
A Logical Viewpoint on Process-Algebraic Quotients

Antońın Kučera∗

Faculty of Informatics

Masaryk University

Botanická 68a, 60200 Brno

Czech Republic

tony@fi.muni.cz

Javier Esparza†

Institut for Informatics

Technical University Munich

Arcisstr. 21, D-80290 Munich

Germany

esparza@in.tum.de

Abstract

We study the following problem: Given a transition system T and its quotient T/∼ under

an equivalence ∼, which are the sets L, L′ of Hennessy-Milner formulae such that: if ϕ ∈ L

and T satisfies ϕ, then T/∼ satisfies ϕ; if ϕ ∈ L
′ and T/∼ satisfies ϕ, then T satisfies ϕ.

1 Introduction

One of the main problems of automatic formal verification is that processes typically
have a very large or even infinite state space. Formally, processes are understood as
(being associated with) states in transition systems, a general and widely accepted
model of systems with dynamics. Let Act = {a, b, c, . . .} be a countably infinite set
of atomic actions (which is fixed for the rest of this paper).

Definition 1 A transition system (T.S.) is a triple T = (S,A,→) where S is a set
of states (or processes), A ⊆ Act a finite set of actions, and → ⊆ S × A × S is a
transition relation. We say that T is image-finite iff for all s ∈ S, a ∈ A the set
{t | s

a
→ t} is finite.

In the rest of this paper we only consider image-finite transition systems. The reason
is that the majority of studied process formalisms (like process algebras, Petri nets,
pushdown automata, etc.) only define processes of image-finite transition systems.
Moreover, common process equivalences admit a modal characterization in Hennessy-
Milner logic (see below) only on the restricted class of image-finite processes (i.e.,
processes of image-finite transition systems).

As usual, we write s
a
→ t instead of (s, a, t) ∈→ and we extend this notation to

elements of A∗ in the standard way. A state t is reachable from a state s iff s
w
→ t for

some w ∈ A∗.
∗On leave at the Institute for Informatics, Technical University Munich. Supported by the

Alexander von Humboldt Foundation and by the Grant Agency of the Czech Republic, grant No.
201/03/1161.

†Partially supported by the Teilprojekt A3 of the Sonderforschungsbereich 342.

1



A natural idea how to decrease computational costs of formal verification is to
replace a given ‘large’ process s with some smaller process t so that the original
questions about s can be answered by examining the properties of t (we say that t is
a description of s). In this paper we consider two classes of descriptions, introduced
in the following definition:

Definition 2 Let ∼ be a process equivalence (i.e., an equivalence over the class of
all processes). Let s be a process of a transition system T = (S,A,→).

• A process t is a ∼-representation of s iff s ∼ t.

• The ∼-quotient of a process s is the process [s] of T/∼ = (S/∼,A, 7→) where
S/∼ is the set of all ∼-classes of S (the class containing s is denoted by [s]) and

[s]
a
7→ [t] iff there are s′ ∈ [s] and t′ ∈ [t] such that s′

a
→ t′.

In fact, ∼-quotients are interesting only for those process equivalences which are
preserved under quotients, i.e., such that s ∼ [s] for every process s. It has been
shown in [12] that all process equivalences of the linear/branching time spectrum
of [16] have this property. A generic sufficient condition for ∼ being preserved under
quotients is given in Lemma 13.

It is intuitively clear that if we take process equivalences ∼ and ≈ such that
∼ ⊆ ≈, then ∼-representations and ∼-quotients are larger but more “faithful” than
≈-representations and ≈-quotients, respectively. Moreover, we should also expect
∼-quotients to be more “faithful” than ∼-representations, at least for those process
equivalences which are preserved under quotients. The reason is that the state-spaces
of s and [s] are the same up to ∼, while the states reachable from s and its ∼-
representation t can be completely “unrelated” by ∼ in general.

Definition 3 Let P be a property of processes and ∼ a process equivalence. We say
that P is

• preserved by ∼-representations (or ∼-quotients) iff whenever t is a ∼-representation
(or the ∼-quotient) of s and s satisfies P , then t satisfies P ;

• reflected by ∼-representations (or ∼-quotients) iff whenever t is a ∼-representation
(or the ∼-quotient) of s and t satisfies P , then s satisfies P .

An immediate consequence of the previous definition is the following:

Lemma 4 Let ∼ a process equivalence. A property P is preserved by ∼-representations
(or ∼-quotients) iff ¬P is reflected by ∼-representations (or ∼-quotients).

In this paper we restrict ourselves to properties expressible in Hennessy-Milner (HM)
logic. Formulae of HM logic have the following syntax (a ranges over Act):

ϕ ::= tt | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ

The denotation [[ϕ]] of a formula ϕ on a transition system T = (S,A,→) is defined
as follows:

[[tt]] = S

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

[[¬ϕ]] = S − [[ϕ]]

[[〈a〉ϕ]] = {s ∈ S | ∃t ∈ S : s
a
→ t ∧ t ∈ [[ϕ]]}

2



Instead of s ∈ [[ϕ]] we usually write s |= ϕ. The other boolean connectives are
introduced in a standard way; we also define ff ≡ ¬tt and [a]ϕ ≡ ¬〈a〉¬ϕ.

We say that a formula ϕ distinguishes between processes s and t iff either s |= ϕ
and t 6|= ϕ, or s 6|= ϕ and t |= ϕ.

The question considered in this paper is what properties expressible in HM logic
are preserved and reflected by ∼-representations and ∼-quotients for a given process
equivalence ∼. Although the exact answer depends on the choice of ∼, it is possible
to provide a generic solution by employing the notion of modal characterization. A
modal characterization of ∼ is a set H of HM formulae such that for all processes s and
t we have that s ∼ t iff s and t satisfy exactly the same subset of H. Our main results
(Theorem 1 and Theorem 2) classify all HM formulae which are preserved/reflected
by ∼-representations and ∼-quotients. The classification is generic and depends only
on a suitable modal characterization H of ∼. Here, the word “suitable” means that H
must satisfy some specific closure properties. As we shall see, these conditions cannot
be dropped because our theorems would be no longer valid; but they are “harmless”
in the sense that many “reasonable” process equivalences have appropriate modal
characterizations.

