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Abstract. We study the problem of effective controller synthesis for
finite-state Markov decision processes (MDPs) and the class of properties
definable in the logic PCTL extended with long-run average propositions.
We show that the existence of such a controller is decidable, and we give
an algorithm which computes the controller if it exists. We also address
the issue of “controller robustness”, i.e., the problem whether there is
a controller which still guarantees the satisfaction of a given property
when the probabilities in the considered MDP slightly deviate from their
original values. From a practical point of view, this is an important aspect
since the probabilities are often determined empirically and hence they
are inherently imprecise. We show that the existence of robust controllers
is also decidable, and that such controllers are effectively computable if
they exist.

1 Introduction

The controller synthesis problem is one of the fundamental research topics in
the area of system design. Loosely speaking, the task is to modify or limit some
parts of a given system so that a given property is satisfied. The controller syn-
thesis problem is well understood for discrete systems [11], and the scope of this
study has recently been extended also to timed systems [2, 5] and probabilistic
systems [1].

In this paper, we concentrate on a class of probabilistic systems that can be
modelled by finite-state Markov decision processes. Intuitively, Markov decision
processes (MDPs) are finite-state systems where each state has several outgoing
transitions leading to probability distributions over states. Thus, Markov deci-
sion processes combine the paradigms of non-deterministic/probabilistic choice,
and this combination turns out to be very useful in system modelling. Quanti-
tative properties of MDPs can be defined only after resolving nondeterminism
by assigning probabilities to the individual transitions. Similarly as in [1], we
distinguish among four natural types of strategies for resolving nondeterminism,
depending on whether
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– the transition is chosen deterministically (D) or randomly (R);
– the choice does or does not depend on the sequence of previously visited

states (Markovian (M) and history-dependent (H) strategies, respectively).

Thus, one obtains the four basic classes of MD, HD, MR, and HR strategies.
In addition, we assume that the states of a given MDP are split into two dis-
joint subsets of controllable and environmental states, depending on whether the
nondeterminism is resolved by a controller or by the environment, respectively.
Hence, in our setting the controller synthesis problem is specified by choosing
the type of strategy for controller and environment, and the class of properties
that are to be achieved. The task is to find, for a given MDP and a given prop-
erty, a controller strategy such that the property is satisfied for every strategy
of the environment. In [1], it was shown that this problem is NP-complete for
MD strategies and PCTL properties, and elementary for HD strategies and LTL
properties.

For linear-time properties, the problem of finding a suitable controller strat-
egy can also be formulated in the terms of stochastic games on graphs [12].
Controller and environment act as two players who resolve the non-deterministic
choice in controllable and environmental states, resp., and thus produce a “play”.
The winning conditions are defined as certain properties of the produced play.
In many cases, it turns out that the optimal strategies for both players are mem-
oryless (i.e., Markovian in our terms). However, in the case of branching-time
properties that are considered in this paper, optimal strategies are not necessar-
ily memoryless and the four types of strategies mentioned above form a strict
hierarchy [1].

Our contribution: In this paper we consider the controller synthesis prob-
lem for MR strategies and the class of properties definable in the logic PCTL
extended with long-run average propositions defined in the style of [4]. The re-
sulting logic is denoted PCTL+LAP. The long-run average propositions allow
to specify long-run average properties such as the average service time, the av-
erage frequency of visits to a distinguished subset of states, etc. In the logic
PCTL+LAP, one can express properties such as:

– the probability that the average service time for a request does not exceed
20 seconds is at least 98%;

– the system terminates with probability at least 80%, and at least 98% of
runs have the property that the percentage of time spent in “dangerous”
states does not exceed 3%.

