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Abstract

We show that characteristic formulae for finite-state systems up to bisimulation-
like equivalences (e.g., strong and weak bisimilarity) can be given in the simple
branching-time temporal logic EF. Since EF is a very weak fragment of the modal
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state systems. This yields a general method for proving decidability of bisimulation-
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processes. On the other hand, we also demonstrate that no ‘reasonable’ bisimulation-
like equivalence is decidable between state-extended PA processes and finite-state
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1 Introduction

We study the decidability of bisimulation-like equivalences between infinite-
state processes and finite-state ones. The motivation is that the intended be-
havior of a process is often easy to specify (by a finite-state system), but a
‘real” implementation can contain components which are essentially infinite-
state (e.g., counters, buffers). The aim of formal verification is to check if the
finite-state specification and the infinite-state implementation are semantically
equivalent (i.e., bisimilar). First we examine this problem in a general setting,
extracting its core in a form of two rather special subproblems (which are nat-
urally not decidable in general). A special variant of this method which works
for strong bisimilarity has been described in [14]; here we extend and gener-
alize the concept, obtaining a universal mechanism for proving decidability of
bisimulation-like equivalences between infinite-state and finite-state processes.
We show that finite-state processes can be encoded up to bisimilarity in for-
mulae of the temporal logic EF (more precisely, in a slightly extended version
of EF which can also express constraints on sequences of atomic actions). Such
a formula is called a characteristic formula for the given finite-state process.
The characteristic formula © ¢ of a finite-state process f has the property that
for any (general) process g whose set of actions is contained in the one of f we
have that g is bisimilar to f if and only if g satisfies ©. Previous works used
the modal p-calculus to construct characteristic formulae [33]. We show that
the much simpler logic EF (a fragment of CTL and the modal p-calculus)
suffices. This is significant, because model checking with EF' is decidable for

many more classes of infinite-state systems than with the modal p-calculus
[10,20,24].

Then we apply the designed method to the class of PAD processes (defined in
[21]), which properly subsumes all PA and pushdown processes. We prove that
a large class of bisimulation-like equivalences (including, e.g., strong and weak
bisimilarity) is decidable between PAD and finite-state processes, utilizing pre-
viously established results on decidability of the model-checking problem for
the logic EF [23,20,24,19]. We also provide several undecidability results to
complete the picture—we show that any ‘reasonable’ bisimulation-like equiv-
alence is undecidable between state-extended PA processes and finite-state
ones. Moreover, even in the case of state-extended BPP processes (which form
a natural subclass of Petri nets) the problem of weak bisimilarity with finite-
state processes is undecidable.

Decidability of bisimulation-like equivalences has been intensively studied for
various process classes (see [28] for a survey). The majority of the results are

about the decidability of strong bisimilarity, e.g., [3,9,8,34,7,16,12].

Strong bisimilarity with finite-state processes is known to be decidable for



(labeled) Petri nets [15], PA, and pushdown processes [14]. Another positive
result of this kind is presented in [22], where it is shown that weak bisimilarity
is decidable between BPP and finite-state processes. However, weak bisimila-
rity with finite-state processes is undecidable for Petri nets [13]. In this paper
we obtain original positive results for PAD (and hence also PA and PDA) pro-
cesses, and an undecidability result for state-extended BPP processes. More-
over, all positive results are proved using the same general strategy which can
also be adapted to the previously established ones.

In Section 2 we define process rewrite systems, the formalism we use to de-
scribe infinite-state systems. In Section 3 we describe the general method for
deciding bisimilarity between infinite-state systems and finite-state systems.
In Section 4 we use this method to construct characteristic formulae and apply
them to prove the main positive decidability result. In Section 5 we prove sev-
eral undecidability results for strong and weak bisimilarity. In the last section
we summarize the results and outline possible future work.

2 Definitions

Transition systems are widely accepted as structures which can exactly define
the operational semantics of processes. In the rest of this paper we understand
processes as (being associated with) nodes in transition systems of certain

types.

Definition 1 A transition system (TS) T is a triple (S, Act,—) where S is
a set of states, Act is a finite set of actions (or labels), and - C S x A x S
15 a transition relation.

We defined Act as a finite set; it is somewhat nonstandard, but we can al-
low this as all classes of process descriptions we consider generate transition
systems of this kind. As usual, we write s — ¢ instead of (s,a,t) € — and
we extend this notation to elements of Act™ in an obvious way (we sometimes
write s —* t instead of s = t if w € Act* is irrelevant). A state t is reachable
from a state s iff s —* £.

Let Const = {X,Y,Z,...} be a countably infinite set of process constants.
The set of (general) process expressions, denoted G, is defined by the following
abstract syntax equation:

E w=c¢|X|E|E|E.E

Here X ranges over Const and ¢ is a special constant that denotes the empty

expression. Intuitively, the ‘. operator corresponds to a sequential composi-



tion, while the ‘||” operator models a simple form of parallelism.

In the rest of this paper we do not distinguish between expressions related by
structural congruence which is the smallest congruence relation over process
expressions such that the following laws hold:

e associativity for . and ‘||’
e commutativity for ‘||’
e ‘2’ as a unit for ‘. and ‘||.

A process rewrite system |21] is specified by a finite set A of rules which are
of the form F % F, where E, F are process expressions and a is an element
of a finite set Act. The sets of process constants which are used in the rules
of A is denoted by Const(A), and the set of all process expressions built over
Const(A) is denoted by G(A).

Each process rewrite system A determines a unique transition system where
states are process expressions of G(A), the set of labels is Act, and transitions
are determined by A and the following inference rules (remember that ‘||’ is
commutative):

(E5F)eA E%E ESE
ESF EF % EF E|[F & E|F

Various subclasses of process rewrite systems can be obtained by imposing
certain restrictions on the form of the rules. To specify those restrictions,
we first define the classes S and P of sequential and parallel expressions,
composed of all process expressions which do not contain the ‘||” and the ‘.’
operator, respectively. For short, we also use ‘1’ to denote the set of process
constants. A hierarchy of process rewrite systems is presented in Figure 1; the
restrictions are specified by a pair (A, B), where A and B are the classes of
expressions which can appear on the left-hand and the right-hand side of rules,
respectively. The set of states of a system A which belongs to the subclass
determined by (A, B) is then formed by all process expressions of BN G(A).
It is important to realize that, e.g., every BPA system A can also be seen as
a PA system, but the sets of states (processes) of A are different in the two
respective cases.

