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Abstract

A process is prime if it cannot be equivalently expressed as a parallel composition of
nonempty processes. We characterize all non-prime normed BPA processes together
with their prime decompositions by means of normal forms which are designed in
this paper. Using this result we demonstrate decidability of the problem whether
a given normed BPA process is prime; moreover, we show that non-prime normed
BPA processes can be decomposed into primes effectively. Finally, we prove that
bisimilarity is decidable in a natural subclass of normed PA processes.
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1 Introduction

A general problem considered by many researchers is how to improve perfor-
mance of sequential programs by parallelization. In this paper we study this
problem within the framework of process algebras. They provide us with a
pleasant formalism which allows to specify sequential as well as parallel pro-
grams.

Here we adopt normed BPA processes as a simple model of sequential be-
haviours (they are equipped with a binary sequential operator). We examine
the problem of effective decomposability of normed BPA processes into a par-
allel product of primes (a process is prime if it cannot be decomposed into
nontrivial components). We design special normal forms for normed BPA pro-
cesses which allow us to characterize all non-prime normed BPA processes
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together with their decompositions up to bisimilarity. As a consequence we
also obtain a refinement of the result achieved in [4].

Next we show that any normed BPA process can be decomposed into a parallel
product of primes effectively. We also prove several related decidability results.
Finally, we prove that bisimilarity is decidable in a natural subclass of normed
PA processes (see [2]), which consists of processes of the form Aj||---||A,,
where each A; is a normed BPA or a normed BPP process.

In many parts of our paper we rely on results established by other researchers.
The question of possible decomposability of processes into a parallel product of
primes was first addressed by Milner and Moller in [14]|. A more general result
was later proved by Christensen, Hirshfeld and Moller (see [8])—it says that
each normed process has a unique decomposition into primes up to bisimilarity.
However, the proof is non-constructive.

Bisimilarity was proved to be decidable for normed BPA processes (see [1,11,9])
and normed BPP processes (see [7,10]). Blanco proved in [3| that bisimilarity
is decidable even in the union of normed BPA and normed BPP processes.
The same problem was independently examined by Cerna, Kietinsky, and
Kucera in [5]. They demonstrated decidability of the problem whether for a
given normed BPA (or BPP) process A there is some unspecified normed BPP
(or BPA) process A’ such that A ~ A’. If the answer is positive, then it is
also possible to construct an example of such A’. Decidability of bisimilar-
ity in the union of normed BPA and normed BPP processes is an immediate
consequence.

Another property of normed BPA and BPP processes which is important for
us is reqularity. A process is regular if it is bisimilar to a process with finitely
many states. Kucera proved in [12] that regularity is decidable for normed
BPA and normed BPP processes in polynomial time.

This paper is organized as follows. In Section 3 we characterize all decompos-
able normed BPA processes together with their decompositions by means of
special normal forms. As a consequence we also obtain a refinement of the
result achieved in [4].

In Section 4 we show that any normed BPA process can be decomposed into a
parallel product of primes effectively. We also prove several related decidability
results. Finally, we prove that bisimilarity is decidable in a large subclass
of normed PA processes (see [2]), which consists of processes of the form
Ayl ---||]Ap, where each A; is a normed BPA or a normed BPP process.



2 Preliminaries
2.1 BPA and BPP processes

Let Act = {a,b,c,...} be a countably infinite set of atomic actions. Let Var =
{X,Y,Z,...} be a countably infinite set of variables such that Var N Act = ().
The classes of BPA and BPP expressions are defined by the following abstract
syntax equations:

Eppy = € | X | alpp, | Esps-Egpa | Egps + Egpa
Eppp =€ | X | aFgpp | EBPPHEBPP | Eppy + Egpa

Here a ranges over Act and X ranges over Var. In the rest of this paper
we do not distinguish between expressions related by structural congruence
which is the smallest congruence relation over process expressions such that
the following laws hold:

e associativity and ‘€’ as a unit for ‘", ‘||” and ‘+’
e commutativity for ‘||’ and ‘+’

Moreover, we often write a instead of ae.

As usual, we restrict our attention to guarded expressions. A process expres-
sion E' is guarded if there is a process expression E' such that E and E' are
structurally congruent and every variable occurrence in E’ is within the scope
of an atomic action.

A guarded BPA (or BPP) process is defined by a finite family A of recursive
process equations

A={X;2E | 1<i<n}

where X; are distinct elements of Var and E; are guarded BPA (or BPP)
expressions, containing variables from { X7, ..., X, }. The set of variables which
appear in A is denoted by Var(A).

The variable X; plays a special role (X is sometimes called the leading
variable)—it is a root of a labelled transition system, defined by the process
A and the rules of Figure 1 (note that ‘||” and ‘4’ are commutative).

Nodes of the transition system generated by A are BPA (or BPP) expressions,
which are often called states of A, or just “states” when A is understood from
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the context. We also extend the notation E % F to elements of Act* in
an obvious way (we often write £ —* F instead of E = F if w € Act*
is irrelevant). Given two states E, F, we say that F is reachable from E, if
E —* F. States of A which are reachable from X; are said to be reachable.

Remark 1 Processes are often identified with their leading variables. Further-
more, if we assume fived processes A1, Ay such that Var(Ay) N Var(Ay) =0,
then we can view any process expression E (not necessarily guarded) whose
variables are defined in A1, Ay as a process—if we denote it by /A, then the
leading equation of A is X £ E', where X ¢ Var(Ay) U Var(Ay) and E' is a
process expression obtained from E by substituting each variable in E with the
right-hand side of its corresponding defining equation in Ay or Ay (E' must
be guarded now). Moreover, defining equations of Ay, Ay are added to A. All
notions originally defined for processes can be used for process erpressions in
this sense too.

