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Abstract

We study continuous-time stochastic games with time-bounded reachability objec-

tives. We show that each vertex in such a game has a value (i.e., an equilibrium

probability), and we classify the conditions under which optimal strategies exist. Fi-

nally, we show how to compute optimal strategies in finite uniform games, and how

to compute ε-optimal strategies in finitely-branching games with bounded rates (for

finite games, we provide detailed complexity estimations).

1 Introduction

Markov models are widely used in many diverse areas such as economics, biology, or

physics. More recently, they have also been used for performance and dependability

analysis of computer systems. Since faithful modeling of computer systems often re-

quires both randomized and non-deterministic choice, a lot of attention has been devoted

to Markov models where these two phenomena co-exist, such as Markov decision pro-

cesses and stochastic games. The latter model of stochastic games is particularly apt for

analyzing the interaction between a system and its environment, which are formalized

as two players with antagonistic objectives (we refer to, e.g., [11, 6, 12] for more com-

prehensive expositions of results related to games in formal analysis and verification of

∗Supported by Research Center “Institute for Theoretical Computer Science (ITI)”, project No. 1M0545.
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computer systems). So far, most of the existing results concern discrete-time Markov de-

cision processes and stochastic games, and the accompanying theory is relatively well-

developed (see, e.g., [10, 5]).

In this paper, we study continuous-time stochastic games (CTGs) and hence also

continuous-time Markov decision processes (CTMDPs) with time-bounded reachability ob-

jectives. Roughly speaking, a CTG is a finite or countably infinite graph with three types

of vertices—controllable vertices (boxes), adversarial vertices (diamonds), and actions

(circles). The outgoing edges of controllable and adversarial vertices lead to the actions

that are enabled at a given vertex. The outgoing edges of actions lead to controllable or

adversarial vertices, and every edge is assigned a positive probability so that the total

sum of these probabilities is equal to 1. Further, each action is assigned a positive real

rate. A simple finite CTG is shown below.
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A game is played by two players, � and ♦, who are responsible for selecting the

actions (i.e., resolving the non-deterministic choice) in the controllable and adversarial

vertices, respectively. The selection is timeless, but performing a selected action takes

time which is exponentially distributed (the parameter is the rate of a given action).

When a given action is finished, the next vertex is chosen randomly according to the

fixed probability distribution over the outgoing edges of the action. A time-bounded

reachability objective is specified by a set T of target vertices and a time bound t > 0. The

goal of player � is to maximize the probability of reaching a target vertex before time t,

while player ♦ aims at minimizing this probability.

Note that events such as component failures, user requests, message receipts, ex-

ceptions, etc., are essentially history-independent, which means that the time between

two successive occurrences of such events is exponentially distributed. CTGs provide

a natural and convenient formal model for systems exhibiting these features, and time-

bounded reachability objectives allow to formalize basic liveness and safety properties

of these systems.

Previous work. Although the practical relevance of CTGs with time-bounded reach-

ability objectives to verification problems is obvious, to the best of our knowledge there

are no previous results concerning even very basic properties of such games. A more re-
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stricted model of uniform CTMDPs is studied in [4, 8]. Intuitively, a uniform CTMDP is

a CTG where all non-deterministic vertices are controlled just by one player, and all ac-

tions are assigned the same rate. In [4], it is shown that the maximal and minimal proba-

bility of reaching a target vertex before time t is efficiently computable up to an arbitrar-

ily small given error, and that the associated strategy is also effectively computable. An

open question explicitly raised in [4] is whether this result can be extended to all (not

necessarily uniform) CTMDP. In [4], it is also shown that time-dependent strategies are

more powerful than time-abstract ones, and this issue is addressed in greater detail in

[8] where the mutual relationship between various classes of time-dependent strategies

in CTMDPs is studied. Furthermore, in [3] reward-bounded objectives in CTMDPs are

studied.

Our contribution is twofold. Firstly, we examine the fundamental properties of CTGs,

where we aim at obtaining as general (and tight) results as possible. Secondly, we con-

sider the associated algorithmic issues. Concrete results are discussed in the following

paragraphs.