A practical relevance of PCTL+LAP properties is obvious.
The controller synthesis problem for PCTL+LAP properties and MD strate-

gies is trivially reducible to the satisfaction problem for finite-state Markov
chains and PCTL+LAP properties. This is because there are only finitely many
MD strategies for a given MDP, and hence one can try out all possibilities. For
MR strategies, a more sophisticated approach is required because the total num-
ber of MR strategies is infinite (and in fact not countable). This is overcome by
encoding the existence of a MR-controller in (R,+, ∗,≤), the first-order theory



of reals, which is known to be decidable [10]. The encoding is not simple and
includes several subtle tricks. Nevertheless, the size of the resulting formula is
polynomial in the size of a given MDP and a given PCTL+LAP property, and
the number of quantifier alternations is fixed. Hence, we obtain the EXPTIME
upper complexity bound by applying the result of [6].

Another problem addressed in this paper is controller robustness [8]. Since
the probabilities of events that are modelled in MDPs are often evaluated em-
pirically, they are inherently imprecise. Hence, it is important to know whether
the constructed controller still works if the probabilities in the considered MDP
slightly deviate from their original values. We say that a controller is ε-robust
if the property in question is still satisfied when probability distributions in the
considered MDP change at most by ε in each component (here we do not allow
for changing the probabilities from zero to non-zero (and vice versa), because
this corresponds to changing from “impossible” to “possible”). Similarly, we can
also wonder whether the constructed controller is “fragile” in the sense that it
stops working if the computed strategy changes a little bit. We say that a con-
troller is δ-free if every other controller obtained by changing the strategy by at
most δ is again a correct controller. We show that the problem whether there
is an ε-robust and δ-free controller for given MDP, PCTL+LAP property, and
ε, δ ≥ 0, is in EXPTIME. Moreover, we also give an algorithm which effectively
estimates the maximal achievable level of controller robustness for given MDP
and PCTL+LAP property (i.e., we show how to compute the maximal ε, up to
a given precision, such that there is an ε-robust controller for given MDP and
PCTL+LAP property). Finally, we show how to construct an ε-robust controller
for a given MDP and PCTL+LAP property, provided that an ε-robust and δ-free
controller exists and δ > 0.

2 Basic Definitions

We start by recalling basic notions of probability theory. A σ-field over a set X
is a set F ⊆ 2X that includes X and is closed under complement and countable
union. A measurable space is a pair (X,F) where X is a set called sample space
and F is a σ-field overX. A measurable space (X,F) is called discrete if F = 2X .
A probability measure over measurable space (X,F) is a function P : F → R≥0

such that, for each countable collection {Xi}i∈I of pairwise disjoint elements of
F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(X) = 1. A probabilistic space

is a triple (X,F ,P) where (X,F) is a measurable space and P is a probability
measure over (X,F). A probability measure over a discrete measurable space is
called a discrete measure. We also refer to discrete measures as distributions. The
set of all discrete measures over a measurable space (X, 2X) is denoted Disc(X).

Markov decision processes. A Markov decision process (MDP) M is a triple
(S,Act , P ) where S is a finite or countably infinite set of states, Act is a finite
set of actions, and P : S×Act×S → [0, 1] is a (total) probabilistic function such
that for every s ∈ S and every a ∈ Act we have that

∑
t∈S P (s, a, t) ∈ {0, 1}. We



say that a ∈ Act is enabled in s ∈ S if
∑

t∈S P (s, a, t) = 1. The set of all actions
that are enabled in a given s ∈ S is denoted Act(s). For technical convenience,
we assume that each state s ∈ S has at least one enabled action. We say that
M is finite if S is finite. A path in M is a nonempty finite or infinite alternating
sequence of states and actions π = s1a1s2a2 . . . an−1sn or π = s1a1s2a2 . . . such
that P (si, ai, si+1) > 0 for all 1 ≤ i < n or i ∈ N, resp. The length (i.e., the
number of actions) of a given π is denoted |π|, where |π| = ∞ if π is infinite. For
every 1 ≤ i ≤ |π|+1, the symbol π(i) denotes the i-th state of π (which is si). A
run is an infinite path. The sets of all finite paths and all runs of M are denoted
FPath and Run, respectively. Sometimes we write FPathM and RunM if M is
not clear from the context. Similarly, the sets of all finite paths and runs that
start in a given s ∈ S are denoted FPath(s) and Run(s), respectively. For finite
paths, last(π) = π(|π|+1) denotes the last state of π.