The hierarchy of Figure 1 contains almost all classes of infinite-state systems
which have been studied so far; BPA, BPP, and PA processes are well-known
[4], PDA correspond to pushdown processes (as proved by Caucal in [6]), PN
correspond to Petri nets (see, e.g., [31]), etc. This hierarchy is strict w.r.t.
strong bisimulation, i.e., ‘higher’ classes are strictly more expressive [21].
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Fig. 1. A hierarchy of process rewrite systems

A convenient way how to extend expressibility of process rewrite systems is to
equip them with a finite-state control unit. In order to do that, we first need
to introduce the notion of Step. Let A be a PRS. Observe that each transition
E % F is due to some rule H % K of A (i.e., H is rewritten to K within F,
yielding the expression F'). Generally, there can be more than one rule of A
with this property—if, e.g., A = {X % X||Y,Y % Y|V}, then the transition
XY % X||Y]]Y can be derived in one step in two different ways. For each
transition £ % F we denote the set of all rules of A which allow to derive the
transition in one step by Step(E % F).

A state-extended PRS (StExt(PRS)) is a triple (A, @, BT) where A is a PRS,
Q is a finite set of control states, and BT C A x () x @) is a set of basic tran-
sitions. The transition system generated by a state-extended PRS (A, @, BT)
has @@ x G(A) as the set of states (its elements are called state-extended PRS
processes, or StExt(PRS) processes for short), Act is the set of labels, and
the transition relation is determined by the following rule: (p, E) % (¢, F) iff
E % F and there is H % K € Step(E % F) such that (H % K, p,q) € BT.

This construction also applies to the aforementioned subclasses of PRS. It can
(but does not have to) increase the expressive power of a given subclass. For
example, if we add a finite-state control to a FS, PDA, or PN process, we
obtain a process which can be equivalently described by another FS, PDA, or
PN process, respectively (here the word ‘equivalent’ means ‘the same up to
isomorphism’). In the other cases, the mentioned extension brings strictly more
power—StExt(BPA) are in fact PDA processes, StExt(BPP) form a proper



subclass of PN processes (which is also a proper superclass of BPP), and if we
add finite-state control to PA (or to any of its superclasses), we obtain systems
with full Turing power. The last fact will be demonstrated in Section 5. Let us
note that PRS themselves are not Turing-powerful, because the reachability
problem is decidable for them—see [21].

3 A General Method for Bisimulation-Like Equivalences

In this section we design a general method for proving decidability of bisimulation-
like equivalences between infinite-state processes and finite-state ones.

Definition 2 Let R : Act — 24" be a (total) function, assigning to each
action its corresponding set of responses. We say that R is closed under sub-
stitution if the following conditions hold:

e a € R(a) for each a € Act.
e Ifbiby...b, € R(a) and wy € R(by), ws € R(by),...,w, € R(by,), then also
wiws . .. wy, € R(a).

In order to simplify our notation, we adopt the following conventions in this
section:

G = (G, Act,—) always denotes a (general) transition system.

F = (F,Act,—) always denotes a finite-state transition system with &
states.

R always denotes a function from Act to 24¢*" which is closed under substi-
tution.

N always denotes a decidable binary predicate defined for pairs (s,t) of
nodes in transition systems (which will be clear from the context). Moreover,
N is reflexive, symmetric, and transitive.

Note that G and F have the same set of actions Act. All definitions and
propositions which are formulated for G should be considered as general; if
we want to state some specific property of finite-state transition systems, we
refer to F. We also assume that G, F, R, and N are defined in a ‘reasonable’
way so that we can allow natural decidability assumptions on them (e.g., it is
decidable whether g = ¢’ for all g,¢' € G and a € Act, or whether w € R(a)
for a given w € Act”, etc.)

Definition 3 The extended transition relation = C G x Act x G is defined
as follows: s = t iff s =t for some w € R(a).



Definition 4 A relation P C G x G is an R-N-bisimulation if whenever
(s,t) € P, then N(s,t) is true and for each a € Act:

o Ifs % s, thent =t for somet € G such that (s',') € P.
o Ift 5 t', then s = s' for some s' € G such that (s',t') € P.

States s,t € G are R-N-bisimilar, written s ~ t, if there is an R-N-bisimulation
relating them.

Various special versions of R-N-bisimilarity appeared in the literature, e.g.,
strong and weak bisimilarity (see [30,26]). The corresponding versions of R
(denoted by S and W, respectively) are defined as follows (INy denotes the set
of all nonnegative integers):

e S(a) = {a} for each a € Act.

| ieN ifa=r;
° W(a) _ { l | | 0}

{T*ar? | i,5 € Ny} otherwise.

The ‘7’ is a special (silent) action, usually used to model an internal commu-
nication. As the predicate IV is not used in the definitions of strong and weak
bisimilarity, we can assume it is always true (we use 7' to denote this special
case of N in the rest of this paper). One can also argue that the N predicate
could be omitted from the definition of R-N-bisimilarity, as it is not employed
by any known bisimulation-like equivalence. This is not completely true, as,
e.g., the version of strong bisimilarity introduced in [28]| uses such a predi-
cate to distinguish between ‘terminal’ and ‘final’ states of pushdown processes
(in this way it is possible to distinguish between a ‘successful’ termination
caused by emptying the stack, and an ‘unsuccessful’ one (deadlock) caused by
entering a state (p, F'), where E # ¢, from which there are no transitions).

Generally, every R-N-bisimilarity is a refinement of R-7'-bisimilarity and this
fact also suggests the way how to use the predicate N; its basic purpose
is to impose some additional conditions on pairs of states which cannot be
specified by R, but which should be satisfied by (pairs of) equivalent states. We
illustrate this approach by designing a natural refinement of weak bisimilarity.

Example 5 [t is a well-known fact that weak bisimilarity does not distinguish
between a state which cannot emit any action (deadlock), and a state which
can emit only an infinite number of silent ‘T’ actions (livelock). However, these
two behaviors are considered to be different in many situations; for example,
there are very good reasons to distinguish between deadlock and livelock in the
context of operating systems. Therefore, it is natural to ask whether there is
some refinement of weak bisimilarity which preserves most of its properties but
eliminates the mentioned drawback at the same time. A simple solution is to



define the D predicate in the following way:

D(s,t) is true iff (Init(s) = ) <= Init(t) = 0)

Here Init(s) denotes the set of initial actions, defined as follows: Init(s) =
{a € Act | s % ' for some s'}. Now W-D-bisimilarity is a good candidate for
the equivalence we are looking for; it is very similar to weak bisimilarity, but it
distinguishes between deadlock and livelock. As we shall see, W-D-bisimilarity
is also decidable between PAD processes and finite-state ones.

The concept of R-N-bisimilarity covers many equivalences which have not
been explicitly investigated so far; for example, we can define the function R
like this:

e K(a)={a"| i€ Ny} for each a € Act.
e [(a) ={w € Act™ | w begins with a}.

Act” if a =71
. M) =

{w € Act™ | w contains at least one a} otherwise.