2.1.1 Bisimulation

The equivalence between process expressions (states) we are interested in here
is bisimilarity [15], defined as follows:

Definition 2 A binary relation R over process expressions is a bisimulation
if whenever (E, F') € R then for each a € Act

o if E% FE', then F % F' for some F' such that (E',F') € R
o if [ % F', then E % E' for some E' such that (E',F') € R

Processes A and A' are bisimilar, written A ~ A', if their leading variables
are related by some bisimulation.

2.1.2 Normed processes

An important subclass of BPA and BPP processes can be obtained by an
extra restriction of normedness. A variable X € Var(A) is normed if there is
w € Act* such that X - €. In that case we define the norm of X, written | X]|,
to be the length of the shortest such w. A process A is normed if all variables
of Var(A) are normed. The norm of A is then defined to be the norm of Xj.



Remark 3 As normed processes are intensively studied in this paper, we em-
phasize some properties of the norm:

e Note the norm of a normed process is easy to compute by the following
rules: |e| =0, |aF| = |E|+ 1, |E + F| =min{|E|, |F|}, |E.F| = |E|+ |F|,
|E||F| = |E| + |F| and if X; £ E; and |E;| = n, then | X;| = n.

e Bisimilar processes must have the same norm.

In the rest of this paper we denote the normed subclasses of BPA and BPP
processes by nBPA and nBPP, respectively.

2.1.83 Greibach normal form

Any BPA or BPP process A can be effectively presented in a special normal
form which is called 3-Greibach normal form by analogy with CF grammars
(see [1] and [6]). Before the definition we need to introduce the set Var(A)* of
all finite sequences of variables from Var(A), the set Var(A)* of all nonempty
finite sequences over Var(A), and the set Var(A)® of all finite multisets over
Var(A). Each multiset of Var(A)® denotes a BPP expression which can be
obtained by combining its elements in parallel using the ‘||” operator.

Definition 4 A BPA (or BPP) process A is said to be in Greibach normal
form (GNF) if all its equations are of the form

n
def
X =2 aje;
=1

wheren € N, a; € Act and a; € Var(A)* (or a; € Var(A)®). We also require
that eachY € Var(A) appears in some reachable state of A. If length(c;) < 2
(or card(cy) < 2) for each j, 1 < j <mn, then A is said to be in 3-GNF.

From now on we assume that all BPA and BPP processes we are working with
are presented in GNF. This justifies also the assumption that all reachable
states of a BPA process A are elements of Var(A)* and all reachable states of
a BPP process A’ are elements of Var(A")®.

2.2 Regular processes

Many proofs in this paper take advantage of the fact that regularity of nBPA
and nBPP processes is decidable (even in polynomial time—see [12]). The next
definition explains what is meant by the notion of regularity and introduces
standard normal form for regular processes.



Definition 5 A process A is regular if there is a process A" with finitely many
states such that A ~ A'. A reqular process A is said to be in normal form if
all its equations are of the form

X Z3ai(X5)
7j=1

where n € N, a; € Act and X; € Var(A). The square brackets indicate
optional occurrence—see Remark 7.

It is easy to see that a process is regular iff it can reach only finitely many
states up to bisimilarity. In [13| it is shown, that regular processes can be
represented in the normal form just defined. Thus a process A is regular iff
there is a regular process A’ in normal form such that A ~ A’. A proof of the
following proposition can be found in [12].

Proposition 6 Let A be a nBPA or nBPP process. The problem whether A is
reqular is decidable in polynomial time. Moreover, if A is reqular then a reqular
process A" in normal form such that A ~ A’ can be effectively constructed.

Remark 7 (special notation) In the rest of this paper we also use some
special notation (due to the lack of general standard). To improve readability,
we put all specialties to one place:

e if « is a regular state of a nBPA or nBPP process (see Remark 1), then
N¥(a) denotes a bisimilar reqular process in normal form, which can be
effectively constructed due to Proposition 6. Furthermore, we always assume
that A®(a) contains completely fresh variables which are not contained in
any other process we deal with.

e the class of all processes for which there is a bisimilar nBPA (or nBPP)
process is denoted S(nBPA) (or S(nBPP)).

o if Ay,..., A, are processes from nBPAUnBPP and X; is the leading variable
of A; for 1 < i < n, then A{]|---||A, denotes the process Xi||---|| X, in
the sense of Remark 1.

e square brackets |’ and | indicate optional occurrence—if we say that some
expression is of the form alA][B], we mean that this expression is either a,
aA, aB or aAB.

o upper indexes are used heavily; they appear in two forms:

o =al- o a* =q.--.q
——

i



2.3  Decidability of bisimilarity in nBPA U nBPP

Bisimilarity is known to be decidable for nBPA [1,11,9] and nBPP [7,10] pro-
cesses. The following result due to Cernd, K¥etinsky, and Kucera [5] says that
bisimilarity is decidable even in the union of nBPA and nBPP processes.

Proposition 8 Let A be a nBPA (or nBPP) process. It is decidable whether
A € §(nBPP) (or whether A € S(nBPA)) and if the answer is positive, then
a bisimilar nBPP (or nBPA) process can be effectively constructed.

3 The Characterization of Decomposable nBPA Processes

In this section we design special normal forms for nBPA processes which al-
low us to characterize all decomposable nBPA processes together with their
decompositions.

