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Dept. of Computer Science, FEI

Technical University of Ostrava,

Czech Republic

Petr.Jancar@vsb.cz

Antonín Kučera‡
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Abstract

We consider two-player turn-based games with zero-reachability and zero-safety

objectives generated by extended vector addition systems with states. Although

the problem of deciding the winner in such games is undecidable in general, we

identify several decidable and even tractable subcases of this problem obtained by

restricting the number of counters and/or the sets of target configurations.
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1 Introduction

Vector addition systems with states (VASS) are an abstract computational model equiv-

alent to Petri nets (see, e.g., [27, 29]) which is well suited for modelling and analysis

of distributed concurrent systems. Roughly speaking, a k-dimensional VASS, where

k ≥ 1, is an automaton with a finite control and k unbounded counters which can

store non-negative integers. Depending on its current control state, a VASS can choose

and perform one of the available transitions. A given transition changes the control

state and updates the vector of current counter values by adding a fixed vector of in-

tegers which labels the transition. For simplicity, we assume that transition labels can

increase/decrease each counter at most by one. Since the counters cannot become neg-

ative, transitions which attempt to decrease a zero counter are disabled. Configurations

of a given VASS are written as pairs p~v, where p is a control state and ~v ∈ Nk a vector of

counter values.

In this paper, we consider extended VASS games which enrich the modelling power of

VASS in two orthogonal ways.

(1) Transition labels can contain symbolic components (denoted byω) whose intuitive

meaning is “add an arbitrarily large non-negative integer to a given counter”. For

example, a single transition p −→ q labeled by (1,ω) represents an infinite number

of “ordinary” transitions labeled by (1, 0), (1, 1), (1, 2), . . . A natural source of

motivation for introducing symbolic labels are systems with multiple resources

that can be consumed and produced simultaneously by performing a transition.

The ω components can then be conveniently used to model “resource reloading”

(see also the example below).

(2) To model the interaction between a system and its environment, the set of con-

trol states is split into two disjoint subsets of controllable and environmental states.

Transitions from the controllable and environmental states then correspond to the

events generated by the system and its environment, respectively.

Hence, the semantics of a given extended VASS game M is a possibly infinitely-

branching turn-based game GM with infinitely many vertices which correspond to the

configurations of M. The game GM is initiated by putting a token on some configu-

ration p~v. The token is then moved from vertex to vertex by two players, � and ♦,

who select transitions in the controllable and environmental configurations according
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to some strategies. Thus, they produce an infinite sequence of configurations called a

play. Desired properties ofM can be formalized as objectives, i.e., admissible plays. The

central problem is the question whether player � (the system) has a winning strategy

which ensures that the objective is satisfied for every strategy of player ♦ (the envi-

ronment). We refer to, e.g., [32, 13, 35] for more comprehensive expositions of results

related to games in formal verification. In this paper, we are mainly interested in zero-

safety objectives (or, dually, zero-reachability objectives), consisting of plays where no

counter is decreased to zero, i.e., a given system never reaches a situation when some of

its resources are insufficient.

As a simple example, consider a workshop which “consumes” wooden sticks,

screws, wires, etc., and produces puppets of various kinds which are then sold at the

door. From time to time, the manager may decide to issue an order for screws or other

supplies, and thus increase their number by a finite but essentially unbounded amount

(the manager certainly aims at choosing the “right” number of screws which are needed

to produce all puppets that can be sold in next few days). Controllable states can be used

to model the actions taken by workshop employees, and environmental states model the

behaviour of unpredictable customers. We wonder whether the workshop manager has

a strategy which ensures that at least one puppet of each kind is always available for

sell, regardless what the unpredictable customers do (the model can of course reflect

only selected aspects of customers’ behaviour). Note that a winning strategy for the

manager must also resolve the symbolic ω value used to model the order of screws by

specifying a concrete number of screws that should be ordered.

Technically, we consider extended VASS games with non-selective and selective zero-

reachability objectives, where the set of target configurations that should be reached by

player ♦ and avoided by player � is either Z and ZC, respectively. Here,

• the set Z consists of all p~v such that ~v` = 0 for some ` (i.e., some counter is zero);

• the set ZC, where C is a subset of control states, consists of all p~v ∈ Z such that

p ∈ C.

Our main results can be summarized as follows:

(a) The problem of deciding the winner in k-dimensional extended VASS games

(where k ≥ 2) with Z-reachability objectives is in (k-1)-EXPTIME.

(b) A finite description of the winning region for each player (i.e., the set of all vertices

where the player wins) is computable in (k−1)-exponential time.
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(c) Winning strategies for both players admit a finite and effectively computable de-

scription.

We note that the classical result by Lipton [24] easily implies EXPSPACE-hardness (even

in the case when player ♦ has no influence). These (decidability) results are comple-

mented by noting the following straightforward undecidability:

(d) The problem of deciding the winner in 2-dimensional VASS games with “ordi-

nary” (non-symbolic) transitions and ZC-reachability objectives is undecidable.

The same problem for 3-dimensional extended VASS games is highly undecidable

(beyond the arithmetical hierarchy).

Further, we consider the special case of one-dimensional extended VASS games, where

we provide the following (tight) complexity results:

(e) The problem of deciding the winner in one-dimensional extended VASS games

with Z-reachability objectives is in P. Both players have “counterless” winning

strategies constructible in polynomial time.

(f) The problem of deciding the winner in one-dimensional extended VASS games

with ZC-reachability objectives is PSPACE complete. A finite description of the

winning regions is computable in exponential time.

To the best of our knowledge, these are the first positive decidability/tractability re-

sults about a natural class of infinitely branching turn-based games, and some of the

underlying observations are perhaps of broader interest (in particular, we obtain slight

generalizations of the “classical” results about self-covering paths achieved by Rackoff

[28] and elaborated by Rosier&Yen [30]).

To build a preliminary intuition behind the technical proofs of (a)–(f) presented in

Section 3, we give a brief outline of these proofs and sketch some of the crucial insights.

A proof outline for (a)–(c). Observe that if the set of environmental states that are

controlled by player ♦ is empty, then the existence of a winning strategy for player �

in p~v is equivalent to the existence of a self-covering zero-avoiding path of the form p~v −→∗

q~u −→+ q~u ′, where ~u ≤ ~u ′ and the counters stay positive along the path. The existence

and the size of such paths has been studied in [28, 30] (actually, they mainly consider

the existence of an increasing self-covering path where ~u ′ is strictly larger than ~u in at
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least one component, and the counters can be decreased to zero in the intermediate

configurations). One can easily generalize this observation to the case when the set of

environmental states is non-empty and show that the existence of a winning strategy for

player � in p~v is equivalent to the existence of a self-covering zero-avoiding tree initiated

in p~v, which is a finite tree, rooted in p~v, describing a strategy for player � where each

maximal path (i.e., each branch) is self-covering and zero-avoiding (if player � follows

this strategy, a self-covering zero-avoiding path is necessarily produced after a finite

number of steps no matter what player ♦ does).

We show that the existence of a self-covering zero-avoiding tree initiated in a given

configuration of a given extended VASS is decidable, and we give some complexity

bounds. Let us note that this result is more subtle than it might seem; one can easily

show that the existence of a self-covering (but not necessarily zero-avoiding) tree for a

given configuration is already undecidable (see Appendix A.1 for details).

Our algorithm constructs all minimal p~v (w.r.t. component-wise ordering) where

player � has a winning strategy. Since this set is necessarily finite, and the winning

region of player � is obviously upwards-closed, we obtain a finite description of the

winning region for player �. The algorithm can be viewed as a concrete (but not obvi-

ous) instance of a general approach, which is dealt with, e.g., in [33, 10, 11]. First, we

compute all control states p such that player � can win in some configuration p~v. Here,

a crucial step is to observe that if this is not the case, i.e., player ♦ can win in every p~v,

then player ♦ has a counterless winning strategy which depends only on the current con-

trol state (since there are only finitely many counterless strategies, they can be tried out

one by one). This computation also gives an initial bound B such that for every control

state p we have that if player � wins in some p~v, then he wins in all p~v ′ where ~v ′` ≥ B
for all indexes (counters) ` ∈ {1, 2, . . . , k}. Then the algorithm proceeds inductively, ex-

plores the situations where at least one counter is less than B, computes (bigger) general

bounds for the other k−1 counters, etc.

A finite description of a strategy for player � which is winning in every configura-

tion of his winning region is obtained by specifying the moves in all minimal winning

configurations (observe that in a non-minimal winning configuration p( ~v+u) such that

p~v is minimal, player � can safely make a move p( ~v+u) −→ q( ~v ′+u) where p~v −→ q~v ′ is

the move associated to p~v). Note that this also resolves the issue with ω components

in transitions performed by player �. Since the number of minimal winning configura-

tions is finite, there is a finite and effectively computable constant c such that player �
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never needs to increase a counter by more than c when performing a transition whose

label contains a symbolic component (and we can even give a simple “recipe” which

gives an optimal choice for theω values for every configuration separately).

The winning region of player ♦ is just the complement of the winning region of

player �. Computing a finite description of a winning strategy for player ♦ is somewhat

trickier and relies on some observations made in the “inductive step” discussed above

(note that for player ♦ it is not sufficient to stay in his winning region; he also needs to

make some progress in approaching zero in some counter).

A proof outline for (d). The undecidability result for 2-dimensional VASS games is

obtained by a straightforward reduction of the halting problem for Minsky machines

with two counters initialized to zero, which is undecidable [26]. Let us note that this

construction is essentially the same as the one for monotonic games presented in [1],

and it is included mainly for the sake of completeness. After some minor modifications,

the same construction can be also used to establish the undecidability of other natu-

ral problems for VASS and extended VASS games, such as boundedness or coverabil-

ity. The high undecidability result for 3-dimensional extended VASS games is proven

by reducing the problem whether a given nondeterministic Minsky machine with two

counters initialized to zero has an infinite computation such that the initial instruction

is executed infinitely often (this problem is known to be Σ11-complete [15]). This reduc-

tion is also straightforward, but at least it demonstrates that symbolic transitions do

bring some extra power (note that for “ordinary” VASS games, a winning strategy for

player ♦ in a given p~v can be written as a finite tree, and hence the existence of such a

strategy is obviously semidecidable).