The predicate N can also have various forms. We have already mentioned the
‘T’ (always true) and ‘D’ (deadlock equivalence). Another natural example is
the ‘I’ predicate: I(s,t) is true iff Init(s) = Init(t). It is easy to see that, e.g.,
ST . . . ST . wI WD
~ coincides with ~, while ~ refines ~.

An important example of a bisimulation-like equivalence which cannot be
seen as R-N-bisimilarity is branching bisimilarity (introduced in [35]). This
relation places additional requirements on ‘intermediate’ nodes that extended
transitions pass through, and this brings further difficulties. Therefore, we do
not consider branching bisimilarity in our paper.

R-N-bisimilarity can also be defined in terms of the so-called R-N-bisimulation
game. Imagine that there are two tokens initially placed in states s and ¢
such that N(s,t) is true. Two players, Al and Ex, now start to play a game
consisting of a (possibly infinite) sequence of rounds, where each round is
performed as follows:

1. Al chooses one of the two tokens and moves it along an arbitrary (but
single!) transition, labeled by some a € Act.

2. Ex has to respond by moving the other token along a finite sequence of
transitions in such a way that the corresponding sequence of labels belongs
to R(a) and the predicate N is true for the pair of states where the tokens
lie after Ex finishes his move.

Al wins the R-N-bisimulation game, if after a finite number of rounds Ex
cannot respond to Al’s final attack. Now it is easy to see that the states s and



S
O<¢4—on
O<+——eo

/N
o )
al lb
o o
Fig. 2. A transition system considered in Example 6

t are R-N-bisimilar iff Ex has a universal defending strategy (i.e., Ex can play
in such a way that Al cannot win).

A natural way how to approximate R-N-bisimilarity is to define the family of
relations ~; C G x G, i € Ny, as follows: s ~; t iff N(s,) is true and Ex has
a defending strategy within the first 7 rounds in the R-N-bisimulation game.
However, ~; does not have to be an equivalence relation. Moreover, it is not
necessarily true that s ~ t <= Vi e Ny : s ~; t.

Example 6 It is a well-known fact that in the case of weak bisimilarity (i.e.,
W-T-bisimilarity) the equivalence

st <= VieNy:s~;t

does not hold in general ( “=" does not have to be valid). Moreover, ~; is
not transitive for 1 > 1. To see this, consider the states s,t,u in the transition
system of Figure 2; we have s ~1 t and t ~1 u, but s £1 u.

Now we show how to overcome those difficulties; to do this, we first introduce
the extended R-N-bisimulation relation:

Definition 7 A relation P C G x G is an extended R-N-bisimulation if
whenever (s,t) € P, then N(s,t) is true and for each a € Act:

o Ifs= s, thent =t for somet € G such that (s',') € P.
o Ift =1t then s = s' for some s' € G such that (s',t') € P.

States s,t € G are extended R-N-bisimilar ¢f there is an extended R-N-
bisimulation relating them.

Naturally, we can also define the extended R-N-bisimilarity by means of the
extended R-N-bisimulation game; we simply allow Al to use the ‘long’ moves
(i.e., Al can play the same kind of moves as Ex). Moreover, we can define the
family of approximations of extended R-N-bisimilarity in the same way as in
the case of R-N-bisimilarity—for each i € Ny we define the relation R:]JVZ C GxG
as follows: s ~; ¢ iff N(s,t) is true and Ex has a defending strategy within
the first 7 rounds in the extended R-N-bisimulation game where tokens are



initially placed in s and t.

Lemma 8 Two states s,t of G are R-N-bisimilar iff s and t are extended
R-N-bisimilar.

PROOF. Every extended R-N-bisimulation is also an R-N-bisimulation; here
we need that a € R(a) for each a € Act. Conversely, every R-N-bisimulation
is also an extended R-N-bisimulation; each extended transition is a finite se-
quence of transitions, hence we can concatenate ‘responses’ to those individual
transitions, obtaining a valid response to the original extended transition. Here
we need the second requirement of Definition 2, that the relation R is closed
under substitution. O

Lemma 9 The following properties hold:

(1) X is an equivalence relation for each i € Ny .
(2) Let s,t be states of G. ThenVi €Ny : 5 ~; t iff Vi e Ny : s it

PROOF.

(1) For the first part, reflexivity and symmetry are obvious. Transitivity fol-
lows from the condition that the relation R is closed under substitution.

.. RN RN .

(2) It follows from the definition of ~ that s ~; t = s & t. Hence, it

suffices to realize that if s }%l t, then s 1;5’]- t for some j € Ny—as Al can
force his win using ¢ ‘long’ moves and each of those moves consists of a
finite number of ‘short’ moves, Al could actually ‘decompose’ his attacks,
playing only (a finite number of) short moves. O

Remark 10 For all states s,t of G and 1 € Ny we have that if s 2. t then also
s ~; t. However, there is no ‘reverse correspondence’—it can be easily shown
that for arbitrarily large j the implication s %Vj t = s =, tis generally
invalid (the implication is invalid even in the case when t is a state in a one-
state TS). See Section 5 for details.

Now we examine some special properties of R-N-bisimilarity on finite-state
transition systems (remember that F is a finite-state TS with k states).

Lemma 11 Two states s,t of F are R-N-bisimilar iff s R:]Jvk_l t.

RN

PROOF. As F has k states and Réviﬂ refines ~; for each 7 € Ny, we have
RN RN RN RN
that ~;,_; =~, hence ~,_; =~. O

10



Theorem 12 States g € G and f € F are R-N-bisimilar iff the following
conditions hold:

1. q Ré\/k f
2. For each state g which is reachable from g there is a state f' € F such that

) RN

g~ f.

PROOF.
‘=>": Obvious.
‘<"1 We prove that the relation

P={(g,f)|g—"¢g and g = f'}

is an extended R-N-bisimulation. Let (¢, f') € P and let ¢’ = ¢" for some
a € Act (the case when f’ =% f” is handled in the same way). By definition

of 2, there is an f” such that f' =% f” and ¢" ~;_; f". It suffices to show
that ¢"” S f" as g —* ¢", there is a state f of F such that ¢" S f. By
transitivity of 2;_; we have f ~,_; f”, hence f =, f” (due to Lemma 11).

Now ¢" %), F 2, f” and thus ¢” =, f" as required. Clearly (g9,f) € P and
the proof is finished. O

Remark 13 We have already mentioned that the equivalence

RN EN ViENO:sR:]JVit

is generally invalid (e.g., in the case of weak bisimilarity). However, as soon as
we assume that t is a state in a finite-state transition system, the equivalence
holds. This is an immediate consequence of the previous theorem. Moreover,
the second part of Lemma 9 says that we could also use the ~; approzimations
on the right-hand side of the equivalence.