Fundamental properties of CTGs. We start by showing that each vertex v̂ in a CTG

with time-bounded reachability objectives has a value, i.e., an equilibrium probability of

reaching a target vertex before time t. The value is equal to supσ infπPσ,πv̂ (Reach≤t(T))

and infπ supσP
σ,π
v̂ (Reach≤t(T)), where σ and π range over all time-abstract strategies of

player � and player ♦, and Pσ,πv̂ (Reach≤t(T)) is the probability of reaching T before time

t in a play obtained by applying the strategies σ and π. This result holds for arbitrary

CTGs which may have countably many vertices and actions. This immediately raises

the question whether each player has an optimal strategy which achieves the outcome

equal to or better than the value against every strategy of the opponent. We show that

the answer is negative in general, but an optimal strategy for player ♦ is guaranteed to

exist in finitely-branching CTGs, and an optimal strategy for player � is guaranteed to

exist in finitely-branching CTGs with bounded rates (see Definition 2.2). These results are

tight, which is documented by appropriate counterexamples. Moreover, we show that

in the subclasses of CTGs just mentioned, the players have also optimal CD strategies (a

strategy is CD if it is deterministic and “counting”, i.e., it only depends on the number

of actions in the history of a play, where actions with the same rate are identified). Note

that CD strategies still use infinite memory and in general they do not admit a finite

description. A special attention is devoted to finite uniform CTGs, where we show a

somewhat surprising result—both players have finite memory optimal strategies (these fi-
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nite memory strategies are deterministic and their decision is based on “bounded count-

ing” of actions; hence, we call them “BCD”).

Algorithms. We show that for finite CTGs, ε-optimal strategies for both players are

computable in |V |2 · |A| · bp · (|R| + 1)O((maxR)·t+ln 1
ε
) time, where |V | and |A| is the number

of vertices and actions, resp., bp is the maximum bit-length of transition probabilities

and rates (we assume that rates and the probabilities in distributions assigned to the

actions are represented as fractions of integers encoded in binary), |R| is the number

of rates, maxR is the maximal rate, and t is the time bound. This solves the open

problem of [4] (in fact, our result is more general as it applies to finite CTGs, not just

to finite CTMDPs). Actually, the algorithm works also for infinite-state CTGs as long as

they are finitely-branching, have bounded rates, and satisfy some natural “effectivity

assumptions” (see Corollary 4.2). For example, this is applicable to the class of infinite-

state CTGs definable by pushdown automata (where the rate of a given configuration

depends just on the current control state), and also to other automata-theoretic models.

Finally, we show how to compute the optimal BCD strategies for both players in finite

uniform CTGs.

All proofs have been moved into the appendix. In the main body of the paper,

we just try to indicate basic ideas behind the proofs. This is not always possible, be-

cause some arguments are tricky and hard to explain at the intuitive level (occasionally

we also rely on relatively advanced calculations). Nevertheless, the results themselves

should be easy to understand.

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, rational numbers,

real numbers, non-negative real numbers, and positive real numbers are denoted by

N, N0, Q, R, R≥0, and R>0, respectively. Let A be a finite or countably infinite set. A

probability distribution on A is a function f : A → R≥0 such that
∑
a∈A f(a) = 1. The

support of f is the set of all a ∈ A where f(a) > 0. A distribution f is rational if f(a) ∈ Q
for every a ∈ A, positive if f(a) > 0 for every a ∈ A, and Dirac if f(a) = 1 for some a ∈ A.

The set of all distributions onA is denoted byD(A). A σ-field over a setΩ is a setF ⊆ 2Ω

that includes Ω and is closed under complement and countable union. A measurable

space is a pair (Ω,F) whereΩ is a set called sample space and F is a σ-field overΩwhose

elements are called measurable sets. A probability measure over a measurable space (Ω,F)
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is a function P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise

disjoint elements of F , P(
⋃
i∈I Xi) =

∑
i∈IP(Xi), and moreover P(Ω) = 1. A probability

space is a triple (Ω,F ,P), where (Ω,F) is a measurable space and P is a probability

measure over (Ω,F). Given two measurable sets X, Y ∈ F such that P(Y) > 0, the

conditional probability of X under the condition Y is defined as P(X | Y) = P(X∩Y)/P(Y).

We say that a property A ⊆ Ω holds for almost all elements of a measurable set Y if

P(Y) > 0, A ∩ Y ∈ F , and P((A ∩ Y) | Y) = 1.

In our next definition we introduce continuous-time Markov chains (CTMCs). The

literature offers several equivalent definitions of CTMCs (see, e.g., [9]). For purposes of

this paper, we adopt the variant where transitions have discrete probabilities and the

rates are assigned to states.

