilarity between OC and finite-state pro-
cesses (as we shall see, the problem is actually in P). As model-checking with
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EF is both NP and co-NP hard for processes of OC nets [30], the model-
checking approach does not yield an efficient algorithm for checking strong
bisimilarity between OC and finite-state processes.

In this section we design a new algorithm which decides weak bisimilarity
between processes of OC automata and finite-state processes. First, let us fix

• a one-counter automaton A = (Q, {I, Z}, Σ, δ) of size n,
• a finite-state system F = (F, Σ,→) of size m.

As expected, our algorithm requires exponential time in the worst case. More
precisely, it needs O(n7 · m5 · z5 · (i + 1)) time 3 to decide weak bisimilarity
between processes p(i) of A and f of F . Here, the ‘z’ is a special parameter
which depends only on A (and which can be exponentially larger than n). To
motivate the following technical development, we summarize the main features
of our algorithm and outcomes of the underlying analysis.

• In the case of strong bisimilarity, the parameter z equals 1; this means that
our algorithm decides strong bisimilarity between processes of OC automata
and finite-state ones in polynomial time.

• In the case of weak bisimilarity, it is only the size of z which can make the
problem computationally hard. However, it follows from the definition of z

that A must be rather ‘special’ to make its associated z large. Hence,
· the algorithm works efficiently in a large subclass of instances;
· we obtain a sort of ‘characterization’ of hard instances of the problem

which also suggests that the proof of Theorem 7 cannot be much simplified.
• Although the parameter z can be effectively computed from the structure

of A, its computation can take time exponential in n. Nevertheless, we give
an algorithm which computes a (usually tight) upper approximation Z of
z in polynomial time. This means that we can efficiently compute a sort
of ‘hardness measure’ whose small value guarantees fast termination of our
algorithm.

3.1 Auxiliary Results

We start by recalling some notions and results which will be later used in our
constructions. To make this paper self-contained, we also sketch crucial proofs.

Let T = (S, Σ,→) be a transition system. For each i ∈ N0 we define the

3 Note that we need a non-constant time even in the particular case when i = 0
(the problem is still DP-hard). That is why we write ‘i + 1’.
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relation ≈i ⊆ S × S inductively as follows:

• ≈0 = S × S

• s ≈i+1 t iff for each s
a
⇒ s′ there is some t

a
⇒ t′ such that s′ ≈i t′, and vice

versa.

It is easy to check that each ≈i is an equivalence relation. We also use ≈i to
relate states of different transition systems; formally, we consider two transi-
tion systems to be a single one by taking their disjoint union. The following
theorem has been established in [25] (see also [28,2,24]):

Theorem 9 Let G = (G, Σ,→) be a (general) transition system and F =
(F, Σ, →) a finite-state system. We say that a state g ∈ G is i-good for a
given i ∈ N0 iff there is f ∈ F such that g ≈i f ; g is i-bad iff g is not i-good.

Let k ∈ N be greater or equal to the number of states of F . Let g ∈ G and
f ∈ F . It holds that g ≈ f iff g ≈k f and each state which is reachable from
g is k-good.

PROOF. First realize that since ≈i is an equivalence relation and ≈i+1 refines
≈i for each i ∈ N0, the quotient of F under ≈k is the same as the quotient
of F under ≈k−1. In other words, for all f, f ′ ∈ F we have that f ≈k f ′ iff
f ≈k−1 f ′.

Now let g ∈ G and f ∈ F be two states such that g ≈k f and each state which
is reachable from g is k-good. We show that the relation

R = {(g′, f ′) | g →∗ g′, f ′ ∈ F, g′ ≈k f ′}

is a weak bisimulation. Let (g′, f ′) ∈ R. By definition of ≈k, for each move
g′ a

⇒ g′′ there is a move f ′ a
⇒ f ′′ such that g′′ ≈k−1 f ′′ (and vice versa). As

g′′ is reachable from g′, it is also reachable from g and hence it is k-good —
there is some f ∈ F such that g′′ ≈k f . By transitivity of ≈k−1 we now obtain
f ′′ ≈k−1 f , hence also f ′′ ≈k f due to the observation above. Now we use
transitivity of ≈k to conclude that g′′ ≈k f ′′, hence (g′′, f ′′) ∈ R as required.
2

A nondeterministic finite automaton (NFA) is formally understood as a tuple
M = (S, Σ, →֒, F ) where (S, Σ, →֒) is a finite-state transition system and
F ⊆ S a set of accepting states. For each s ∈ S we define its language

L(s) = {w ∈ Σ∗ | ∃f ∈ F : s
w
→ f}
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A proof of the next theorem can be found in [3].