Definition 9 (prime processes) Let nil be a special name for the process
which cannot emit any action (i.e., nil ~ €). A nBPA or nBPP process A is
prime if A o nil and whenever A ~ Ay||Ay we have that either Ay ~ nil or
AQ ~ nil.

Natural questions are, what processes have a decomposition into a finite paral-
lel product of primes and whether this decomposition is unique. This problem
was first examined by Milner and Moller in [14]. They proved that each normed
finite-state process has a unique decomposition up to bisimilarity. A more gen-
eral result is due to Christensen, Hirshfeld, and Moller [8]—they proved the
following proposition:

Proposition 10 Let A be a nBPP process. Then A has a unique decomposi-
tion (up to bisimilarity) into a parallel product of primes.

Remark 11 Proposition 10 in fact holds for any normed process (in particu-
lar for nBPA). The proof in [8] is independent of a concrete syntax—it could
be easily formulated in terms of normed transition systems.

Proposition 10 in fact says that each normed process A can be parallelized
in the “best” way and that this way is in some sense unique. However, this
nice theoretical result is non-constructive. It is not clear how to construct the
decomposition and how to test whether some process is prime. This is the
subject of next sections.

An immediate consequence of Proposition 10 is the following “cancelation”
lemma (see [6]):



Lemma 12 Let AT, U, ® be normed processes such that A||¥ ~ T||® and
U~ ® Then A~T.

3.1  Decomposability of nBPP Processes

Each nBPP processes A can be easily decomposed into a parallel product
of primes—all that has to be done is a construction of a bisimilar canonical
process (see [6]).

Theorem 13 Let A be a nBPP process. It is decidable whether A is prime
and if not, its decomposition into primes can be effectively constructed.

PROOF. By induction on n = |A|:

e n—1: each nBPP process whose norm is 1 is prime.

e Induction step: Suppose A ~ A||A;. As Ay, Ay are reachable states
of A{||Ay, there are oy, a0 € Var(A)® such that Ay ~ ap and Ay ~ ay,
thus A ~ aql|ay. Furthermore, |A| = |a;| + |aa|. We show that there are
only finitely many candidates for aq, as. First, there are only finitely many
pairs (ki, ks) € N x N such that &k + k2 = |A|. For each such pair (ky, k2)
there are only finitely many pairs (31, 32) such that 31,8, € Var(A)®,
|61] = k1 and |By] = ko. It is obvious that the set M of all such pairs
can be effectively constructed. For each element (3, 32) of M we check
whether A ~ (||32 (it can be done because bisimilarity is decidable for
nBPP processes). If there is no such pair then A is prime. Otherwise, we
check whether f3;, 35 are prime (it is possible by induction hypothesis) and
construct their decompositions. If we combine the obtained decompositions
in parallel, we get a decomposition of A. O

As each normed regular process in normal form can be seen as a nBPP process
in GNF (see Definition 4 and 5), the previous theorem (and especially its con-
structive proof) can also be used in case of regular nBPA processes—remember
that regularity of nBPA processes is decidable and regular nBPA processes
can be transformed into normal form specified in Definition 5 effectively (see
Proposition 6). However, it is not clear how to decompose non-reqular nBPA
processes; this is the problem we concentrate on in the rest of this paper.



3.2 Decomposability of nBPA Processes

It this section we give an exact characterization of non-prime nBPA processes.
As we already know from the previous section, the problem is actually inter-
esting only for non-regular nBPA processes, hence the main characterization
theorem (Theorem 30) does not concern regular nBPA processes. Our results
bring also interesting consequences; for example, we obtain a refinement of the
result achieved in [4] (see Remark 25).

The layout of this subsection is as follows: first we prove two technical lem-
mas (Lemma 14 and 15). Then we consider the following problem: if A is
a non-regular nBPA process such that A ~ A;[|Ay, where Ay, Ay are some
(unspecified) processes, how do the processes A, A, Ay look? It is clear that
Ay, Ay € §(nBPA), hence the assumption that A;, Ay are nBPA processes
can be used w.l.o.g. This problem is solved by Proposition 18 and 23, with
a help of several definitions. Having this, the proof of Theorem 30 is easy to
complete.

Lemma 14 Let A be a nBPA process. Let o,y € Var(A)t, Q,C € Var(A)
such that |Q] = |C| =1 and a||Q ~ C.y. Then a ~ Q1.

PROOF. We prove that for each 1 < i < |a|+ 1 there is § € Var(A)* such
that 3||Q* ~ C.y. This is clearly sufficient, because then a||@Q ~ C.y ~ Q'®l*!
and thus o ~ Q!® due to Lemma 12. We proceed by induction on i.

e i=1: choose § = a.

e Induction step: Let 3||Q" ~ C.v. As |C| = 1, all states which are reachable
from 3||Q" in one norm-decreasing step are bisimilar. As A is normed, there
is 3/ € Var(A)* such that 8 % 3" where |3| = |#'| + 1. Hence B]|Q" ! ~
A'||Q* and by substitution we obtain 3]|Q° ~ '[|Q". O

The proof of the following lemma is probably the most technical part of this
paper. Diagrams of Figure 2 could ease the reading.

Lemma 15 Let A be a nBPA process, «, 3,7 € Var(A)* such that « is non-
regular and o] ~ . Let f —* Q where |Q| = 1. Then 3 ~ Q5.