The paper is organized as follows. In Section 2.1, as a warm-up, we determine the
set of HM formulae preserved/reflected by ∼-representations. In Section 2.2, the core
of the paper, we determine the sets of formulae which are preserved/reflected by ∼-
quotients. The obtained results are applied to the equivalences of the liner/branching
time spectrum of [16] in Section 3. Finally, Section 4 contains conclusions and com-
ments on related and future work.

2 The classification

In this section we give a complete classification of HM properties which are pre-
served/reflected by ∼-representations and ∼-quotients for certain classes of process
equivalences which satisfy some (abstractly formulated) conditions. From the very
beginning, we restrict ourselves to those equivalences which have a modal characteri-

zation.

Definition 5 Let ∼ be a process equivalence. A modal characterization of ∼ is a set
H of HM formulae such that for all processes s, t we have that s ∼ t iff s and t satisfy
exactly the same formulae of H.

Observe that the same equivalence can have many different modal characterizations.
Now we introduce some notions which will be frequently used in the subsequent

sections.
Let ϕ be a HM formula. The (finite) set of all actions which are used in ϕ is

denoted by A(ϕ), and the nesting depth of 〈a〉 operators in ϕ is denoted depth(ϕ).
(Note that depth(ϕ) can be defined inductively by depth(tt) = 0, depth(ϕ ∧ ψ) =
max{depth(ϕ), depth(ψ)}, depth(¬ϕ) = depth(ϕ), and depth(〈a〉ϕ) = 1 + depth(ϕ).)

Definition 6 Let A ⊆ Act be a finite set of actions. A Tree over A is any directed
binary tree with root r whose edges are labelled by elements of A satisfying the
following condition: if p, q are a-successors of a node s, where a ∈ A, then the
subtrees rooted by p, q are not isomorphic.

3



Tree-processes are associated with roots of Trees (we do not distinguish between Trees
and Tree-processes in the rest of this paper). Note that for every k ∈ N0 and every
finite A ⊆ Act there are only finitely many Trees over A whose depth is at most k (up
to isomorphism). We denote this finite set of representatives by Tree(A)k. Finally,
for every node t of a Tree T , the subTree of T rooted by t is denoted T (t).

It is a standard result that for every process s there is a Tree T (possibly of infinite
depth) such that s and T satisfy exactly the same HM formulae (cf. [14]). One can
also easily prove the following:

Lemma 7 HM formulae ϕ, ψ are equivalent iff they agree on every element of Tree(A)k

where A = A(ϕ) ∪ A(ψ) and k = max{depth(ϕ), depth(ψ)}.

Sometimes we also use the following notation (where s is a process):

• HA := {ϕ | ϕ ∈ H ∧A(ϕ) ⊆ A},

• Hk
A := {ϕ | ϕ ∈ HA ∧ depth(ϕ) ≤ k},

• H(s) := {ϕ | ϕ ∈ H ∧ s |= ϕ},

• HA(s) := {ϕ | ϕ ∈ HA ∧ s |= ϕ}.

Note that if A is finite, then Hk
A contains only finitely many pairwise nonequivalent

formulae. In that case we can thus consider Hk
A to be a finite set. Note that the ‘H(s)’

and ‘HA(s)’ notation as applicable also to Trees. For example, H(T (t)) denotes the
set of all HM formulae ϕ such that the subTree of T rooted by t satisfies ϕ.

2.1 HM properties preserved by ∼-representations

If H is a modal characterization of a process equivalence ∼, then every formula ϕ which
is (equivalent to) a boolean combination of formulae from H is obviously preserved by
∼-representations. For this observation we do not need any additional assumptions
about H or ∼. Now we would like to prove a kind of ‘completeness’ result saying no
other HM properties are preserved by all ∼-representations. However, this does not

hold in general, as it is demonstrated in the following counterexample:

Example 8 For every process s we define the set

Ready(s) = {a ∈ Act | s
a
→ t for some t}.

Now let a ∈ Act be an (arbitrary but fixed) action, and let us define the equivalence
∼a as follows: s ∼a t iff a ∈ Ready(s) ∩ Ready(t), or Ready(s) = Ready(t). The
equivalence ∼a has a modal characterization

Ha = {〈a〉tt ∨ 〈b〉tt | b ∈ Act , a 6= b}

Now observe that the formula 〈a〉tt is preserved by ∼a-representations, but it is not
equivalent to any boolean combination of formulae from Ha.

4



If H is a modal characterization of ∼ and s, t are non-equivalent processes over A,
one intuitively expects that s and t are distinguished by some ϕ ∈ H such that
A(ϕ) ⊆ A. Example 8 shows that it is not necessarily the case—the only formulae
of Ha which distinguish between (non-equivalent) processes s and t with transitions

s
a
→ s′, s

b
→ s′′, t

b
→ t′ are the formulae of the form 〈a〉tt ∨ 〈c〉tt where c 6= b. In

general, if processes p and q over A are distinguished by some formula ϕ ∈ H, then
they are also distinguished by the formula ϕ′ which is obtained from ϕ by substituting
every subformula 〈x〉ψ, where x 6∈ A, with ff. Note that A(ϕ′) ⊆ A. The problem
is that ϕ′ does not have to appear in H in general (as we have seen in Example 8).
This motivates the following definition:

Definition 9 A modal characterization H of a process equivalence ∼ is well-formed

iff whenever ϕ ∈ H and 〈a〉ψ is an occurrence of a subformula in ϕ, then also ϕ′ ∈ H
where ϕ′ is obtained from ϕ by substituting the occurrence of 〈a〉ψ with ff.

As we shall see in Section 3, all ‘real’ process equivalences which have a modal charac-
terization also have a well-formed modal characterization. The same actually applies
to the equivalence ∼a introduced in Example 8:

Example 10 The equivalence ∼a of Example 8 has a well-formed modal characteri-
zation H = {〈a〉tt} ∪ {¬〈a〉tt ∧ 〈b〉tt | b ∈ Act}.

For process equivalences with well-formed modal characterizations we can already
establish the aforementioned completeness result. We start with an auxiliary lemma.