The previous theorem in fact says that one can use the following strategy to
decide whether g ~ f:

1. Decide whether g ~; f (if not, then g % f).

2. Check whether g can reach a state ¢’ such that ¢’ I;@’k f! for every state f’
of F (if there is such a ¢’ then g /€' f; otherwise g ~ f).

However, none of these tasks is easy in general. Our aim is to examine both
subproblems in detail, keeping the general setting. Hence, we cannot expect
any ‘universal’ (semi)decidability result, because even the problems g < f

and g %Tl [ are not semidecidable in general (see Section 5).

11



As F has finitely many states, the extended transition relation = is finite and
effectively constructible. Therefore, we can effectively replace the transition
relation of F with its corresponding extended transition relation. Al and Ex
can now play only ‘short’ moves consisting of exactly one transition whenever
playing within the modified system F-—each such move corresponds to some
extended transition of the original system F and vice versa. This observa-
tion leads to the notion of branching tree, which allows to ‘extract’ from F
the information which is relevant for the first £ moves in the extended R-N-
bisimulation game. The aim of the following definition is to describe all such
trees up to isomorphism (remember that Act is a finite set).

Definition 14 For each i € Ny we define the set of Trees with depth at most
i (denoted Tree;) inductively as follows:

o A Tree with depth 0 is any tree with no arcs and a single node (the root)
which is labeled by an element of FU{L}.

o A Tree with depth at most 1+ 1 is any directed tree with root r whose nodes
are labeled by elements of F' U { L}, arcs are labeled by elements of Act,
which satisfies the following conditions:

— Ifr % s, then the subtree rooted by s is a Tree with depth at most i.
~Ifr % sandr % s for s # s, then the subtrees rooted by s and s' are
not isomorphic.

It is clear that the set Tree; is finite for every j € Ny. More precisely, its
cardinality (denoted NT(j)) is given by:

o NT(0) =k +1
o NT(i+1) = (k+1)-2"NT®) where n = card(Act)

The set Tree; is effectively constructible for every j € Ny. As each Tree can
be seen as a transition system, we can also speak about Tree-processes which
are associated with roots of Trees (we do not distinguish between Trees and
Tree-processes in the rest of this paper).

Now we introduce special rules which replace the standard ones whenever we
consider an extended R-N-bisimulation game with initial state (g,p), where
g € G and p is a Tree process (formally, this is a different game—however, it
does not deserve a special name in our opinion).

e Al and Ex are allowed to play only ‘short’ moves consisting of exactly one
transition whenever playing within the Tree process p (transitions of Trees
correspond to the extended transitions of F).

12



e The predicate N(¢',p'), where ¢’ € G and p' is a state of the Tree process
p, is evaluated as follows:

(

true if label(p') = L and
N(g', f) = false for every f € F
N(g',p') = { false if label(p') = L and

N(g', f) = true for some f € F
| N(g', label(p'))  otherwise

Whenever we write g R:]Jvi p, where g € G and p is a Tree process, we mean that
Ex has a defending strategy within the first ¢ rounds in the ‘modified’ extended
R-N-bisimulation game. The importance of Tree processes is clarified by the
two lemmas below:

Lemma 15 Let g be a state of G, j € Ny. Then g R“_J*vj p for some p € Tree;.

PROOF. We proceed by induction on j:

e j=0: Then p is a Tree with no arcs and just one node labeled by some
[ € F such that N(g, f) is true; if there is no such f, then it is labeled by
1. Clearly g go .

e Induction step: We need to construct a Tree p such that ¢ ngjﬂ p. The
Tree p has a root r whose label is determined in the same way as in the case
when j = 0. The successors of r are defined by

r s iff g5 g and g’ ¥ s

Note that for each ¢' there is s € Tree; such that ¢’ gvj s by induction
hypothesis. Thus, we have g ngjﬂ p as required. O

Lemma 16 Let f be a state of F, j € Ny, and p € Tree; such that f R:]JV]- p.
Then for every state g of G we have that g Révj fiffg Révj .

PROOF.
‘=—=": By induction on j:

ej=0:As f X, pand g~ f, we have that N(g, f) is true and (the root
of) p is labeled by some f’ such that N(f, f') is true. Hence, N(g, f') is true
and g S P.

e Induction step: Let f R:]JV]-H p and ¢ RA_IJVJ-H f. We prove that g R:]JVJ-H .
Clearly N(g, label(p)) is true (see above). Let ¢ = ¢’ (the case when p = p'
can be done similarly). We need to show that p - p' for some p' with

13



q Révj p. As g RA_IJVJ-H f, there is f' € F such that f = f’ and ¢’ R:]ij 1.
Furthermore, as f Rf\_ﬁvjﬂ p and f = f', there is p’ such that p = p' and
f RA_JJVJ- p'. To sum up, we have f’ RA_JJV]- p' and ¢ R:]JVJ- f', hence ¢ RA_JJVJ- p' by
induction hypotheses.

‘«==": In a similar way. O

Now we can extract the core of both subproblems which appeared in the pre-
viously mentioned general strategy in a (hopefully) nice way by defining two
new and rather special problems—the Step-problem and the Reach-problem:

The Step-problem

Instance: (g, a, j,p) where gis astateof G,a € Act, 0 < j < k,and p € Tree;.
Question: Is there a state ¢’ of G such that ¢ = ¢’ and ¢’ R:]ij p?

A decision algorithm may use an oracle which for any state ¢” of G answers
whether ¢” R&Vj P.

The Reach-problem
Instance: (g,p) where g is a state of G and p is a Tree-process of depth < k.

Question: Is there a state ¢ of G such that ¢ —* ¢’ and ¢ 2y p?
A decision algorithm may use an oracle which for any state ¢” of G answers

whether ¢” =5 p.

Formally, the transition system F should also be given in the instances of the
aforementioned problems, as it determines the sets Tree; and the constant ;
we prefer the simplified form to make the following proofs more readable.

Theorem 17 If the Step-problem is decidable (possibly using the mentioned
RN

oracle), then =~y is decidable between all states g and f of G and F, respec-
tively.

PROOF. We prove by induction on j that R:S[j is decidable for every 0 < j <
k. First, X, is decidable because the predicate N is decidable. Let us assume
that RA_JJV]- is decidable (hence the mentioned oracle can be used). It remains to

prove that if the Step-problem is decidable, then Révjﬂ is decidable as well.
We need to introduce two auxiliary finite sets:

e The set of Compatible Steps, denoted C’Sf , is composed exactly of all pairs
of the form (a,p), where a € Act and p € Tree;, such that f = f’ for some
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f! with f’ Rf\_ljj p.
e The set of INCompatible Steps, denoted IN C’S;f , i1s a complement of C’S;f
w.r.t. Act x Tree;.