Theorem 10 Let M = (S, Σ, →֒, F ) be a NFA, w ∈ Σ∗, and s ∈ S. The
problem if w ∈ L(s) is decidable in O(|w| · |S|2) time.

To be able to represent infinite sets of OC processes in a finite and compact
way, we borrow the following ‘tool’ from [9]:

Definition 11 Let P = (Q, Γ, Σ, δ) be a pushdown automaton, M = (S, Γ, →֒
, F ) a NFA (note that the set of actions of M is the stack alphabet of P), and
Init : Q → S a total injective function. A process pα of P is recognized by
the pair (M, Init) iff α ∈ L(Init(p)).

Input: P = (Q, Γ, Σ, δ), M = (S, Γ, →֒, F ), Init
Output: ;

; := →֒;
repeat

for all pX
a
→ qα ∈ δ, r ∈ S do

if Init(q)
α
; r then ; := ; ∪ {(Init(p), X, r)} fi

od
until ; does not change anymore

Fig. 4. An algorithm for computing M′

The next theorem also is taken from [9] (our presentation and complexity
analysis is actually based mainly on [8] where the same problem is considered
in the framework of context-free grammars).

Theorem 12 Let P = (Q, Γ, Σ, δ) be a pushdown automaton, M = (S, Γ, →֒
, F ) a NFA, and Init : Q → S a total injective function. Let N be the set
of processes recognized by (M, Init). Then one can effectively construct an
automaton M′ = (S, Γ, ;, F ) in time O(|Γ| · |δ| · |S|5) such that (M′, Init)
recognizes the set

Pre∗(N) = {qβ | qβ →∗ pα for some pα ∈ N}

of all predecessors of N .

PROOF. (Sketch) The transition relation ; of M′ can be computed, e.g.,
by the algorithm given in Fig. 4. We refer to [9] for a correctness proof. Let us
evaluate its complexity. As ; cannot have more than |Γ| · |S|2 elements, the
for loop is executed O(|Γ| · |S|2) times. Each time, the if command is executed
O(|δ| · |S|) times. The condition whether q

α
; r can be verified in O(|S|2) time

(see Theorem 10 and realize that |α| ≤ 2), and possible updating of ; can be
done in constant time (if ; is stored as, e.g., a bit matrix). Hence, we need
O(|Γ| · |δ| · |S|5) time in total. 2
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The algorithm of Fig. 4 is rather simple and inefficient. A more careful imple-
mentation of the same idea can result in better algorithms (see, e.g., [17,8]).
However, it is not so important in our setting; the main point is that M′ is
constructible in polynomial time.

3.2 The Algorithm

Intuition: To decide weak bisimilarity between processes p(i) of A and f

of F , it suffices (by Theorem 9) to find out if p(i) ≈m f and whether p(i)
can reach a state which is m-bad. We do that by constructing a constant
z such that for each state q(j) of TA where j ≥ 4(m + 1)z we have that
q(j) ≈m q(j−z). In other words, each state of TA is (up to ≈m) represented by
another (and effectively constructible) state whose counter value is bounded by
4(m+1)z. Then we convert this ‘initial part’ of TA to a finite-state system FA

and construct the ≈m relation between the states of FA and F . The question
if p(i) ≈m f is then easy to answer (we look if the representative of p(i) within
FA is related to f by ≈m). The question if p(i) can reach a state which is m-bad
still requires some development—we observe that states which are m-bad are
‘regularly distributed’ over TA and construct a description of that distribution
(which is ‘read’ from FA) in a form of a NFA M and a function Init such that
(M, Init) recognizes all m-bad states. Then we use the algorithm of Fig. 4
to construct a NFA M′ such that (M′, Init) recognizes the set of all states
which can reach a state recognized by (M, Init), and look whether (M′, Init)
recognizes p(i). All procedures we use are polynomial in the size of FA. Hence,
it is only the size of z which can blow-up the time complexity.

The next definitions and lemmata reveal a crucial periodicity in the structure
of TA.

Definition 13 For all a ∈ Σ and l ∈ N0 we define a binary relation
a
⇒l

over the set of states of TA as follows: p(i)
a
⇒l q(j) iff there is a sequence of

transitions from p(i) to q(j) which forms a ‘
a
⇒’ move and the counter value

remains greater than or equal to l in all states which appear in the sequence
(including p(i) and q(j)).

At the core of our analysis are observations about the structure of
τ
⇒l rela-

tions. We start with a simple one, which is an immediate consequence of the
aforementioned ‘regularity’ of TA.