A proof outline for (e)–(f). The case of one-dimensional extended VASS games with

zero-reachability objectives is, of course, simpler than the general case, but our results

still require some effort. In the case of Z-reachability objectives, we show that the win-

ning region of player ♦ can be computed as the least fixed point of a monotonic function

over a finite lattice. Although the lattice has exponentially many elements, we show

that the function reaches the least fixed point only after a quadratic number of itera-

tions. The existence and efficient constructibility of counterless winning strategies is

immediate for player �, and we show that the same is achievable for player ♦. The re-

sults about ZC-reachability objectives are obtained by applying known results about the

emptiness problem for alternating finite automata with one letter alphabet [16] (see also
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[21]) and the emptiness problem for alternating two-way parity word automata [31],

together with some additional observations.

Related work. As already mentioned, some of our results and proof techniques use

(and generalize) the techniques from [28, 30]. VASS games can be also seen as a special

case of monotonic games considered in [1], where it is shown that the problem of decid-

ing the winner in monotonic games with reachability objectives is undecidable (see the

proof outline for (d) above). Let us note that the results presented in [1] mainly con-

cern the so-called downward-closed games, which is a model different from ours. Let us

also mention that (extended) VASS games are different from another recently studied

model of branching vector addition systems [34, 6] which has different semantics and dif-

ferent algorithmic properties (for example, the coverability and boundedness problems

for branching vector addition systems are complete for 2-EXPTIME [6]). We have also

mentioned that there are studies of generic procedures applicable to sets of states which

are upward-closed w.r.t. a suitable ordering (e.g., [3, 12, 33, 10, 11]); some insight has

been needed to show that our setting could be seen as a concrete instance, and further

insight has also brought some “algorithmic consequences”.

Note that one-dimensional VASS games are essentially one-counter automata where

the counter cannot be tested for zero explicitly (that is, there are no transitions enabled

only when the counter reaches zero). Such one-counter automata are also called one-

counter nets because they correspond to Petri nets with just one unbounded place. The

models of one-counter automata and one-counter nets have been intensively studied

[18, 20, 22, 2, 7, 9, 19, 31, 14]. Many problems about equivalence-checking and model-

checking one-counter automata are known to be decidable, but only a few of them are

solvable efficiently. From this point of view, we find the polynomial-time result about

one-dimensional extended VASS games with Z-reachability objectives encouraging.

2 Definitions

In this paper, the sets of all integers, positive integers, and non-negative integers are

denoted by Z, N>0, and N, respectively. For every finite or countably infinite set M, the

symbol M∗ denotes the set of all finite words (i.e., finite sequences) over M. The length

of a given word w is denoted by |w| or length(w), and the individual letters in w are

denoted by w(0), w(1), . . . , w(|w| − 1). The empty word is denoted by ε, where |ε| = 0.

We also useM+ to denote the setM∗ r {ε}. A path inM = (M,→), for a binary relation
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→ ⊆ M ×M, is a finite or infinite sequence w = m0,m1, . . . such that mi → mi+1 for

every i; we put length(w) = ω if w is infinite. As above, w(i) denotes the element mi

of w ; by wi we denote the (finite or infinite) path mi,mi+1, . . .. (By writing w(i) = m

or wi we implicitly assume that length(w) ≥ i+1.) A given n ∈ M is reachable from a

given m ∈M, written m →∗ n, if there is a finite path from m to n. A run is a maximal

path (infinite, or finite which cannot be prolonged). The sets of all finite paths and all

runs in M are denoted by FPath(M) and Run(M), respectively. Similarly, the sets of

all finite paths and runs that start in a given m ∈ M are denoted by FPath(M,m) and

Run(M,m), respectively.

Definition 2.1 (Game). A game is a tuple G = (V, 7→, (V�, V♦)) where V is a finite or count-

ably infinite set of vertices, 7→ ⊆ V × V is an edge relation, and (V�, V♦) is a partition of

V .

A game is played by two players, � and ♦, who select the moves in the vertices of V�

and V♦, respectively. Let � ∈ {�,♦}. A strategy for player � is a (partial) function which

to each wv ∈ V∗V� assigns a vertex v ′ such that v 7→ v ′ if there is any. The set of all

strategies for player � and player ♦ is denoted by Σ and Π, respectively. We say that

a strategy τ is memoryless if τ(wv) depends just on the last vertex v. In the rest of this

paper, we consider memoryless strategies as (partial) functions from V� to V .

A winning objective is a set of runsW ⊆ Run(G). Every pair of strategies (σ, π) ∈ Σ×Π
and every initial vertex v ∈ V determine a unique run G(σ,π)(v) ∈ Run(G, v) which is

called a play. We say that a strategy σ ∈ Σ isW-winning (for player �) in a given v ∈ V
if for every π ∈ Π we have that G(σ,π)(v) ∈ W . Similarly, a strategy π ∈ Π isW-winning

for player ♦ if for every σ ∈ Σ we have that G(σ,π)(v) ∈ W . The set of all vertices where

player � has aW-winning strategy is called the winning region of player � and denoted

by Win(�,W).

In this paper, we only consider reachability and safety objectives, which are specified

by a subset of target vertices that should or should not be reached by a run, respectively.

Formally, for a given T ⊆ V we define the sets of runsR(T) and S(T), where

• R(T) = {w ∈ Run(G) | w(i) ∈ T for some i},

• S(T) = {w ∈ Run(G) | w(i) 6∈ T for all i}.
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We note that R(T) = Run(G) r S(T), and the games with reachability and safety objec-

tives are determined, i.e., Win(�,S(T)) = V r Win(♦,R(T)); moreover, each player has a

memoryless winning strategy in every vertex of his winning region1.

Definition 2.2 (extended VASS game). Let k ∈ N>0. A k-dimensional vector addition

system with states (VASS) is a tuple M = (Q, T, α, β, δ) where Q 6= ∅ is a finite set of

control states, T 6= ∅ is a finite set of transitions, α : T → Q andβ : T → Q are the source and

target mappings, and δ : T → {−1, 0, 1}k is a transition displacement labeling. For technical

convenience, we assume that for every q ∈ Q there is some t ∈ T such that α(t) = q.

An extended VASS (eVASS for short) is a VASS where the transition displacement labeling

is a function δ : T → {−1, 0, 1,ω}k.

A VASS game (or eVASS game) is a tuple M = (Q, (Q�, Q♦), T, α, β, δ) where

(Q, T, α, β, δ) is a VASS (or eVASS) and (Q�, Q♦) is a partition of Q.

A configuration ofM is an element of Q× Nk. We write p~v instead of (p,~v), and the `-th

component of ~v is denoted by ~v`. For a given transition t ∈ T , we write t : p −→ q to

indicate that α(t) = p and β(t) = q, and p ~v−→ q to indicate that p −→ q and δ(t) = ~v. A

transition t ∈ T is enabled in a configuration p~v if α(t) = p and for every 1 ≤ ` ≤ k such

that δ(t)` = −1we have ~v` ≥ 1.
Every k-dimensional eVASS game M = (Q, (Q�, Q♦), T, α, β, δ) induces a unique

infinite-state game GM whereQ×Nk is the set of vertices partitioned intoQ� × Nk and

Q♦ × Nk, and p~v 7→ q~u iff the following condition holds:

• there is a transition t ∈ T enabled in p~v such that β(t) = q and for every 1 ≤ ` ≤ k
we have that ~u`−~v` is either non-negative or equal to δ(t)`, depending on whether

δ(t)` = ω or not, respectively.

Note that any play can get stuck only when a counter is zero, because there is at least

one enabled transition otherwise.

In this paper, we are interested in VASS and eVASS games with non-selective and

selective zero-reachability objectives. Formally, for every C ⊆ Qwe define the set

ZC = {p~v ∈ Q× Nk | p ∈ C and ~vi = 0 for some 0 ≤ i ≤ k}
1In this paper, we consider infinitely-branching games with countable state space. The determinacy

result of Martin [25] holds also for this type of games, and memoryless determinacy can be easily estab-

lished by standard methods.
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and we also put Z = ZQ. Selective (or non-selective) zero-reachability objectives are

reachability objectives where the set T of target configurations is equal to ZC for some

C ⊆ Q (or to Z, respectively).

As we have already noted, our games with reachability objectives are memoryless

determined and this result of course applies also to eVASS games with zero-reachability

objectives. However, since eVASS games have infinitely many vertices, not all memory-

less strategies are finitely representable. In this paper we will often deal with a simple

form of memoryless strategies, where the decision is independent of the current counter

values; such strategies are called counterless strategies.

Definition 2.3. Given (the game induced by) an eVASS M = (Q, (Q�, Q♦), T, α, β, δ), a

strategy τ of player � ∈ {�,♦} is counterless if it determines a (fixed) transition tp for each

p ∈ Q�, together with (fixed) values c` ∈ N for all those ` for which δ(tp)` = ω, so that τ(p~v)

is the configuration arising by performing tp whereω’s are instantiated with c`.

3 VASS and eVASS games with zero-reachability objec-

tives

In this section, we analyze VASS and eVASS games with zero-reachability objectives.

We first note the problems of our interest are undecidable forR(ZC) objectives; this can

be shown by (simple modifications of) standard techniques.

Proposition 3.1. The problem of deciding the winner in 2-dimensional VASS games with

R(ZC) objectives is undecidable. For 3-dimensional eVASS games, the same problem is highly

undecidable (i.e., beyond the arithmetical hierarchy).

Let us note that Proposition 3.1 cannot be extended to one-dimensional eVASS games,

which are analyzed later in Section 3.1. Further, by some trivial modifications of the

proof of Proposition 3.1 we also get the undecidability of the boundedness/coverability

problems for 2-dimensional VASS games (a given configuration p~v is bounded if player ♦

has a strategy such that all counters stay bounded for every strategy of player �; sim-

ilarly, a configuration q~v is coverable from an initial configuration p~v if player ♦ has a

strategy such that a configuration of the form q~v ′, where ~v ′ ≥ ~v, is reached for every

strategy of player �). The details are given in Appendix A.1.

Now we turn our attention toR(Z) objectives. For the rest of this section, we fix a k-

dimensional eVASS gameM = (Q, (Q�, Q♦), T, α, β, δ). Since we are interested only in
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R(Z) objectives, we may safely assume that every transition p ~v−→ q ofMwhere p ∈ Q♦

satisfies ~v` 6= ω for every 1 ≤ ` ≤ k (if there are some ω-components in ~v, they can be

safely replaced with 0). We also use d to denote the branching degree ofM, i.e, the least

number such that every q ∈ Q has at most d outgoing transitions.