PROOF. As « is non-regular, it can reach a state of an arbitrary length,
i.e., for each i € N there is o' such that & —* o and length(a/) = i. Let
m = max{|X|, X € Var(A)} and let & —* «; where length(c) > m.(|3]+1).
Then aq||f ~ 7 for some v € Var(A)*. As f —=* @, we have oq[|Q ~ 72
where v, € Var(A)* and length(vys) > 1 — hence 7, is of the form P.w where
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Fig. 2. Diagrams for the proof of Lemma 15

w € Var(A)*. Let a; > ap where s is a norm-decreasing sequence of actions
such that length(s) = |P| —1. As a1 ||Q = as]|@Q and a4 ||Q ~ P.w, Pw % C.w
where |C| = 1 and a||@ ~ C.w. Now we can apply Lemma 14 and conclude
ay ~ Ql2l. As oy % ay where length(s) = |P| — 1 < m, only the first m — 1
variables of a; could contribute to the sequence s — hence a7, as must have
a common suffix whose length is at least m.|3|, i.e., a1 = v.n), ag = 6. where
length(n) > m.|3|. As a4||f ~ v and «; = v.n, we can conclude n||f ~ 73
for some v3 € Var(A)*. Clearly length(vs) > |3], because |n||s] > m.|5]|
(remember length(n) > m.|3|). Thus s is of the form A;.---.Ajg1.p where
p € Var(A)*. Furthermore, n ~ Q" because ay ~ Q'** and ay = 6.n. To
sum up, we have Q|3 ~ A;.---.Aj541.p. Now we prove that 3 ~ QAl. Let
3 % e where length(t) = |8]. Then Q[|8 % QI and the state A;. - --.Ajg11.p
must be able to match the sequence ¢ and enter a state bisimilar to Q. As
length(t) = |B3|, only the first |3| variables of A;.---.Ag41.p can contribute
to the sequence ¢, i.e., Ay. - Ajg41.p L ©.Ajgj41.p where ¢ € Var(A)*.
Now let . Ag1.p — Ajgj41.p where length(u) = |p|. The state QI can
match the sequence u only by removing || copies of @ — hence QI ~l¢l ~
Ajgj11-p- As |n| > m.|3], it is clear that |n| > |A;.---.Ag|. Therefore there is
v € Act*, length(v) = |A;.---.Ajg| such that Q" = Q144w and thus
QM| B 2 QM=I1Ar--Aal|| 3. The state A;. - .A|g|+1.p can match the sequence
v only by removing A;.---.Ajs — hence QM -1ArAil||g ~ A5, .p and by
transitivity of bisimilarity we have QI"-1¢l ~ QI"=l41-A5l| 3. From this we
obtain § ~ QI7!. O

Definition 16 (simple processes) A nBPA process A is simple if Var(A)
contains just one variable, i.e., card(Var(A)) = 1.

We will often identify simple processes with their leading (and only) variables
in the rest of this paper. Moreover, it is easy to see that a simple process
@ is non-regular iff the def. equation for ) contains a summand of the form

10



aQ** where a € Act and k > 2. The norm of @ is one, because @ could
not be normed otherwise. Another important property of simple processes is
presented in the remark below:

Remark 17 FEach simple nBPA process @ belongs to S(nBPP)—a bisimilar
nBPP process can be obtained just by replacing the ‘. operator with the ‘||’
operator in the def. equation for (). Consequently, any process exrpressions

(3]

built over the same number of copies of Q) using the ‘. and ‘||’ operators are

bisimilar (e.g., (Q.(Q@))]Q ~ (QQ)(QlQ))-

Proposition 18 Let Ay, Ay be non-reqular nBPA processes. Then Aq||Ay €
S(nBPA) iff Ay ~ Q™! and Ay ~ Q22! for some non-regular simple process
Q.

PROOF.

“<” Easy—see Remark 17.

“=”" Assume there is some nBPA process A such that A;||Ay ~ A. Then
there are ay, ap € Var(A)* such that Ay ~ aq and Ay ~ ap. Thus aq || ~ A
and as aq, ay are non-regular, we can use Lemma 15 and conclude that there
are Q1,Qs € Var(A) such that |Q] = |Q2] = 1, a1 —=* @1, as =" Qo
and a; ~ Q1) ay ~ QI First we prove that Q, ~ Q for some simple
process (). To do this, it suffices to prove that if ay is a summand in the def.
equation for Q;, then v ~ QfM. As aqlay —=* Q1laz % 7l|as, the process
¥|lea belongs to S(nBPA). Let v —* R where |R| = 1. Then v ~ R (due to
Lemma 15) and as oy —* v —* R, we also have ay ~ R'*tl, Hence R ~ (N

and 7~ Q' ~ Q1.

Similarly, we could prove that (), is also bisimilar to some simple process.
To finish the proof, we need to show that @Q; ~ Q. Let m = max{|X|,
X € Var(A)}. As «; is non-regular, it can reach a state of an arbitrary
norm—Ilet a; —* o where || = m. Then &/ ||Q2 ~ ¢ for some § € Var(A)*
whose length is at least two—d = A.B.¢". Clearly o ~ Q'laﬂ (we can use the
same argument as in the first part of this proof—Q), is non-regular and o

plays the role of 7), hence Q‘f””@g ~ A.B.Y'. As Q'la,l‘i'A‘HQz ~ B.0" and
Q‘félHA‘H ~ B.d', we have Q‘IOCIHAlHQQ ~ Q‘félHA‘H by transitivity of ~ and
thus Ql ~ QQ. |

Proposition 18 in fact says that if A is a non-regular nBPA process such
that A ~ Aq||Ay, where Ay, Ay are non-regular processes, then each of those
three processes can be equivalently represented as a power of some non-regular
simple process. This representation is very special and can be seen as normal
form.