Definition 2.1. A continuous-time Markov chain (CTMC) is a tuple

M = (M, → ,Prob,R, Init), where M is a finite or countably infinite set of states,→ ⊆ M × M is a transition relation such that every s ∈ M has at least one outgo-

ing transition, Prob is a function which to each s ∈M assigns a positive probability distribution

over the set of its outgoing transitions, R is a function which to each s ∈ M assigns a positive

real rate, and Init is the initial probability distribution onM.

We write s x→ s ′ to indicate that s→ s ′ and Prob(s)(s→ s ′) = x. A time-abstract path

is a finite or infinite sequence u = u0, u1, . . . of states such that ui−1→ui for every

1 ≤ i < length(u), where length(u) is the length of u (the length of an infinite sequence

is ∞). A timed path (or just path) is a pair w = (u, t), where u is a time-abstract path

and t = t1, t2, . . . is a sequence of positive reals such that length(t) = length(u). We put

length(w) = length(u), and for every 0 ≤ i < length(w), we usually write w(i) and w[i]

instead of ui and ti, respectively.

Infinite paths are also called runs. The set of all runs inM is denoted RunM, or just

Run whenM is clear from the context. A template is a pair (u, I), where u = u0, u1, . . .

is a finite time-abstract path and I = I0, I1, . . . a finite sequence of non-empty intervals

in R≥0 such that length(u) = length(I). Every template (u, I) determines a basic cylinder

Run(u, I) consisting of all runs w such that w(i) = ui for all 0 ≤ i < length(u), and

w[j] ∈ Ij for all 0 ≤ i < length(u)−1. ToMwe associate the probability space (Run,F ,P)

where F is the σ-field generated by all basic cylinders Run(u, I) and P : F → R≥0 is the

unique probability measure on F such that

P(Run(u, I)) = Init(u0) ·
length(u)−2∏

i=0

Prob(ui)(ui → ui+1) ·
(
e−R(ui)·sup(Ii) − e−R(ui)·inf(Ii)

)
5



Note that if length(u) = 1, the “big product” above is empty and hence equal to 1.

Now we formally define continuous-time games, which generalize continuous-time

Markov chains by allowing not only probabilistic but also non-deterministic choice.

Continuous-time games also generalize the model of continuous-time Markov decision

processes studied in [4, 8] by splitting the non-deterministic vertices into two disjoint

subsets of controllable and adversarial vertices, which are controlled by two “players”

with antagonistic objectives. Thus, one can model the interaction between a system and

its environment.

Definition 2.2. A continuous-time game (CTG) is a tuple G = (V,A,E, (V�, V♦),P,R)

where V is a finite or countably infinite set of vertices, A is a finite or countably infinite set

of actions, E is a function which to every v ∈ V assigns a non-empty set of actions enabled

in v, (V�, V♦) is a partition of V , P is a function which assigns to every a ∈ A a probability

distribution on V , and R is a function which assigns a positive real rate to every a ∈ A.

We require that V ∩ A = ∅ and use N to denote the set V ∪ A. We say that G is finitely-

branching if for each v ∈ V the set E(v) is finite (note that P(a) for a given a ∈ A can still

have an infinite support.) We say that G has bounded rates if supa∈A R(a) < ∞, and that G

is uniform if R is a constant function. Finally, we say thatG is finite if both V andA are finite.

If V� or V♦ is empty (i.e., there is just one type of vertices), thenG is a continuous-time

Markov decision process (CTMDP). Technically, our definition of CTMDP is slightly differ-

ent from the one used in [4, 8], but the difference is only cosmetic. The two models are

equivalent in a well-defined sense (a detailed explanation is included in Appendix B).

Also note that P and R associate the probability distributions and rates directly to ac-

tions, not to pairs of V × A. This is perhaps somewhat non-standard, but leads to sim-

pler notation (since each vertex can have its “private” set of enabled actions, this is no

restriction).

A play of G is initiated in some vertex. The non-deterministic choice is resolved by

two players, � and ♦, who select the actions in the vertices of V� and V♦, respectively.