We also use the partial order≤ on the set of configurations ofM defined by p~u ≤ q~v
iff p = q and ~u ≤ ~v (componentwise). For short, we write Win♦ instead of Win(♦,R(Z))

and Win� instead of Win(�,S(Z)). Obviously, if player ♦ has a winning strategy in q~v,

then he can use “essentially the same” strategy in q~u for every ~u ≤ ~v (behaving in q ′~v ′

as previously in q ′(~v ′+~v−~u), which results in reaching 0 in some counter possibly even

earlier). Similarly, if q~v ∈ Win� then q~u ∈ Win� for every ~u ≥ ~v. Thus, we obtain the

following:

Proposition 3.2. Win♦ is downwards closed and Win� is upwards closed w.r.t. ≤.

A direct corollary to Proposition 3.2 is that the set Win� is finitely representable by

its subset Min� of minimal elements (note that Min� is necessarily finite because there

is no infinite subset of Nk with pairwise incomparable elements, as Dickson’s Lemma

shows). Technically, it is convenient to consider also symbolic configurations ofM which

are introduced in the next definition.

Definition 3.3. A symbolic configuration is a pair q~v where q ∈ Q and ~v ∈ (N ∪ {ω})k.

We say that a given index ` ∈ {1, 2, . . . , k} is precise in q~v if ~v` ∈ N, otherwise it is symbolic

in q~v. The precision of q~v, denoted by P(q~v), is the number of indexes that are precise in q~v.

We say that a configuration p~u matches a symbolic configuration q~v if p = q and ~u` = ~v` for

every ` precise in q~v. Similarly, we say that p~u matches q~v above a given bound B ∈ N if p~u

matches q~v and ~u` ≥ B for every ` symbolic in q~v.

We extend the set Win� by all symbolic configurations q~v such that some configuration

matching q~v belongs to Win�. Similarly, the set Win♦ is extended by all symbolic con-

figurations q~v such that all configurations matching q~v belong to Win♦ (note that every

symbolic configuration belongs either to Win� or to Win♦). We also extend the previ-

ously fixed ordering on configurations to symbolic configurations by stipulating that

ω ≤ ω and n < ω for all n ∈ N. Obviously, this extension does not influence the set

Min�, and the winning region Win♦ can be now represented by its subset Max♦ of all

maximal elements, which is necessarily finite.
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Our ultimate goal is to compute the sets Min� and Max♦. Since our reachability

games are determined, it actually suffices to compute just one of these sets. In the fol-

lowing we show how to compute Min�.

We start with an important observation about winning strategies for player �, which

in fact extends the “classical” observation about self-covering paths in vector addi-

tion systems presented in [28]. Let q ∈ Q be such that q~v ∈ Win� for some ~v, i.e.,

q(ω, . . . ,ω) ∈ Win�. This means that there is a strategy of player � that prevents un-

bounded decreasing of the counters; we find useful to represent the strategy by a finite

unrestricted self-covering tree for q. The word “unrestricted” reflects the fact that we also

consider configurations with negative and symbolic counter values. More precisely, an

unrestricted self-covering tree for q is a finite tree T whose nodes are labeled by the

elements of Q × (Z ∪ {ω})k satisfying the following (ω is treated in the standard way,

i.e.,ω+ω = ω+ c = ω for every c ∈ Z).

• The root of T is labeled by q(0, . . . , 0).

• If n is a non-leaf node of T labeled by p~u, then

– if p ∈ Q�, then n has only one successor labeled by some r~t such thatM has

a transition p ~v−→ rwhere~t = ~u+ ~v;

– if p ∈ Q♦, then there is a one-to-one correspondence between the successors

of n and transitions ofM of the form p
~v−→ r. The node which corresponds to

a transition p ~v−→ r is labeled by r~twhere~t = ~u+ ~v.

• If n is a leaf of T labeled by p~u, then there is another node m (where m 6= n) on

the path from the root of T to nwhich is labeled by p~t for some~t ≤ ~u.

The next lemma bounds the depth of such a tree.

Lemma 3.4. Let q(ω, . . . ,ω) ∈ Win� (i.e., q~v ∈ Win� for some ~v). Then there is an unre-

stricted self-covering tree for q of depth at most f(|Q|, d, k) = 2(d−1)·|Q| · |Q|c·k
2 , where c is a

fixed constant independent ofM (and d is the branching degree ofM).

Lemma 3.4 thus implies that if q(ω, . . . ,ω) ∈ Win�, then q~u ∈ Win� for all ~u with

~u` ≥ f(|Q|, d, k) for all ` ∈ {1, 2, . . . , k} (recall that each counter can be decreased at most

by one in a single transition). The next lemma shows that we can compute the set of

all q ∈ Q such that q(ω, . . . ,ω) ∈ Win� (the lemma is formulated “dually”, i.e., for

player ♦).

12



Lemma 3.5. The set of all q ∈ Q such that q(ω, . . . ,ω) ∈ Win♦ is computable in space

bounded by a polynomial function g(|Q|, d, k).

An important observation, which is crucial in our proof of Lemma 3.5 and perhaps

interesting on its own, is that if q(ω, . . . ,ω) ∈ Win♦, then player ♦ has a counterless

strategy which is winning in every configuration matching q(ω, . . . ,ω). The details are

given in Appendix A.2.

To sum up, we can compute the set of all q(ω, . . . ,ω) ∈ Win� and a bound B

which is “safe” for all q(ω, . . . ,ω) ∈Win� in the sense that all configurations matching

q(ω, . . . ,ω) above B belong to Win�. Intuitively, the next step is to find out what hap-

pens if one of the counters, say the first one, stays bounded by B. Obviously, there is the

least j ≤ B such that q(j,ω, . . . ,ω) ∈Win�, and there is a boundD > B such that all con-

figurations matching q(j,ω, . . . ,ω) above D belong to Win�. If we manage to compute

the minimal j (also for the other counters, not just for the first one) and the bound D,

we can go on and try to bound two counters simultaneously by D, find the correspond-

ing minima, and construct a new “safe” bound. In this way, we eventually bound all

counters and compute the set Min�. In our next definition, we introduce some notions

that are needed to formulate the above intuition precisely. (Recall that P(q~v) gives the

number of precise, i.e. non-ω, elements of ~v.)

Definition 3.6. For a given 0 ≤ j ≤ k, let SymMinj� be the set of all minimal q~v ∈Win� such

that P(q~v) = j. Further, let SymMin� =
⋃k
i=0 SymMini�. We say that a given B ∈ N is safe

for precision j, where 0 ≤ j ≤ k, if for every q~v ∈
⋃j
i=0 SymMini� we have that ~v` ≤ B for

every precise index ` in ~v, and every configuration matching q~v above B belongs to Win�.

Obviously, every SymMinj� (and hence also SymMin�) is finite, and Min� = SymMink�.

Also observe that SymMin0� is computable in time exponential in |Q| and k by

Lemma 3.5, and a bound which is safe for precision 0 is computable in polynomial

time by Lemma 3.4. Now we design an algorithm which computes SymMinj+1� and a

bound safe for precision j+1, assuming that SymMini� for all i ≤ j and a bound safe for

precision j have already been computed. A detailed description of the algorithm and

the associated proofs can be found in Appendix A.3.

Remark 3.7. To prevent possible confusions, let us note explicitly that the set SymMinj+1� can-

not be obtained from SymMinj� simply by considering all q~v ∈ SymMinj� and replacing some

~v`, where ` is symbolic in q~v, with some concrete value. The set SymMinj+1� can be substantially
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richer. For example, if SymMinj� contains p(1,ω) and p(ω, 1), then SymMinj+1� surely con-

tains some elements obtained by replacing the ω’s with some concrete values, say p(1, 10) and

p(12, 1), but it can contain also other incomparable elements such as p(2, 9), p(3, 8), . . .

Lemma 3.8. Let 0 ≤ j < k, and let us assume that
⋃j
i=0 SymMini� has already been computed,

together with some bound B ∈ N which is safe for precision j. Then SymMinj+1� is computable

in time exponential in |Q| · Bj+1, d, and k−j−1, and the bound B + f(|Q| · Bj+1, d, k−j−1) is

safe for precision j+ 1 (here f is the function of Lemma 3.4 and d is the branching degree ofM).

Now we can easily evaluate the total complexity of computing SymMin� (and hence

also Min�). If we just examine the recurrence of Lemma 3.8, we obtain that the set

SymMin� is computable in k-exponential time. However, we can actually decrease the

height of the tower of exponentials by one when we incorporate the results presented

in Section 3.1, which imply that for one-dimensional eVASS games, the depth of an

unrestricted self-covering tree can be bounded by a polynomial in |Q| and d, and the set

of all q ∈ Q such that q(ω) ∈Win♦ is computable in polynomial time. Hence, we actually

need to “nest” Lemma 3.8 only k−1 times. Thus, relying on the results of Section 3.1,

we obtain the following (where 0-exponential time denotes polynomial time):

Theorem 3.9. (Given a k-dimensional eVASS), the set Min� is computable in (k−1)-

exponential time.

Let us note a substantial improvement in complexity would be achieved by improving

the bound presented in Lemma 3.4. Actually, it is not so important what is the depth

of an unrestricted self-covering tree, but what are the minimal numbers that allow for

applying the strategy described by this tree without reaching zero (i.e., what is the max-

imal decrease of a counter in the tree). A more detailed complexity analysis based on

the introduced parameters reveals that if the maximal counter decrease was just poly-

nomial in the number of control states (which is our conjecture), the complexity bound

of Theorem 3.9 would be polynomial for every fixed dimension k (see also Section 4).

Note that after computing the set Min�, we can easily compute a finite description

of a strategy σ for player � which is winning in every configuration of Win�. For every

p~v ∈ Min� such that p ∈ Q�, we put σ(p~v) = q~v ′, where q~v ′ is (some) configuration

such that q~v ′ ≥ q~t for some q~t ∈Min�. Note that there must be at least one such q~v ′

and it can be computed effectively. For every configuration p~u such that p~u ≥ p~v for

some p~v ∈ Min�, we put σ(p~u) = q( ~v ′+u−v) where σ(p~v) = q~v ′ (if there are more

candidates for p~v, any of them can be chosen). It is easy to see that σ is winning in every
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configuration of Win�. Also observe that if we aim at constructing a winning strategy

for player � which minimizes the concrete numbers used to substitute ω’s, we can use

Min� to construct an “optimal” choice of the values which are sufficient (and necessary)

to stay in the winning region of player �.

3.1 One-dimensional VASS and eVASS games with zero-reachability

objectives.