Lemma 11 Let ∼ be a process equivalence with a well-formed modal characterization
H. Let A be a finite subset of Act , and let k ∈ N0. For all T, T ′ ∈ Tree(A)k we have
that T ∼ T ′ iff T and T ′ satisfy exactly the same formulae of Hk

A.

Proof The ‘⇒’ direction is obvious. Now if suffices to realize that if T and T ′

are distinguished by some ϕ ∈ H, then they are also distinguished by the formula
ϕ′ ∈ Hk

A which is obtained form ϕ by substituting every occurrence of a subformula
〈a〉ψ, which is within the scope of k other 〈b〉-modalities or where a 6∈ A, with ff.
The formulae ϕ and ϕ′ agree on all Trees of Tree(A)k, because the occurrences of
subformulae in ϕ which have been substituted by ff during the construction of ϕ′ are
evaluated to false anyway.

Theorem 1 Let ∼ be a process equivalence and let H be a well-formed modal char-
acterization of ∼. A formula ϕ of HM logic is preserved by ∼-representations iff ϕ is
equivalent to a boolean combination of formulae from H.

Proof For the ‘⇐=’ direction, we show that if ϕ1, ϕ2 are preserved by ∼-representations,
then ϕ1 ∧ ϕ2 and ¬ϕ1 are also preserved. The ϕ1 ∧ ϕ2 subcase follows immediatelly.
Now suppose that ¬ϕ1 is not preserved, i.e., there are processes s, t such that s ∼ t,
s |= ¬ϕ1, and t 6|= ¬ϕ1. This means that t |= ϕ1 and since s can be seen as a
∼-representation of t, we obtain that ϕ1 is not preserved, which is a contradiction.

Now we prove the ‘=⇒’ direction. Let ϕ be a formula preserved by ∼-representations,
k = depth(ϕ), and A = A(ϕ). For every T ∈ Tree(A)k we construct the formula

ψT ≡
∧

{̺ | ̺ ∈ Hk
A(T )} ∧

∧
{¬̺ | ̺ ∈ Hk

A r Hk
A(T )}

5



Now let
ψ ≡

∨
{ψT | T ∈ Tree(A)k, T |= ϕ}

We prove that ϕ and ψ are equivalent. To do that, it suffices to show that ϕ and ψ
agree on every T1 ∈ Tree(A)k (see Lemma 7).

• Let T1 ∈ Tree(A)k such that T1 |= ϕ. As T1 |= ψT1
, we also have T1 |= ψ.

• Let T1 ∈ Tree(A)k such that T1 |= ψ. Then there is T2 ∈ Tree(A)k such that
T2 |= ϕ and T1 |= ψT2

. As T1 |= ψT2
, the Trees T1, T2 satisfy exactly the same

formulae of Hk
A. Hence, T1 ∼ T2 due to Lemma 11. As ϕ is preserved by

∼-representations, T1 is a ∼-representation of T2, and T2 |= ϕ, we also have
T1 |= ϕ.

Theorem 1 gives a complete classification of those HM properties which are preserved
and reflected (see Lemma 4) by ∼-representations for a process equivalence ∼ which
has a well-formed modal characterization H.

2.2 HM properties preserved by ∼-quotients

Now we establish analogous results for ∼-quotients. As we shall see, this problem is
more complicated.

The first difficulty was indicated already in Section 1—it does not have much
sense to consider ∼-quotients if we are not guaranteed that s ∼ [s] for every pro-
cess s. Unfortunately, there are process equivalences (even with a well-formed modal
characterization) which do not satisfy this basic requirement.

Example 12 Let ∼2 be defined as follows: s ∼2 t iff for each w ∈ Act∗ such that
length(w) = 2 we have that s

w
→ s′ for some s′ iff t

w
→ t′ for some t′. The equivalence

∼2 has a well-formed modal characterization

H = {〈a〉〈b〉tt | a, b ∈ Act}

Now let s be a process where s
a
→ t, s

b
→ u, u

c
→ v, and t, u, v do not have any other

transitions. Then t ∼2 u ∼2 v, hence [s]
ac
→ [v], and therefore s 6∼2 [s].

However, there is a simple (and reasonable) condition which guarantees that a given
∼ is preserved under ∼-quotients. The next lemma can be seen as an instance of
a well-known result of modal logic, stating that a model and its quotient through a
filtration agree on every formula of the filtration [3]. We include a proof for the sake
of completeness.

Lemma 13 Let ∼ be a process equivalence having a modal characterization H which
is closed under subformulae (i.e., whenever ϕ ∈ H and ψ is a subformula of ϕ, then
ψ ∈ H). Then s ∼ [s] for every process s.

Proof Let H be a modal characterization of ∼ closed under subformulae. We prove
that for every ϕ ∈ H and every process s we have s |= ϕ ⇐⇒ [s] |= ϕ (i.e., s ∼ [s]).
By induction on the structure of ϕ.

• ϕ ≡ tt. Immediate.

6



• ϕ ≡ ¬ψ. Then ψ ∈ H and s |= ψ ⇐⇒ [s] |= ψ by induction hypotheses. Hence
also s |= ¬ψ ⇐⇒ [s] |= ¬ψ as required.

• ϕ ≡ ψ ∧ ξ. Then ψ, ξ ∈ H. If ψ ∧ ξ distinguishes between s and [s], then ψ or ξ
distinguishes between the two processes as well; we obtain a contradiction with
induction hypotheses.

• ϕ ≡ 〈a〉ψ.

– (⇒) Let s |= 〈a〉ψ. Then there is some t such that s
a
→ t and t |= ψ.

Therefore, [s]
a
7→ [t] and as ψ ∈ H, we can use induction hypothesis to

conclude [t] |= ψ. Hence, [s] |= 〈a〉ψ.

– (⇐) Let [s] |= 〈a〉ψ. Then [s]
a
7→ [t] for some [t] such that [t] |= ϕ. By Def-

inition 2, there are s′, t′ such that s ∼ s′, t ∼ t′, and s′
a
→ t′. As [t] = [t′],

we have [t′] |= ψ and hence t′ |= ψ by induction hypothesis. Therefore,
s′ |= 〈a〉ψ. As s ∼ s′ and 〈a〉ψ ∈ H, we also have s |= 〈a〉ψ as needed
(remember that formulae of H cannot distinguish between equivalent pro-
cesses by Definition 5).