The selection itself is timeless, but some time is spent by performing the selected action

(the time is exponentially distributed with the rate R(a)), and then a transition to the

next vertex is chosen randomly according to the distribution P(a). The players can

also select the actions randomly, i.e., they select not just a single action but a probability

distribution on the enabled actions. Moreover, the players are allowed to play differently

when the same vertex is revisited. We assume that both players can see the history of a

play, but cannot measure the elapsed time.
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Let� ∈ {�,♦}. A strategy for player� is a function which to eachwv ∈ N∗V� assigns

a probability distribution on E(v). The sets of all strategies for player � and player ♦ are

denoted by Σ and Π, respectively. Each pair of strategies (σ, π) ∈ Σ×Π together with an

initial vertex v̂ ∈ V determine a unique play of the game G, which is a CTMC G(v̂, σ, π)

where N∗A is the set of states, the rate of a given wa ∈ N∗A is R(a) (the rate function

of G(v̂, σ, π) is also denoted by R), and transitions exist only between states of the form

wa and wava ′, where wa x→wava ′ iff one of the following conditions is satisfied:

• v ∈ V�, a ′ ∈ E(v), and x = P(a)(v) · σ(wv)(a ′) > 0

• v ∈ V♦, a ′ ∈ E(v), and x = P(a)(v) · π(wv)(a ′) > 0

The initial distribution is determined as follows:

• Init(v̂a) = σ(v̂)(a) if v̂ ∈ V� and a ∈ E(v̂);

• Init(v̂a) = π(v̂)(a) if v̂ ∈ V♦ and a ∈ E(v̂);

• in the other cases, Init returns zero.

Note that the set of states of G(v̂, σ, π) is infinite. Also note that all states reachable from

a state v̂a, where Init(v̂a) > 0, are alternating sequences of vertices and actions. We

say that a state w of G(v̂, σ, π) hits a vertex v ∈ V if v is the last vertex which appears

in w (for example, v1a1v2a2 hits v2). Further, we say that w hits T ⊆ V if w hits some

vertex of T . From now on, the paths (both finite and infinite) in G(v̂, σ, π) are denoted

by Greek letters α,β, . . .. Note that for every α ∈ RunG(v̂,σ,π) and every i ∈ N0 we have

that α(i) = wawhere wa ∈ N∗A.

We denote by R(G) the set of all rates used in G (i.e., R(G) = {R(a) | a ∈ A}), and

by H(G) the set of all vectors of the form i : R(G) → N0 satisfying
∑
r∈R(G) i(r) < ∞.

When G is clear from the context, we write just R and H instead of R(G) and H(G),

respectively. For every i ∈ H, we put |i| =
∑
r∈R i(r). For every r ∈ R, we denote

by 1r the vector of H such that 1r(r) = 1 and 1r(r ′) = 0 if r ′ 6= r. Further, for every

wx ∈ N∗N we define the vector iwx ∈ H such that iwx(r) returns the cardinality of the

set {j ∈ N0 | 0 ≤ j < length(w), w(j) ∈ A,R(w(j)) = r} (Note that the last element x ofwx

is disregarded.) Given i ∈ H and wx ∈ N∗N, we say that wx matches i if i = iwx.

We say that a strategy τ is counting (C) if τ(wv) = τ(w ′v) for all w,w ′ ∈ N∗ such

that iwv = iw ′v. In other words, a strategy τ is counting if the only information about

the history of a playwwhich influences the decision of τ is the vector iwv. Hence, every
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counting strategy τ can be considered as a function from H × V to D(A), where τ(i, v)

corresponds to the value of τ(wv) for every wv matching i. A counting strategy τ is

bounded counting (BC) if there is k ∈ N such that τ(wv) = τ(w ′v) whenever |w|, |w ′| ≥ k.

A strategy τ is deterministic (D) if τ(wv) is a Dirac distribution for all wv. Strategies that

are not necessarily counting are called history-dependent (H), and strategies that are not

necessarily deterministic are called randomized (R). Thus, we obtain the following six

types of strategies: BCD, BCR, CD, CR, HD, and HR. The most general (unrestricted)

type is HR, and the importance of the other types of strategies becomes clear in subse-

quent sections.