For the rest of this section, we fix a MDP M = (S,Act , P ).

Strategies, adversaries, and policies for MDPs. Let S0 ⊆ S be nonempty
subset of controllable states. The states of S \ S0 are environmental. A strat-
egy is a function D that resolves nondeterminism for the controllable states of
M. Similarly as in [1], we distinguish among four basic types of strategies for
(M, S0), according to whether they are deterministic (D) or randomized (R),
and Markovian (M) or history-dependent (H).

– A MD-strategy is a function D : S0 → Act such that D(s) ∈ Act(s) for all
states s ∈ S0.

– A MR-strategy is a function D : S0 → Disc(Act) such that D(s) ∈
Disc(Act(s)) for all states s ∈ S0.

– A HD-strategy is a function D : FPath → Act such that D(π) ∈ Act(last(π))
for all finite paths π ∈ FPath where last(π) ∈ S0, otherwise D(π) = ⊥.

– A HR-strategy is a function D : FPath → Disc(Act) such that D(π) ∈
Disc(Act(last(π))) for all finite paths π ∈ FPath where last(π) ∈ S0, other-
wise D(π) = ⊥.

MD, MR, HD, and HR adversaries are defined in the same way as strategies
of the corresponding type; the only difference is that adversaries range over
environmental states. A policy is a pair H = (D,E) where D is a strategy and
E an adversary. Slightly abusing notation, we write H(s) to denote either D(s)
or E(s), depending on whether s ∈ S0 or not, respectively.

Markov chains induced by policies. A Markov chain is a MDP with only
one action, i.e., without nondeterminism. Formally, a Markov chain MC is a pair
(S, P ) where (S, {a}, P ) is a MDP. The (only) action a can safely be omitted,
and so the probabilistic function is restricted to the set S × S, and a path in
MC is a (finite or infinite) sequence of states s1s2s3 . . . .

Each π ∈ FPathMC determines a basic cylinder Run(π) which consists of
all runs that start with π. To every s ∈ S we associate the probabilistic space



(Run(s),F ,P) where F is the σ-field generated by all basic cylinders Run(π)
where π starts with s (i.e., π(1) = s), and P : F → [0, 1] is the unique proba-
bility measure such that P(Run(π)) = Π

|π|
i=1P (π(i), π(i+ 1)) (if |π| = 0, we put

P(Run(π)) = 1).
Let M = (S,Act , P ) be a MDP. Each policy H for M induces a Markov

chain MCH = (SH , PH) in the following way:

– If H is a Markovian (MD or MR) policy, then SH = S.
– If H is a history-dependent (HD or HR) policy, then SH = FPathM.

The function PH is determined as follows:

– If H is a MD-policy, then PH(si, sj) = P (si,H(si), sj).
– If H is a MR-policy, then PH(si, sj) = Σa∈Act(si)µ(a).P (si, a, sj) where
µ = H(si).

– If H is a HD-policy, then PH(π, π′) = P (last(π),H(π), s) if π′ = π.H(π).s,
and PH(π, π′) = 0 otherwise.

– If H is a HR-policy, then PH(π, π′) = µ(a).P (last(π), a, s) where µ = H(π),
if π′ = π.a.s, and PH(π, π′) = 0 otherwise.

The logics PCTL and PCTL+LAP. Let Ap = {p, q, . . . } be a countably
infinite set of atomic propositions. The syntax of PCTL state and path formulae
is given by the following abstract syntax equations:

Φ ::= tt | p | ¬Φ | Φ1 ∧ Φ2 | P∼%ϕ ϕ ::= XΦ | Φ1 U Φ2

Here p ranges over Ap, % ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}.
Let MC = (S, P ) be a Markov chain, and let ν : Ap → 2S be a valuation.

