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Abstract. We introduce a generic family of behavioral relations for which the
problem of comparing an arbitrary transition system to some finite-state speci-
fication can be reduced to a model checking problem against simple modal for-
mulae. As an application, we derive decidability of several regular equivalence
problems for well-known families of infinite-state systems.

1 Introduction

Verification of infinite-state models of systems is a very active field of research,
see [9, 8, 5, 19, 31] for surveys of some subfields. In this area, researchers consider a
large variety of models suited to different kinds of applications, and three main kinds of
verification problems: (1) specific properties like reachability or termination, (2) model
checking of temporal formulae, and (3) semantic equivalences or preorders between
two systems. With most models, termination and reachability are investigated first. Pos-
itive results lead to investigations of more general temporal model checking problems.
Regarding equivalence problems, positive decidability results exist mainly for strong
bisimilarity (some milestones in the study include [3, 13, 12, 14, 11, 30]). For other
behavioral equivalences, results are usually negative.

Regular equivalence problem. Recently, the problem of comparing some infinite-state
process g with a finite-state specification f has been identified as an important sub-
case3 of the general equivalence checking problem [19]. Indeed, in equivalence-based
verification, one usually compares a “real-life” system with an abstract behavioral spec-
ification. Faithful models of real-life systems often require features like counters, sub-
process creation, or unbounded buffers, that make the model infinite-state. On the other
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3 We refer to this subcase as “the regular equivalence problem” in the rest of this paper. For
example, if we say that “regular weak bisimilarity is decidable for PA processes”, we mean
that weak bisimilarity is decidable between PA processes and finite-state ones.



hand, the behavioral specification is usually abstract, hence naturally finite-state. More-
over, infinite-state systems are often abstracted to finite-state systems even before ap-
plying further analytical methods. This approach naturally subsumes the question if the
constructed abstraction is correct (i.e., equivalent to the original system). It quickly ap-
peared that regular equivalence problems are computationally easier than comparing
two infinite-state processes, and a wealth of positive results exist [19].

The literature offers two generic techniques for deciding regular equivalences. First,
Abdulla et al. show how to check regular simulation on well-structured processes [2].
Their algorithm is generic because a large collection of infinite-state models are well-
structured [10].

The second approach is even more general: one expresses equivalence with f via a
formula ϕf of some modal logic L. ϕf is called a characteristic formula for f wrt. the
given equivalence. This reduces regular equivalence problems to more familiar model
checking problems. It entails decidability of regular equivalences for all systems where
model checking with the logic L is decidable. It is easy to give characteristic formulae
wrt. bisimulation-like equivalences if one uses the modal µ-calculus [32, 26]. Browne
et al. constructed characteristic formulae wrt. bisimilarity and branching-bisimilarity in
the logic CTL [7]. Unfortunately, CTL (or µ-calculus) model checking is undecidable
on many process classes like PA, Petri nets, lossy channel systems, etc. Later, it has been
shown that characteristic formulae wrt. strong and weak bisimilarity can be constructed
even in the L(EXα,EF,EFτ ) fragment of CTL [15]. This logic is sufficiently simple
and its associated model-checking problem is decidable in many classes of infinite-state
systems (including PA, lossy channel systems, and pushdown automata) [24].

Our contribution. We introduce full regular equivalences, a variant of regular equiv-
alences, and develop a generic approach to the reduction of full regular equivalences
to model checking (essentially) the EF fragment of modal logic4. Compared to regular
equivalences, full regular equivalence has the additional requirement that the state-space
of the infinite system must be included in the state-space of the finite system up to the
given equivalence. We argue that full regular equivalence is as natural as regular equiv-
alence in most practical situations (additionally the two variants turn out to coincide in
many cases). Moreover, an important outcome of our results is that full regular equiv-
alence is “more decidable” than regular equivalence for trace-like and simulation-like
equivalences. For example, regular trace equivalence is undecidable for BPA (and hence
also for pushdown and PA processes), while full regular trace equivalence is decidable
for these models. Similar examples can be given for simulation-like equivalences. See
Section 2 and Section 6 for further comments.

We offer two main reductions. One applies to a large parameterized family of equiv-
alences defined via a transfer property (we call them MTB equivalences). The other
applies to a large parameterized family of equivalences based on sets of enriched traces
(we call them PQ equivalences). Together they cover virtually all process equivalences
used in verification [33]. For all of these, full regular equivalence with some f is reduced
to EF model-checking, hence shown decidable for a large family of infinite-state mod-

4 In fact we provide reductions to L(EXα,EF,EFτ ) and to L(EUα,EF), two different frag-
ments of modal logic that have incomparable expressive power.



els. More precisely, the constructions output a characteristic formula for f wrt. a given
equivalence, which expresses the property of “being fully equivalent to f”. In particular,
this works for bisimulation-like equivalences (weak, delay, early, branching), and thus
we also obtain a refinement of the result presented in [7] which says that a characteristic
formula wrt. branching bisimilarity is constructible in CTL. The main “message” of this
part is that full regular equivalence is decidable for many more semantic equivalences
and classes of infinite-state models than regular equivalence. In this paper we do not
aim to develop specific methods for particular models and equivalences. (Such methods
can be more efficient than our generic (model-independent) algorithm—for example, it
has recently been shown in [20] that full regular equivalence with PDA processes can
be decided by a PDA-specific algorithm which needs only polynomial time for some
MTB equivalences and some subclasses of PDA processes.)