In this paper, we are interested in continuous-time games with time-bounded reach-

ability objectives, which are specified by a set T ⊆ V of target vertices and a time bound

t ∈ R>0. The goal of player � is to maximize the probability of reaching a target vertex

before the time bound t, while player ♦ aims at minimizing this probability. Let v̂ be the

initial vertex. Then each pair of strategies (σ, π) ∈ Σ × Π determines a unique outcome

Pσ,πv̂ (Reach≤t(T)), which is the probability of all α ∈ RunG(v̂,σ,π) that visit T before time t

(i.e., there is i ∈ N0 such that α(i) hits T and
∑i−1
i=0 α[i] ≤ t). A fundamental question

(answered in Section 3) is whether continuous-time games with time-bounded reacha-

bility objectives have a value, i.e., a unique equilibrium outcome. We say that v̂ ∈ V has

a value if

sup
σ∈Σ

inf
π∈Π
Pσ,πv̂ (Reach≤t(T)) = inf

π∈Π
sup
σ∈Σ
Pσ,πv̂ (Reach≤t(T))

If v̂ has a value, then val(v̂) denotes the value of v̂ defined by the above equality. Further,

if v̂ has a value, it makes sense to define ε-optimal and optimal strategies in v̂. Let ε ≥ 0.
We say that a strategy σ ∈ Σ is an ε-optimal maximizing strategy in v̂ (or just ε-optimal in

v̂) if

inf
π∈Π
Pσ,πv̂ (Reach≤t(T)) ≥ val(v̂) − ε ,

and that a strategy π ∈ Π is an ε-optimal minimizing strategy in v̂ (or just ε-optimal in v̂) if

sup
σ∈Σ
Pσ,πv̂ (Reach≤t(T)) ≤ val(v) + ε

A strategy is optimal in v̂ if it is 0-optimal in v̂, and just optimal if it is optimal in every v̂.

3 The Existence of Values and Optimal Strategies

In this section we first prove that every vertex in a CTG with time-bounded reachability

objectives has a value. This result holds without any additional restrictions (i.e., for
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CTGs with possibly countable state-space and infinite branching degree). From this we

immediately obtain the existence of ε-optimal strategies for both players for every ε > 0.

Then, we study the existence of optimal strategies. We show that even though optimal

minimizing strategies may not exist in infinitely-branching CTGs, they always exist in

finitely-branching ones. As for optimal maximizing strategies, we show that they do

not necessarily exist even in finitely-branching CTGs, but they are guaranteed to exist if

a game is both finitely-branching and has bounded rates (see Definition 2.2).

For the rest of this section, we fix a CTG G = (V,A,E, (V�, V♦),P,R), a set T ⊆ V of

target vertices, and a time bound t > 0. Given i ∈ H where |i| > 0, we denote by Fi the

probability distribution function of the random variable
∑
r∈R

∑i(r)
i=1 X

(r)
i where all X(r)

i

are mutually independent and each X(r)
i is an exponentially distributed random variable

with the rate r (for reader’s convenience, basic properties of exponentially distributed

random variables are recalled in Appendix A). We also define F0 as a constant function

returning 1 for every argument (here 0 ∈ H is the empty history, i.e., |0| = 0). In the

special case whenR is a singleton, we use F` and f` to denote Fi and fi such that i(r) = `,

where r is the only element of R. Further, given ∼ ∈ {<,≤,=} and k ∈ N, we denote

by Pσ,πv̂ (Reach≤t∼k(T)) the probability of all α ∈ RunG(v̂,σ,π) that visit T for the first time

in the number of steps satisfying ∼ k and before time t (i.e., there is i ∈ N0 such that

i = min{j | α(j) hits T } ∼ k and
∑i−1
i=0 α[i] ≤ t).

The following theorem says that every vertex in a CTG with bounded reachability

objectives has a value. Let us note that the powerful result of Martin [7] about weak

determinacy of Blackwell games cannot be applied in this setting, at least not immedi-

ately. As we shall see, the ideas presented in the proof of Theorem 3.1 are useful also for

designing an algorithm which for a given ε > 0 computes ε-optimal strategies for both

players.

Theorem 3.1. Every vertex v ∈ V has a value.

Roughly speaking, Theorem 3.1 is proved in the following way. Given σ ∈ Σ, π ∈ Π,

j ∈ H, and u ∈ V , we denote by Pσ,π(u, j) the probability of all runs α ∈ RunG(u,σ,π) such

that for some n ∈ N0 the state α(n) hits T and matches j, and for all 0 ≤ j < n we have

that α(j) does not hit T . Then we introduce two functions A,B : H× V → [0, 1] where

A(i, v) = sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t) · Pσ,π(v, j) B(i, v) = inf
π∈Π

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

Intuitively, A(i, v) and B(i, v) give the “best” probability achievable by player � and

player ♦ in a vertex v, assuming that the history of a play matches i. Hence, it suf-
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fices to prove that A = B, because then also A(0, v) = B(0, v) = val(v), where 0 re-

turns zero for every argument. The equality A = B is obtained by demonstrating

that both A and B are equal to the (unique) least fixed point of a monotonic function

V : (H× V → [0, 1]) → (H× V → [0, 1]) defined as follows: for every H : H×V → [0, 1],

i ∈ H, and v ∈ V we have that

V(H)(i, v) =


Fi(t) v ∈ T

supa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V� \ T

infa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V♦ \ T

The details are technical and can be found in Appendix C.