Observe that the modal characterization of Example 12 is not closed under suformulae.
According to our intuition presented in Section 1, ∼-quotients should be more ro-

bust then ∼-representations, i.e., they should preserve more properties. The following
definition gives a ‘syntactical template’ which allows to construct such properties.

Definition 14 Let S be a set of HM formulae. The set of diamond formulae over S,
denoted D(S), is defined by the following abstract syntax equation:

ϕ ::= ϑ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ

Here a ranges over Act , and ϑ ranges over boolean combinations of formulae from S.
The set B(S) of box formulae over S is defined in the same way, but we use the [a]
modality instead of 〈a〉.

Definition 15 A modal characterization H of a process equivalence ∼ is good if it
satisfies the following conditions:

• if ϕ ∈ H, then also 〈a〉ϕ ∈ H for all a ∈ Act ;

• if ϕ ∈ H and 〈a〉ψ is an occurrence of a subformula in ϕ, then also ϕ′, ϕ′′ ∈ H
where ϕ′ and ϕ′′ are obtained from ϕ by substituting the given occurrence of
〈a〉ψ with tt and ff, respectively.

• if ϕ ∈ H and ψ is a subformula of ϕ, then ψ ∈ H. Moreover, if ψ is within the
scope of a negation in ϕ, then also ¬ψ ∈ H.

• if ¬ψ1, · · · ,¬ψn ∈ H, then also ¬ψ1 ∧ · · · ∧ ¬ψn ∈ H.

Note that a good modal characterization is also well-formed and closed under subfor-
mulae.

Before presenting our main result (Theorem 2), we formulate and prove two aux-
iliary lemmas.

7



Lemma 16 Let ∼ be a process equivalence with a good modal characterization H.
Let s, t be processes such that for every a ∈ Act we have

⋃
s

a
→s′

H(s′) =
⋃

t
a
→t′

H(t′).
Then s ∼ t.

Proof We show that for every ϕ ∈ H we have s |= ϕ iff t |= ϕ. By induction on the
structure of ϕ.

• ϕ ≡ tt. Immediate.

• ϕ ≡ ψ ∧ ξ or ϕ ≡ ¬ψ. Then ψ, ξ ∈ H and thus the result follows immediatelly
by applying induction hypothesis.

• ϕ ≡ 〈a〉ψ. Suppose, e.g., s |= 〈a〉ψ and t 6|= 〈a〉ψ. Then ψ ∈ H, ψ ∈
⋃

s
a
→s′

H(s′),
and ψ 6∈

⋃
t

a
→t′

H(t′), which is a contradiction.

Lemma 17 Let ∼ be a process equivalence with a good modal characterization H.
If there are processes s, t and a ∈ Act such that

• s ∼ t, and

• there is s
a
→ s′ such that for every t

a
→ t′ we have that s′ 6∼ t′,

then there are processes p, q such that H(p) ⊂ H(q).

Proof Let {t1, · · · , tn} be the set of all a-successors of t. Due to Lemma 16 we have
that H(s′) ⊆

⋃
1≤i≤n H(ti). Now there are two possibilities:

• H(s′) =
⋃

1≤i≤n H(ti). Since s′ 6∼ ti for every 1 ≤ i ≤ n, there must be some
1 ≤ j ≤ n such that H(tj) ⊂ H(s′) are we are done.

• H(s′) ⊂
⋃

1≤i≤n H(ti). First we show that there is some tj , 1 ≤ j ≤ n, such
that whenever ¬ψ ∈ H(s′), then ¬ψ ∈ H(tj). Suppose it is not the case, i.e.,
for each 1 ≤ i ≤ n there is a formula ¬ψi ∈ H(s′) such that ¬ψi 6∈ H(ti). Then∧

1≤i≤n ¬ψi is a formula of H (see Definition 15) which belongs to H(s′) but not
to

⋃
1≤i≤n H(ti), and we have a contradiction. So, there must be such a tj . If

H(tj) ⊆ H(s′), then also H(tj) ⊂ H(s′) because H(tj) 6= H(s′) and we are done.
Otherwise, there is ̺ ∈ H(tj) such that ̺ 6∈ H(s′). Now let p, q be processes

with transitions p
a
→ s′, q

a
→ s′, and q

a
→ tj , where a ∈ Act is some action.

We show that H(p) ⊂ H(q). Clearly 〈a〉̺ is a formula of H which distinguishes
between p and q, hence H(p) 6= H(q). It remains to prove that H(p) ⊆ H(q).
Let ϕ ∈ H. First, realize that ϕ can be viewed as a boolean combination of
formulae of the form 〈x〉ψ. Now it suffices to show that for each (occurrence of)
such a subformula 〈x〉ψ we have that

(1) if 〈x〉ψ does not appear within the scope of any negation in ϕ, then 〈x〉ψ ∈
H(p) implies 〈x〉ψ ∈ H(q);

(2) if 〈x〉ψ appears within the scope of a negation in ϕ, then 〈x〉ψ ∈ H(p) iff
〈x〉ψ ∈ H(q).

8



If both (1) and (2) hold, then clearly ϕ ∈ H(p) implies ϕ ∈ H(q) as needed. A
proof of (1) is easy—if x 6= a, then 〈x〉ψ does not belong to H(p); and if x = a,
then ψ ∈ H(s′) and hence 〈x〉ψ ∈ H(q) as needed. The “⇒” direction of (2)
is shown in the same way. It remains to demonstrate the “⇐” direction of (2).
First realize that since 〈x〉ψ appears within the scope of a negation in ϕ, we
have that ¬ψ ∈ H (see Definition 15). Now, let us suppose that 〈x〉ψ ∈ H(q).
That is, ψ ∈ H(s′) or ψ ∈ H(tj). If ψ ∈ H(s′), we are done immediatelly; and
if ψ ∈ H(tj), we can conclude that ψ ∈ H(s′) because otherwise ¬ψ would be a
formula of H(s′) witnessing that tj does not have the property specified above.