The semantics of PCTL is defined below. State formulae are interpreted over S,
and path formulae are interpreted over Run.

s |=ν tt
s |=ν p iff s ∈ ν(p)
s |=ν ¬Φ iff s 6|=ν Φ
s |=ν Φ1 ∧ Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν P∼%ϕ iff P({π∈Run(s) | π |=ν ϕ}) ∼ %

π |=ν XΦ iff π(2) |=ν Φ
π |=ν Φ1 U Φ2 iff ∃j≥1 : π(j) |=ν Φ2 and π(i) |=ν Φ1 for all 1≤i<j

The logic PCTL+LAP is obtained by extending PCTL with long-run average
propositions (in the style of [4]). Intuitively, we aim at modelling systems which
repeatedly service certain requests, and we are interested in measuring the av-
erage costs of servicing a request along an infinite run. The states where the
individual services start are identified by (the validity of) a dedicated atomic
proposition, and each service corresponds to a finite path between two consecu-
tive occurrences of marked states.



Definition 1. A long-run average proposition is a pair [p, f ] where p is an
atomic proposition and f : S → R≥0 a reward function that assigns to each
s ∈ S a reward f(s).

The reward assigned to a given s ∈ S corresponds to some costs which are “paid”
when s is visited. For example, f(s) can be the expected average time spent in s,
the amount of allocated memory, or simply a binary indicator specifying whether
s is “good” or “bad”. The proposition p is valid in exactly those states where
a new service starts. Note that in this setup, a new service starts immediately
after finishing the previous service. This is not a real restriction, because the
states which precede/follow the actual service can be assigned zero reward.

The syntax of PCTL+LAP formulae is obtained by modifying the syntax of
PCTL path formulae as follows:

ϕ ::= XΦ | Φ1 U Φ2 | ξ ξ ::= [p, f ]∼b | ¬ξ | ξ1 ∧ ξ2
Here [p, f ] ranges over long-run average propositions, b ∈ R≥0, and ∼ ∈
{≤, <,≥, >}.

Let MC = (S, P ) be a Markov chain, [p, f ] a long-run average proposition,
and ν : Ap → 2S a valuation. Let π ∈ Run be a run along which p holds
infinitely often, and let π(i1), π(i2), . . . be the sequence of all states in π where
p holds. Let π[j] denote the subword π(ij−1 + 1), · · · , π(ij) of π, where i0 = 0.
Hence, π[j] is the subword of π consisting of all states in between the j−1th state
satisfying p (not included) and the jth state satisfying p (included). Intuitively,
π[j] corresponds to the jth service. Slightly abusing notation, we use f(π[j]) to
denote the total reward accumulated in π[j], i.e., f(π[j]) =

∑ij

k=ij−1+1 f(π(k)).
Now we define the average reward per service in π (with respect to [p, f ]) as
follows:

A[p, f ](π) =

{
limn→∞

Pn
j=1 f(π[j])

n if the limit exists;

⊥ otherwise.

If π ∈ Run contains only finitely many states satisfying p, we put A[p, f ](π) = ⊥.
Now we define

π |=ν [p, f ]∼b iff A[p, f ](π) 6= ⊥ and A[p, f ](π) ∼ b

The semantics of negation and conjunction of long-run average propositions is
defined in the expected way.

3 Controller Synthesis

In this section we examine the controller synthesis problem for finite MDPs,
PCTL+LAP properties, and MR policies.

Since the probabilities used in MDPs are often evaluated empirically (and
hence inherently imprecise), it is important to analyze the extent to which a



given result about a given MDP is “robust” in the sense that its validity is
not influenced by small probability fluctuations. This is formalized in our next
definitions:

Definition 2. Let M = (S,Act , P ) be a MDP, and let ε ∈ [0, 1]. We say that a
MDP M′ = (S,Act , P ′) is an ε-perturbation ofM if for all (s, a, t) ∈ S×Act×S
the following two conditions are satisfied:

– P (s, a, t) = 0 iff P ′(s, a, t) = 0,
– |P (s, a, t)− P ′(s, a, t)| ≤ ε.