Another contribution of this paper is a model-checking algorithm for the logic
L(EXα,EF,EFτ ,EUα) and lossy channel systems. This allows one to apply the
previous abstract results also to processes of lossy channel systems (for other mod-
els like, e.g., pushdown automata, PA processes, or PAD processes, the decidability of
model-checking problem with the logic EF is already known).

Due to space constraints, we had to omit all proofs. These can be found in a full
version of this paper [21].

2 (Full) Regular Equivalence

We start by recalling basic definitions. Let Act = {a, b, c, . . . } be a countably infinite
set of actions, and let τ 6∈ Act be a distinguished silent action. For A ⊆ Act , Aτ

denotes the set A ∪ {τ}. We use α, β, . . . to range over Actτ . A transition system is
a triple T = (S,−→,A) where S is a set of states, A ⊂ Actτ is a finite alphabet, and
−→ ⊆ S × A × S is a transition relation. We write s α−→ t instead of (s, α, t) ∈ −→,
and we extend this notation to elements of A∗ in the standard way. We say that a state
t is reachable from a state s, written s −→∗ t, if there is w ∈ A∗ such that s w−→ t.
Further, for every α ∈ Actτ we define the relation α⇒ ⊆ S × S as follows: s τ⇒ t
iff there is a sequence of the form s = p0

τ−→ · · · τ−→ pk = t where k ≥ 0; s a⇒ t
where a 6= τ iff there are p, q such that s τ⇒ p

a−→ q
τ⇒ t. From now on, a process

is formally understood as a state of (some) transition system. Intuitively, transitions
from a given process s model possible computational steps, and the silent action τ
is used to mark those steps which are internal (i.e., not externally observable). Since
we sometimes consider processes without explicitly defining their associated transition
systems, we also use A(s) to denote the alphabet of (the underlying transition system
of) the process s. A process s is τ -free if τ 6∈ A(s).

Let ∼ be an arbitrary process equivalence, g a (general) process, F a finite-state
system, and f a process of F .

Definition 1 (Full Regular Equivalence). We say g is fully equivalent to f (in F) iff:

– g ∼ f (g is equivalent to f ), and
– for all g −→∗ g′, there is some f ′ in F s.t. g′ ∼ f ′ (every process reachable from g

has an equivalent in F).



Observe that the equivalent f ′ does not have to be reachable from f .
In verification settings, requiring that some process g is fully equivalent to a finite-

state specification F puts some additional constraints on g: its whole state-space must
be accounted for in a finite way. To get some intuition why this is meaningful, consider,
e.g., the finite-state system with three states f, f ′, f ′′ and transitions f a−→ f , f ′ a−→ f ′′.
Suppose that all transitions of a given infinite-state system g are labeled by a. Then
regular trace equivalence to f means that g can do infinitely many a’s (assuming that g
is finitely branching), while full regular trace equivalence to f means that g can do in-
finitely many a’s and whenever it decides to terminate, it can reach a terminated state in
at most one transition. This property cannot be encoded as regular bisimulation equiv-
alence or regular simulation equivalence by any finite-state system. Let us also note
that when ∼ is an equivalence of the bisimulation family, then regular equivalence is
automatically “full”.

3 MTB Preorder and Equivalence

In this paper, we aim to prove general results about equivalence-checking between
infinite-state and finite-state processes. To achieve that, we consider an abstract notion
of process preorder and process equivalence which will be introduced next.

A transfer is one of the three operators on binary relations defined as follows:
sim(R) = R, bisim(R) = R ∩ R−1, contrasim(R) = R−1. A mode is a subset
of {η, d} (the η and d are just two different symbols). A basis is an equivalence over
processes satisfying the following property: whenever (s, u) ∈ B and s τ⇒ t

τ⇒ u, then
also (s, t) ∈ B.

Definition 2. Let S be a binary relation over processes and M a mode. A move s α⇒ t
is tightly S-consistent with M if either α = τ and s = t, or there is a sequence
s = s0

τ−→ · · · τ−→ sk
α−→ t0

τ−→ · · · τ−→ t` = t, where k, ` ≥ 0, such that the following
holds: (1) if η ∈ M , then (si, sj) ∈ S for all 0 ≤ i, j ≤ k; (2) if d ∈ M , then
(ti, tj) ∈ S for all 0 ≤ i, j ≤ `.

The loose S-consistency of s α⇒ t with M is defined in the same way, but the
conditions (1), (2) are weakened—we only require that (s0, sk), (sk, s0) ∈ S , and
(t0, t`), (t`, t0) ∈ S .