11



If A is a non-regular nBPA process such that A ~ Ay||A,, it is also possible
that Ay is non-regular and A, regular. Before we start to examine this pos-
sibility, we introduce a special normal form for nBPA processes (as we shall
see, A and A; can be represented in this normal form):

Definition 19 (DNF(Q)) Let A be a non-reqular nBPA process in GNF,
Q € Var(A). We say that A is in DNF(Q) if all summands in all defining
equations from A are of the form a([Y].[Q*]), where Y € Var(A), i € N and
a € Act. Furthermore, all summands in the def. equation for (Q must be of the
form al[Q)], where a € Act.

Example 20 The following process is in DNF(Q):

XZa(Y.Q.Q)+bX +a(Q.Q.Q) + ¢
YV EbQ +cX +c(Y.Q) +b
QZaQ +bQ+a+c

Remark 21 Reachable states of a nBPA process A in DNF(Q) are of the
form [Y].[Q*"] where Y € Var(A) and i € Ny. As A is non-regular, the state
Q** is reachable for each k € N.

Note that the variable ) itself is a regular simple process. The next lemma
says that if A is a process in DNF (@), then the variable @ is in some sense
unique:

Lemma 22 Let A and A" be processes in DNF(Q) and DNF (R), respectively.
If A~ A’ then Q ~ R.

PROOF. Let m = max{|X|, X € Var(A’)}. As the state Q*™"! is a reach-
able state of A, @*™ ~ [Y].R*" for some Y € Var(A'), i € N (see Re-
mark 21). Hence @ ~ R. O

Proposition 23 Let Ay, Ay be nBPA processes such that Ay is non-reqular
and Ay is regqular. Then A(||Ay € S(nBPA) iff there is a process Al in
DNF (Q) such that Ay ~ A" and Ay ~ Q122!

PROOF.

“=" Let Ay —* Q' where @' € Var(As), |Q'| = 1. Using the same kind of
argument as in the proof of Proposition 18 we obtain that @' ~ @ for some
regular simple process @ such that Ay ~ Q?2l. It remains to prove that there
is a process A} in DNF(Q) such that Ay ~ A}. We show that each summand
of each defining equation from A; can be transformed into a form which is

12



admitted by DNF(Q). First, let us realize two facts about summands—if a«
is a summand in a def. equation from A, then

(1) If @« = B.Y.y where YV is a non-regular variable, then each variable P of
7 is bisimilar to Q¥
(2) « contains at most one non-regular variable.

The first fact is a consequence of Lemma 14—Ilet A be a nBPA process such
that Aq[]As ~ A. As A; is normed, A; —* Y.v.0 for some § € Var(A;)*.
As Y is non-regular, it can reach a state of an arbitrary length—let m =
max{|X|, X € Var(A,)} and let Y —* w where length(w) = m. As Aq||Ay —*
w.7.90]|Q’, there is ¢ € Var(A)* such that w.v.0||@Q" ~ ¢. Let ¢ = C.¢’ and let
s be a norm-decreasing sequence of actions such that length(s) = |C'| — 1 and
w > W' Then w'.y.0]|Q" ~ C".¢' where |C'| = 1 and due to Lemma 14 (and
the fact that Q' ~ Q) we have w'.y.0 ~ QI hence y ~ Q"I and P ~ QI”!
for each variable P which appears in .

The second fact is a consequence of the first one—assume that « = 3.Y.y.Z.4
where Y, Z are non-regular. Then Z ~ Q!4 and as Q is regular, Q!?! is regular
too. Hence Z is regular and we have a contradiction.

Now we can describe the promised transformation of A; into Af: if X =
S a0 is a def. equation in Ay, then X = 3" 4,7 (a;) is a def. equation

in A, where 7 is defined as follows:

e If o; does not contain any non-regular variable, then 7 («;) = A, where A is
the leading variable of A¥(«;). Moreover, defining equations of A%(q;) are
added to Al.

e If o; = .Yy where Y is a non-regular variable, then 7 («;) = A, where A
is the leading variable of the process A’ which is obtained by the following
modification of the process A%(f3): each summand in each def. equation of
AR(B) which is of the form b, where b € Act, is replaced with b(Y.Q*"") —
remember v ~ Q" ~ Q*1l. Moreover, def. equations of A’ are added to
Al.

The defining equation for @) is also added to A). The resulting process is in
DNF (@) and as T preserves bisimilarity, A; ~ Af.

“<” We show how to construct a nBPA process A which is bisimilar to
AL|Q122!. Let k = |Ay|. The set of variables of A looks as follows:

Var(A) ={Q} U{Y; | Y € Var(A}),Y #Q and i € {0,...,k}}

Defining equations of A are constructed using the following rules:

e the def. equation for @) is the same as in A
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o if a(Y.(Q7), where j € Ny, Y # Q, is a summand in the def. equation for
Z € Var(A}), then a(Y;.Q%) is a summand in the def. equation for Z; for
each i € {0,...,k}

e if a(Q’) where j € Ny is a summand in the def. equation for Z € Var(AY),
then a(Q’*") is a summand in the def. equation for Z; for each i € {0, ..., k}

e if a() is a summand in the def. equation for @ and Z € Var(A)), Z # Q,
then aZ; is a summand in the def. equation for Z; for each i € {1,...,k}

e if a is a summand in the def. equation for @ and 7 € Var(A}), 7 # Q,
then aZ; 1 is a summand in the def. equation for Z; for each i € {1,... k}