Note that Definition 2 also applies to Markov chains.

Definition 3. Let M = (S,Act , P ) be a MDP, ε ∈ [0, 1], si ∈ S, and Prop
some property of si. We say that Prop is ε-robust if for every MDP M′ which
is an ε-perturbation of M we have that if si |= Prop in M, then si |= Prop
in M′.

Examples of 1-robust properties are qualitative LTL and qualitative PCTL prop-
erties of states in finite Markov chains, whose (in)validity depends just on the
“topology” of a given chain [3]. On the other hand, the property of “being bisimi-
lar to a given state” (here we consider a probabilistic variant of bisimilarity [9]) is
generally 0-robust, because even a very small change in probability distribution
can spoil the bisimilarity relation.

In a similar fashion we also define a δ-perturbation of a randomized strategy.

Definition 4. Let M = (S,Act , P ) be a MDP, S0 ⊆ S a nonempty set of
controllable states, D a randomized (i.e., MR or HR) strategy, and δ ∈ [0, 1].
We say that a strategy D′ is a δ-perturbation of D if D′ is of the same type as
D and for all a ∈ Act:

– MR case: for all s ∈ S0: |D(s)(a) − D′(s)(a)| ≤ δ and D(s)(a) = 0 ⇔
D′(s)(a) = 0

– HR case: for all π ∈ FPath where last(π) ∈ S0: |D(π)(a)−D′(π)(a)| ≤ δ
and D(π)(a) = 0 ⇔ D′(π)(a) = 0

Let M = (S,Act , P ) be a MDP, S0 ⊆ S a nonempty set of controllable
states, si ∈ S, and Prop some property of si. Let T ∈ {MD,MR,HD,HR}. A
T -controller for M and Prop is a T -strategy D such that si |= Prop in MC(D,E)

for every T -environment E. We say that the controller D is

– ε-robust for a given ε ∈ [0, 1] if the property “D is a controller for M and
Prop” is ε-robust. In other words, D is a valid controller for Prop even if the
probabilities in M are slightly (i.e., at most by ε) changed.

– ε-robust and δ-free for given ε, δ ∈ [0, 1] if every D′ which is a δ-perturbation
of D is an ε-robust controller for M and Prop.



In the rest of this section we consider the problem of MR-controller synthesis
for a given MDP M = (S,Act , P ), a set of controllable states S0 ⊆ S, a state
si ∈ S, a PCTL+LAP formula ϕ, and a valuation ν. For notation simplification,
we do not list these elements in our theorems explicitly, although they are always
a part of a problem instance.

Theorem 5. Let ε, δ ∈ [0, 1]. The problem whether there is an ε-robust and
δ-free MR-controller is in EXPTIME.

Proof. We construct a closed formula of (R, ∗,+,≤) which is valid iff an ε-robust
and δ-free MR-controller exists. The formula has the following structure:

∃D ∀D′ (D′ δ-pert. of D) ⇒ (∀E ∀P ′ (P ′ ε-pert. of P ) ⇒ (∃Y (Y si
ϕ =1)))

Intuitively, the formula says “there is an MR-strategy D such that for every
strategy D′, which is a δ-perturbation of D, every environment E, and every
chain (an ε-perturbation of M) with probabilities P ′, there is a consistent va-
lidity assumption Y (which declares each subformula of ϕ to be either true or
false in every state of S) such that Y sets the formula ϕ to true in the state si”.
Now we describe these parts in greater detail.