Definition 3. Let T be a transfer, M a mode, and B a basis. A binary relation R over
processes is a tight (or loose) MTB-relation if it satisfies the following:

– R ⊆ B
– whenever (p, q) ∈ R, then for every tightly (or loosely, resp.) R-consistent move
p

α⇒ p′ there is a tightly (or loosely, resp.) R-consistent move q α⇒ q′ such that
(p′, q′) ∈ T (R).

We write s v t (or s 4 t, resp.), if there is a tight (or loose, resp.) MTB-relation R
such that (s, t) ∈ R. We say that s, t are tightly (or loosely, resp.) MTB-equivalent,
written s ∼ t (or s ≈ t, resp.), if s v t and t v s (or s 4 t and t 4 s, resp.).



It is standard that such a definition entails that v and 4 are preorders, and ∼ and ≈ are
equivalences over the class of all processes. The relationship betweenv and 4 relations
is clarified in the next lemma (this is where we need the defining property of a base).

Lemma 4. We have that v = 4 (and hence also ∼ = ≈).

Before presenting further technical results, let us briefly discuss and justify the no-
tion of MTB equivalence. The class of all MTB equivalences can be partitioned into
the subclasses of simulation-like, bisimulation-like, and contrasimulation-like equiva-
lences according to the chosen transfer. Additional conditions which must be satisfied
by equivalent processes can be specified by an appropriately defined base. For example,
we can put B to be true, ready, or terminate where

– (s, t) ∈ true for all s and t;
– (s, t) ∈ ready iff {a ∈ Actτ | ∃s′ : s a⇒ s′} = {a ∈ Actτ | ∃t′ : t a⇒ t′};
– (s, t) ∈ terminate iff s and t are either both terminating, or both non-terminating (a

process p is terminating iff p α⇒ p′ implies α = τ and p cannot perform an infinite
sequence of τ -transitions).

The mode specifies the level of ‘control’ over the states that are passed through by α⇒
transitions. In particular, by putting T = bisim , B = true , and choosing M to be
∅, {η}, {d}, or {η, d}, one obtains weak bisimilarity [25], η-bisimilarity [4], delay-
bisimilarity, and branching bisimilarity [34], respectively.5 “Reasonable” refinements
of these bisimulation equivalences can be obtained by redefining B to something like
terminate—sometimes there is a need to distinguish between, e.g., terminated processes
and processes which enter an infinite internal loop. If we put T = sim , B = true, and
M = ∅, we obtain weak simulation equivalence; and by redefining B to ready we yield
a variant of ready simulation equivalence. The equivalence where T = contrasim ,
B = true, and M = ∅ is known as contrasimulation (see, e.g., [35]).6

The definition of MTB equivalence allows to combine all of the three parameters
arbitrarily, and our results are valid for all such combinations (later we adopt some
natural effectiveness assumptions about B, but this will be the only restriction).

Definition 5. For every k ∈ N0, the binary relations vk, ∼k, 4k, and ≈k are defined
as follows: s v0 t iff (s, t) ∈ B; s vk+1 t iff (s, t) ∈ B and for every tightly vk-
consistent move s α⇒ s′ there is some tightly vk-consistent move t α⇒ t′ such that
(s′, t′) ∈ T (vk).

5 Our definition of MTB equivalence does not directly match the definitions of η-, delay-, and
branching bisimilarity that one finds in the literature. However, it is easy to show that one
indeed yields exactly these equivalences.

6 Contrasimulation can also be seen as a generalization of coupled simulation [27, 28], which
was defined only for the subclass of divergence-free processes (where it coincides with con-
trasimulation). It is worth to note that contrasimulation coincides with strong bisimilarity on
the subclass of τ -free processes (to see this, realize that one has to consider the moves s τ⇒ s
even if s is τ -free). This is (intuitively) the reason why contrasimulation has some nice prop-
erties also in the presence of silent moves.



The 4k relations are defined in the same way, but we require only loose 4k-
consistency of moves in the inductive step. Finally, we put s ∼k t iff s vk t and t vk s,
and similarly s ≈k t iff s 4k t and t 4k s.

A trivial observation is that 4k ⊇ 4k+1 ⊇ 4, vk ⊇ vk+1 ⊇ v, ∼k ⊇ ∼k+1 ⊇ ∼,
and ≈k ⊇ ≈k+1 ⊇ ≈ for each k ∈ N0. In general, vk 6= 4k; however, if we restrict
ourselves to processes of some fixed finite-state system, we can prove the following:

Lemma 6. Let F = (F,−→,A) be a finite-state system with n states. Then vn2−1 =
vn2 = v = 4 = 4n2−1 = 4n2 , where all of the relations are considered as
being restricted to F × F .

Theorem 7. Let F = (F,−→,A) be a finite-state system with n states, f a process of
F , and g some (arbitrary) process. Then the following three conditions are equivalent.

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g ∼n2 f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼n2 f ′.
(c) g ≈n2 f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ≈n2 f ′.