Observe that due to Theorem 3.1, both players have ε-optimal strategies in every

vertex v (for every ε > 0). This follows directly from the definition of val(v) given in

Section 2. Now we examine the existence of optimal strategies. We start by observing

that optimal minimizing and optimal maximizing strategies do not necessarily exist,

even if we restrict ourselves to games with finitely many rates (i.e., R(G) is finite) and

finitely many distinct transition probabilities.

Observation 3.2. Optimal minimizing and optimal maximizing strategies in continuous-time

games with time-bounded reachability objectives do not necessarily exist, even if we restrict

ourselves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct

transition probabilities.

However, if G is finitely-branching, then the existence of an optimal minimizing

CD strategy can be established by adapting the construction used in the proof of Theo-

rem 3.1. Observe that we do not require that G has bounded rates.

Theorem 3.3. If G is finitely-branching, then there is an optimal minimizing CD strategy.

The issue with optimal maximizing strategies is slightly more complicated. First,

we observe that optimal maximizing strategies do not necessarily exist even in finitely-

branching games.

Observation 3.4. Optimal maximizing strategies in continuous-time games with time-bounded

reachability objectives may not exist, even if we restrict ourselves to finitely-branching games.

Now we show that if G is finitely-branching and has bounded rates, then there is an

optimal maximizing CD strategy. To achieve that, we introduce the notion of k-step opti-

mal strategies, which optimize the outcome in finite plays of length k. Observe that, due
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to Theorem 3.1, for all k ∈ N and v ∈ V we have that supσ∈Σ infπ∈ΠPσ,πv (Reach≤t≤k(T)) =

infπ∈Π supσ∈ΣP
σ,π
v (Reach≤t≤k(T)). We use valk(v) to denote the k-step value defined by this

equality, and we say that strategies σk ∈ Σ and πk ∈ Π are k-step optimal if for all v ∈ V ,

π ∈ Π, and σ ∈ Σ we have infπ∈ΠPσ
k,π
v (Reach≤t≤k(T)) = supσ∈ΣP

σ,πk

v (Reach≤t≤k(T)) =

valk(v). The existence and basic properties of k-step optimal strategies are stated in our

next lemma.

Lemma 3.5. If G is finitely-branching and has bounded rates, then we have the following:

1. For all ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have that

Pσ,πv (Reach≤t(T)) − ε ≤ Pσ,πv (Reach≤t≤k(T)) ≤ P
σ,π
v (Reach≤t(T))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and πk ∈ Π. Further,

for all ε > 0 and k ≥ (supR)te2− ln ε we have that every k-step optimal strategy is also

an ε-optimal strategy.

If G is finitely-branching and has bounded rates, one may be tempted to construct an

optimal maximizing strategy σ by selecting those actions that are selected by infinitely

many k-step optimal BCD strategies for all k ∈ N (these strategies are guaranteed to

exist by Lemma 3.5 (2)). However, this is not so straightforward, because the distribu-

tions assigned to actions in finitely-branching games can still have an infinite support.

Intuitively, this issue is overcome by considering larger and larger finite subsets of the

support so that the total probability of all of the infinitely many omitted elements ap-

proaches zero. Hence, a proof of the following theorem is somewhat technical.

Theorem 3.6. If G is finitely-branching and has bounded rates, then there is an optimal maxi-

mizing CD strategy.

3.1 Optimal Strategies in Finite Uniform CTGs

In this subsection, we restrict ourselves to finite uniform CTGs and prove that both

players have optimal BCD strategies in such games. Roughly speaking, the result is ob-

tained by showing that optimal CD strategies (which are guaranteed to exist by Theo-

rem 3.3 and Theorem 3.6) can be safely redefined into greedy strategies after performing

a finite (and effectively computable) number of steps. Greedy strategies try to maxi-

mize/minimize the probability of reaching T in as few steps as possible, and hence they
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can ignore the history of a play. Hence, the original optimal CD strategies become sta-

tionary after a finite number of steps, which means that they are in fact BCD. We also

show that this result is tight in the sense that optimal BCD strategies do not necessarily

exist in uniform CTGs with infinitely many states. In Section 4, we use these results to

design an algorithm which computes the optimal BCD strategies in finite uniform games.