Lemma 14 For all i, j ∈ N and p, q ∈ Q we have that p(i + j)
τ
⇒i q(i) iff

p(1 + j)
τ
⇒1 q(1).

To simplify our notation, we introduce another family of relations.
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Definition 15 For each j ∈ N we define a relation →֒j ⊆ Q × Q as follows:
p →֒j q iff p(1 + j)

τ
⇒1 q(1).

Due to Lemma 14 we immediately see that p(i + j)
τ
⇒i q(i) iff p →֒j q.

Lemma 16 For each j ∈ N we have →֒j = →֒1 ◦ · · · ◦ →֒1
︸ ︷︷ ︸

j

.

PROOF. By induction on j. The base case (j = 1) is immediate. Now let
p →֒j+1 q. Then p(2+ j)

τ
⇒1 q(1) (by Definition 15), hence there is a sequence

of τ transitions from p(2 + j) to q(1) which never decreases the counter below
1. Let r(1+j) be the first state of the sequence where the counter is decreased
to 1 + j. We see that p(2 + j)

τ
⇒1+j r(1 + j), hence p(2)

τ
⇒1 r(1) due to

Lemma 14 and p →֒1 r by Definition 15. Furthermore, r(1+ j)
τ
⇒1 q(1), hence

r →֒j q (again by Definition 15). To sum up, we obtain →֒j+1 = →֒j ◦ →֒1 and
we can apply the induction hypotheses to finish the proof. 2

Definition 17 For each p ∈ Q we define its characteristic sequence Cp : N0 →
2Q as follows:

• Cp(0) = {p};
• Cp(i + 1) = {q ∈ Q | ∃r ∈ Cp(i) such that r →֒1 q}

The next lemma is an immediate consequence of Definition 17 and Lemma 16.

Lemma 18 For all p ∈ Q, i ∈ N, and j ∈ N0 we have that q ∈ Cp(j) iff
p(i + j)

τ
⇒i q(i).

Another simple observation is that the sequence Cp is (for every p ∈ Q) ulti-
mately periodic – as 2Q is a finite set, there is i ∈ N0 such that Cp(i) = Cp(j)
for some j > i; let us choose the smallest such i and for this i the smallest j.
Now we put

• αp = Cp(0) · · · Cp(i − 1),
• βp = Cp(i) · · · Cp(j − 1).

Hence, αp can be empty while βp is always nonempty; it can also happen
that βp consists of just one element ∅. Also observe that the sets contained in
αp, βp are pairwise different, because otherwise we would immediately obtain
a contradiction to the minimality of i and j. Moreover, Cp = αpβ

ω
p because

Cp(i + 1) is completely determined by Cp(i).

Definition 19 For each p ∈ Q we define the prefix and period of p, denoted
pre(p) and per(p), to be the length of αp and βp, respectively. Furthermore, we
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put

z = max{pre(p) | p ∈ Q} · lcm{per(p) | p ∈ Q}

where lcm(M) denotes the least common multiple of the elements of M .

Remark 20 (A characterization of hard instances) As we shall see (Lemma 32),
each pre(p) is O(n2). This means that

lcm{per(p) | p ∈ Q}

is the only factor which can blow up the size of z and hence also the time
complexity of our algorithm for checking weak bisimilarity between processes
of OC automata and finite-state processes. To see that lcm{per(p) | p ∈ Q}
can indeed be exponentially larger than n, it suffices to examine the net Nϕ

constructed in the proof of Theorem 7. Thus, we obtain a kind of ‘character-
ization’ of hard instances of the problem. Intuitively, OC automata presented
in hard instances must contain many ‘decreasing τ -cycles’ of an incomparable
length. It also indicates that the ‘trick’ with prime numbers used in the proof
of Theorem 7 is in some sense inevitable.

As z ≥ pre(p) and per(p) divides z for each p ∈ Q, we obtain the following:

Lemma 21 For all p ∈ Q and i ≥ z we have that Cp(i) = Cp(i + z).

Possible non-bisimilarity of states of the form p(j), p(j + z) (where j > 0)
cannot be demonstrated without decreasing the counter to zero at some point
(as long as the counter remains positive, each of the two processes can just
‘mimick’ the moves of the other process by performing the same operation on
the counter). However, the counter should not be decreased ‘too much’ in a
single

a
⇒ transition, as it is shown in the next two lemmata.