3.1 Encoding MTB Equivalence into Modal Logic

In this section we show that the conditions (b) and (c) of Theorem 7 can be expressed in
modal logic. Let us consider a class of modal formulae defined by the following abstract
syntax equation (where α ranges over Actτ ):

ϕ ::= tt | ϕ1 ∧ ϕ2 | ¬ϕ | EXα ϕ | EFϕ | EFτ ϕ | ϕ1 EUα ϕ2

The semantics (over processes) is defined inductively as follows:

– s |= tt for every process s.
– s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.
– s |= ¬ϕ iff s 6|= ϕ.
– s |= EXα ϕ iff there is s α−→ s′ such that s′ |= ϕ.
– s |= EFϕ iff there is s −→∗ s′ such that s′ |= ϕ.
– s |= EFτ ϕ iff there is s τ⇒ s′ such that s′ |= ϕ.
– s |= ϕ1 EUα ϕ2 iff either α = τ and s |= ϕ2, or there is a sequence s = s0

τ−→
· · · τ−→ sm

α−→ s′, where m ≥ 0, such that si |= ϕ1 for all 0 ≤ i ≤ m and s′ |= ϕ2.

The dual operator to EF is AG, defined by AGϕ ≡ ¬EF¬ϕ.
Let M1, . . . ,Mk range over {EXα,EF,EFτ ,EUα}. The (syntax of the) logic

L(M1, . . . ,Mk) consists of all modal formulae built over the modalities M1, . . . ,Mk.
Let ∼ be an MTB equivalence. Our aim is to show that for every finite f there

are formulae ϕf of L(EF,EUα) and ψf of L(EXα,EF,EFτ ) such that for every
process g where A(g) ⊆ A we have that g |= ϕf (or g |= ψf ) iff the processes
g and f satisfy the condition (b) (or (c), resp.) of Theorem 7. Clearly such formulae
cannot always exist without some additional assumptions about the base B. Actually,
all we need is to assume that the equivalence B with processes of a given finite-state
system F = (F,−→,A) is definable in the aforementioned logics. More precisely, for



each f ∈ F there should be formulae Ξt
f and Ξ`

f of the logics L(EF,EUα) and
L(EXα,EF,EFτ ), respectively, such that for every process g where A(g) ⊆ A we
have that (g, f) ∈ B iff g |= Ξt

f iff g |= Ξ`
f . Since we are also interested in complex-

ity issues, we further assume that the formulae Ξt
f and Ξ`

f are efficiently computable
from F . An immediate consequence of this assumption is that B over F × F is effi-
ciently computable. This is because the model-checking problem with L(EF,EUα)
and L(EXα,EF,EFτ ) is decidable in polynomial time over finite-state systems. To
simplify the presentation of our complexity results, we adopt the following definition:

Definition 8. We say that a base B is well-defined if there is a polynomial P (in two
variables) such that for every finite-state system F = (F,−→,A) the set {Ξt

f , Ξ
`
f |

f ∈ F} can be computed, and the relation B ∩ (F × F ) can be decided, in time
O(P(|F |, |A|)).
Remark 9. Note that a well-defined B is not necessarily decidable over process classes
which contain infinite-state processes—for example, the ready base introduced in the
previous section is well-defined but it is not decidable for, e.g., CCS processes. In fact,
the Ξt

f formulae are only required for the construction of ϕf , and the Ξ`
f formulae are

required only for the construction of ψf . (This is why we provide two different formulae
for each f .) Note that there are bases for which we can construct only one of theΞt

f and
Ξ`

f families, which means that for some MTB equivalences we can construct only one
of the ϕf and ψf formulae. A concrete example is the terminate base of the previous
section, which is definable in L(EXα,EF,EFτ ) but not in L(EF,EUα). ut

For the rest of this section, we fix some MTB-equivalence ∼ where B is well-
defined, and a finite-state system F = (F,−→,A) with n states.

Let 〈α, ϕη, ϕd〉t and 〈α,ϕη, ϕd〉` be unary modal operators whose semantics is
defined as follows:

– s |= 〈α, ϕη, ϕd〉tϕ iff either α = τ and s |= ϕ, or there is a sequence of the form
s = p0

τ−→ · · · pk
α−→ q0

τ−→ · · · τ−→ qm, where k,m ≥ 0, such that pi |= ϕη for all
0 ≤ i ≤ k, qj |= ϕd for all 0 ≤ j ≤ m, and qm |= ϕ.

– s |= 〈α, ϕη, ϕd〉`ϕ iff either α = τ and s |= ϕ, or there is a sequence of the form
s = p0

τ−→ · · · pk
α−→ q0

τ−→ · · · τ−→ qm, where k,m ≥ 0, such that p0 |= ϕη ,
pk |= ϕη , q0 |= ϕd, qm |= ϕd, and qm |= ϕ.

We also define [α, ϕη, ϕd]tϕ as an abbreviation for ¬〈α, ϕη, ϕd〉t¬ϕ, and similarly
[α,ϕη, ϕd]`ϕ is used to abbreviate ¬〈α, ϕη, ϕd〉`¬ϕ.