Let Xs
a, X

′s
a be fresh first-order variables for all s ∈ S0 and a ∈ Act(s). These

variables are used to encode the strategies D,D′. Intuitively, Xs
a and X ′s

a carry
the probability of choosing the action a in the state s in D and D′, respectively.
The

∃D ∀D′ (D′ δ-pert. of D)

part can then be implemented as follows:

∃{Xs
a | s ∈ S0, a ∈ Act(s)} :

∧

Xs
a

(0 ≤ Xs
a ≤ 1) ∧

∧

s∈S0

(
∑

a∈Act(s)

Xs
a = 1) ∧

∀{X ′s
a | s ∈ S0, a ∈ Act(s)} :

( ∧

X′s
a

(0 ≤ X ′s
a ≤ 1) ∧

∧

s∈S0

(
∑

a∈Act(s)

X ′s
a = 1)∧

∧

Xs
a

((Xs
a = 0 ⇔ X ′s

a = 0) ∧ (|Xs
a −X ′s

a | ≤ δ))

Similarly,

– for all s ∈ S \ S0 and a ∈ Act(s) we fix fresh first-order variables X ′s
a that

encode the environment E (from a certain point on, we do not need to
distinguish between the probabilities chosen by D′ and E);

– for all s, t ∈ S and a ∈ Act(s) we fix a fresh variable P s,t
a that encodes the

corresponding probability of P ′;
– for every φ ∈ cl(ϕ) (here cl(ϕ) is the set of all subformulas of ϕ) and every
s ∈ S we fix a variable Y s

φ that carries either 1 or 0, depending on whether
s satisfies φ or not, respectively. As we shall see, the value of Y s

φ is first
“guessed” and then “verified”.

The ∀E ∀P ′ (P ′ ε-pert. of P ) ⇒ (∃Y (Y si
ϕ =1)) part can now be implemented

as follows:



∀{X ′s
a | s ∈ S \ S0, a ∈ Act(s)} :

∧

X′s
a

(0 ≤ X ′s
a ≤ 1) ∧

∧

s∈S\S0

(
∑

a∈Act(s)

X ′s
a = 1) ⇒

∀{P s,t
a | s, t ∈ S, a ∈ Act(s)} :∧

P s,t
a

((P (s, a, t) = 0 ⇔ P s,t
a = 0) ∧ (|P (s, a, t)− P s,t

a | ≤ ε)) ⇒

∃{Y s
φ | φ ∈ cl(ϕ), s ∈ S} :∧

Y s
φ

((Y s
φ = 0 ∨ Y s

φ = 1) ∧ (Y s
φ = 1 ⇔ ψs

φ)) ∧ (Y si
ϕ = 1)

The tricky part of the construction is the formula ψs
φ, which is defined inductively

on the structure of φ. Intuitively, ψs
φ says that s satisfies φ, where we assume

that this has already been achieved for all subformulae of φ (hence, by justifying
all steps in our inductive definition we also yield a correctness proof for our
construction):

– φ ≡ p. If s ∈ ν(p), then ψs
φ ≡ tt, otherwise ψs

φ ≡ ff.
– φ ≡ ¬φ′. Then ψs

φ ≡ (Y s
φ′ = 0).

– φ ≡ φ1 ∧ φ2. Then ψs
φ ≡ (Y s

φ1
= 1) ∧ (Y s

φ2
= 1).

– φ ≡ P∼%Xφ′. Then ψs
φ ≡

( ∑
a∈Act(s),t∈S X

′s
a · P s,t

a · Y t
φ′

)
∼ %.

The case when φ ≡ P∼%φ1 U φ2 is slightly more complicated. The probabilities
{Zr | r ∈ S}, where Zr is the probability that a run initiated in r satisfies the
path formula φ1 U φ2, form the least solution (in the interval [0, 1]) of a system
of recursive linear equations constructed as follows (where Zr should be seen as
“unknowns”; cf. [7, 3]):

– if Y r
φ2

= 1, we put Zr = 1;
– if Y r

φ1
= 0 and Y r

φ2
= 0, we put Zr = 0;

– if Y r
φ1

= 1 and Y r
φ2

= 0, we put Zr =
( ∑

a∈Act(s),t∈S X
′r
a · P r,t

a · Zt
)
.