The intuition which stands behind this construction is that lower indexes of
variables indicate how many copies of @ in @2/ have not disappeared yet.
The fact A}[|Q?2l ~ A is easy to check. 0

Example 24 If we apply the algorithm presented in the “=7” part of the proof
of Proposition 23 to the process X ||Q?, where X, Q are variables of the process
presented in Fxample 20, we obtain the following output:

&
&

a(¥2.Q.Q) + bXs + a(Q.Q.Q.Q.Q) + ¢(Q.Q) + aXs + bXs + a X + Xy
a(Y1.Q.Q) + bX1 4+ a(Q.Q.Q.Q) + cQ + a X1 + bX1 + aX(y + ¢Xp
a(Yy.Q.Q) + bXo + a(Q.Q.Q) + ¢

I5(Q.Q.Q) + cXo + c(Y2.Q) + b(Q.Q) + aYs + bY, + aY; + ¥y

V1 €0(Q.Q) + cX1 + ¢(V1.Q) + bQ + aYy + bY; + aYy + Yy

Yo ZbQ + cXo + c(Yp.Q) + b

def

RQ=a0Q+bQ+a+c

&
&

|

gl

Xo
X1
Xo
Y,

Remark 25 Proposition 23 can also be seen as a refinement of the result
achieved in [}|—Burkart and Steffen proved that PDA processes are closed
under parallel composition with finite-state processes, while BPA processes lack
this property. Proposition 23 says precisely what nBPA processes can remain
nBPA if they are combined in parallel with a reqular process. Moreover, it also
characterizes all such reqular processes.

It is easy to see that the algorithm from the proof of Proposition 23 always
outputs a process in DNF(Q) (see Example 24). Moreover, the structure of
this process is very specific; we can observe that each variable belongs to a
special “level”. This intuition is formally expressed by the following definition
(it is a little complicated—but it pays because we will be able to characterize
all non-prime nBPA processes):

Definition 26 Let A be a nBPA process in DNF(Q). The level of A, denoted
Level(A), is the mazimal | € N such that the set Var(A) — {Q} can be di-
vided into | disjoint linearly ordered subsets Ly, ..., L; of the same cardinality
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k. Moreover, the following conditions must be true (the j element of L; is

denoted A; ;):

e A;; is the leading variable of A.

e Defining equations for variables of L; contain only variables from L; U{Q}

e The defining equation for A;;, where ¢ > 2, 1 < j < k, contains exactly

those summands which can be derived by one of the following rules:

(1) If aQ is a summand in the defining equation for @), then a4, ; is a summand
in the defining equation for A, ; for each 2 < <[, 1 <j <k.

(2) If a is a summand in the defining equation for @), then aA;_;; is a sum-
mand in the defining equation for A, ; for each 2 <1 <[, 1 <j <k.

(3) If a(A;,,.Q°") is a summand in the defining equation for A, ;, then
a(A;m-Q°™) is a summand in the defining equation for A;; for each
2 <1<l

(4) If a@*™ is a summand in the defining equation for A, ;, then a@e!
is a summand in the defining equation for A; ;, where 2 <7 <.

n+i—1)

Example 27 The process of Example 24 has the level 3; L1 = { Xy, Yo}, Lo =
{Xla }/1} and L3 = {X27 }/’2}

Remark 28 [t is easy to see that any process A in DNF(Q) whose level
is greater than one is decomposable; it holds that A ~ A'||Q¥ where k =
Level(A) — 1 and A’ is obtained from A by deleting all equations for variables
of L; where i > 2. The leading variable of A" is Ay ;.

Lemma 29 Let Q be a non-reqular simple process and let A be a nBPA pro-
cess such that A||Q € S(nBPA). Then A ~ Q4.

PROOF. Let A —* R where |R| = 1. As @ is non-regular, we can use
Lemma 15 and conclude that A ~ R?I. Now it suffices to prove that R ~ Q.
Let A’ be a nBPA process such that Al|Q ~ A" and let m = max{|X|, X €
Var(A')}. As @ is simple and non-regular, Q —* @Q°™ (see Remark 21).
Hence R||Q*™ ~ « for some o € Var(A')* whose length is at least 2 — thus
a = A.( for some 3 € Var(A')*. Let k = |A|. Then each two states which
are reachable from R||Q*™ in k& norm-decreasing steps are bisimilar—hence
R||Q*™ % ~ Q*™ %! and from this we have R ~ Q. O

Now we can prove the first main theorem of this paper:

Theorem 30 Let A be a non-reqular nBPA process and let A ~ Aq|| -+ [|A,,
where n > 2, A; is a prime process for each 1 < i <n and Ay is non-reqular.
Then one of the following possibilities holds:

e There is a non-reqular simple process Q such that A ~ Q' and A; ~ Q
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for each 1 <i <n.
e There are nBPA processes A, A} in DNF(Q) such that A ~ A’, Ay ~ Al
Level(A") = n, Level(A}) =1 and A; ~ Q for each 2 <i < n.

PROOF. We proceed by induction on n:

e n=2: if A, is non-regular, we can use Proposition 18. Similarly, if Ay is
regular, we use Proposition 23; note that Level(A;) = 1 because A; would
not be prime otherwise (see Remark 28).

e Induction step: let A ~ Ayf[---[|A,. As Aqf] -+ []A, = Ayf| -+ [|Apy,
there is a reachable state o of A such that « ~ Aq||---]|A,_1 — hence
we can use ind. hypothesis (note that & must be non-regular) and conclude
that there are two possibilities:

(1)

(2)

There is a non-regular simple process ) such that A; ~ @ foreach 1 <i <
n—1. We prove that A, ~ Q. As A ~ Q" !||A, and Q" !||A,, =* Q|| A,
we can use Lemma 29 and conclude A,, ~ Q2. Hence A, ~ Q because
A,, would not be prime otherwise.