Theorem 2 Let ∼ be a process equivalence having a good modal characterization
H. A HM formula ϕ is preserved by ∼-quotients iff ϕ is equivalent to some formula
of D(H).

Proof (⇐) Let ϕ ∈ D(H). By induction on the structure of ϕ:

• ϕ ≡ ϑ. It suffices to realize that ϑ is preserved by ∼-representations (Theorem 1)
and every ∼-quotient is also a ∼-representation (Lemma 13).

• ϕ ≡ ϕ1 ∧ ϕ2 or ϕ ≡ ϕ1 ∨ ϕ2, where ϕ1, ϕ2 are preserved. Immediate.

• ϕ ≡ 〈a〉ϕ1 where ϕ1 is preserved. Let s be an arbitrary process such that

s |= 〈a〉ϕ1. Then there is s
a
→ s′ such that s′ |= ϕ1. By definition of ∼-quotient

we have [s]
a
7→ [s′]. Moreover, [s′] |= ϕ1 as ϕ1 is preserved. Hence, [s] |= 〈a〉ϕ1

as needed.

(⇒) Let k = depth(ϕ) and A = A(ϕ). For every T ∈ Tree(A)k we define the formula
ψT by induction on the depth of T :

• if the depth of T is 0, then ψT ≡ tt,

• if the depth of T is j ≥ 1, r is the root of T , and r
a1→ s1, · · · , r

an→ sn are the
outgoing arcs of r, then

ψT ≡
∧

{̺ | ̺ ∈ Hj
A(T )} ∧

∧
{¬̺ | ̺ ∈ Hj

ArHj
A(T )} ∧

∧

1≤i≤n

〈ai〉ψT (si)

where T (si) is the sub-Tree of T rooted by si.

We prove that for all T1, T2 ∈ Tree(A)k the following implication holds: If T2 |= ψT1

and T1 |= ϕ, then T2 |= ϕ. It clearly suffices for our purposes, because then one can
easily show that ϕ is equivalent to the formula

ψ ≡
∨

{ψT | T ∈ Tree(A)k, T |= ϕ}

(It suffices to check that ϕ and ψ agree on every T ∈ Tree(A)k which is straightfor-
ward.)

Assume the opposite, i.e., there are T1, T2 ∈ Tree(A)k such that T2 |= ψT1
, T1 |= ϕ,

and T2 |= ¬ϕ. We show that then ϕ is not preserved by ∼-quotients which is a
contradiction.

We start by defining a homomorphism f : T1 → T2 such that f(s1) |= ψT (s1) for
every node s1 of T1.

9



• f(r1) = r2, where r1 and r2 are the roots of T1 and T2, respectively;

• if f(s1) has been already defined (i.e., f(s1) = s2 where s2 |= ψT (s1)) and

s1
a
→ t1 is an arc in T1, then f(t1) is defined to be (one of the) t2 such that

s2
a
→ t2 and t2 |= ψT (t1). Note that there must be at least one t2 with this

property, because s2 |= 〈a〉ψT (t1) (see the definition of ψT above).

Observe that if the nodes of T2 were pairwise non-equivalent, we could finish the proof
as follows: Let T be the transition system obtained by taking the disjoint union of
T1 and T2. Since the nodes of T2 are pairwise non-equivalent and f preserves ∼,
the ∼-quotient of T is isomorphic to T2. Hence, we have the desired contradiction
because the state r1 of T (which is isomorphic to the root of T1) satisfies ϕ, but the
state [r1] of T/∼ (which is isomorphic to the root r2 of T2) does not satisfy ϕ.

Unfortunatelly, the nodes of T2 do not have to be pairwise non-equivalent. There-
fore, we first extend the tree T2 into a transition system T̂2 by adding certain states
and transitions so that all states of T̂2 (possibly except for the newly added ones) are
pairwise non-equivalent. This extension is then “propagated” to T1 via the homo-
morphism f . The newly added states and transitions do not influence the (in)validity
of ϕ, but the homomorphism f still preserves ∼. Hence, we can finish the proof by
taking T to be the disjoint union of T̂1 and T̂2 and arguing in the same way as above.

First, let us realize that there must be (some) processes p, q such that H(p) ⊂ H(q).
If it was not the case, we could employ Lemma 17 and prove by a strightforward
induction on k that for all T, T ′ ∈ Tree(A)k we have that T ∼ T ′ iff T and T ′ are
isomorphic. This would contradict our assumption that ϕ distinguishes between T1

and T2 which are equivalent (and thus isomorphic).
To extend the Tree T2 into the system T̄2, for every 0 ≤ i ≤ k we do the following:

• Let Level i be the set of all nodes of T2 with the distance i from the root (hence,
Level0 = {r2}). The set Level i is split into two disjoint subsets

– Ai = Level i ∩ ℑ(f)

– Bi = Level i rAi

where ℑ(f) is the image of f .

• Let Ai = {t1, · · · , tm}, Bi = {s1, · · · , sn}, and let a1, · · · , am, b1, · · · , bn be
fresh (i.e., previously unused) actions.

• For all 1 ≤ i ≤ m we add the transitions

– ti
ai→ q,

– ti
ak→ p for every 1 ≤ k ≤ m such that k 6= i,

– ti
bk→ q for every 1 ≤ k ≤ n.

• For all 1 ≤ j ≤ n we add the transitions

– sj
ak→ p for every 1 ≤ k ≤ m,

– sj

bj

→ q,

10



– sj
bk→ p for every 1 ≤ k ≤ n such that k 6= j.

This extension is now propagated back to T1 via the homomorphism f—to every node
s of T1 we add exactly those transitions which have been just added to f(s). Thus,

we obtain the transition system T̂1. Since we sometimes need to distinguish between
a node s of T1 (or T2) and its corresponding “twin” in T̂1 (or T̂2), from now on we
denote such a twin by ŝ.

For all 0 ≤ i ≤ k and s ∈ Bi, let w(s) ∈ Act∗ be the sequence of actions associated
to the path from the root r2 of T2 to s. We define the set Neigh(s) ⊆ Ai by

Neigh(s) = {t ∈ Ai | r2
w(s)
→ t}

Now we prove the three claims below.

i) For every node s of T2 and every state t of T̂2 we have that ŝ 6∼ t.