Lemma 10. The 〈α, ϕη, ϕd〉t and 〈α,ϕη, ϕd〉` modalities are expressible in L(EUα)
and L(EXα,EFτ ), respectively:

Since the conditions (b) and (c) of Theorem 7 are encoded into L(EF,EUα)
and L(EXα,EF,EFτ ) along the same scheme, we present both constructions at
once by adopting the following notation: 〈α,ϕη, ϕd〉 stands either for 〈α,ϕη, ϕd〉t or
〈α, ϕη, ϕd〉`,Ξf denotes eitherΞt

f orΞ`
f , $k denotes either∼k or≈k, and 6k denotes

eithervk or 4k, respectively. Moreover, we write s
α,k−→ t to denote that there is either a

tightlyvk-consistent move s α⇒ t, or a loosely 4k-consistent move s α⇒ t, respectively.



Definition 11. For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k, and Θf,k

inductively as follows:

– Φf,0 = Ψf,0 = Ξf

– Θf,k = Φf,k ∧ Ψf,k

– Φf,k+1 = Ξf ∧ (AG
W

f ′∈F Θf ′,k) ∧ (
V

f
α,k−→f ′

(
W

f1,f2∈F 〈α, ϕf1,k, ψf2,k〉ξf ′,k))

– Ψf,k+1 = Ξf ∧ (AG
W

f ′∈F Θf ′,k) ∧ V
α∈Aτ ,f1,f2∈F ([α,ϕf1,k, ψf2,k](

W
f

α,k−→f ′
%f ′,k))

where

– if η ∈M , then ϕf1,k = Θf1,k, otherwise ϕf1,k = tt;
– if d ∈M , then ψf2,k = Θf2,k, otherwise ψf2,k = tt;
– if T = sim , then ξf ′,k = Φf ′,k and %f ′,k = Ψf ′,k;
– if T = bisim , then ξf ′,k = %f ′,k = Θf ′,k;
– if T = contrasim , then ξf ′,k = Ψf ′,k and %f ′,k = Φf ′,k.

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The meaning of the constructed formulae is explained in the next theorem. Intuitively,
what we would like to have is that for every process g where A(g) ⊆ A it holds that
g |= Φf,k iff f 6k g, and g |= Ψf,k iff g 6k f . However, this is (provably) not
achievable—the 6k preorder with a given finite-state process is not directly expressible
in the logics L(EF,EUα) and L(EXα,EF,EFτ ). The main trick (and subtlety) of
the presented inductive construction is that the formulae Φf,k and Ψf,k actually express
stronger conditions.

Theorem 12. Let g be an (arbitrary) process such that A(g) ⊆ A. Then for all f ∈ F
and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f 60 g; further, g |= Φf,k+1 iff f 6k+1 g and for each g −→∗ g′ there
is f ′ ∈ F such that g′ $k f

′.
(b) g |= Ψf,0 iff g 60 f ; further, g |= Ψf,k+1 iff g 6k+1 f and for each g −→∗ g′ there

is f ′ ∈ F such that g′ $k f
′.

(c) g |= Θf,0 iff g $0 f ; further, g |= Θf,k+1 iff f $k+1 g and for each g −→∗ g′ there
is f ′ ∈ F such that g′ $k f

′.

In general, the 6k-consistency of moves g α⇒ g′ can be expressed in a given logic only
if one can express the $k equivalence with g and g′. Since g and g′ can be infinite-state
processes, this is generally impossible. This difficulty was overcome in Theorem 12 by
using the assumption that g and g′ are $k equivalent to some f1 and f2 of F . Thus,
we only needed to encode the $k equivalence with f1 and f2 which is (in a way)
achieved by the Θf1,k and Θf2,k formulae. An immediate consequence of Theorem 7
and Theorem 12 is the following:

Corollary 13. Let g be an (arbitrary) process such that A(g) ⊆ A, and let f ∈ F .
Then the following two conditions are equivalent:

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g |= Θf,n2 ∧AG(

∨
f ′∈F Θf ′,n2).



Since the formula Θf,n2 ∧AG(
∨

f ′∈F Θf ′,n2) is effectively constructible, the problem
(a) of the previous corollary is effectively reducible to the problem (b). A natural ques-
tion is what is the complexity of the reduction from (a) to (b). At first glance, it seems
to be exponential because the size of Θf ′,n2 is exponential in the size of F . However,
the number of distinct subformulae in Θf ′,n2 is only polynomial. This means that if we
represent the formula Θf,n2 ∧ AG(

∨
f ′∈F Θf ′,n2) by a circuit7, then the size of this

circuit is only polynomial in the size of F . This is important because the complexity of
many model-checking algorithms actually depends on the size of the circuit represent-
ing a given formula rather than on the size of the formula itself. The size of the circuit
for Θf,n2 ∧AG(

∨
f ′∈F Θf ′,n2) is estimated in our next lemma.