The sets C’Sf and IN C’S;-c are effectively constructible. By definition, ¢ R:]JVHI f
iff N(g, f) is true and the following conditions hold:

1. If f % f' then g =% ¢' for some ¢’ with ¢’ gvj f'.
2. If g = ¢, then f = f’ for some f’ with ¢' gvj 1.

The first condition in fact says that (g,a,j,p) is a positive instance of the
Step-problem for every (a,p) € C’S;f (see Lemma 15 and 16). It can be checked
effectively due to the decidability of the Step-problem.

The second condition does not hold iff ¢ = ¢’ for some ¢’ such that ¢’ Révj P
where (a,p) is an element of IN C’S;-c (due to Lemma 15 and 16). This is clearly
decidable due to the decidability of the Step-problem again. O

It is worth mentioning that the Step-problem is generally semidecidable (pro-
vided it is possible to enumerate all finite paths starting in g). However, it
does not suffice for semidecidability of R’;{YZ or @’Z between states of G and F.
Theorem 18 Decidability of the Step-problem and the Reach-problem (possi-
bly using the indicated oracles) implies decidability of the problem whether for
each g' which is reachable from a given state g of G there is a state ' of F
with ¢' o 1.

PROOF. First, the oracle indicated in the definition of Reach-problem can
be used because we already know that decidability of the Step-problem implies

decidability of =), between states of G and F (see the previous theorem). To
finish the proof, we need to define one auxiliary set:

e The set of INCompatible Trees, denoted INC'T', is composed of all p € Tree,
such that f I;J:k p for every state f of F.

The set INC'T is finite and effectively constructible. The state ¢ can reach a
state g’ such that ¢’ %k f for every state f of F (i.e., g is a negative instance of
the problem specified in the second part of this theorem) iff (g, p) is a positive

instance of the Reach problem for some p € INCT (due to Lemma 15 and 16).
O
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4 Characteristic Formulae

In this section we show how to apply the previously designed general method
to construct characteristic formulae for finite-state systems in the temporal
logic EFe (we show that the Step-problem as well as the Reach-problem can
be encoded by EF; formulae). Consequently, we reduce the problem of R-N-
bisimilarity between infinite-state processes and finite-state ones to the model
checking problem for FF,. Therefore it is possible to apply decidability results
from this area. In this way we prove that a large class of R-N-bisimulation
equivalences is decidable between PAD processes and finite-state ones (the
class includes all versions of R-N-bisimulation equivalences we defined in this
paper and many others). First we define the logic FF¢ (it is an extended version
of the logic FF [10] with constraints on sequences of actions). Let C be a finite
set, of unary predicates on sequences of atomic actions. The formulae of EFg
have the following syntax (where a € Act and C € C):

O =true | =@ | OADy | ()P | Ocd

Let 7 = (S, Act, —) be a transition system. The denotation [®] of a formula
® is a set of states of 7 where the formula holds; it is defined as follows
(sequences of atomic actions are denoted by w):

[true] :=
[P
[ A Dy
[(a)®
[Oc®

—[®]
[[ 1] N [P:]
={s€S| I'eS. s5s A e}

I:
I:=
]
J:={se€S| FJuw,s. s> A Cw) A s €[]}

The predicates of C are used to express constraints on sequences of actions. An
instance of the model checking problem is given by a state s in S and an EFp
formula ®. The question is whether s € [®]. This property is also denoted by

s E®.

A characteristic formula © for a finite-state process f w.r.t. R-N-bisimulation
has the property that for every (general) process g whose set of actions is
contained in the set of actions of f we have

g f = gEO;

For every R-N-bisimulation we define the set of predicates R as follows:

R={C.|ac¢€ Act,C,(w) <= w € R(a)} U {true, false}
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As usual, we write O® instead of <y D.

Let us fix a general TS G = (G, Act,—) and a finite-state TS F = (F, Act, —)
with k states in the same way as in the previous section. We show how to
encode the Step and the Reach problems by EFyr formulae. The first difficulty
is the N predicate. Although it is decidable, this fact is generally of no use
because we cannot make any assumptions on ‘strategies’ of model checking
algorithms. Instead, we restrict our attention to those predicates which can
be encoded by EFxr formulae in the following sense: for each f € F there is
an EFg formula ¥ such that for each g € G we have that g = ¥ iff N(g, f)
is true. In this case we also define the formula W, := A¢cp —V;.

A concrete example of a predicate which can be encoded by FFgr formulae
is, e.g., the ‘I’ predicate defined in the previous section: For every f € F' let
Ap:={a€ Act | 3f". f % f'}. Then

U= A (aytrue A N\ —(a)true
aEAf aEAthAf
The ‘D’ predicate can be encoded in a similar way.

Now we design the family of ®;,, formulae, where 0 < j <k and p € Tree;, in
such a way that for every g € GG the following equivalence holds:

RN
g~=;p = gE®;,

Having these formulae, the Step and the Reach problems can be encoded in a
rather straightforward way:

e (g,a,j,p) is a positive instance of the Step problem iff g = O, (®5,)
e (g,p) is a positive instance of the Reach problem iff g = O(®y,)

The family of ®;, formulae is defined inductively on j as follows:

o &y, =, where f = label(p)

® Djyip:=Tp A ( A A Oca‘bj,p') A ( A =0, A ﬂq’j,p'))),

acAct p'eS(p,a) acAct p'eS(p,a)

where f = label(p) and S(p,a) = {p' | p = p'}. Empty conjunctions are
equivalent to true.
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Thus, the characteristic formula ©f for a process f of a finite-state system
F = (F, Act,—) with k states is defined by

O = P4y A 2O ( /\ ﬁ%f’)

fleF

The decidability of the model checking problem for the logic EF; depends
on properties of the family of constraints C. It has been shown in [23] that
the model checking problem for PA processes and the logic EF is decidable
for the class of decomposable constraints (see also [19] where the same result
was proved later using a completely different technique). This result has been
generalized to PAD processes in [20,24]. These constraints are called decom-
posable, because they can be decomposed w.r.t. sequential and parallel compo-
sition. A formal definition is as follows: a set of decomposable constraints DC
is a finite set of unary predicates on finite sequences of actions that contains
the predicates true and false and satisfies the following conditions:

1. Forevery C' € DC there is a finite index set I and a finite set of decomposable
constraints {C!,C? € DC | i € I} s.t.

)

Vw, wy, wy. wiwy =w = (C’(w) = \/ C}(wi) A C’f(u&))

el

2. For every C' € DC there is a finite index set J and a finite set of decompos-
able constraints {C},C? € DC | i € J} s.t.