Let ϑ ∈ H(q) r H(p). It follows directly from the definition of T̂2 that ŝ and t
are distinguished by a formula 〈a〉ξ for a suitable action a ∈ Act . In particular,
if t is a state reachable from p or q, then we can choose a to be one of the fresh
actions which have been used to connect p and q to ŝ.

ii) For all 0 ≤ i ≤ k and s ∈ Bi we have that H(s) ⊆
⋃

t∈Neigh(s) H(t).

Suppose the converse, i.e., there are 0 ≤ i ≤ k, s ∈ Bi, and ξ ∈ H such that
ξ 6∈ H(t) for every t ∈ Neigh(s). Let w(s) = a0 · · · ai−1, and let us consider the
formula

ϑ ≡ 〈a0〉 · · · 〈ai−1〉ξ

Clearly ϑ ∈ H, T2 |= ϑ, and T1 6|= ϑ. Hence, T1 6∼ T2 and we have a contradic-
tion.

iii) For all 0 ≤ i ≤ k and s ∈ Bi we have that H(ŝ) ⊆
⋃

t∈Neigh(s) H(t̂)

Let s ∈ Bi for some 0 ≤ i ≤ k. First we show that if for every a ∈ Act we have
that

⋃

ŝ
a
→s′

H(s′) ⊆
⋃

t∈Neigh(s)

⋃

t̂
a
→t′

H(t′) (1)

then H(ŝ) ⊆
⋃

t∈Neigh(s) H(t̂). It suffices for our purposes, because from the

definitions of T̂2 and Neigh(s) we immediatelly obtain that

– (1) is satisfied for all s ∈ Bk, hence for every s ∈ Bk we have that H(ŝ) ⊆⋃
t∈Neigh(s) H(t̂);

– if for all s ∈ Bi+1 we have that H(ŝ) ⊆
⋃

t∈Neigh(s) H(t̂), then (1) is satisfied
for all nodes of Bi.

Hence, H(ŝ) ⊆
⋃

t∈Neigh(s) H(t̂) for all s ∈ Bi, 0 ≤ i ≤ k as required.

So, let ξ ∈ H(ŝ). By induction on the structure of ξ we show that if (1) holds
then ξ ∈ H(t̂) for some t ∈ Neigh(s).

11



– ξ ≡ tt or ξ ≡ ξ1 ∧ ξ2. Immediate.

– ξ ≡ 〈a〉ξ1. Then ξ1 ∈ H and hence we can use the assumption (1) to

conclude that there is t ∈ Neigh(s) such that t̂
a
→ t′ where t′ |= ξ.

– ξ ≡ ¬ξ1. This requires more care. Let 〈x〉ϑ be an occurrence of a subfor-
mula in ξ1, where x 6∈ A1, which appears within the scope of j other 〈ai〉
operators, where all ai’s are in A. For determining the validity of ξ in ŝ
and all t̂, where t ∈ Neigh(s), the only relevant information about 〈x〉ϑ is
its (in)validity in those states which are reachable from ŝ and t̂ in exactly
j transitions where the associated actions are in A (in particular, we can
ignore p, q and their possible successors). Since 〈x〉ϑ appears within the
scope of a negation in ξ, both ϑ and ¬ϑ belong to H (see Definition 15).
Therefore, ϑ and ¬ϑ cannot distinguish between the processes p and q
(otherwise, we would have a contradiction with H(p) ⊂ H(q)). From this

and the definition of T̂2 we obtain that 〈x〉ϑ is either valid or invalid in
all of the aforementioned relevant states. This means that we can safely
substitute each such subformula 〈x〉ϑ of ξ with tt or ff (depending on
how the subformula evaluates). Thus we obtain a formula ξ′ ∈ H (see Def-
inition 15) which agrees with xi on ŝ and all t̂, where t ∈ Neigh(s). Since

A(ξ′) ⊆ A, the newly added transitions and states of T̂2 cannot influence
the (in)validity of xi′. In other words, ξ′ cannot distinguish between s and
ŝ, and between t and t̂ for every t ∈ Neigh(s). Hence, ŝ |= ξ implies ŝ |= ξ′

which implies s |= ξ′. Since H(s) ⊆
⋃

t∈Neigh(s) H(t) (see above), we get

that t |= ξ′ for some t ∈ Neigh(s), hence t̂ |= ξ′ and thus also t̂ |= ξ as
required.

According to iii), the homomorphism f̂ : T̂1 → T̂2 defined by

• f̂(ŝ) = f̂(s) for every node s of T1,

• f̂(u) = u for every node u reachable from p or q,

still preserves ∼. To see this, it suffices to show that ŝ ∼ f̂(ŝ), which can be easily
done by induction of the depth of T1(s) using the claim iii) above. (In fact, we
prove that

⋃
ŝ

a
→s′

H(s′) =
⋃

f̂(ŝ)
a
→t′

H(t′) for all a ∈ Act , and then use Lemma 16

to get ŝ ∼ f̂(ŝ)). Due to the claim i), all states of T2 are pairwise non-equivalent
(possibly except for some of the successors of p and q), and hence we obtain the
desired contradiction in the way indicated above—we put T to be the disjoint union
of T̂1 and T̂2. The ∼-quotient of T is isomorphic to T̂2, the state r̂1 of T (which is

isomorphic to the root of T̂1) satisfies ϕ, but the state [r̂1] of T/∼ (which is isomorphic

to the root r̂2 of T̂2) does not satisfy ϕ. So, ϕ is not preserved under ∼-quotients and
we have a contradiction.

Theorem 2 classifies all HM properties which are preserved by ∼-quotients where
∼ has a good modal characterization H. Hence, HM properties which are reflected

by ∼-quotients are exactly the formulae equivalent to box-formulae over boolean
combinations of formulae of H (see Lemma 4).

1That is, x is one of the “new” actions which are used in T̂2 but not in T2.