Lemma 14. The formula Θf,n2 ∧AG(
∨

f ′∈F Θf ′,n2) can be represented by a circuit
constructible in O(n6 · |A|+ P(n, |A|)) time.

4 PQ Preorder and Equivalence

Let M,N be sets of processes. We write M α⇒ N iff for every t ∈ N there is some
s ∈ M such that s α⇒ t. In the next definition we introduce another parametrized
equivalence which is an abstract template for trace-like equivalences.

Definition 15. Let P be a preorder over the class of all processes and let Q ∈ {∀, ∃}.
For every i ∈ N0 we inductively define the relation vi as follows:

– s v0 M for every process s and every set of processes M such that
• if Q = ∀, then (s, t) ∈ P for every t ∈M ;
• if Q = ∃, then (s, t) ∈ P for some t ∈M ;

– s vi+1 M if s vi M and for every s α⇒ t there is M α⇒ N such that t vi N .

Slightly abusing notation, we write s vi t instead of s vi {t}. Further, we define the
PQ preorder, denoted “v”, by s v M iff s vi M for every i ∈ N0. Processes s, t are
PQ equivalent, written s ∼ t, iff s v t and t v s.

For every process s, let I(s) = {a ∈ Act | s a⇒ t for some t} (note that τ 6∈ I(s)).
Now consider the preorders T,D, F,R, S defined as follows:

– (s, t) ∈ T for all s, t (true).
– (s, t) ∈ D iff both I(s) and I(t) are either empty or non-empty (deadlock equiva-

lence).
– (s, t) ∈ F iff I(s) ⊇ I(t) (failure preorder).
– (s, t) ∈ R iff I(s) = I(t) (ready equivalence).
– (s, t) ∈ S iff s and t are trace equivalent (that is, iff {w ∈ Act∗ | ∃s w⇒ s′} =
{w ∈ Act∗ | ∃t w⇒ t′}.

Now one can readily check that TQ, D∃, F∃, F∀, R∃, R∀, and S∃ equivalence is
in fact trace, completed trace, failure, failure trace, readiness, ready trace, and possible
futures equivalence, respectively. Other trace-like equivalences can be defined similarly.

7 A circuit (or a DAG) representing a formula ϕ is basically the syntax tree for ϕ where the
nodes representing the same subformula are identified.



Lemma 16. Let F = (F,−→,A) be a finite-state system with n states. Thenvn2n−1 =
vn2n = v, where all of the relations are considered as being restricted to F × 2F .

Lemma 17. For all i ∈ N0, processes s, t, and sets of processes M,N we have that

(a) if s vi t and t vi M , then also s vi M ;
(b) if s vi M and for every u ∈ M there is some v ∈ N such that u vi v, then also

s vi N .

Theorem 18. Let F = (F,−→,A) be a finite-state system with n states, f a process of
F , and g some (arbitrary) process. Then the following two conditions are equivalent.

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g ∼n2n f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼n2n f ′.

Now we show how to encode the condition (b) of Theorem 18 into modal logic. To
simplify our notation, we introduce the 〈〈α〉〉 operator defined as follows: 〈〈α〉〉ϕ stands
either for EFτ ϕ (if α = τ ), or EFτ EXα EFτ ϕ (if α 6= τ ). Moreover, [[α]]ϕ ≡
¬〈〈α〉〉¬ϕ. Similarly as in the case of MTB equivalence, we need some effectiveness
assumptions about the preorder P , which are given in our next definition.

Definition 19. We say that P is well-defined if for every finite-state system F = (F,−→
,A) and every f ∈ F the following conditions are satisfied:

– There are effectively definable formulae Ξf , Γf of the logic L(〈〈α〉〉,EF) such that
for every process g where A(g) ⊆ A we have that g |= Ξf iff (f, g) ∈ P , and
g |= Γf iff (g, f) ∈ P .

– There is a polynomial P (in two variables) such that for every finite-state system
F = (F,−→,A) the set {Ξf , Γf | f ∈ F} can be computed, and the relation
P ∩ (F × F ) can be decided, in time O(2P(|F |,|A|)).

Note that the T , D, F , and R preorders are clearly well-defined. However, the S pre-
order is (provably) not well-defined. Nevertheless, our results do apply to possible-
futures equivalence, as we shall see in Remark 24.

Lemma 20. If P is well-defined, then the relation vi over F × 2F can be computed in
time which is exponential in n and polynomial in i.

4.1 Encoding PQ Preorder into Modal Logic

Definition 21. For all i ∈ N0, f ∈ F , and M ⊆ F we define the sets

– F(f,vi) = {M ⊆ F | f vi M}
– F(vi,M) = {f ∈ F | f vi M}.