In this subsection, we present a complete solution for the special case of one-

dimensional VASS and eVASS games with zero-reachability objectives.

For the rest of this section, we fix a one-dimensional eVASS game M =

(Q, (Q�, Q♦), T, α, β, δ) and C ⊆ Q. For every i ∈ N, let Win♦(C, i) = {p ∈ Q |

p(i) ∈ Win(♦,R(ZC))}. It is easy to see that if Win♦(C, i) = Win♦(C, j) for some

i, j ∈ N, then also Win♦(C, i+1) = Win♦(C, j+1). Let mC be the least i ∈ N such

that Win♦(C, i) = Win♦(C, j) for some j > i, and let nC be the least i > 0 such that

Win♦(C,mC) = Win♦(C,mC+i). Obviously, mc + nc ≤ 2|Q| and for every i ≥ mc we

have that Win♦(C, i) = Win♦(C,mC+((i−mC) mod nC)). Hence, the winning regions

of both players are fully characterized by all Win♦(C, i), where 0 ≤ i < mC + nC.

The selective subcase in analyzed in the following theorem. The PSPACE lower

bound is obtained by reducing the emptiness problem for alternating finite automata

(AFA) with one letter alphabet, which is known to be PSPACE complete [16] (see also

[21] for a simpler proof). The PSPACE upper bound follows by employing the result

of [31] which says that the emptiness problem for alternating two-way parity word

automata (2PWA) is in PSPACE (we would like to thank Olivier Serre for providing

us with relevant references). The effective constructability of the winning strategies

for player � and player ♦ follows by applying the results on non-selective termination

presented below. The details are given in Appendix A.4.

Theorem 3.10. The problem whether p(i) ∈ Win(♦,R(ZC)) is PSPACE-complete. Further,

there is a strategy σwinning for player � in every configuration of Win(�,S(ZC)) such that for

all p ∈ Q� and i ≥ mC we have that σ(p(i)) = σ(p(mC+((i−mC) mod nC))). The numbers

mC, nC and the tuple of all Win♦(C, i) and σ(p(i)), where 0 ≤ i < mC+nC and p ∈ Q�, are

constructible in time exponential in |M|.
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In the non-selective subcase, the situation is even better. The winning regions for both

players are monotone, which means that mQ ≤ |Q| and nQ = 1. Further, all of the

considered problems are solvable in polynomial time.

Theorem 3.11. The problem whether p(i) ∈ Win(♦,R(Z)) is in P. Further, there are

counterless strategies σ and π such that σ is winning for player � in every configuration of

Win(�,S(Z)) and π is winning for player ♦ in every configuration of Win(♦,R(Z)). The tu-

ple of all Win♦(Q, i), σ(p), and π(q), where 0 ≤ i ≤ mC, p ∈ Q�, and q ∈ Q♦, is constructible

in time polynomial in |M|.

4 Conclusions, future work

Technically, the most involved result presented in this paper is Theorem 3.9. This decid-

ability result is not obvious, because most of the problems related to formal verification

of Petri nets (equivalence-checking, model-checking, etc.) are undecidable [8, 17, 23, 5].

Since the upper complexity bound given in Theorem 3.9 is complemented only by the

EXPSPACE lower bound, which is easily derivable from [24], there is a complexity gap

which constitutes an interesting challenge for future work. We conjecture that for a

suitable (and reasonable) choice of parameters, one might even obtain fixed parameter

tractability of the problem. So far, we have not found any arguments against the hy-

pothesis that the problem is tractable, i.e., solvable in polynomial time, even for a fixed

number of counters (note that the EXPSPACE lower bound does not hold for a fixed num-

ber of counters).
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A Proofs

In this section we give full proofs of our results together with some auxiliary observa-

tions.

A.1 A proof of Proposition 3.1

Proposition 3.1. The problem of deciding the winner in 2-dimensional VASS games with

R(ZC) objectives is undecidable. For 3-dimensional eVASS games, the same problem is highly

undecidable (beyond the arithmetical hierarchy).

Proof. The first claim is proven by reducing the halting problem for Minsky ma-

chines. A Minsky machine with two counters c1, c2 is a finite sequence of num-

bered instructions 1:ins1, · · · ,m:insm, where insm = halt, and for every 1 ≤ i <

m we have that insi is either of the form inc cj; goto k (type I instructions) or

if cj=0 then goto k else dec cj; goto n (type II instructions). Here j ∈ {1, 2}. The

problem whether a given Minsky machine with two counters initialized to 0 halts (i.e.,

executes halt in a finite computation initialized by ins1) is undecidable [26]. For a given

Minsky machine M with m instructions, we construct a 2-dimensional VASS game as

follows. For every 1 ≤ i ≤ mwe add a control state qi ∈ Q♦. Further, for every type I in-

struction `i : inc cj; goto kwe add a transition qi → qk labeled by (u1, u2), where uj = 1

and u1 + u2 = 1. For every type II instruction if cj=0 then goto k else dec cj; goto n

we add control states pi, ri ∈ Q�, and transitions

qi
(u1,u2)−−−−→ qj, qi

(0,0)−−→ pi, pi
(0,0)−−→ qk, pi

(u1,u2)−−−−→ ri, ri
(0,0)−−→ ri,

where uj = −1 and u1 + u2 = −1. Finally, we add transitions qm
(−1,0)−−−→ qm and

qm
(0,−1)−−−→ qm. Now one can easily check thatM halts iff q1(0, 0) ∈Win(♦,R(Z{qm})).

A proof of the second claim is obtained by reducing the problem whether a given

nondeterministic Minsky machine with two counters initialized to zero has an infinite

computation such that the initial instruction is executed infinitely often (this problem is

known to be Σ11-complete [15]). Formally, a nondeterministic Minsky machine with two

counters c1, c2 is a finite sequence of numbered instructions 1:ins1, · · · ,m:insm, where

each insi is of one of the following forms (where j ∈ {1, 2}):

• cj := cj+1; goto k (type I instructions);

• if cj=0 then goto k else cj := cj−1; goto n (type II instructions);
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• goto {k or n} (type III instructions).

Here the indexes k, n range over {1, · · · ,m}. Note that we may safely assume that the

first instruction is of the form 1 : c1 := c1+1; goto 2. For a given nondeterministic

Minsky machine M with m instructions, we construct a 3-dimensional eVASS game as

follows. For every 1 ≤ i ≤ m we add a control state qi ∈ Q�. Further, we add a transi-

tion q1
(1,0,ω)−−−−→ q2, and for every 2 ≤ i ≤ m we add either the transition qi

(u1,u2,−1)−−−−−−→ qk

where uj = 1 and u1 + u2 = 1, or control states pi, ri ∈ Q♦ together with transitions

qi
(u1,u2,−1)−−−−−−→ qj, qi

(0,0,−1)−−−−→ pi, pi
(0,0,−1)−−−−→ qk, pi

(u1,u2,−1)−−−−−−→ ri, ri
(0,0,−1)−−−−→ ri,

or transitions qi
(0,0,−1)−−−−→ qk, qi

(0,0,−1)−−−−→ qn, depending on whether insi is a type I, type II,

or type III instruction, respectively. Note that the third counter can be incremented by

an arbitrarily large value whenever the control state q1 is visited. Hence, if M has an

infinite computation such that ins1 is executed infinitely often, then player � can win

the game initiated in q1(0, 0, 0) by simulating this infinite computation and “guessing”

the number of steps that are needed to revisit q1. It is also easy to see that if M has no

such computation, then player ♦ can win.

Note that the 2-dimensional VASS game constructed in the proof of the first claim

has the property that M halts iff player ♦ has a strategy such that for every strategy

of player � the play initiated in q1(0, 0) reaches a configuration qm~u where ~u ≥ (0, 0).

Hence, the coverability problem for 2-dimensional VASS games is also undecidable.

Similarly, if we change the transition ri
(0,0)−−→ ri into ri

(1,1)−−→ ri, we obtain that M is

space-bounded iff player ♦ has a strategy such that for every strategy of player � the

play initiated in q1(0, 0) is bounded. This means that the boundedness problem for

2-dimensional VASS games is undecidable. Finally, let us prove the observation men-

tioned in Section 1, which says that the existence of a self-covering (but not necessarily

zero-avoiding) tree in for a given eVASS configuration is undecidable. To prevent pos-

sible confusions, let us first clarify what we mean by a self-covering tree for an eVASS

configuration.

LetM = (Q, (Q�, Q♦), T, α, β, δ) be a k-dimensional eVASS game and q~v a configu-

ration ofM. A self-covering tree for q~v is a finite tree T whose nodes are labeled by the

elements of Q× Nk satisfying the following:

• The root of T is labeled by q~v.

• If n is an inner node of T labeled by p~u, then
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– if p ∈ Q�, then n has exactly one successor labeled by some r~t such that

p~u 7→ r~t;

– if p ∈ Q♦, then n has exactly one successor for every r~t such that p~u 7→ r~t,

and the label of this successor is r~t.

• If n is a leaf of T labeled by p~u, then there is another nodem (wherem 6= n) on the

path from the root of T to n such that the label p~t of m satisfies ~t < ~u (i.e., ~t ≤ ~u

and~t` < ~u` for at least one index `).

Consider again a Minsky machineMwith two counters c1, c2 initialized to zero and in-

structions 1:ins1, · · · ,m:insm. We construct a 3-dimensional eVASS game as follows. For

every 1 ≤ i ≤ m we add a control state qi ∈ Q♦. Further, we add a special control state

q0 ∈ Q� and a transition q0
(0,0,ω)−−−−→ q1. For every type I instruction `i : inc cj; goto k

we add a transition qi → qk labeled by (u1, u2,−1), where uj = 1 and u1 + u2 = 1. For

every type II instruction if cj=0 then goto k else dec cj; goto n we add control states

pi, ri ∈ Q�, and transitions

qi
(u1,u2,−1)−−−−−−→ qj, qi

(0,0,−1)−−−−→ pi, pi
(0,0,−1)−−−−→ qk, pi

(u1,u2,−1)−−−−−−→ ri, ri
(1,1,1)−−−→ ri,

where uj = −1 and u1 + u2 = −1. Finally, we add a transition qm
(1,1,1)−−−→ qm. Now it is

easy to check thatM halts iff there is a self-covering tree for q0(0, 0, 0).