Lemma 22 For all p ∈ Q and j ∈ N it holds that

• if there is a sequence of τ -transitions from p(j + 2z) to (some) q(l) which
decreases the counter to j at some point, then p(j + z)

τ
⇒ q(l);

• if there is a sequence of τ -transitions from p(j + z) to (some) q(l) which
decreases the counter to j at some point, then p(j + 2z)

τ
⇒ q(l);

PROOF. We show only the first part (the other one is similar). As there is a
sequence of τ -transitions from p(j+2z) to q(l) which decreases the counter to j,
there must be an intermediate state r(j) such that p(j + 2z)

τ
⇒j r(j)

τ
⇒ q(l).

As p(j + 2z)
τ
⇒j r(j), we obtain that r ∈ Cp(2z) due to Lemma 18, hence
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also r ∈ Cp(z) by Lemma 21. From this we have (again by Lemma 18) that
p(j + z)

τ
⇒j r(j), hence p(j + z)

τ
⇒ q(l) as required. 2

Lemma 23 For all p ∈ Q and j ∈ N it holds that

• if there is a sequence of transitions forming one ‘
a
⇒’ move from p(j +4z) to

(some) q(l) which decreases the counter to j at some point, then p(j+3z)
a
⇒

q(l);
• if there is a sequence of transitions forming one ‘

a
⇒’ move from p(j +3z) to

(some) q(l) which decreases the counter to j at some point, then p(j+4z)
a
⇒

q(l);

PROOF. Again, we only show the first part. The case when a = τ has been
handled in Lemma 22. If a 6= τ , we can distinguish two cases:

• The counter is decreased to j +2z at some point in the considered sequence
of transitions before emitting the action a. Then there is a state r(j + 2z)
such that p(j + 4z)

τ
⇒ r(j + 2z)

a
⇒ q(l). Now we can apply Lemma 22 and

conclude that p(j + 3z)
τ
⇒ r(j + 2z) which suffices.

• The action a is emitted before decreasing the counter to j + 2z. Then there
is a state r(j + 2z) such that p(j +4z)

a
⇒j+2z r(j + 2z) and r(j + 2z) enters

the state q(l) in a sequence of τ -transitions which decreases the counter to j.
Hence, by Lemma 22 we know that r(j+z)

τ
⇒ q(l). Now it suffices to realize

that since p(j + 4z)
a
⇒j+2z r(j + 2z), we also have p(j + 3z)

a
⇒j+z r(j + z).

To sum up, p(j + 3z)
a
⇒j+z r(j + z)

τ
⇒ q(l) and we are done. 2

Lemma 24 Let p ∈ Q and k ∈ N0. For each c > 4(k + 1)z we have that
p(c) ≈k p(c − z).

PROOF. By induction on k. The base case (k = 0) is immediate. Now let
c > 4(k + 2)z. We prove that for each ‘

a
⇒’ move of p(c) there is a ‘

a
⇒’ move of

p(c− z) such that the resulting pair of states is related by ≈k, and vice versa.
Let p(c)

a
⇒ q(l). We distinguish two cases:

• p(c)
a
⇒c−4z+1 q(l). This means that l ≥ c − 4z + 1, hence l > 4(k + 1)z.

Furthermore, we have p(c−z)
a
⇒c−5z+1 q(l−z) (this move is possible because

c > 5z). Now q(l) ≈k q(l − z) by induction hypotheses.
• The counter is decreased to c−4z by the considered sequence of transitions.

Then p(c − z)
a
⇒ q(l) by Lemma 23. Clearly q(l) ≈k q(l).

The other direction is shown in a similar way. 2

The next lemma presents a part of our complexity analysis.
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Lemma 25 Let j ∈ N. The first j elements of all characteristic sequences
can be computed in O(n7 + j · n3) time.

PROOF. First we show that the →֒1 relation can be computed in O(n7)
time. To do that, we construct a pushdown automaton P by ‘cutting-off’ all
zero transitions and all ‘non-τ ’ transitions of A. Formally, P = (Q, {I}, {τ}, γ)
where pI

τ
→ qIk ∈ γ iff pI

τ
→ qIk ∈ δ. We see that p →֒1 q iff pII →∗ qI

in TP . For each of O(n) states q ∈ Q we now construct a NFA Mq and a
function Initq such that the pair (Mq, Initq) recognizes exactly the singleton
{qI}. Observe that Mq has |Q| + 1 states (remember that Initq is injective)
and one transition; hence, its size is O(n). Now we compute the automaton
M′

q of Theorem 12, which takes O(n6) time. For each p ∈ Q we now check
if (M′

q, Initq) recognizes pII. This can be done (for a given p) in O(n2) time
(see Theorem 10), hence we need O(n3) time for all control states, which is
dominated by O(n6). To sum up, O(n7) time suffices for computation of →֒1.