In this subsection, we assume that the previously fixed CTG G is finite and that

R(a) = r > 0 for all a ∈ A. We start by introducing greedy strategies.

Definition 3.7. A strategy σ ∈ Σ is greedily maximizing if for all v ∈ V and σ ′ ∈ Σ one of

the following two conditions is satisfied:

• For all i ∈ N0 we have infπ∈ΠPσ,πv (Reach<∞
≤i (T)) = infπ∈ΠPσ

′,π
v (Reach<∞

≤i (T)).

• There is i ∈ N0 such that infπ∈ΠPσ,πv (Reach<∞
≤i (T)) > infπ∈ΠPσ

′,π
v (Reach<∞

≤i (T)) and

for all j < i we have infπ∈ΠPσ,πv (Reach<∞
≤j (T)) = infπ∈ΠPσ

′,π
v (Reach<∞

≤j (T)).

Similarly, π ∈ Π is greedily minimizing if for all v ∈ V and π ′ ∈ Π one of the following

conditions holds:

• For all i ∈ N0 we have supσ∈ΣP
σ,π
v (Reach<∞

≤i (T)) = supσ∈ΣP
σ,π ′
v (Reach<∞

≤i (T)).

• There is i ∈ N0 such that supσ∈ΣP
σ,π
v (Reach<∞

≤i (T)) < supσ∈ΣP
σ,π ′
v (Reach<∞

≤i (T)) and

for all j < i we have supσ∈ΣP
σ,π
v (Reach<∞

≤j (T)) = supσ∈ΣP
σ,π ′
v (Reach<∞

≤j (T)).

A strategy τ is stationary if τ is deterministic and τ(wv) depends just on v for every vertex v.

Note that time plays no role in greedily maximizing/minimizing strategies. Our

next lemma reveals that greedy stationary strategies exist and can be effectively com-

puted in polynomial time in finite CTGs.

Lemma 3.8. There is a greedily maximizing stationary strategy σg, and a greedily minimizing

stationary strategy πg. Moreover, the strategies σg and πg are computable in polynomial time.

Now we can state the main theorem of this subsection.

Theorem 3.9. Let σg be a greedily maximizing stationary strategy, and πg a greedily mini-

mizing stationary strategy. Let σ be an optimal maximizing CD strategy, and π an optimal

minimizing CD strategy. Then for all sufficiently large k ∈ N we have that BCD strategies

σ ′ ∈ Σ and π ′ ∈ Π defined by

σ ′(i, v) =

σ(i, v) if i < k;

σg(v) otherwise.
π ′(i, v) =

π(i, v) if i < k;

πg(v) otherwise.
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are optimal. Moreover, if all transition probabilities in G are rational, then σ ′ and π ′ are optimal

for all k ≥ rt(1+m|A|2·|V |2), wherem is the maximal denominator of transition probabilities.

A natural question is whether Theorem 3.9 can be extended to infinite-state uniform

CTGs. The question is answered in our next observation.

Observation 3.10. Optimal BCD strategies do not necessarily exist in uniform infinite-state

CTGs, even if they are finitely-branching and use only finitely many distinct transition proba-

bilities.

4 Algorithms

Now we present algorithms which compute ε-optimal BCD strategies in finitely-

branching CTGs with bounded rates and optimal BCD strategies in finite uniform CTGs.

In this section, we assume that all rates and distributions used in the considered CTGs

are rational.

4.1 Computing ε-optimal BCD strategies

For the rest of this subsection, let us fix a CTG G = (V,A,E, (V�, V♦),P,R), a set T ⊆ V
of target vertices, a time bound t > 0, and some ε > 0. For simplicity, let us first assume

thatG is finite; as we shall see, our algorithm does not really depend on this assumption,

as long as the game is finitely-branching, has bounded rates, and its structure can be

effectively generated (see Corollary 4.2). Let k = (maxR)te2 − ln(ε
2
). Then, due to

Lemma 3.5, all k-step optimal strategies are ε
2
-optimal.