A.2 A proof of Lemma 3.4 and Lemma 3.5

As in Section 3, we fix a k-dimensional eVASS gameM = (Q, (Q�, Q♦), T, α, β, δ) such

that for every transition p ~v−→ q of M where p ∈ Q♦ we have that ~v` 6= ω for every

` ∈ {1, 2, . . . , k}. Our aim is to prove the following:

Lemma 3.4. Let q(ω, . . . ,ω) ∈ Win� (i.e., q~v ∈ Win� for some ~v). Then there is an unre-

stricted self-covering tree for q of depth at most f(|Q|, d, k) = 2(d−1)·|Q| · |Q|c·k
2 , where c is a

fixed constant independent ofM (and d is the branching degree ofM).

Lemma 3.4 is proven in two stages. We start with a special case when Q♦ = ∅. Observe

that if Q♦ = ∅, then an (unrestricted) self-covering tree for q ∈ Q is just a path of the

form q~v −→∗ p~u −→+ p~u ′ where ~v = (0, . . . , 0) and ~u ≤ ~u ′ (recall that ~u, ~u ′ ∈ (Z ∪ {ω})k).

Below in Lemma A.1 we show that if there is some path of the above form, then there is

also a “short” one. The proof is based on arguments similar to the ones used by Rackoff
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in [28]. However, some extra care is needed to handle the symbolic transitions. Another

problem is that the result of [28] is in fact somewhat different, because it studies the

existence of an increasing self-covering path for VAS (without states). Therefore, we

give an explicit proof.

We then proceed to handle the general case, allowing Q♦ 6= ∅. After a few technical

propositions we show Lemma A.4, which then easily implies Lemma 3.4.

We then prove Lemma A.5, showing that player ♦ has a counterless winning strategy

in each q(ω, . . . ,ω) ∈Win♦, and finally we derive Lemma 3.5.

Lemma A.1. Assume that Q♦ = ∅ and that q ∈ Q is a control state such that q(ω, . . . ,ω) ∈
Win�. Then there is an unrestricted self-covering tree for q of depth at most h(|Q|, k) = (|Q| +

1)c·k
2 where c is a constant independent ofM.

Proof. We start by introducing some notation. Let p, r ∈ Q. A simple sequence from p to r

is a sequence of transitions t1 . . . tn such that

• α(t1) = p and β(tn) = r

• for all 1 ≤ i < nwe have β(ti) = α(ti+1)

• for all 1 ≤ i < j ≤ n, where either i > 1, or j < n, we have α(ti) 6= α(tj)

A simple cycle on p is a simple sequence from p to p. Given a sequence of transitions

T = t1 . . . tn, we denote by e(T) the effect of T given by
∑n
i=1 δ(ti).

Let q~v −→∗ p~u −→+ p~u ′ be an unrestricted self-covering tree (a path, in fact) for q,

where ~u ≤ ~u ′. Obviously, we can safely assume that the sequence of transitions which

induces the path q~v −→∗ p~u is simple (otherwise, we make it simple by repeatedly re-

moving all simple cycles). Let T = t1 . . . tn be the sequence of transitions which induces

the path p~u −→+ p~u ′, and let q1, . . . , qm be all control states which occur in transitions of

T , ordered so that for i < j we have that the first occurrence of qi precedes the first oc-

currence of qj in T . For every 1 ≤ i < m, we denote by Ti the subsequence tjtj+1 . . . t` of

T where j and ` are the least indexes such that α(tj) = qi and β(t`) = qi+1, respectively.

We also use Tm to denote the (unique) suffix of T such that T = T1 . . . Tm−1Tm.

Now we show that each Ti can be “decomposed” into a simple sequence from qi

to qi+1 and a number of simple cycles. Then, we reduce the number of simple cycles

needed to obtain an unrestricted self-covering tree for q using similar arguments as

in [28].
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We start by successively removing simple cycles from Ti (and “remembering” their

effects). For every 1 ≤ i ≤ m, we construct a sequence of vectors ~w1i , ~w
2
i , . . . ~w

ξ[i]
i (where

ξ[i] is defined below) and a sequence of transition sequences T 0i , T
1
i , . . . T

ξ[i]
i as follows:

• T 0i = Ti

• If T `i is a simple sequence, set ξ[i] = ` and stop the construction.

• Otherwise, let C be the first simple cycle in T `i . The sequence T `+1i is obtained from

T `i by removing C and ~w`+1i is defined to be the effect e(C) of C. (Observe that

e(T `i ) = e(T `+1i ) + ~w`+1i .)

LetWi be the set {~w1i , ~w
2
i , . . . , ~w

ξ[i]
i }, and letW =

⋃m
i=1Wi. We have that

e(T) =

m∑
i=1

∑
~u∈Wi

n[i, ~u] · ~u+ e(T
ξ[i]
i ) =

∑
~u∈W

(
m∑
i=1

n[i, ~u]

)
· ~u+

m∑
i=1

e(T
ξ[i]
i ) ≥ 0 (1)

where each n[i, ~u] is the number of occurrences of ~u in ~w1i , ~w
2
i , . . . ~w

ξ[i]
i .

When we denote the vector
∑m
i=1 e(T

ξ[i]
i ) by ~c and the sum

∑m
i=1 n[i, ~u] by n[~u], the

above inequality takes the form ∑
~u∈W

n[~u] · ~u+ ~c ≥ 0 (2)

Observe that if n ′[~u] is a non-negative integer for every ~u ∈ W and∑
~u∈W n

′[~u] · ~u+ ~c ≥ 0, then the tuple of all n ′[~u] determines a path of the form

p~t −→∗ p~t ′ where ~t, ~t ′ ∈ Zk and ~t ≤ ~t ′. To see this, realize that each ~u ∈ W is an ef-

fect of a simple cycle on some qi, and ~c is the effect of the sequence Tξ[1]1 T
ξ[2]
2 . . . T

ξ[m]
m .

Hence, it suffices to follow the sequence Tξ[1]1 T
ξ[2]
2 . . . T

ξ[m]
m and whenever a control state

qi is visited for the first time, we do the following: For every ~u inW which is an effect of

a simple cycle C on qi, we perform the cycle C exactly n ′[~u]-times. Whenever ω occurs

in a transition, we set the corresponding counter to a value which is “high enough”, i.e.,

greater than the length of the path we are constructing. Thus, we produce a sequence of

transitions with the total effect
∑

~u∈W n
′[~u] · ~u+ ~c ≥ 0.

Due to the above observations, it suffices to show that there is a tuplen ′[~u] of “small”

non-negative integers such that
∑

~u∈W n
′[~u] · ~u+ ~c ≥ 0. To achieve that, we use [28,

Lemma 4.4] (the lemma was originally proved by Borosh&Treybis [4], but we use the

particular form presented in [28]). Since [28, Lemma 4.4] works for systems of equations

in real numbers, we have to get rid of ω components. Note that whenever a transition
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whose label contains ω in some component is executed along a path, the correspond-

ing counter can be set to a sufficiently high number to make the path non-decreasing in

this particular counter. Hence, we need to make sure that whenever ω occurs in some

component along the original sequence T , it also occurs in the same component in the re-

duced sequence. This is implemented by slightly modifying the system of equations (2)

in the way described below.

Let us define

Ω := {` | ∃~u ∈W : ~u(`) = ω}

To every ~u ∈W we associate a k-dimensional vector ~u ′ of integers as follows:

~u ′(`) :=



0 if ~c(`) = ω;

1 if ` ∈ Ω and ~u(`) = ω;

0 if ` ∈ Ω and ~u(`) 6= ω;

~u(`) otherwise.

We define ~c ′ by

~c ′(`) :=


0 if ~c(`) = ω;

−1 if ` ∈ Ω;

~c(`) otherwise.

Note that ∑
~u∈W

n[~u] · ~u ′ + ~c ′ ≥ 0

On the other hand, an arbitrary tuple of non-negative numbers n ′[~u] satisfying∑
~u∈W

n ′[~u] · ~u ′ + ~c ′ ≥ 0 (3)

determines a path p~t −→∗ p~t ′, where ~t ≤ ~t ′ and the length of this path is at most |Q|2 +∑
~u∈W n

′[~u] · |Q|, as follows:

• Start in q1 = p.

• For i = 1, 2, . . . ,m do the following:

– For every ~u ∈W which is an effect of a simple cycle C on qi execute the cycle

C exactly n ′[~u]-times. Whenever ω is encountered in some component, add

|Q|2 +
∑

~u∈W n
′[~u] · |Q| to the corresponding counter.
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– Follow T
ξ[i]
i . Whenever ω is encountered in some component, add |Q|2 +∑

~u∈W n
′[~u] · |Q| to the corresponding counter.

Now we apply [28, Lemma 4.4] to obtain a small solution of the system of equations (3).

First, observe that |W| ≤ (2|Q| + 1)k because each element of W is an effect of a simple

cycle. So the number of variables of the system (3), denoted by d2 in [28, Lemma 4.4], is

bounded by (2|Q| + 1)k. The absolute values of numbers occurring in the system (3) are

bounded by |Q|2 (such numbers may occur only in ~c ′, the absolute values of components

of ~u ′ are bounded by |Q|). Thus, d = (2|Q|+1)2k bounds both d2 and the absolute values

of numbers occurring in (3).

By Lemma [28, 4.4], there is a non-negative solution of the system (3) in which all

numbers are bounded by dc ′k for a suitable constant c ′ independent ofM. Thus there

is a constant c ′′, which does not depend on M, such that the absolute values of all

numbers occurring in the solution are bounded by (|Q| + 1)c
′′·k2 . It follows that there is

a path p~u −→∗ p~u ′′, ~u ≤ ~u ′′, whose length is bounded by

|Q|2 +
∑
~u∈W

(|Q| + 1)c
′′·k2 · |Q| = (|Q| + 1)c·k

2

for a suitable constant c independent ofM.

The following proposition is crucial for handling the general case (where Q♦ can be

non-empty).

Proposition A.2. Suppose q ′ ∈ Q♦ inM has more than one outgoing transition, namely an

outgoing transition t and a nonempty set R (the ‘rest’) of other outgoing transitions; by M1

(M2) we denote the eVASS arising fromM by removing R (t). Suppose now that, for some state

q which may be different from q ′, we have q~v1 ∈ Win� inM1 and q ′ ~v2 ∈ Win� inM2. Then

q(~v1+~v2−~1) ∈Win� inM.