Since

Cp(i + 1) = {q ∈ Q | ∃r ∈ Cp(i) such that r →֒1 q}

by definition, we only need O(n2) time to compute Cp(i + 1) from Cp(i) and
→֒1, which gives us the bound O(j ·n2) for computation of the first j elements
of Cp. As there are O(n) control states, we need O(n7 + j · n3) time in total.
2

The following lemma says how much time is needed to compute the constant
z. At first glance, it might look strange that the presented time bound for
computing z itself depends on z. Nevertheless, it does make sense because
the computation of z is a part of our algorithm for deciding weak bisimilarity
between processes of OC automata and finite-state processes. One could also
easily show that z can be computed in time which is exponential in n; however,
our aim is to show that the whole algorithm (and hence also the procedure
which computes z) is polynomial in n, m, and z. The issue is addressed in
greater detail in Section 3.3.

Lemma 26 The constant z is computable in O(n7 + z · n3) time.

PROOF. By definition of z, we first need to compute pre(p) and per(p) for
each p ∈ Q. As pre(p) + per(p) is bounded by z, it suffices to compute the
first z elements of each Cp which takes O(n7 + z ·n3) time by Lemma 25. Now
we have to select the maximal pre(p) and multiply it by the least common
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multiple of all per(p). The required arithmetic can be (comfortably) performed
in O(n7 + z · n3) time. 2

Now we are in position to prove the main theorem of this section.

Theorem 27 The problem of weak bisimilarity between processes p(i) of A
and f of F is decidable in O(n7 · m5 · z5 · (i + 1)) time.

PROOF. By Theorem 9, we need to find out whether p(i) ≈m f and whether
p(i) can reach a state which is m-bad. Due to Lemma 24 we know that the set

{p(i) | p ∈ Q, 0 ≤ i ≤ 4(m + 1)z}

represents the whole state-space of TA up to ≈m. Formally, we first define the
function B over the states of TA as follows:

B(q(j)) =







q(j) if j ≤ 4(m + 1)z;

q(4(m + 1)z) if j > 4(m + 1)z and (j mod z) = 0;

q(4mz + 3z + (j mod z)) if j > 4(m + 1)z and (j mod z) 6= 0.

An immediate consequence of Lemma 24 is that q(j) ≈m B(q(j)) for all q ∈ Q

and j ∈ N0. Now we define a finite-state system FA = (FA, Σ, →֒) where

• FA is the image of B, i.e., FA = {q(j) | q ∈ Q, 0 ≤ j ≤ 4(m + 1)z},
• Σ is the set of actions of A,
• →֒ is the least relation satisfying the following: if r(k)

a
→ s(l) is a transition

of TA, then B(r(k))
a
→֒ B(s(l)).

The definition of FA is effective; however, note that we also have to compute
the constant z which takes O(n7 + z · n3) time by Lemma 26. Furthermore,
observe that FA is actually the ‘initial part’ of TA. The only difference is that
all up-going transitions of states at level 4(m + 1)z are ‘bent’ down to the
corresponding ≈m-equivalent states at level 4mz + 3z + 1. Note that for each
q(j) we still have that q(j) ≈m B(q(j)) when B(q(j)) is seen as a state of
FA. The number of states of FA is O(n · m · z); moreover, as the number of
out-going transitions at each ‘level’ of TA is O(n), the size of →֒ is O(n ·m ·z),
which means that the total size of FA is also O(n · m · z).

Now, let us realize that if we have a finite-state system T of size t (which
means that T has at most t states and transitions), then O(t3) time suffices
to compute all sets reach(s, a) = {r | s

a
⇒ r} where s is a state and a an

22



action of T —each reach(s, τ) can be constructed in O(t) time, hence we need
O(t2) time to construct all of them. Then, for all states s, t and each transition
u

a
→ v we check if u ∈ reach(s, τ), t ∈ reach(v, τ) (these conditions can be

verified in constant time now) and if so, we add t to reach(s, a). Therefore, we
need O(n3 · m3 · z3) time to construct the reach sets for FA and F .