12



bisimilarity

2-nested simulation equivalence

ready trace equivalence

failure equivalence

completed trace equivalence

trace equivalence

ready simulation equivalence

simulation equivalence

failure trace equivalencereadiness equivalence

possible-futures equivalence

Figure 1: The linear time/branching time spectrum of [16]

3 Applications

In concurrency theory, many process equivalences expressing different ‘levels’ of se-
mantical sameness of two processes have been designed and studied. A nice overview
and comparison of possible approaches has been presented in [16]; in this paper, ex-
isting equivalences are ordered w.r.t. their coarseness (see Figure 1) and a kind of
modal characterization is given for each of them (unfortunately, not a good one in
the sense of Definition 15).

To demonstrate practical applicability of our abstract results, we present a good
modal characterization for each equivalence of Figure 1 (except for completed trace
equivalence—see below). Formally, we should also prove that each of the given modal
characterizations is good and that it is indeed a modal characterization of the associ-
ated equivalence, but all these proofs are routine and therefore omitted.

In the subsequent paragraphs we use the following notation:

13



a
a

a

a

a

a

a a

a

a
p q r

Figure 2: An infinite-state process having a finite =t-representation and a finite
=t-quotient.

• P(M) denotes the set of all subsets of M .

• In all definitions we assume a fixed transition system T = (S,A,→). If s ∈ S,
then

I(s) = {a ∈ A | ∃t ∈ S such that s
a
→ t}

• θ ranges over the set of formulae defined by

θ ::= tt | ff | ¬〈a〉tt | θ ∧ θ

where a ∈ Act .

• λ ranges over the set of formulae defined by

λ ::= tt | ff | 〈a〉tt | λ ∧ λ

where a ∈ Act .

Trace equivalence. The set of traces of a process s, denoted Tr(s), is defined by

Tr(s) = {w ∈ A∗ | ∃t such that s
w
→ t}

We say that s, t are trace equivalent, written s =t t, iff Tr(s) = Tr(t). A good modal
characterization H for trace equivalence is given by

ϕ ::= tt | ff | 〈a〉ϕ

where a ranges over Act .

Before we continue with the other equivalences, let us have a look at a small
example which shows that (and how) our abstract results work. Consider the process
p of Fig. 2. The process q is a =t-representation of p, and the process r is the
=t-characterization of p. According to our results, the formula 〈a〉¬〈a〉tt which is
satisfied by p is not generally preserved by =t-representations, but it is preserved by
=t-characterizations. Indeed, we have q 6|= 〈a〉¬〈a〉tt, while r |= 〈a〉¬〈a〉tt.

Failure equivalence. A pair (w,Φ) ∈ A∗×P(A) is a failure pair of a process s ∈ S,

if there is a state t ∈ S such that s
w
→ t and I(s)∩Φ = ∅. Let F (s) denote the set of all

failure pairs of s. Processes s, t are failure equivalent, written s =f t, iff F (s) = F (t).

14



A good modal characterization for =f is given by the following equation (where a
ranges over Act):

ϕ ::= tt | ff | θ | 〈a〉ϕ

Readiness equivalence. A pair (w,Φ) ∈ A∗ × P(A) is a ready pair of a process

s ∈ S, if there is a state t ∈ S such that s
w
→ t and I(t) = Φ. Let R(s) denote the

set of all ready pairs of s. Processes s, t are readiness equivalent, written s =r t, iff
R(s) = R(t). A good modal characterization for =r is given by the following equation
(where a ranges over Act):

ϕ ::= tt | ff | θ ∧ λ | 〈a〉ϕ

Failure trace equivalence. The refusal relations
Φ
→ for Φ ∈ P(A) are defined by:

s
Φ
→ t iff s = t and I(s) ∩ Φ = ∅

The failure trace relations
δ
→ for δ ∈ (A ∪ P(A))∗ are defined as the reflexive and

transitive closure of both the transition and the refusal relations. δ ∈ (Act ∪ P(A))∗

is a failure trace of a process s ∈ S, if there is a state t ∈ S such that s
δ
→ t. Let

FT(s) denote the set of failure traces of s. Processes s, t are failure trace equivalent,
written s =ft t, iff FT(s) = FT(t). A good modal characterization for =ft is given by
the following equation (where a ranges over Act):

ϕ ::= tt | ff | θ | 〈a〉(θ ∧ ϕ)

Ready trace equivalence. The ready trace relations
δ
⇒ for δ ∈ (A ∪ P(A))∗ are

defined inductively by:

1. s
ǫ
⇒ s for any s ∈ S.

2. s
a
→ t implies s

a
⇒ t.

3. s
Φ
⇒ t with Φ ∈ P(A) whenever s = t and I(s) = Φ.

4. s
δ
⇒ t

ρ
⇒ u implies s

δρ
⇒ u.

δ ∈ (A∪P(A))∗ is a ready trace of a process s ∈ S if there is a state t ∈ S such that

s
δ
⇒ t. Let RT (s) denote the set of ready traces of s. Processes s, t are ready trace

equivalent, written s =rt t, iff RT(s) = RT(t). A good modal characterization for =rt

is given by the following equation (where a ranges over Act):

ϕ ::= tt | ff | θ ∧ λ | 〈a〉(θ ∧ λ ∧ ϕ)

15



Simulation equivalence. A binary relation R ⊆ S × S is a simulation if whenever
sRt then

∀a ∈ A : s
a
→ s′ ⇒ ∃t′ : t

a
→ t′ ∧ s′Rt′

A process s ∈ S is simulated by a process t ∈ S, written s ⊑s t, iff there is a simulation
R such that (s, t) ∈ R. Moreover, we say that s, t are simulation equivalent, written
s =s t, iff s ⊑s t and t ⊑s s. A good modal characterization for =s is given by the
following equation (where a ranges over Act):

ϕ ::= tt | ff | 〈a〉ϕ | ϕ ∧ ϕ

Ready simulation equivalence. A binary relation R ⊆ S×S is a ready simulation

if whenever sRt then:

• ∀a ∈ A : s
a
→ s′ ⇒ ∃t′ : t

a
→ t′ ∧ s′Rt′

• I(s) = I(t)