There is a nBPA process A in DNF (@) such that Ay ~ Al, Level(A)) =
1 and A; ~ @ for each 1 < i < n — 1. First we prove that A, ~ Q.
As Aq]|A, is a reachable state of Ay||---[|A,, it belongs to S(nBPA).
Let us realize that A, is regular. Assume the converse—then we can use
Proposition 18 and conclude that A; ~ RI*1l for some non-regular simple
process R. From this and Remark 21 we can easily prove that R ~ ) and
it contradicts regularity of Q.

As A, is regular and A, ||A,, € S(nBPA), we can apply Proposition 23;
from this (and also from Lemma 22) we get that A, ~ Q“»l and thus
A, ~ @ because A, is prime.

[t remains to prove that there is a process A’ in DNF(Q) such that
Level(A') = n and A ~ A’. But the process A’ can be easily constructed
by the algorithm from the proof of Proposition 23 with A/ ||@™ ! on input.

O

4 Decidability Results

In this section we present several positive decidability results. We show that it
is decidable whether a given nBPA process is prime and if the answer is nega-
tive, then its decomposition into primes can be effectively constructed. There
are also other decidable properties which are summarized in Theorem 35.

4.1 Effective Decomposability of nBPA Processes
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Lemma 31 Let A be a nBPA process. It is decidable whether there is a nBPA
process A" in DNF(Q) such that A ~ A'. Moreover, if the answer to the
previous question is positive, then the process A' can be effectively constructed.

PROOF. We can assume (w.l.o.g.) that A is in 3-GNF. If there is a process
A"in DNF(Q) such that A ~ A’ then there is R € Var(A) such that R ~ @,
because () is a reachable state of A’. As @) is a regular simple process, each
summand in the def. equation for R must be of the form a[P], where R ~ P.
As bisimilarity is decidable for nBPA processes, we can construct the set M
of all variables of Var(A) with this property. Each variable from this set is a
potential candidate for the variable which is bisimilar to @ (if the set M is
empty, then A cannot be bisimilar to any process in DNF(Q)).

For each variable V' € M we now modify the process A slightly—we replace
each summand of the form a P in the def. equation for V' with aV". The resulting
process is denoted Ay (clearly A ~ Ay). For each such Ay we check whether
Ay can be transformed into a process in DNF (V). To do this, we first need to
realize the following fact: if there is A}, in DNF (V) such that Ay ~ Al and
a(A.B) is a summand in a def. equation from Ay such that A is non-regular,
then B ~ V*/Bl Tt is easy to prove by the technique we already used many
times in this paper—as A is non-regular, it can reach a state of an arbitrary
norm. Furthermore, there is a reachable state of Ay which is of the form A.B.y
where v € Var(Ay)*. We choose sufficiently large o such that A —* « and
«.B.y must be bisimilar to a state of A}, which is of the form [Y].V** where
i > |B.7y|. From this we get B ~ V *I5l,

Now we can describe the promised transformation 7 of Ay into a process Af,
in DNF (V). If this transformation fails, then there is no process in DNF (V)
bisimilar to Ay. 7 is invoked on each summand of each def. equation from
Ay and works as follows:

e T(a)=a

e T(aA)=aA

e T(a(A.B)) = aN if A is regular. The variable N is the leading variable
of A®(A), whose def. equations are also added to A}, after the following
modification: each summand in each def. equation of A®(A) which is of the
form b where b € Act is replaced with bB.

e T(a(A.B)) = a(A.V*IBl) if A is non-regular and B ~ V!Bl If A is non-
regular and B 6 V*IBl then T fails.

If there is V' € M such that 7 succeeds for Ay, then the process Ay, ~ A

is the process we are looking for. Otherwise, there is no process in DNF(Q)
bisimilar to A. O
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Proposition 32 Let Ay, ..., A,, n > 2 be nBPA processes. It is decidable
whether Aq||---||A, € S(nBPA). Moreover, if the answer to the previous
question is positive, then a nBPA process A such that Al ---||A, ~ A can
be effectively constructed.

PROOF. By induction on n:

e n=2: we distinguish three possibilities (it is decidable which one actually
holds—see Proposition 6):

(1) Ay and A, are regular. Then A;||Ay € S§(nBPA) and a bisimilar regular

process A in normal form can be easily constructed.

(2) A; and A, are non-regular. Suppose A;||A; € S(nBPA). Proposition 18
says that there is a non-regular simple process @ such that A, ~ Q1?1 ~
Q™ and Ay ~ Q122 ~ Q1221 As @ is a reachable state of Q*122/, there
is R € Var(A;) such that @ ~ R. As reachable states of () are of the form
Q*" where i € Ny, each summand ac in the def. equation for R has the
property o ~ R*1*l. As bisimilarity is decidable for nBPA processes, we
can find all variables of Var(A) which have this property—we obtain a set
of possible candidates for R (if this set is empty, then A ||Ay & S(nBPA)).
Now we check whether the constructed set of candidates contains a vari-
able R such that A; ~ R*!®1l If not, then A, ||A; & S(nBPA). Otherwise
we have R which is bisimilar to Q).