To compute the ≈m relation between the states of FA and F , we define

• R0 = FA × F ,
• Ri+1 = Exp(Ri)

where the function Exp : (FA×F ) → (FA×F ) refines its argument according
to the definition of ≈i — a pair (r(j), g) belongs to Exp(R) iff it belongs
to R and for each ‘

a
⇒’ move of one component there is a corresponding ‘

a
⇒’

move of the other component such that the resulting pair of states belongs
to R. Clearly, for each pair (r(j), g) of FA × F we have that r(j) ≈m g

iff (r(j), g) ∈ Rm. It remains to clarify the time costs. The function Exp is
computed m times. Each time, O(n ·m2 · z) pairs are examined. For each such
pair we have to check the membership to Exp(R). This takes only O(n ·m2 ·z)
time, because the extended transition relations of FA and F have already been
computed (for each of O(n ·m ·z) successors of the first component we try out
O(m) successors of the second components, and vice versa) . To sum up, we
need O(n3 · m5 · z3) time in total.

To check if p(i) ≈m f , we simply look if (B(p(i), f)) ∈ Rm. It remains to find
out whether p(i) can reach a state q(j) which is m-bad. Observe that q(j) is
m-bad iff the state B(q(j)) of FA is m-bad. Therefore, we can easily construct
a NFA M and a function Init such that the pair (M, Init) recognizes the set
of all m-bad states of TA — we put M = (S, {I, Z}, →֒, {fin}) where

S = {fin} ∪ {p(i) | p ∈ Q, 0 ≤ i ≤ 4(m + 1)z}

and →֒ is the least transition relation satisfying the following:

• p(i)
I
→֒ p(i + 1) for all p ∈ Q, 0 ≤ i < 4(m + 1)z;

• p(4(m + 1)z)
I
→֒ p(4mz + 3z + 1) for each p ∈ Q;

• if a state p(i) of FA is m-bad, then p(i)
Z
→֒ fin.

The function Init is defined by Init(p) = p(0) for all p ∈ Q. Note that M has
O(n · m · z) states. Now we compute the automaton M′ of Theorem 12 (it
takes O(n6 ·m5 · z5) time) and check if (M′, Init) recognizes p(i). This can be
done in O(n2 ·m2 · z2 · (i + 1)) time because M′ has the same set of states as
M (see Theorem 10).

We see that O(n7 · m5 · z5 · (i + 1)) time suffices for all of the aforementioned
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procedures (the ‘n7’ factor comes from the bound for computation of z). 2

Our algorithm can also be used to decide strong bisimilary between p(i) and
f—we just rename all τ -transitions of A and F with some (fresh) action e

(it does not change anything from the point of view of strong bisimilarity,
because here the τ -transitions are treated as ‘ordinary’ ones). As there are no
τ -transitions anymore, there is no difference between strong and weak bisim-
ilarity, hence we can use the designed algorithm. Since there are no τ ’s, z

equals 1, and so we can conclude:

Corollary 28 The problem of strong bisimilarity between processes p(i) of A
and f of F is in P.

3.3 Computing a Hardness Measure

We have seen (Lemma 26) that the constant z can be computed in O(n7+z·n3)
time. If we only used z in our algorithm for deciding weak bisimilarity between
OC and finite-state processes, there would be no need to compute it more
efficiently because the algorithm would remain quite time-consuming anyway.
However, by computing z one can also estimate the time which is needed to
solve a given instance (z can be thus seen as a kind of ‘hardness measure’—if
it is small, then we get the answer quickly). It is therefore reasonable to ask
whether we could determine the value of z in time which is polynomial in n

(i.e., without constructing the first z elements of every Cp).

Remember that z = max{pre(p) | p ∈ Q} · lcm{per(p) | p ∈ Q}. We show that
O(n7) time suffices to compute lcm{per(p) | p ∈ Q} and another number R

such that

R ≤ max{pre(p) | p ∈ Q} ≤ R + |Q|

Consequently, we can also compute a number Z such that Z ≤ z ≤ Z ·(|Q|+1)
in O(n7) time (see Theorem 35).

We start with an auxiliary technical lemma.

Lemma 29 Let p ∈ Q. Let α, β be finite sequences of subsets of Q such that
Cp = αβω. Then pre(p) ≤ length(α) and per(p) divides length(β).