A process s ∈ S is ready simulated by a process t ∈ S, written s ⊑rs t, iff there is a
ready simulation R such that (s, t) ∈ R. Moreover, we say that s, t are ready simula-

tion equivalent, written s =rs t, iff s ⊑rs t and t ⊑rs s. A good modal characterization
for =rs is given by the following equation (where a ranges over Act):

ϕ ::= tt | ff | θ ∧ λ | 〈a〉(θ ∧ λ ∧ ϕ) | ϕ ∧ ϕ

Possible futures equivalence. A pair (w,Φ) ∈ A∗ × P(A∗) is a possible future of

a process s ∈ S iff there is a state t ∈ S such that s
w
→ t and Tr(t) = Φ. The set of all

possible futures of s is denoted PF(s). Processes s, t are possible-futures equivalent,
written s =pf t, iff PF(s) = PF(t). A good modal characterization for =pf is given by
the following equation (where a ranges over Act):

ϕ ::= tt | ff |
n∧

i=1

ψi ∧
m∧

i=1

¬ψi | 〈a〉ϕ

wherem,n ∈ N0, and ψ ranges over the set of formulae defined by ψ ::= tt | ff | 〈a〉ψ
(where a ranges over Act).

2-nested simulation equivalence. A binary relation R ⊆ S × S is a 2-nested

simulation if whenever sRt then

• ∀a ∈ A : s
a
→ s′ ⇒ ∃t′ : t

a
→ t′ ∧ s′Rt′

• s =s t

16



A process s ∈ S is 2-nested simulated by a process t ∈ S, written s ⊑2 t, iff there
is a 2-nested simulation R such that (s, t) ∈ R. Moreover, we say that s, t are 2-

nested simulation equivalent, written s =2 t, iff s ⊑2 t and t ⊑2 s. A good modal
characterization for =2 is given by the following equation (where a ranges over Act):

ϕ ::= tt | ff |
n∧

i=1

ψi ∧
m∧

i=1

¬ψi | 〈a〉

( n∧

i=1

ψi ∧
m∧

i=1

¬ψi ∧ ϕ

)
| ϕ ∧ ϕ

where m,n ∈ N0, and ψ ranges over the set of formulae defined by

ψ ::= tt | ff | 〈a〉ψ | ψ ∧ ψ

Bisimilarity. A binary relation R ⊆ S × S is a bisimulation if R as well as the
reverse of R are simulations. Processes s and t are bisimilar, written s ∼b t, iff there
is a bisimulation R such that (s, t) ∈ R. A good modal characterization for ∼b is the
set of all formulae of HM logic.

An interesting related problem is whether a given infinite-state state process has
for a given ∼ any finite ∼-representation, and whether its ∼-characterization is finite.
It is also known as the regularity and strong regularity problem (see also [12]). Some
decidability results for various equivalences and various classes of infinite-state pro-
cesses have already been established [2, 11, 7, 9, 13, 8], but this area still contains a
number of open problems.

The only equivalence of [16] which does not have a good modal characterization is
completed trace equivalence. The problem is that this equivalence requires a simple
infinite conjunction, or a generalized 〈·〉 modality (which can be phrased ‘after any
action’), which are not at our disposal.

4 Related and future work

In the context of process theory, modal characterizations were introduced by Hen-
nessy and Milner in their seminal paper [6]. The paper provides characterizations of
bisimulation, simulation, and trace equivalence as full, conjunction-free, and negation-
free Hennessy-Milner logic, respectively. The result stating that bisimulation equiva-
lence is also characterized by the modal µ-calculus seems to be folklore. In [16], van
Glabbeek introduces the equivalences of his hierarchy by means of sets of formulae,
in a style close to modal characterizations.

In [10], Kaivola and Valmari determine weakest equivalences preserving certain
fragments of linear time temporal logic. In [5], Goltz, Kuiper, and Penczek study the
equivalences characterized by various logics in a partial order setting.

An interesting open problem is whether it is possible to give a similar classification
for some richer (more expressive) logic. Also, we are not sufficiently acquainted with
work on modal logic outside of computer science (or before computer science was
born). Work on filtrations [3] or partial isomorphisms [4] should help us to simplify
and streamline our proofs.

17



References

[1] Proceedings of CONCUR’92, volume 630 of LNCS. Springer, 1992.

[2] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In Proceedings of CONCUR’96, volume 1119 of LNCS, pages 247–
262. Springer, 1996.

[3] B.F. Chellas. Modal Logic—An Introduction. Cambridge University Press, 1980.

[4] J. Flum. First-order logic and its extensions. In Proceedings of the Interna-

tional Summer Institute and Logic Colloquium, volume 499 of Lecture Notes in

Mathematics, pages 248–310. Springer, 1975.

[5] U. Goltz, R. Kuiper, and W. Penczek. Propositional temporal logics and equiv-
alences. In Proceedings of CONCUR’92 [1], pages 222–236.

[6] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery, 32(1):137–161, 1985.

[7] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimilarity. In
Proceedings of ICALP’96, volume 1099 of LNCS, pages 478–489. Springer, 1996.

[8] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-
counter processes. In Proceedings of STACS 2000, volume 1770 of LNCS, pages
334–345. Springer, 2000.

[9] P. Jančar and F. Moller. Checking regular properties of Petri nets. In Proceedings

of CONCUR’95, volume 962 of LNCS, pages 348–362. Springer, 1995.

[10] R. Kaivola and A. Valmari. The weakest compositional semantic equivalence
preserving nexttime-less linear temporal logic. In Proceedings of CONCUR’92

[1], pages 207–221.

[11] A. Kučera. Regularity is decidable for normed PA processes in polynomial time.
In Proceedings of FST&TCS’96, volume 1180 of LNCS, pages 111–122. Springer,
1996.

[12] A. Kučera. On finite representations of infinite-state behaviours. Information

Processing Letters, 70(1):23–30, 1999.

[13] A. Kučera and R. Mayr. Simulation preorder over simple process algebras. In-

formation and Computation, 173(2):184–198, 2002.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings

5th GI Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.

[16] R. van Glabbeek. The linear time—branching time spectrum. Handbook of

Process Algebra, pages 3–99, 1999.

18