Proof. Let S1 be a winning strategy of player � in q~v1 in M1, and S2 a winning strat-

egy of player � in q ′ ~v2 inM2. The following strategy will be winning for player � in

q(~v1+~v2−~1) inM:

Player � uses the strategy S1 as long as player ♦ does not use any transition from

the set R (when the play goes through q ′). If this happens, i.e. player ♦ uses some

t ′ ∈ R, then player � suspends the strategy S1 and behaves according to S2 (starting in

q ′). If player ♦ uses t in future, player � just suspends S2 and resumes the (previously

suspended) S1, etc.
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Thus every prefix of any play arises by merging two prefixes of particular plays,

played from q~v1 in M1 according to S1 and from q ′ ~v2 in M2 according to S2, respec-

tively. Any prefix of the first (second) particular play cannot decrease a counter j by

more than (~v1)j − 1 ((~v2)j − 1), and thus their merging keeps the value of each counter

above zero, when starting from ~v1+~v2−~1.

The following simple proposition is technically useful.

Proposition A.3. Assume an unrestricted self-covering tree T and a leaf (labelled with) p ~u ′,

having above a corresponding node p~u with ~u ≤ ~u ′. Consider the tree T ′ arising by an “un-

folding”, i.e., arising by hanging a corresponding copy of the (original) subtree rooted in p~u on

the node p ~u ′. (Each node labelled with r~t in the original subtree has a corresponding node in the

newly hanged subtree, labelled with r~t ′ where ~t ′ = ~t+ ~u ′−~u.) Then T ′ is also an unrestricted

self-covering tree.

We now want to generalize Lemma A.1. We first note that the case when player ♦

has no choice, i.e. when the set tr(Q♦) of transitions t with α(t) ∈ Q♦ has the same

cardinality as Q♦ (recall that each control state has at least one outgoing transition), is

already handled by Lemma A.1: in such a case, all states in Q♦ can be viewed as being

in Q�, in fact.

In the general case we take the number r = |tr(Q♦)| − |Q♦| as a suitable measure of

the choice degree of ♦.

Lemma A.4. (Given eVASSM), let q ∈ Q be a control state such that q~v ∈ Win� for some

~v. Then there is an unrestricted self-covering tree for q of depth at most 2r · h(|Q|, k) where h is

the function from Lemma A.1 and r is the choice degree of ♦, i.e. the number |tr(Q♦)| − |Q♦|.

Proof. We proceed by induction on r. The base case r = 0 has been already handled, so

we assume the claim holds for r, and show it for r+ 1. Let q ′ ∈ Q♦ be a fixed state with

at least two choices, i.e., with an outgoing transition t and a nonempty set R (the ‘rest’)

of other outgoing transitions.

Let M1 be the eVASS arising from M by removing R, and let M2 be the eVASS

arising fromM by removing t; the choice degree of ♦ is at most r in bothM1 andM2.

Let us now consider a control state q such that q~v ∈Win� for some~v inM; obviously,

q~v ∈Win� in bothM1 andM2 as well. If some of the unrestricted self-covering trees of

depth at most 2r · h(|Q|, k) which are guaranteed by the induction hypothesis does not

contain q ′, then we are done. If both of them contain q ′ then q ′ must have unrestricted
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self-covering trees in both M1 and M2 (recall Proposition A.3); in particular, q ′~v ′ ∈
Win� for some ~v ′ inM2, and by the induction hypothesis the elements of ~v ′ do not need

to exceed 2r · h(|Q|, k). The rest follows from Proposition A.2.

We now define QD−inf = {q ∈ Q | q(ω, . . . ,ω) ∈ Win♦} and show that there is a

fixed counter-less strategy of player ♦ which is winning inside “QD−inf-area”.

Lemma A.5. There is a counter-less strategy of player ♦ which is winning in every q~v ∈
QD−inf × Nk and, moreover, all control states visited in the respective plays are in QD−inf.

Proof. We proceed by induction on the size of the underlying eVASSM; in other words,

we assume that the claim holds for all eVASSs with lesser sizes than the size ofM and

we prove the claim forM.

We observe that there is no transition t : q → q ′ such that q ∈ QD−inf ∩ Q� and

q ′ 6∈ QD−inf (otherwise q ′~v ′ ∈ Win� for some ~v ′ and thus q~v ∈ Win� for some ~v which

contradicts with q(ω, . . . ,ω) ∈ Win♦). We can also easily verify that each q ∈ QD−inf ∩
Q♦ has at least one outgoing transition leading to QD−inf; if there is, moreover, some

t : q → q ′ such that q ′ 6∈ QD−inf, then removing t results in a lesserM ′ with the same

QD−inf and the claim forM follows by the induction hypothesis. (If b is the maximal

component in Min� then q ′(b, . . . , b) ∈ Win� for all q ′ 6∈ QD−inf. Starting from q~v,

q ∈ QD−inf, player ♦ can use the same strategy as from q(~v + (b, . . . , b)), thus reaching

0 in some counter without leaving the QD−inf-area.)

It thus remains to explore the case with no transitions leaving QD−inf; moreover

QD−inf = Q since otherwise we also finish by the induction hypothesis. If now M
has only one outgoing transition for every q ∈ Q♦ then the claim is obvious, so we

assume that at least one q ∈ Q♦ inM has more than one outgoing transition, namely

an outgoing transition t and a nonempty set R (the ‘rest’) of other outgoing transitions.

We defineM1,M2 as in Proposition A.2; and we start with assuming that q ∈ QD−inf

also inM1. Then QD−inf inM1 coincides with QD−inf = Q inM (and the claim thus

follows from the induction hypothesis): from every q ′~v ′ in M1, player ♦ can use his

winning strategy S from q ′~v ′ inM until (winning or) possibly reaching some q~v where

S prescribes to use some t ′ ∈ R; here player ♦ switches to his winning strategy which

is guaranteed by the assumption that q ∈ QD−inf inM1. Similarly we handle the case

when q ∈ QD−inf inM2.
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Thus it remains to consider the case when q 6∈ QD−inf inM1 nor inM2; then nec-

essarily q~v1 ∈ Win� in M1 and q~v2 ∈ Win� in M2 for some ~v1, ~v2 ∈ Nk. But then

Proposition A.2 yields a contradiction with the assumption q ∈ QD−inf inM.

Lemma 3.5. The set of all q ∈ Q such that q(ω, . . . ,ω) ∈ Win♦ is computable in space

bounded by a polynomial function g(|Q|, d, k).

Proof. It is sufficient to check (successively, in the same working space) all counterless

strategies of player ♦ (recall Lemma A.5); each case amounts to prune some outgoing

transitions for each q ∈ Q♦ so that always just one is left.

Now to show that a particular counterless strategy is not winning for player ♦ in

some q~v, i.e. that q(ω, . . . ,ω) ∈ Win� in the pruned system, we recall Lemma A.1 (i.e.,

the case r = 0 of Lemma A.4). We can nondeterministically go along a self-covering

path, remembering only the current configuration and the beginning of the cycle af-

ter we guess we have encountered it. Polynomial space is obviously sufficient for this

procedure.

A.3 A proof of Lemma 3.8

We start with the following auxiliary observation:

Lemma A.6. Let 0 ≤ j < k, and let B ∈ N be a bound which is safe for precision j. Then for

every q~v ∈ SymMinj+1� we have that ~v` ≤ B for every ` precise in q~v.

Proof. Let q~v ∈ SymMinj+1� , and let us assume that ~v` > B for some ` precise in q~v. Let

q~u be a symbolic configuration where ~u` = ~v` for all ` such that ~v` ≤ B, and ~u` = ω for

the other `. Note that P(q~u) ≤ j, and q~u ∈ Win� because q~v ∈ Win�. Hence, there is

some q~t ∈
⋃j
i=0 SymMini� such that q~t ≤ q~v. Since B is safe for precision j, we have that

q~t ′ ∈ Win�, where ~t ′ is obtained from~t by replacing every ω-component with B. Since

q~t ′ ≤ q~v and ~t ′` < ~v` for at least one ` precise in q~v, we obtain a contradiction with the

minimality of q~v.

Now we have all the tools needed to prove Lemma 3.8.

Lemma 3.8. Let 0 ≤ j < k, and let us assume that
⋃j
i=0 SymMini� has already been computed,

together with some bound B ∈ N which is safe for precision j. Then SymMinj+1� is computable

in time exponential in |Q| · Bj+1, d, and k−j−1, and the bound B + f(|Q| · Bj+1, d, k−j−1) is

safe for precision j+ 1 (here f is the function of Lemma 3.4 and d is the branching degree ofM).
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Proof. Let us fix some subset C of {1, . . . , k} of cardinality j+1, and let C̄ = {1, . . . , k} r C.

We show how to compute the set of all q~v ∈ SymMinj+1� such that the set of all indexes

that are precise in q~v is exactly C. To achieve that, we construct an alternating eVASS

MC with k−j−1 counters which encodes the counter values indexed by the elements of

C in its finite control (up to the bound B) and simulates the execution of the considered

eVASSM. Hence, the counters ofMC simulate the counters ofM that are indexed by

the elements of C̄. For every configuration p~x of MC and every ` ∈ C̄, we use ~x` to

denote the current value of the counter which corresponds to the `-th counter of M.

Similarly, if ~y is a tuple of counter changes in MC and ` ∈ C̄, we use ~y` to denote

the change on the counter of MC which corresponds to the `-th counter of M. This

convention leads to a simpler notation.

The simulation ofM byMC is essentially faithful until the point when some of the

counters indexed by C either reaches zero or attempts to cross the bound B. In the

first case,MC enters a special control state where player ♦ wins (for arbitrary counter

values). In the latter case, the behaviour ofMC is more subtle and it is explained later.

The set of control states of MC consists of q�, q♦, and all elements of

Q× (C → {1, . . . , B}). The states of Q♦ × (C → {1, . . . , B}) belong to player ♦, and the

other states belong to player �. To each control state of the form (p, ~a) we associate

the (unique) symbolic configuration p ~[a] ofM where ~[a]` = ~a` for all ` ∈ C such that

~a` < B, and ~[a]` = ω for all of the remaining indexes `. The transitions ofMC together

with their labels are constructed as follows:

• There is a transition q� −→ q� labeled by (0, . . . , 0) and a transition q♦ −→ q♦

labeled by (−1, . . . ,−1).

• For every transition p ~u−→ q ofMwe add the following transitions toMC:

(a) For all ~a : C → {1, . . . , B} such that ~u` = −1 and ~a` = 1 for some ` ∈ C, we

add a transition (p, ~a) −→ q♦ labeled by (0, . . . , 0).