PROOF. Let αp, βp be the unique sequences such that pre(p) = length(αp),
per(p) = length(βp), and Cp = αpβ

ω
p . The fact that pre(p) ≤ length(α) fol-
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lows immediately from the definition of αp. We show that length(βp) divides
length(β). Let

c = (length(α) − length(αp)) mod length(βp)

and let γ be the sequence obtained from βp by ‘shifting’ the first c elements
from its front to its end (for example, if βp = ABCDE and c = 2, then
γ = CDEAB). We see that length(γ) = length(βp). Moreover, Cp = αγω,
which means that γω = βω. Let S be the first element of γ (and β), and let
i = length(β)+1. As γω = βω, the ith element of γω must be S. However, since
all elements of γ are pairwise different (this is because the elements of βp are
pairwise different), the ith element of γω can be S only if i = k · length(γ) + 1
for some k ∈ N0. This means that i = length(β) + 1 = k · length(γ) + 1, hence
length(γ) = per(p) divides length(β). 2

In the next definition, some of the control states of A are declared as repeating.
As we shall see, the prefixes and periods of all repeating states can be com-
puted efficiently; having found their values, it is also possible to determine (or
at least estimate) the values of the aforementioned factors which constitute
the constant z.

Definition 30 A control state p ∈ Q is repeating if p →֒j p for some j ∈ N.

Lemma 31 Let p ∈ Q be a repeating state. Then pre(p) < |Q|2 and per(p) <

|Q|.

PROOF. First we show that if p is repeating, then p →֒i p for some 1 ≤ i ≤
|Q|. Let i ∈ N be the smallest number such that p →֒i p. Due to Lemma 16
we know that there is a chain

p = q0 →֒1 q1 →֒1 q2 →֒1 · · · →֒1 qi = p.

Let us suppose that i > |Q|. Then there are 1 ≤ j < k < i such that qj = qk.
This means that there is a shorter chain

p = q0 →֒1 · · · →֒1 qj →֒1 qk+1 →֒1 · · · →֒1 qi = p.

From this we obtain p →֒i−(k−j) p, which contradicts the minimality of i.

Now realize that if there are (some) j, k ∈ N0 such that Cp(j) ⊆ Cp(k), then also
Cp(j+l) ⊆ Cp(k+l) for any l ∈ N0. This follows easily from the definition of Cp.
For the same reason we have that if Cp(j) = Cp(k), then Cp(j+l) = Cp(k+l) for

25



any l ∈ N0. As {p} = Cp(0) ⊆ Cp(i), we see (due to the previous observation)
that

Cp(0) ⊆ Cp(i) ⊆ Cp(2i) ⊆ Cp(3i) ⊆ · · · ⊆ Cp(|Q|i).

As the length of this nondecreasing chain is |Q| + 1, the last two elements
(i.e., Cp(|Q|i− i) and Cp(|Q|i)) must be equal. Hence, if we define α to be the
first |Q|i − i elements of Cp, and β the next i elements of Cp, we obtain that
Cp = αβω. As i ≤ Q, we have that length(α) < |Q|2 and length(β) < |Q|.
These bounds are also valid for pre(p) and per(p) by Lemma 29. 2

Lemma 32 Let p ∈ Q. Then pre(p) ≤ |Q|2+|Q| and per(p) divides lcm{per(p) | p ∈
Q is repeating }.

PROOF. The case when p is repeating has been handled by Lemma 31. Now
suppose that p is not repeating. We show that for each q ∈ Cp(|Q|2 + |Q|)
there is a repeating state r such that q ∈ Cp(|Q|2 + |Q| + k · per(r)) for every
k ∈ N0. It suffices for our purposes, because then we also have that

Cp(|Q|2 + |Q|) = Cp(|Q|2 + |Q| + lcm{per(p) | p ∈ Q is repeating}).

If we put α to be the first |Q|2+|Q| elements of Cp and β the next lcm{per(p) | p ∈
Q is repeating} elements of Cp, we see that Cp = αβω, and thus we get our
result by applying Lemma 29.

Let q ∈ Cp(|Q|2 + |Q|). Then there is a chain

p = q0 →֒1 q1 →֒1 · · · →֒1 q|Q|2+|Q| = q.

We define r to be the first repeating state qj which appears in this chain. Then
q ∈ Cr(|Q|2 + |Q|− j). Clearly j ≤ |Q|, which also means that |Q|2 + |Q|− j ≥
|Q|2. As pre(r) < |Q|2 (due to Lemma 31), q belongs to some element of βr.
Hence, q ∈ Cr(|Q|2 + |Q| − j + k · per(r)) for every k ∈ N0. Now it suffices
to realize that Cr(l) ⊆ Cp(j + l) for every l ∈ N0. From this we obtain that
q ∈ Cp(|Q|2 + |Q| + k · per(r)) for every k ∈ N0. 2