Ywy, ws. ( (Jw € interleave(wy, wy). C(w)) < \/(C} (w1) A C’f(u&)))

ieJ

where interleave(wy, ws) is the set of all interleavings of w; and wy defined

by

interleave(e, w) :={w}
interleave(w, ) :={w}
interleave(aywy, asws) :={ayw | w € interleave(wy, agws)} U
{asw | w € interleave(a;wy, wq)}

It is easy to see that the closure of a set of decomposable constraints under
disjunction is again a set of decomposable constraints (see [19,32] for more on
decomposable constraints and decomposable languages). All the previously
mentioned examples of relations R can be expressed by decomposable con-
straints. Consider the relation W for weak bisimulation. There we have the
following constraints:

W, (w) = (w = 7" for some i € Ny)
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W,(w) := (w = 7'ar? for some i, j € Ny)

These constraints can be decomposed w.r.t. sequential and parallel composi-
tion. For W, this is trivial. For W, we have

Wa(wlwg) < (Wa(wl) AN WT(U)Q)) V (WT(wl) A Wa(’wg))
(Fw € interleave(wy, we). Wy (w)) <= (W,o(wy) A Wr(we)) V (Wr(wy) A We(ws))

Now we show decomposability for some other (nonstandard) relations that
were defined in Section 3. For the relation K the decomposition is trivial. For
the relation L we have the constraint

L,(w) := w begins with a
The decomposition is

La(wlwg) <~ La(wl)
(Fw € interleave(w, ws). Ly(w)) <= Ly(w1) V Ly (ws)

For the relation M we have the constraints

M, (w) := true
M, (w) :=w contains at least one a

The decomposition of M, is trivial. The decomposition of M, is

M, (wiwy) <= M,(wy) V M,(ws)
(Fw € interleave(wy, wy). My(w)) <= My(w1) V My (ws)

However, there are also relations R that are closed under substitution, but
which yield non-decomposable constraints. For example, let Act = {a,b} and
R(a) := {w | #.w > #yw} and R(b) := {b}, where #,w is the number of
actions a in w. The function R is obviously closed under substitution, but
the corresponding set of constraints is not decomposable. On the other hand,
there are decomposable constraints that are not closed under substitution like,
e.g., R(a) :== {a’ | 1 < i < 5}. Now we can formulate a general decidability
theorem:

Theorem 19 The problem g ~ f, where R yields a set of constraints R
contained in a set DC of decomposable constraints, N is expressible in EFg,
g is a PAD processes, and f is a finite-state process, is decidable.

Corollary 20 Weak bisimilarity between PAD processes and finite-state ones
is decidable.
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Remark 21 (Complexity of the problem)

The complezity of our algorithm for the problem g = f depends on the com-
plexity of the model checking problem for EFe and PAD, which is not known
exactly yet. The algorithm for PAD in [20,24] and the different algorithms
for PA in [23] and [19] all have non-elementary complexity. For BPP, model
checking with EF¢ is PSPACE-complete [22,2/] (see also Section 6). The EFg
formulae that are constructed for a finite-state system F with k states have
exponential size in k, but a nesting-depth of the operator < that is only poly-
nomaial in k. Model checking can be done ‘on-the-fly’ while these formulae are
constructed and thus polynomial space suffices. Hence, the problem g ~ f is

in PSPACE for BPP.

For BPA and PDA, model checking with EFe is known to be in EXPTIME
[36,5]. It was claimed in [5] that it is even in PSPACE, but the given proof con-
tains an error (it assumed that an accepting polynomial space-bounded Turing
machine always has an accepting computation of polynomial length; however,
there are cases where the shortest accepting computation has an erponential
length). Thus the question about the complexity of model checking pushdown
systems with EFe is open again. Still we conjecture PSPACE-completeness
to be most likely, because the number of alternations between conjunction and
disjunction in the model checking problem is bounded by the size of the formula
and thus polynomial. So far, our construction yields an EXPTIME algorithm
for the problem g = f for BPA and PDA.

The known lower bounds for the model checking problem are PSPACE-hardness
for BPP [10] and BPA [25] (and thus also for for PDA, PA and PAD). How-
ever, unlike the upper bounds, the lower bounds for the model checking problem
do not carry over to the bisimulation problem g ~ f. For ezample, it has re-
cently been shown that weak bisimilarity between BPA and finite-state systems
is decidable in polynomial time [18], while model checking BPA with EF¢ is
PSPACE-hard [25].

Decidability of the model checking problem for the FFyr logic in a certain
class of transition systems KC is a sufficient but not necessary condition for
decidability of R-N-bisimilarity between processes of K and finite-state ones.
For example, model checking the ‘pure’ EF (without any constraints) is unde-
cidable for Petri nets, but the Step and the Reach problems are decidable for
S-T-bisimilarity [15]. In fact, strong bisimilarity is the simplest form of R-N-
bisimilarity and the EF formulae which encode the two problems are therefore
very simple as well. An exact formulation of this observation is given in the
following theorem:

Theorem 22 An EF formula is simple iff it is of the form O® where the sub-
formula ® does not contain any <-operator (i.e., @ is a formula of Hennessy-
Milner logic [26]). If the model checking problem for simple EF formulae is
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decidable in a class IC of transition systems, then strong bisimilarity is decid-
able between processes of IC and finite-state ones.

PROOF. The gj equivalence with a given Tree process p can be encoded by
a formula of Hennessy-Milner logic for every j € Ny. Consequently, the Step
problem can also be encoded by a formula of Hennessy-Milner logic, and the
Reach problem is encoded by a formula of the form ¢® where @ is a formula
of Hennessy-Milner logic. O

The model checking problem for simple FF formulae is essentially a kind
of generalized reachability problem (one checks whether there is a reachable
state that satisfies a given formula of Hennessy-Milner logic). Of course, it is
much easier than the general model checking problem for EF. Thus, decidabil-
ity issues can be different—we have already mentioned that model checking
EF logic is undecidable for Petri nets; however, model checking simple EF
is decidable (due to the decidability of the Reach problem—see below). For
example, in the case of Petri nets we can observe that the markings which
satisfy some formula of H.M. logic can be characterized by boolean combi-
nations of constraints of the form p > k or p < k, meaning that there are
at least/at most k tokens in place p. This leads to a generalized reachability
problem which is decidable [11].

Now we show that the model checking problem for simple EF formulae can
be seen as a reformulation of the Step and the Reach problems in the case
of strong bisimilarity (the Step problem is trivially decidable, and the Reach
problem is ‘equivalently hard’ to the model checking problem for the simple
EF logic). This shows the essence of the whole problem in a new light.

Theorem 23 The model checking problem for simple EF formulae and the
special variant of the Reach problem for strong bisimilarity are inter-reducible
in the Turing sense (i.e., decidability of one of the two problems implies de-
cidability of the other one).