(b) For all ~a : C → {1, . . . , B} such that the previous item does not apply and

~a` < B for all ` ∈ C, we add a transition (p, ~a)
~x−→ (q,~b), where ~b and ~x are the

unique vectors satisfying the following:

∗ For every ` ∈ Cwe have that ~b` is equal either to ~a` + ~u` or B, depending

on whether ~u` ∈ {−1, 0, 1} or ~u` = ω, respectively.

∗ For all ` ∈ C̄we have that ~x` = ~u`.
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(c) For all ~a : C → {1, . . . , B} such that ~a` = B for some ` ∈ C, we add either a

transition (p, ~a) −→ q� labeled by (0, . . . , 0) or a transition (p, ~a) −→ q♦ labeled

by (0, . . . , 0), depending on whether p ~[a] ∈Win� or p ~[a] ∈Win♦, respectively.

Realize that since P(p ~[a]) ≤ j, we have that p ~[a] ∈ Win� iff there is p~v ∈⋃j
i=0 SymMini� such that p~v ≤ p ~[a], which can be checked effectively because

the set
⋃j
i=0 SymMini� has already been computed.

In the rest of this proof, the winning regions for player � and player ♦ in GMC
are

denoted by Win�(MC) and Win♦(MC), respectively. For a given symbolic configuration

(p, ~a)~x ofMC, we use p(~a,~x) to denote the corresponding symbolic configuration ofM,

i.e., (~a,~x)` = ~a` for all ` ∈ C, and (~a,~x)` = ~x` for all ` ∈ C̄. For the moment, assume that

the following two claims are already proven (where f is the function of Lemma 3.4):

(1) If (p, ~a)~x ∈ Win�(MC) where ~x` ≥ B + f(|Q| · Bj+1, k−j−1) for every ` ∈ C̄, then

p(~a,~x) ∈Win�.

(2) If (p, ~a)~x ∈Win♦(MC), then p(~a,~x) ∈Win♦.

An immediate consequence of (1) and (2) is that (p, ~a)(ω, . . . ,ω) ∈ Win�(MC) iff

p(~a,ω, . . . ,ω) ∈ Win�. By applying Lemma A.6, it follows that SymMinj+1� contains

exactly the minimal p(~a,ω, . . . ,ω) such that (p, ~a)(ω, . . . ,ω) ∈ Win�(MC). Since the

set of all (p, ~a) such that (p, ~a)(ω, . . . ,ω) ∈ Win�(MC) is computable in time exponen-

tial in |Q| · Bj+1, d, and k−j−1 by Lemma 3.5, the set SymMinj+1� is also computable in

time exponential in |Q| · Bj+1, d, and k−j−1 (although the number of control states of

MC is actually (|Q| ·Bj+1)+2, note that we can easily adjustMC by removing the control

states q♦ and q� without influencing the winning regions for the other control states).

Moreover, the bound B + f(|Q| · Bj+1, k−j−1) is obviously safe for precision j + 1. So, it

remains to prove Claims (1) and (2). First, recall that the transitions ofMC introduced

in item (c) above are “correct” in the following sense: if (p, ~a) is a control state ofMC

such that ~a` = B for some ` ∈ C, then

• if (p, ~a) −→ q�, then p(~a,~y) ∈Win� for all ~y such that ~y` ≥ B for every ` ∈ C̄;

• if (p, ~a) −→ q♦, then p(~a,~y) ∈Win♦ for all ~y.

Claim (1): Let us assume that (p, ~a)~x ∈ Win�(MC) where ~x` ≥ B + f(|Q| · Bj+1, k−j−1).
Since (p, ~a)~x ∈ Win�(MC), by Lemma 3.4 there is a self-covering tree T for (p, ~a) of

depth at most f(|Q| ·Bj+1, k−j−1). A winning strategy for player � in p(~a,~x) is obtained
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simply by following the strategy described by T until the point when a transition of

the form (q,~b)~z −→ q�~z is to be executed in T . Note that since the depth of T is at

most f(|Q| · Bj+1, k−j−1), we have that (~x+~z)` ≥ B for every ` ∈ C̄. This means that

q(~b,~x+~z) ∈ Win� (see above) and hence player � can simply abandon the strategy

described by T and start to follow his winning strategy for q(~b,~x+~z).

Claim (2): Let us assume that (p, ~a)~x ∈ Win♦(MC). A winning strategy for player ♦ in

p(~a,~x) is obtained simply by “mimicking” the winning strategy of player ♦ in (p, ~a)~x

until one of the two players enters a configuration (q,~b)~y which has an outgoing tran-

sition of the form (q,~b)~y −→ q♦~y. Note that then there must be at least one outgoing

transition of q(~b,~y) leading to a winning configuration of player ♦. If q ∈ Q♦, then

player ♦ selects this transition and “switches” to the winning strategy of the chosen

successor. If q ∈ Q�, then player � may select an outgoing transition of q(~b,~y) which

either does or does not correspond to the transition (q,~b)~y −→ q♦~y (see item (c) above).

In the first case, player ♦ “switches” to the winning strategy for the chosen successor,

and in the latter case he keeps “mimicking” the winning strategy for (p, ~a)~x. Obviously,

if player ♦ plays in the way just described, he has to win.

An immediate corollary to Lemma 3.8 is that the set SymMin� (and hence also the set

Min�) is effectively computable (an upper complexity bound is given in Theorem 3.9).

Let us note that the set Max♦ of all maximal symbolic configurations which belong to

Win♦ is effectively computable (we just need to complement the upward closure of

Min�, which can be done by standard methods; see, e.g., [33]).

Finally, we show that there is a finitely and effectively representable strategy π of

player ♦ which is winning in every configuration of Win♦. LetC be a subset of {1, . . . , k},

C̄ = {1, . . . , k} r C, and let

MaxC♦ = {p~v ∈Max♦ | P(p~v) = |C| and ~v` 6= ω for all ` ∈ C}.

We also use ↓MaxC♦ to denote the downwards closure of MaxC♦ , i.e., the set of all config-

urations q~u where q~u ≤ q ~u ′ for some q ~u ′ ∈ MaxC♦ . The C-part of a configuration

q~u ∈ ↓MaxC♦ is a pair q ~[u,C] where ~[u,C] : C → N such that ~[u,C]` = ~u` for every ` ∈ C.

Note that the set

AdmC = {q ~[u,C] | q~u ∈ ↓MaxC♦}

of admissible C-parts is finite.

Let B a bound which is safe for precision k (see Lemma 3.8). Let q~u ∈ Win♦ be a

configuration such that q ~[u,C] 6∈ AdmC and ~u` ≥ B for every ` ∈ C. Then there must

32



a proper subset C ′ of C such that q ~[u,C ′] ∈ AdmC ′ (otherwise, q~u ∈ Win� which is a

contradiction). We show that there is a memoryless strategy πC for player ♦ with the

following properties:

• For every p~v ∈ MaxC♦ and every strategy σ of player � we have that the play

initiated in p~v reaches either a configuration of Z or a configuration q~u such that

q ~[u,C ′] ∈ AdmC ′ for some proper subset C ′ of C.

• For every p~v such that p ∈ Q♦ we have that πC(p~v) depends only on the C-part of

p~v.

Observe that the strategies πC can be easily combined into the promised strategy π,

which works in the following way: for a given configuration p~v ∈ Win♦, we find a

minimal C ⊆ {1, . . . , k} such that p~v ∈ MaxC♦ (if there are more candidates for C, any of

them can be chosen in some deterministic fashion). Player ♦ plays according to πC untill

he either wins or enters a configuration q~u such that q ~[u,C ′] ∈ AdmC ′ for some proper

subset C ′ of C. From this point on, he “switches” to πC ′ . Note that such a “switch”

can be performed at most k times in each play, and the strategy π admits a finite and

effective description.

So, it remains to show how to construct the strategy πC. Note that if C = ∅, then πC
is counterless by Lemma A.5 and can be constructed effectively. Otherwise, we proceed

similarly as in Lemma 3.8. We construct another eVASS gameMC with k − C counters

which simulates the C-parts of configurations in its finite control so that

• the transitions of M that would lead to configurations q~u such that q ~[u,C ′] ∈
AdmC ′ for some proper subset C ′ of C are simulated by entering a special control

state where player ♦ wins;

• the transitions of M that would lead to configurations q~u such that q ~[u,C ′] 6∈
AdmC ′ for every C ′ ⊆ C are simulated by entering a special control state where

player � wins.

We determine all control states ofMC such that player ♦ wins for all values in the k−C

counters ofMC and construct the corresponding counterless winning strategy (here we

again relay on Lemma 3.5). Then we “transfer” this counterless strategy back toM and

produce the desired πC.
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A.4 Proofs of Theorem 3.10 and Theorem 3.11

For the rest of this section, we fix a one-dimensional eVASS game M =

(Q, (Q�, Q♦), T, α, β, δ) and C ⊆ Q. Recall that for every i ∈ N, we use Win♦(C, i) to

denote the set {p ∈ Q | p(i) ∈ Win(♦,R(ZC))}. Observe that if Win♦(C, i) = Win♦(C, j)

for some i, j ∈ N, then also Win♦(C, i+1) = Win♦(C, j+1). To see this, realize that

if p(i+1) ∈ Win(♦,R(ZC)), then player ♦ has a winning strategy π in p(i+1) and

hence he can enforce descreasing the counter to i (and entering some configuration q(i)

where q ∈ Win♦(C, i)) no matter what player � does. Then a strategy π+(j−i) such

that π+(j−i)(r(k)) = π(r(k−j+i) for all k ≥ j can be used in p(j+1) to enforce visiting a

configuration q(j) where q ∈ Win♦(C, j). Since q(j) ∈ Win(♦,R(ZC)), we obtain that

p(j+1) ∈ Win(♦,R(ZC)). Similarly, one can show that if p(j+1) ∈ Win(♦,R(ZC)), then

also p(i+1) ∈ Win(♦,R(ZC)). Further, recall that we use mC to denote the least i ∈ N
such that Win♦(C, i) = Win♦(C, j) for some j > i, and nC to denote the least i > 0 such

that Win♦(C,mC) = Win♦(C,mC+i). Observe that mc + nc ≤ 2|Q|, and for every i ≥ mc

we have that Win♦(C, i) = Win♦(C,mC + ((i − mC) mod nC)). Hence, the winning

regions of both players are fully characterized by all Win♦(C, i), where 0 ≤ i < mC+nC.