So, the formula ψs
φ for the case when φ ≡ P∼%φ1 U φ2 looks as follows:

∃{Zr | r ∈ S} :
∧

r∈S

(0 ≤ Zr ≤ 1) ∧ {Zr} is a solution ∧ Zs∼% ∧
(
∀{Z ′r | r ∈ S} : (

∧

r∈S

(0 ≤ Z ′r ≤ 1) ∧ {Z ′r} is solution ) ⇒ (
∧

r∈S

Zr ≤ Z ′r)
)

Here “{Zr} is a solution” means that the variables {Zr} satisfy the above system
of recursive linear equations, which can be easily encoded in (R,+, ∗,≤).

Finally, we analyze the most complicated case when φ ≡ P∼%[p, f ]≈b. In
order to check long-run average propositions, we need to analyze the structure
of the Markov chain induced by the current values of the X ′r

a variables and find
bottom strongly connected components (BSCC) of this chain.

We start by computing the probabilities Probt
r of reaching the state t from

the state r. The set {Probt
r | r, t ∈ S} forms the least solution (in the interval

[0, 1]) of the following system of recursive linear equations, where Probt
r should

be interpreted as “unknowns”:



– if r = t, we put Probt
r = 1;

– if r 6= t, we put Probt
r =

∑
u∈S

( ∑
a∈Act(r)X

′r
a · P r,u

a

)
· Probt

u.

So, the formula which “computes” all Probt
r looks as follows:

∃{Probt
r | r, t ∈ S} :

∧

r,t∈S

(0 ≤ Probt
r ≤ 1) ∧ {Probt

r} is solution ∧
(
∀{Prob′tr | r, t ∈ S} : (

∧

r,t∈S

(0 ≤ Prob′tr ≤ 1) ∧ {Prob′tr} is solution ) ⇒

(
∧

r,t∈S

Probt
r ≤ Prob′tr)

)

Now we introduce predicates SCC r,t and BSCC r, where SCC r,t means that r, t
are in the same strongly connected component, and BSCC r means that r is in
a bottom strongly connected component.

SCC r,t ::= (Probt
r > 0 ∧ Probr

t > 0)

BSCC r ::=
∧

t∈S

(Probt
r > 0 ⇒ Probr

t > 0)

The next step is to compute the (unique) invariant distribution for each BSCC .
Recall that the invariant distribution in a finite strongly connected Markov chain
is the (unique) vector Inv of numbers from [0, 1] such that the sum of all com-
ponents in Inv is equal to 1 and Inv ∗ T = Inv where T is the transition matrix
of the considered Markov chain.

For each BSCC (represented by a given t ∈ S), the following formula “com-
putes” its unique invariant distribution {Inv t

r | r, t ∈ S}. More precisely, Inv t
r is

either zero (if r does not belong to the BSCC represented by t), or equals the
value of the invariant distribution in r (otherwise). We also need to ensure that
the representative t is chosen uniquely, i.e., the values of all Inv t′

r , where t′ is in
the same SCC as t, is zero:

∃{Inv t
r | r, t ∈ S} :∧

r,t∈S

(
(0 ≤ Inv t

r ≤ 1) ∧ ((¬BSCC r ∨ ¬BSCC t ∨ ¬SCC r,t) ⇒ Inv t
r = 0)

∧ ((BSCC r ∧ BSCC t ∧ SCC r,t) ⇒
Inv t

r =
∑

u∈S

(Inv t
u ·

∑

a∈Act(u)

X ′u
a · Pu,r

a ))
)
∧

∧

t∈S

(
BSCC t ⇒

( ∑

r∈S

Inv t
r = 1 ∧

∧

t′∈S,t′ 6=t

(SCC t,t′ ⇒
∑

r∈S

Inv t′
r = 0)

)
∨

( ∑

r∈S

Inv t
r = 0 ∧

∨

t′∈S,t′ 6=t

(SCC t,t′ ∧
∑

r∈S

Inv t′
r = 1)