PROOF. Decidability of the model checking problem for simple EF formulae
implies decidability of the Reach problem, as shown in Theorem 22. We prove
the other direction; let &® be a simple FF formula. First, let us realize that
the sub-formula ® cannot distinguish between states related by gn, where
n = length(®). Due to Lemma 15 we know that for every state g of the
transition system G there is a p € Tree, such that g gn p (as the predicate T
is trivial, we do not have to label the nodes of Trees; hence the construction
of Tree, does not depend on the transition system F—see Definition 14). For
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each p € Tree, we check whether p = ®. Now it is easy to see that ¢’ = O®
iff Reach(qg', p) = true for some p € Tree, such that p = ®. O

5 TUndecidability Results

In this section we provide several negative (undecidability) results which help
to clarify the decidability /undecidability border in the area of comparing
infinite-state processes with finite-state ones.

Intuitively, any ‘nontrivial’ equivalence with finite-state processes should be
undecidable for a class of processes having ‘full Turing power’, which can be
formally expressed as, e.g., the ability to simulate Minsky counter machines.

Definition 24 A counter machine M with nonnegative counters ci, ca, ..., Cp,
s a sequence of instructions

1: INSl
n—1: [NSnfl
n: halt

where each INS; (i = 1,2,...,n — 1) is in one of the following two forms
(assuming 1 < k, ki, ks <n, 1 <j<m)

e cj:=cj+1; goto k
o if ¢;=0 then goto ki else (¢j:=cj—1; goto ky)

The halting problem is undecidable even for Minsky machines with two coun-
ters initialized to zero values [27]. Any such machine M can be easily ‘mim-
icked” by a StExt(PA) process P(M) = (A, Q, BT) where

e A contains the following rules:
. Zj i) Ij.Zj, Zj i) Zj
. Ij i) Ij-Ija Ij i) €
where j € {1,2}.
e Q={q,...,q,}, where n is the number of instructions of M.
e BT is determined by the following rules:
(1) If the program of M contains an instruction of the form

[:c¢j:=cj+1; goto k

then BT contains the elements (Z; = I;.7;,q;, qx) and (I; = I;.1;, qi, qx.).
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(2) If the program of M contains an instruction of the form
[: if ¢; =0 then goto k; else (¢j:=c; —1; goto ko)

then BT contains the elements (Z; = Z;, q;, qr,) and (I; % €, q;, i, )-
(3) Each element of BT can be derived using the rule 1 or 2.

Intuitively, the (two) counters of the machine M are modeled by a simple PA
process (I1.1y...11.Zy)||(I2.I5 .. . I.Z5) where the number of I;’s means the
current value of the counter ¢;, j € {1,2} (the starting zero point being mod-
eled by Z1||Z2). The control states ¢, ..., g, correspond to the instructions of
M (more precisely, to their labels). Each state determines the unique transi-
tion to be performed next with the exception of ¢, which is the ‘halting state’.
The process (q1, Z1||Z2) is able either to perform the action a boundedly many
times and to stop (its behavior can be defined as a™ for some m € INy) or to
do a forever (its behavior being a“); this depends on whether the machine M
halts or not. Notice that a“ is the behavior of the one-state process f where
{f % f} is the underlying PRS. When we declare as reasonable any equiva-
lence which distinguishes between (processes with) behaviors ¥ and a™, we
can conclude:

Theorem 25 Any reasonable equivalence between StExt(PA) processes and
finite-state ones is undecidable.

It is obvious that (almost) any R-N-bisimilarity is reasonable in the above
sense, except for some trivial cases. For weak bisimilarity, we can even show
that none of the problems g V&Tl fiq %Tl f is semidecidable when ¢ is a
StExt(PA) process. It suffices to realize that we can label all transitions in
P(M) by 7 and add a special a-transition enabled in the (halting) state
In- Now q1(Z1|Z5) ~| 7 iff the machine M does not halt, and similarly

¢ (Z1||Z2) =1 f where {f 5 f,f % g} iff the machine M halts.

Now, the claim of Remark 10 is also easy to see; if we take the modified process
P(M) of the previous paragraph, we can observe that q(Z,|Zs) ~; 7 for
every j which is less than the number of computational steps of M. On the
other hand, if M halts then ¢ (Z,||Z;) #, 7. Therefore, the implication
01 (21| Z2) % 7 = q1(Z1]|Zo) = 7 is invalid for any j € N, because for
each such j there is a machine with more then j computational steps which
halts.

Once seeing that StExt(PA) are strong enough to make our equivalences un-
decidable, it is natural to ask what happens when we add finite-state control

parts to processes from subclasses of PA, namely to BPA and BPP.

We have already shown that every R-N-bisimilarity such that R yields de-
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Fig. 3. A finite-state system used in the proof of Theorem 26

composable constraints and N is expressible within FFpr is decidable be-
tween StExt(BPA) (i.e., PDA) processes and finite-state ones. In the case of
StExt(BPP), strong bisimilarity with finite-state processes is decidable [15].
Here we demonstrate that the problem for weak bisimilarity is undecidable.
Our proof is obtained by modifying the construction which has been used in
[13] to show the undecidability of weak bisimilarity between Petri nets and
finite-state systems. To make this paper self-contained, we now give a concise
description of this modified construction.

Theorem 26 Weak bisimilarity is undecidable between StExt(BPP) processes
and finite-state ones.

PROOF. Consider a Minsky machine M as in Definition 24 with just two
counters (m = 2). In a stepwise manner, we show how to construct a StExt(BPP)
process P(M) such that P(M) is weakly bisimilar to the process f of Figure 3
ift M does not halt.

We begin with using just the action 7, the process constants 7, I, I, D, S and
the control states py,...,Pn,q1,---,qn. The states (p1,7), (¢, Z) are consid-
ered as two possible starting ones. Basic transitions of P(M) are determined
as follows: for every machine instruction

[:¢cj:=cj+1; goto k

we have (Z 5 L||S||Z,pi, p) and (Z 5 L;||S||Z, @i, qi.). For every machine
instruction

[: if ¢; =0 then goto k; else (¢j:=c; —1; goto k»)

we have

(I] l) -DHSaplapkz)) (Z l) S“Z,p[,pkl), (Ij l> ]j”S?plaqkl)a

and

([j 5 D“S; qlan2)7 (Z - S“Z’ ql’qkl)'
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We observe that, for every reachable state (r, E'), exactly one occurrence of Z
appears in the expression E; the constant Z only serves as an auxiliary symbol
which is used to model the ‘empty left-hand side’ of rules. The number of I;
(I5) in F is meant to correspond to the current value of counter ¢; (¢3). By
(the occurrences of) S we count the number of steps, and by D the number
of ‘decreasing steps’.