We start with the non-selective case, because some of the underlying observations

are needed to solve the more general selective case. Recall that in the non-selective case,

mQ ≤ |Q| and nQ = 1, because Win♦(Q, i) ⊇ Win♦(Q, i+1) for every i ∈ N. Hence, it

suffices to compute all Win♦(Q, i) where 0 ≤ i ≤ |Q|. The next lemma says that this can

be done in polynomial time.

Lemma A.7. The sets Win♦(Q, i), where 0 ≤ i ≤ |Q|, are computable in O(|M|2) time.

Proof. Let D be the domain of all |Q|+1-tuples of subsets of Q, ordered by componen-

twise inclusion. For a given D ∈ D, the individual components of D are denoted by

D0, . . . , D|Q|. The least element of D (i.e., the tuple of empty sets) is denoted by ⊥.

The algorithm computes the least fixed-point of the function F : D → D defined as

follows: p ∈ (F(D))i iff one of the following conditions holds:

• i = 0;

• i > 0, p ∈ Q♦, and there is an edge p(i) 7→ q(j) such that either j ≤ |Q| and q ∈ Dj,
or j > |Q| and q ∈ D|Q|;

• i > 0, p ∈ Q�, and for every edge p(i) 7→ q(j) we have that either j ≤ |Q| and

q ∈ Dj, or j > |Q| and q ∈ D|Q|.
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Since F is continuous, the least fixed-point of F is equal to
⋃
k∈NFk(⊥), where ∪ is

considered componentwise. We claim that⋃
k∈N

Fk(⊥) =

(
Win♦(Q, 0), . . . ,Win♦(Q, |Q|)

)
The “⊆” is proven by a straightforward induction on k. Note that since mQ ≤ |Q|

and nQ = 1, we have that Win♦(Q, |Q|) = Win♦(Q, |Q|+1), and this fact is used to

justify the case when p(i) performs an edge which increases the counter above |Q|. For

the “⊇” direction, consider the set B of configurations defined as follows: p(i) ∈ B iff

p 6∈ (Fk(⊥))` for all k ∈ N, where ` = min{i, |Q|}. We show that B ⊆ Win(�,S(Z)). To

see this, realize the following:

• if p(i) ∈ B and p ∈ Q♦, then for every edge p(i) 7→ q(j) we have that q(j) ∈ B;

• if p(i) ∈ B and p ∈ Q�, then there is an edge p(i) 7→ q(j) such that q(j) ∈ B.

Both claims follow directly from the definition of F . Hence, we can setup a strategy

σ ∈ Σ which is S(Z)-winning for player � in every configuration of B, which means

that B ⊆ Win(�,S(Z)). From this we obtain that if p 6∈ (Fk(⊥))i for every k ∈ N, then

p(i) ∈ B ⊆Win(�,S(Z)), which means p 6∈Win♦(Q, i).

It remains to show that
⋃
k∈NFk(⊥) is computable in polynomial time (this is not

completely trivial, because D has 2O(|Q|2) elements). We say that D ∈ D is monotone

if Di ⊇ Di+1 for all 0 ≤ i < |Q|. Observe that ⊥ is monotone, and if D is monotone

then F(D) is monotone. Since the length of every increasing chain D0 ⊃ D1 ⊃ D2 · · ·
where allDj ∈ D are monotone is bounded by |Q| · (|Q|+1), we have that

⋃
k∈NFk(⊥) =⋃|Q|·(|Q|+1)

k=1 Fk(⊥) and hence the least fixed point ofF is computable inO(|M|2) time.

According to Lemma A.7, the problem whether p(i) ∈ Win(♦,R(Z)) for a given con-

figuration p(i) of M is in P, and a finite description of the winning regions for both

players is computable in polynomial time. Our next lemma reveals that both players

have fixed counterless strategies computable in polynomial time that are winning in

every configuration of the corresponding winning region.

Lemma A.8. There are counterless strategies π̂ and σ̂ computable in polynomial time such that

π̂ isR(Z)-winning for player ♦ in every configuration of Win(♦,R(Z)), and σ̂ is S(Z)-winning

for player � in every configuration of Win(�,S(Z)).
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Proof. The construction of σ̂ is simple. We just need to ensure that player � never leaves

his winning region. For every p ∈ Q�, we fix a transition tp ∈ T where α(tp) = p as

follows:

• if p ∈Win♦(Q, |Q|), then tp is chosen arbitrarily;

• otherwise, let i ∈ N be the least index such that p 6∈ Win♦(Q, i). According to the

proof of Lemma A.7, there is an edge p(i) 7→ q(j) such that q(j) 6∈ Win♦(Q, j). We

choose tp to be the transition which induces the edge p(i) 7→ q(j) (if there are more

candidates for tp, any of them can be chosen). If δ(tp) = ω, we put cp = j− i. Note

that we can safely assume that cp ≤ |Q|.

For every p(i) ∈ Q� × N, the strategy σ̂ selects the configuration q(j) obtained by ap-

plying the transition tp to p(i). One can easily check that σ̂ is S(Z)-winning in every

configuration of Win(�,S(Z)).

The construction of π̂ is slightly more complicated, because player ♦ must also make

some progress in reaching a configuration of Z. Let p ∈ Q♦ and let i ∈ N ∪ {ω} be

the maximal index such that p(i) ∈ Win(♦,R(Z)). We show that there is a transition

tp ∈ T such that α(tp) = p and player ♦ still has an R(Z)-winning strategy in p(i) after

deleting all outgoing transitions of p except for tp. Note that the existence of π̂ easily

follows from this claim, because then we can successively construct such a transition for

every control state of Q♦ (in polynomial time), and thus obtain the desired strategy π̂.

To prove the claim, it suffices to consider the case when i 6= ω (if i = ω, we apply

Lemma A.5). Realize that there must be some strategy π which is R(Z)-winning for

player ♦ in p(i) and for every strategy σ of player � we have that the resulting play

does not visit a configuration p(j) where j ≥ i (if there was no such π, player � could

easily defeat everyR(Z)-winning strategy π, which is a contradiction). Let us fix such a

π, and let tp be the transition which induces the edge p(i) 7→ σ(p(i)). Further, for each

j < i, let πj be a strategy defined by πj(q(k)) = π(q(k+i−j)). We show that player ♦

still has an R(Z)-winning strategy π̄ for p(i) when all outgoing transitions of p except

for tp are deleted. Consider the strategy π̄ obtained by applying the following rule

recursively: “If a configuration of the form p(j) is visited, the strategy π̄ behaves like

πj until another configuration of the form p(m) is visited or a configuration with zero

counter is reached.” Note that π̄ isR(Z)-winning in p(i), because a configuration of the

form p(j) can be revisited at most i times in every play initiated in p(i).

As an immediate collary to Lemma A.7 and Lemma A.8, we obtain the following:
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Theorem 3.11. The problem whether p(i) ∈ Win(♦,R(Z)) is in P. Further, there are

counterless strategies σ and π such that σ is winning for player � in every configuration of

Win(�,S(Z)) and π is winning for player ♦ in every configuration of Win(♦,R(Z)). The tu-

ple of all Win♦(Q, i), σ(p), and π(q), where 0 ≤ i ≤ mC, p ∈ Q�, and q ∈ Q♦, is constructible

in time polynomial in |M|.

Now we turn our attention to ZC objectives and prove Theorem 3.10.

Lemma A.9. The problem whether p(i) ∈Win(♦,R(ZC)) is PSPACE-complete.

Proof. The PSPACE lower bound is obtained by reducing the emptiness problem for al-

ternating finite automata (AFA) with one letter alphabet, which is known to be PSPACE

complete [16] (see also [21] for a simpler proof). Intuitively, player ♦ first increases the

counter sufficiently and thus selects the word which should by accepted by a given

AFA A. The computation of A on the chosen word is then simulated by both play-

ers (the states of A are encoded in the finite control of the constructed VASS), and the

counter is decreased after simulating one computational step. Player ♦ aims to show

that the chosen word is accepted by A, which means that he wants to reach zero level

in one of the control states that correspond to the accepting states of A. Hence, the

language accepted by A is non-empty iff player ♦ has an R(ZC)-winning strategy in a

configuration p(1), where the set C encodes the set of accepting states of A.

The PSPACE upper bound follows also easily by employing the result of [31] which

says that the emptiness problem for alternating two-way parity word automata (2PWA)

is in PSPACE. A given eVASS game GM with R(ZC) objectives initiated in p(i) can be

easily simulated by a 2PWA A which tries to accept the infinite word 01ω. Intuitively, the

automaton A first performs i steps to the right to simulate the initial counter value. The

finite control ofM is encoded in the states of A (the control states of A corresponding to

Q♦ are existential, and the control states corresponding to Q� are universal; all of these

control states have a non-accepting parity). The increment/decrement of the counter

value is simulated by going right/left. If A reads 0, it enters an infinite loop in a special

control state whose parity is accepting or non-accepting, depending on whether the

corresponding control state of M belongs to C or not, respectively. The ω-transitions

are implemented by allowing the automaton to go arbitrarily far to the right in a special

control state, which is either existential or universal and has non-accepting or accepting

parity, depending on whether the correspondingω-transition is performed by player ♦

or player �, respectively. At any moment, the automaton can switch back to the mode
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when it simulates the execution of GM. It follows that the only way how A can accept

the word 01ω is to enter 0 in a “good” state which corresponds to a control state of C.

Hence, player ♦ has anR(ZC) winning strategy in p(i) iff A accepts the word 01ω.

According to Lemma A.9, the numbers mC, nC and the tuple of all Win♦(C, i), where

0 ≤ i < mC+nC, are constructible in exponential time. Now we show that winning

strategies for both players are finitely representable.

Lemma A.10. There is a strategy σ for player � which is winning in every configuration of

Win(�,S(ZC)), and for all p ∈ Q� and i ≥ mC we have that

σ(p(i)) = σ(p(mC + ((i−mC) mod nC)))

Moreover, the value of all σ(p(i)), where p ∈ Q� and 0 ≤ i < mC+nC, is computable in

exponential time.

Proof. Again, it suffices to ensure that σ never leaves the winning region of player �.

Due to the ultimate periodicity of Win(�,S(ZC)), the strategy σ can be chosen so that

for all p ∈ Q� and i ≥ mC we have that σ(p(i)) = σ(p(mC + ((i − mC) mod nC))).

Obviously, the value of σ(p(i)), where p ∈ Q� and 0 ≤ i < mC+nC, is computable in

exponential time because the sets Win♦(C, i), where 0 ≤ i < mC+nC, are computable in

exponential time.
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