For all f ∈ F and k ∈ N0 we define the formulae Φf,k, Ψf,k, and Θf,k inductively as
follows:

– Φf,0 = Ξf , Ψf,0 = Γf

– Θf,k = Φf,k ∧ Ψf,k



– Φf,k+1 = Ξf ∧ (AG
W

f ′∈F Θf ′,k) ∧ (
V

f
α⇒f ′(

W
M∈F(f ′,vk)(

V
f ′′∈M 〈〈α〉〉Θf ′′,k)))

– Ψf,k+1 = Γf ∧ (AG
W

f ′∈F Θf ′,k) ∧ V
α∈Aτ

[[α]](
W

f
α⇒M

W
f ′∈F(vk,M)Θf ′,k)

The empty conjunction is equivalent to tt, and the empty disjunction to ff.

The F(. . .) sets are effectively constructible in time exponential in n and polynomial
in i (Lemma 20), hence the Φf,k, . . . , formulae are effectively constructible too.

Theorem 22. Let g be an (arbitrary) process such that A(g) ⊆ A. Then for all f ∈ F
and k ∈ N0 we have the following:

(a) g |= Φf,0 iff f v0 g; further, g |= Φf,k+1 iff f vk+1 g and for each g −→∗ g′ there
is f ′ ∈ F such that g′ ∼k f

′.
(b) g |= Ψf,0 iff g v0 f ; further, g |= Ψf,k+1 iff g vk+1 f and for each g −→∗ g′ there

is f ′ ∈ F such that g′ ∼k f
′.

(c) g |= Θf,0 iff g $0 f ; further, g |= Θf,k+1 iff f ∼k+1 g and for each g −→∗ g′ there
is f ′ ∈ F such that g′ ∼k f

′.

Corollary 23. Let g be an (arbitrary) process such that A(g) ⊆ A, and let f ∈ F .
Then the following two conditions are equivalent:

(a) g ∼ f and for every g −→∗ g′ there is some f ′ ∈ F such that g′ ∼ f ′.
(b) g |= Θf,n2n ∧AG(

∨
f ′∈F Θf ′,n2n).

Note that the size of the circuit representing the formulaΘf,n2n ∧AG(
∨

f ′∈F Θf ′,n2n)
is exponential in n and can be constructed in exponential time.

Remark 24. As we already mentioned, the S preorder is not well-defined, because trace
equivalence with a given finite-state process f is not expressible in modal logic (even
monadic second order logic is (provably) not sufficiently powerful to express that a
process can perform every trace over a given finite alphabet). Nevertheless, in our
context it suffices to express the condition of full trace equivalence with f , which is
achievable. So, full possible-futures equivalence with f is expressed by the formula
Θf,n2n ∧AG(

∨
f ′∈F Θf ′,n2n) where for every f ′ ∈ F we define Ξf ′ and Γf ′ to be the

formula which expresses full trace equivalence with f ′. This “trick” can be used also
for other trace-like equivalences where the associated P is not well-defined.

5 Model checking lossy channel systems

In this section we show that the model checking of L(EXα,EF,EFτ ,EUα) formulae
is decidable for lossy channel systems (LCS’s). This result was inspired by [6] and can
be seen as a natural extension of known results.

We refer to [1, 29] for motivations and definitions on LCS’s. Here we only need to
know that a configuration σ of a LCS C is a pair 〈q, w〉 of a control state q from some
finite set Q and a finite word w ∈ Σ∗ describing the current contents of the channel
(for simplicity we assume a single channel). Here Σ = {a, b, . . .} is a finite alphabet
of messages. The behavior of C is given by a transition system TC where steps σ −→ σ′



describe how the configuration can evolve. In the rest of this section, we assume a fixed
LCS C.

Saying that the system is lossy means that messages can be lost while they are in the
channel. This is formally captured by introducing an ordering between configurations:
we write 〈q1, w1〉 ≤ 〈q2, w2〉 when q1 = q2 and w1 is a subword of w2 (i.e. one can
obtain w1 by erasing some letters in w2, possibly all letters, possibly none). Higman’s
lemma states that ≤ is a well-quasi-ordering (a wqo), i.e. it is well-founded and any set
of incomparable configurations is finite.

Losing messages in a configuration σ yields some σ′ with σ′ ≤ σ. The crucial fact
we shall use is that steps of LCS’s are closed under losses:

Lemma 25 (see [1, 29]). If σ −→ σ′ is a step of TC , then for all configurations θ ≥ σ
and θ′ ≤ σ′, θ −→ θ′ is a step of TC too.

We are interested in sets of configurations denoted by some simple expressions. For
a configuration σ we let ↑σ denote the upward-closure of σ, i.e. the set {θ | σ ≤ θ}. A
restricted set is denoted by an expression % of the form ↑σ−↑θ1− · · · − ↑θn (for some
configurations θ1, . . . , θn). This denotes an upward-closure minus some restrictions (the
↑θi’s).

An expression % is trivial if it denotes the empty set. Clearly ↑σ − ↑θ1 − · · · − ↑θn

is trivial iff θi ≤ σ for some i. A constrained set is a finite union of restricted sets,
denoted by an expression γ of the form %1 ∨ · · · ∨ %m. Such an expression is reduced if
no %i is trivial. For a set S of configurations, Pre(S) = {σ | ∃θ ∈ S, σ −→ θ} is the set
of (immediate) predecessors of configurations in S.