The same procedure is now applied to A,. If it succeeds, it outputs
some S € Var(A). Now we check whether R ~ S. If not, then Aq||Ay &
S(nBPA). Otherwise A[|Ay € S(nBPA) and A,||Ay ~ Re/AtlFA2],

(3) A; is non-regular and A, is regular (or A; is regular and A, is non-
regular—this is symmetric). Suppose A;]|Ay € S(nBPA). Due to Propo-
sition 23 we know that there is a regular simple process Q and a nBPA
process A} in DNF(Q) such that A; ~ Al and Ay ~ Q21 ~ Q*142l An
existence of A} can be checked effectively (see Lemma 31). If it does not
exist, then Ay[|Ay & S(nBPA). If it exists, it can be also constructed and
thus the only thing which remains is to test whether Ay ~ Q*l22l. If this
test succeeds, then Ay[|Ay € S(nBPA) and we invoke the algorithm from
the proof of Proposition 23 with A}[|Q*?! on input—it outputs a nBPA
process which is bisimilar to Ay ||A,.

e Induction step: if A||---||A, € S(nBPA), then also Ay||---||A,—1 €
S(nBPA ) and this is decidable by ind. hypothesis—if the answer is negative,
then Ay||---||A, & S(nBPA) and if it is positive, then we can construct a
nBPA process A’ such that Aq||---[|A,-; ~ A’. Now we check whether
A'l|A, € §(nBPA) and construct a bisimilar nBPA process A if needed.

O

As an immediate consequence of Proposition 32 we get:
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Proposition 33 Let A, Ay, ..., A, be nBPA processes. It is decidable whether
A~ Ayl ||Ag.

Now it is easy to prove the following theorem:

Theorem 34 Let A be a nBPA process. It is decidable whether A is prime
and if not, its decomposition into primes can be effectively constructed.

PROOF. The technique is the same as in the proof of Theorem 13. We can
almost copy the whole proof—the crucial result which allows us to do so is
Proposition 33. O

Decidability results which were proved in this section (and some of their im-
mediate consequences) are summarized in the following theorem:

Theorem 35 Let A, Aq,...,A, be nBPA processes. The following problems
are decidable:

Is A prime? (If not, its decomposition can be effectively constructed)

Is A bisimilar to Aq| -+ ||An ?

Does the process Aql| - -+ ||Ay, belong to S(nBPA)?

Is there any process A’ o nil such that A||A" € S(nBPA)? (if so, an example
of such a process can be effectively constructed).

o [s there any process A" such that A ~ Aq]|---||An||A"? (if so, A" can be
effectively constructed).

4.2 Decidability of Bisimilarity for sPA Processes

A “structural” way how to construct new processes from older ones is to
combine them in parallel. If we do this with nBPA and nBPP processes, we
obtain a natural subclass of normed PA processes denoted sPA (simple PA
processes):

Definition 36 (sPA processes) The class of sPA processes is defined as
follows:

sPA = {A]|---||A, | n € N, A; € nBPAUnBPP for each 1 <i<n}
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The class sPA is strictly greater than the union of nBPA and nBPP processes.
This is demonstrated by the following example:

Example 37 Let Ay, Ay be nBPA processes defined as follows:

Ar: XE2X +i(V.X)+g Ay: AZaA+b(B.A)+r
Y Zi(Y.Y)+d B¥b(B.B) +c

Then there is no nBPA or nBPP process bisimilar to the sPA process Aq||A,.
This can be easily proved with the help of pumping lemmas for context-free
languages and for languages generated by nBPP processes—see [6].

Theorem 38 Let ® = ¢y -+ |lon, ¥ = U1l ||¥m be sPA processes. It is
decidable whether ® ~ W.

PROOF. As each ¢;, 1 < i < nand ¢;, 1 < j < m can be effectively
decomposed, we can also construct decompositions of ® and W. If & ~ U, then
those decompositions must be the same up to bisimilarity (see Remark 11).
In other words, there must be a one-to-one correspondence between primes
forming the two decompositions which preserves bisimilarity. An existence
of such a correspondence can be checked effectively, because bisimilarity is
decidable in the union of nBPA and nBPP processes (see Proposition 8). O

5 Conclusions, Future Research

The main characterization theorem (Theorem 30) says that non-regular nBPA
processes which are not prime can be divided into two groups:

(1) Processes which can be equivalently represented as a power of some non-
regular simple process. It is obvious that each such nBPA process belongs
to S(nBPP)—see Remark 17.

(2) Processes which can be equivalently represented in DNF(()) and their
level is at least 2. It can be proved (with the help of results achieved in
[5]) that each such process does not belong to S(nBPP).

From this we can observe that our division based on normal forms corresponds
to the membership to S(nBPP).

The first possible generalization of our results could be the replacement of the
‘|” operator with the parallel operator of CCS which allows synchronizations
on complementary actions. This should not be hard, but we can expect more
complicated normal forms. Decidability results should be the same.
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A natural question is whether our results can be extended to the class of all
(not necessarily normed) BPA processes. A major problem is that there are
quite primitive BPA processes which do not have any (finite) decomposition at
all. For example, the process X Z aX is not prime as X ~ a|X. However, X
cannot, have any finite decomposition into primes because at least one of those
primes would have to be unnormed and able to emit just an infinite sequence
of a’s; hence this prime is bisimilar to X and as X is decomposable, the prime
is decomposable as well and we have a contradiction. Thus, we cannot expect
that our results immediately generalize to the class of all BPA processes.

Another related open problem is decidability of bisimilarity for normed PA
processes. It seems that it should be possible to design at least rich subclasses
of normed PA processes where bisimilarity remains decidable.
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