An immediate consequence of Lemma 32 is

Corollary 33 It holds that

lcm{per(p) | p ∈ Q} = lcm{per(p) | p ∈ Q is repeating}
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Hence, lcm{per(p) | p ∈ Q} can be computed efficiently; it suffices to evaluate
the periods of all repeating states (which are small numbers) and find their
least common multiple. Unfortunately, there is no apparent way how to de-
termine the value of max{pre(p) | p ∈ Q}. Due to Lemma 32 we know that
it is bounded by |Q|2 + |Q|, but even if we construct the first |Q|2 + |Q|
elements of each Cp, it does not help us to recognize the end of αp (we
would have to wait until some element of Cp repeats, and it leads to the
O(n7 + z · n3) bound of Lemma 26). Nevertheless, we can approximate the
value of max{pre(p) | p ∈ Q}. Let R = max{pre(p) | p is repeating}. The
proof of Lemma 32 would also work if we used R instead of |Q|2. Hence we
obtain:

Corollary 34 Let p ∈ Q. Then pre(p) ≤ R + |Q|.

Now we can formulate and prove the main theorem of this section.

Theorem 35 Let us define

Z = R · lcm{per(p) | p ∈ Q is repeating}

Then Z is computable in O(n7) time. Moreover, Z ≤ z ≤ Z · (|Q| + 1).

PROOF. The fact that Z ≤ z follows immediately from Corollary 33 and the
definitions of z and Z. As each for each p ∈ Q we have that pre(p) ≤ R + |Q|
(Corollary 34), we obtain

z ≤ (R + |Q|) · lcm{per(p) | p ∈ Q is repeating}

which means that

z ≤ Z + |Q| · lcm{per(p) | p ∈ Q is repeating},

hence z ≤ Z + |Q| · Z, and thus z ≤ Z · (|Q| + 1).

To compute Z, we first need to construct pre(p) and per(p) for each repeating
state p. Due to Lemma 31 we know that if p is repeating then pre(p) < |Q|2

and per(p) < |Q|. Hence, it suffices to construct the first |Q|2+ |Q| elements of
(each) Cp to find all repeating states together with their prefixes and periods.
Due to Lemma 25 we know it can be done in O(n7+(|Q|2+|Q|)·n3) and hence
O(n7) time. Now we have to compute R, lcm{per(p) | p ∈ Q is repeating},
and multiply them; it can be of course done in O(n7) time. 2
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PDA BPA OC-A OC-N

≈F PSPACE-compl. [35,31] in P [33] DP-hard, DP-hard,

in PSPACE in PSPACE

∼F PSPACE-compl. [35,31] in P [33] in P in P

=sF EXPTIME-compl. [30] EXPTIME-compl. [31] DP-hard [27], in P [30]

in EXPTIME

EF PSPACE-compl. [48] PSPACE-compl. [48] DP-hard [30], DP-hard [30],

in PSPACE [48] in PSPACE [48]

H.M. PSPACE-compl. [34] PSPACE-compl. [34] in P in P

Fig. 5. A Summary of Known Results

4 Conclusions

Recently, the technique used in the proof of Theorem 7 (which was also applied
to other problems for OC processes in [30]) was adopted in [27] to show DP-
hardness of a certain fragment of Presburger arithmetic which is suitable for
encoding various problems related to formal verification of OC processes. The
main advantage is that the encoding can be then defined by induction on the
structure of a (Presburger) formula, and hence the full proof becomes shorter
and easier to understand. Thus, the co-NP lower bound for the problem of
strong bisimilarity between OC-N processes (Theorem 8), as well as the co-NP
lower bound for the problem of simulation preorder/equivalence between OC-
A and FS processes [30], were improved to DP.

Currently known results on the complexity of equivalence-checking between
(subclasses of) PDA processes and finite-state processes are summarized in
the table of Fig. 5. Here, ≈F , ∼F , and =sF denote the problem of weak
bisimilarity, strong bisimilarity, and simulation equivalence with a finite-state
process, respectively. To make the picture more complete, we also added two
rows which present complexity results for the model-checking problem with
the Hennessy-Milner (H.M.) logic [37] and the logic EF [13]. The fact that
formulae of the H.M. logic can be model-checked in polynomial time for OC-
A and OC-N processes follows immediately from the fact that the (in)validity
of a H.M. formula ϕ in a process p(i) of a OC automaton A depends only on
those states of TA which are reachable from p(i) in at most |ϕ| transitions.
Obviously, there are O(|ϕ| · n) such states (where n is the size of A) and
therefore it is easy to design a polynomial-time model-checking algorithm.

It is quite interesting to compare the complexity issues for BPA (i.e., stateless
PDA) processes and OC processes. In some cases, the absence of a finite control
unit is a ‘stronger simplification’ than the replacement of a general stack with
a counter; in other cases, however, the opposite is true.
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