Lemma 26. Constrained sets are closed under intersection, complementation, and
Pre. Furthermore, from reduced expressions γ, γ1 and γ2, one can compute reduced
expressions for γ1 ∧ γ2, ¬γ, and Pre(γ).

We can now compute the set of configurations that satisfy an EU formula:

Lemma 27. Let S1 and S2 be two constrained sets. Then the set S of configurations
that satisfy S1 EU S2 is constrained too. Furthermore, from reduced expressions for
S1 and S2, one can compute a reduced expression for S.

By combining Lemma 26 and Lemma 27, we obtain the result we were aiming at:

Corollary 28. Let ϕ be a modal formula in L(EX, EU). The set of configurations that
satisfy ϕ is a constrained set, and one can compute a reduced expression for this set.

Theorem 29. The model checking problem for L(EXα,EF,EFτ ,EUα) formulae is
decidable for lossy channel systems.

6 Applications

A Note on Semantic Quotients. Let T = (S,−→,A) be a transition system, g ∈ S, and
∼ a process equivalence. Let Reach(g) = {s ∈ S | g −→∗ s}. The ∼-quotient of g is



the process [g] of the transition system (Reach(g)/∼,−→,A) where [s] α−→ [t] iff there
are s′, t′ ∈ Reach(g) such that s ∼ s′, t ∼ t′, and s′ α−→ t′.

For most (if not all) of the existing process equivalences we have that s ∼ [s] for ev-
ery process s (see [17, 18]). In general, the class of temporal properties preserved under
∼-quotients is larger than the class of ∼-invariant properties [18]. Hence, ∼-quotients
are rather robust descriptions of the original systems. Some questions related to for-
mal verification can be answered by examining the properties of ∼-quotients, which
is particularly advantageous if the ∼-quotient is finite (so far, mainly the bisimilarity-
quotients have been used for this purpose). This raises two natural problems:

(a) Given a process g and an equivalence ∼, is the ∼-quotient of g finite?
(b) Given a process g, an equivalence∼, and a finite-state process f , is f the∼-quotient

of g?

The question (a) is known as the strong regularity problem (see, e.g., [16] where it is
shown that strong regularity wrt. simulation equivalence is decidable for one-counter
nets). For bisimulation-like equivalences, the question (a) coincides with the standard
regularity problem.

Using the results of previous sections, the problem (b) is reducible to the model-
checking problem with the logic L(EXα,EF,EFτ ). Let F = (F,−→,A) be a finite
state system and ∼ an MTB or PQ equivalence. Further, let us assume that the states of
F are pairwise non-equivalent (this can be effectively checked). Consider the formula

%f ≡ ξf ∧
^

f ′∈F

EF ξf ′ ∧
^

f ′
α−→f ′′

(inF )

EF (ξf ′ ∧EXα ξf ′′) ∧
^

f ′ 6 α−→f ′′
(inF )

AG (ξf ′ ⇒ AXα ¬ξf ′′)

where ξf is the formula expressing full ∼-equivalence with f . It is easy to see that for
every process g s.t. A(g) ⊆ A(f) we have that g |= %f iff f is the ∼-quotient of g.

Observe that if the problem (b) above is decidable for a given class of processes,
then the problem (a) is semidecidable for this class. So, for all those models where
model-checking with the logic L(EXα,EF,EFτ ) is decidable we have that the posi-
tive subcase of the strong regularity problem is semidecidable due to rather generic rea-
sons, while establishing the semidecidability of the negative subcase is a model-specific
part of the problem.

Results for concrete process classes. All of the so far presented results are applicable
to those process classes where model-checking the relevant fragment of modal logic is
decidable. In particular, model-checking L(EXα,EF,EFτ ) is decidable for

– pushdown processes. In fact, this problem is PSPACE-complete [36]. Moreover,
the complexity of the model-checking algorithm depends on the size of the circuit
which represents a given formula (rather than on the size of the formula itself) [37];

– PA (and in fact also PAD) processes [24, 22]. The best known complexity upper
bound for this problem in non-elementary.

– lossy channel systems (see Section 5). Here the model-checking problem is of non-
primitive recursive complexity.



From this we immediately obtain that the problem of full MTB-equivalence, where B
is well-defined, is

– decidable in polynomial space for pushdown processes. For many concrete MTB-
equivalences, this bound is optimal (for example, all bisimulation-like equivalences
between pushdown processes and finite-state processes are PSPACE-hard [23]);

– decidable for PA and PAD processes;
– decidable for lossy channel systems. For most concrete MTB-equivalences, the

problem is of nonprimitive recursive complexity (this can be easily derived using
the results of [29]).

Similar results hold for PQ-equivalences where P is well-defined (for pushdown pro-
cesses we obtain EXPSPACE upper complexity bound). Finally, the remarks about the
problems (a),(b) of the previous paragraph also apply to the mentioned process classes.
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