))

According to ergodic theorem, almost all runs (i.e., with probability one) end
up in some BSCC, and then “behave” according to the corresponding invariant
distribution (i.e., the “percentage of visits” to each state is given by the invariant



distribution). From this one can deduce that the average reward per service is
the same for almost all runs that hit a given BSCC. Hence, for each t ∈ S we
can “compute” a value Rew t which is equal to 1 iff

– t represents some BSCC and
– at least one state in this BSCC satisfies p (and hence p is satisfied infinitely

often in almost all runs that hit this BSCC) and
– the average reward per service associated with this BSCC is “good” with

respect to the long-run average proposition [p, f ]≈b.

Note that the average reward per service can be computed as the ratio between
the average reward per state and the percentage of visits to states where the
service starts. Thus, we obtain the formula

∃{Rewt | t ∈ S} :
∧

t∈S

(Rewt = 0 ∨Rewt = 1)∧
(
Rewt = 1 ⇔

( ∑

r∈S

Inv t
r · Y r

p > 0
)
∧

(∑
r∈S Inv t

r · f(r)∑
r∈S Inv t

r · Y r
p

≈ b

))

Finally, the formula ψs
φ “checks” whether the “good” BSCCs are reachable with

a suitable probability:

ψs
φ ::=

( ∑

t∈S

Probt
s · Rew t

)
∼ %

Although the whole construction is technically complicated, none of the above
considered subcases leads to an exponential blowup. Hence, we can conclude
that the size of the resulting formula is polynomial in the size of our instance.
Moreover, a closer look reveals that the quantifiers are alternated only to a fixed
depth. Hence, our theorem follows by applying the result of [6]. ut
The technique used in the proof of Theorem 5 can easily be adapted to prove
the following:

Theorem 6. For every ε ∈ [0, 1], if there is an ε-robust MR-controller which is
δ-free for some δ > 0, then an ε-robust MR-controller is effectively constructible.

Proof. First, realize that the problem whether there is an ε-robust MR-controller
which is δ-free for some δ > 0 is in EXPTIME. We use the formula constructed
in the proof of Theorem 5, where the constant δ is now treated as first-order
variable, and the whole formula is prefixed by “∃δ > 0”. If the answer is positive
(i.e., there is a controller with a non-zero freedom), one can effectively find some
δ′ for which there is an ε-robust and δ′-free controller by trying smaller and
smaller δ′. As soon as we have such a δ′, there are only finitely many candidates
for a suitable MR-strategy D. Intuitively, we divide the interval [0, 1] into finitely
many pieces of length δ′, and from each such subinterval we test only one value.
This suffices because the controller we are looking for is δ′-free. More precisely,
we successively try to set each of the variable {Xs

a} to values
{

n

|Act(s)| +mδ′ where n,m ∈ Z, 0 ≤ n ≤ |Act(s)|,−
⌈

1
δ′

⌉
≤ m ≤

⌈
1
δ′

⌉}



so that 0 ≤ Xs
a ≤ 1 and

∑
a∈Act(s)X

s
a = 1 for each s ∈ S. For each choice we

check if it works (using the formula of Theorem 5 where the {Xs
a} variables are

replaced with their chosen values and δ is set to zero). One of these finitely many
options is guaranteed to work, and hence a controller is eventually found. ut
Similarly, we can also approximate the maximal ε for which there is an ε-robust
MR-controller (this maximal ε is denoted εm):

Theorem 7. For a given θ > 0, one can effectively compute a rational number
κ such that |κ− εm| ≤ θ.

Since our algorithm for computing an ε-robust MR-controller works only if there
is at least one such controller with a non-zero freedom, it makes sense to ask what
is the maximal ε for which there is an ε-robust MR-controller with a non-zero
freedom. Let us denote this maximal ε by ε′m.

Theorem 8. For a given θ > 0, one can effectively compute a rational number
κ such that |κ− ε′m| ≤ θ.
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