Thus both (py,Z) and (¢;,Z) can simulate the computation of M (with
counters initialized to zero). Nevertheless, also ‘cheating steps’ (performing
a ‘zero step’ instead of a decreasing one) are possible; it reflects the inability
of StExt(BPP) (more generally, Petri nets) to test for zero. Note that by (and
only by) a cheating step we can go from the ‘p-domain’ to the ‘g-domain’.

Now we shall refine the transitions mentioned so far. The idea is to view
the sequence of steps as a string of 0’s (non-decreasing steps) and 1’s (de-
creasing steps), and to enable D to ‘count’ the respective binary number.
We introduce an additional auxiliary constant C', and replace every transition
(Ey = Ey,71,73) by the set

(Ey = Ey,ry,0"), (D5 C)\Cr" "), (Z 5 Z,r' 1),
(C 5 D,r" 0", (Z 5 Z,r",ry)

where ', r" are newly added control states. It allows (though does not force) to
double the number of D’s in each step (after adding 1 in the case of a decreasing
step). Now we add a control state h and the basic transition (Z — D||Z, q,, h).

Defining vec(E) as the 5-dimensional vector giving the numbers of (occur-
rences of) I, I,,C, D, S in E, we can easily derive (similarly as in [12]|) that
the set { vec(E) | Ir such that (r, E) is reachable from (p;, Z) } is a subset of
{wec(E) | 3r such that (r, E) is reachable from (¢;, Z) }; moreover, the two
sets are equal iff M does not halt.

To proceed with the construction of our desired P(M), we now take a disjoint
union of the so far constructed StExt(BPP) system with its isomorphic dupli-
cate. For a control state r (or a process constant X'), we denote the respective
duplicate by T (or X).

We now introduce new control states sp, s, S3; moreover, the pairs (s,r),
(s,7)—where s € {s1, 52,53} and r is ‘old’—will also serve as control states.
The process P(M) is defined as ((s1,q1), Z||Z) when we also include the fol-
lowing basic transitions (adding actions a, b, c): for every (E = E',r,7") we
add

(E 5 E' (s1,7), (51,7"),(E = E', (82,7), (52,77)).
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For every r, we add

(Z 5 Z,(s1,7),51),(Z = Z, (59,T), 53).

We also add (Z % Z, sy, (s2,p1)) and (Z LN 7, $9, 53). Finally, for every X €
{I,I,,C, D, S} we add a new control state sx and

Checking that P(M) is weakly bisimilar to f iff M does not halt can be done
analogously to [13]. O

6 Conclusions, Future Work

We designed a general method for proving decidability of R-N-bisimilarity
between infinite-state processes and finite-state ones (Theorem 12) by reduc-
ing this problem to two other problems—the Step and the Reach problem
(Theorem 17 and 18). We also showed how to encode these special problems
by formulae of EFx logic. In this way we constructed characteristic formu-
lae for finite-state systems up to bisimulation in the logic EF.. As this logic
is decidable for PAD (and hence also PA and PDA) processes, we obtained
a general decidability theorem (Theorem 19), which says that every R-N-
bisimilarity such that R yields decomposable constrains on sequences of ac-
tions and N can be expressed by FFr formulae is decidable between PAD and
finite-state processes. This class of R-N-bisimilarities includes all versions of
R-N-bisimulation equivalences mentioned in this paper. Examples are the re-
lations ~, &, X, or *7, but most importantly ~ and ~ (i.e., strong and weak
bisimilarity).

Then we demonstrated that each ‘reasonable’ R-N-bisimilarity is undecid-
able between StExt(PA) processes and finite-state ones (Theorem 25); this is
caused by the fact that StExt(PA) processes have full Turing power. Moreover,
even if we restrict our attention to StExt(BPP), we get an undecidability result
for weak bisimilarity (Theorem 26). This proof is obtained by a modification
of the one which has been used for Petri nets.

A complete summary of the results on decidability of bisimulation-like equiv-
alences with finite-state processes is given in the table below. As we want
to clarify what results have been previously obtained by other researchers,
our table contains more rows than it is necessary (e.g., the positive result for
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PAD and ¥, where R and N have the above indicated properties, ‘covers’ all
positive results for BPA, BPP, PA, and PDA).

We also add a special column which indicates decidability of the model-
checking problem for the logic EF. The decidability of EF for pushdown pro-
cesses (PDA) and BPA follows from a much stronger result by Muller and
Schupp [29] who showed the decidability of monadic second order logic for
pushdown automata. Later, model checking PDA with EF was shown to be
in EXPTIME|[36,5] (see also Remark 21). Model checking BPP with EF was
shown to be decidable by Esparza [10] and PSPA CE-complete by Mayr [22,24].
Decidability of EF for PA was shown by Mayr [23] and later by Lugiez and
Schnoebelen [19], who used a completely different method. The decidability for
PAD was shown in [20,24]. The undecidability of EF for Petri nets was shown
by Esparza in [10]|. The undecidability of EF for StExt(BPP) and StExt(PA)
follows directly from the undecidability results on bisimilarity in this paper.

= i g EF
BPA Yes[9] | YES | YES | Yes[29,5]
BPP Yes [8] | Yes [22] | YES | Yes [10,22,24]
PA Yes [14] | YES | YES | Yes|[23,19]

StExt(BPA), i.e., PDA | Yes[14] | YES | YES | Yes[29,5]
StExt(BPP), i.e., PPDA || Yes [15] | NO NO | NO

StExt(PA) No [14] | No [14] | No [14] | NO
PAD YES YES YES Yes [20,24]
Petri nets Yes [15] | No [13] | No [13] || No [10]

The results obtained in this paper are in boldface. Note that although model-
checking EF logic is undecidable for StExt(BPP) processes and Petri nets,
strong bisimilarity with finite-state systems is decidable. The original proof in
[15] in fact demonstrates decidability of the Reach problem (the Step problem
is trivially decidable), hence our general strategy applies also in this case.

A unifying concept similar to R-N-bisimulation can also be used for simulation-
like equivalences—we can define the R-N-simulation relation in the very same
way as R-N-bisimulation (which can be then seen as a special case of R-N-
simulation with the property that its inverse is also an R-N-simulation). The
predicate N becomes more important in this context, as it allows to define
some of the known and studied simulation-like equivalences (e.g., the ready
simulation equivalence). An interesting open problem is whether it is possible
to design a general strategy for deciding R-N-simulation equivalence between
infinite-state and finite-state processes in a similar way as for R-N-bisimilarity
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(recently, the decidability /tractability border for strong simulation (i.e., S-T-
simulation) with finite-state systems has been established in [17]). Another set
of open problems is the decidability of branching bisimilarity with finite-state
processes.
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