For every i ∈ H, where |i| ≤ k, and for every v ∈ V , our algorithm computes an action

C(i, v) ∈ E(v) which represents the choice of the constructed ε-optimal BCD strategies

σε ∈ Σ and πε ∈ Π. That is, for every i ∈ H, where |i| ≤ k, and for every v ∈ V�, we

put σε(i, v)(C(i, v)) = 1, and for the other arguments we define σε arbitrarily so that σε
remains a BCD strategy. The strategy πε is induced by the function C in the same way.

To compute C(i, v), our algorithm uses a family of probabilities R(i, u) of reaching T

from u before time t in at most k− |i| steps using the strategies σε and πε and assuming

that the history matches i. Actually, our algorithm computes the probabilities R(i, u)

only up to a sufficiently small error so that the actions chosen by C are “sufficiently

optimal” (i.e., the strategies σε and πε are ε-optimal, but they are not necessarily k-step

optimal for the k chosen above). Our algorithm works in two phases:

13



1. For i ∈ H, where |i| ≤ k, compute a number `i(t) > 0 such that |Fi(t)−`i(t)|
Fi(t)

≤ ε2|i|+1

22|i|+1 .

For every a ∈ A and u ∈ V , compute a floating point representation p(a)(u) of

P(a)(u) satisfying |P(a)(u)−p(a)(u)|
P(a)(u)

≤ ε2k+1

22k+1 .

2. Compute (in a bottom up fashion) the functions R and C as follows: Given i ∈ H,

where |i| ≤ k, and v ∈ V , we have that

R(i, v) =



`i(t) if v ∈ T

0 if v 6∈ T and |i| = k

maxa∈E(v)

∑
u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V� \ T and |i| < k

mina∈E(v)

∑
u∈V p(a)(u) · R(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

For all |i| < k and v 6∈ T , we put C(i, v) = a where a is an action that realizes the

maximum (or minimum).

In Appendix D.1 we show that the strategies σε and πε are indeed ε-optimal. Complex-

ity analysis of the algorithm reveals the following (bp denotes the maximum bit-length

of P(a)(v) and rates, assuming that we represent P(a)(v) and rates as fractions of inte-

gers encoded in binary).

Theorem 4.1. Assume thatG is finite. Then for every ε > 0 there are ε-optimal BCD strategies

σε ∈ Σ and πε ∈ Π computable in time |V |2 · |A| · bp · (|R| + 1)O((maxR)·t+ln 1
ε
).

Note that our algorithm needs to analyze only a finite part of G. Hence, it also works

for infinite games which satisfy the conditions formulated in the next corollary.

Corollary 4.2. Let G be a finitely-branching game with bounded rates and let v ∈ V . Assume

that the vertices and actions ofG reachable from v in a given finite number of steps are effectively

computable, and that an upper bound on rates is also effectively computable. Then for every

ε > 0 there are effectively computable BCD strategies σε ∈ Σ and πε ∈ Π that are ε-optimal in

v.

4.2 Computing optimal BCD strategies in uniform finite games

For the rest of this subsection, we fix a finite uniform CTG G = (V,A,E, (V�, V♦),P,R)

where R(a) = r > 0 for all a ∈ A. Let k = rt(1+m|A|2·|V |2) (see Theorem 3.9).

The algorithm works similarly as the one of Section 4.1, but there are also some dif-

ferences. Since we have just one rate, the vector i becomes just a number i. Similarly as
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in Section 4.1, our algorithm computes an action C(i, v) ∈ E(v) representing the choice

of the constructed optimal BCD strategies σmax ∈ Σ and πmin ∈ Π. By Lemma 3.9, every

optimal strategy can, from the k-th step on, start to behave as a fixed greedy station-

ary strategy, and we can compute such a greedy stationary strategy in polynomial time.

Hence, the optimal BCD strategies σmax and πmin are defined as follows:

σmax(i, v) =

C(i, v) if i < k;

σg(v) otherwise.
πmin(i, v) =

C(i, v) if i < k;

πg(v) otherwise.

To compute the functionC, our algorithm uses a table of symbolic representations of the

(precise) probabilities R(i, v) (here i ≤ k and v ∈ V) of reaching T from v before time t

in at most k − i steps using the strategies σmax and πmin and assuming that the history

matches i.

The function C and the family of all R(i, v) are computed (in a bottom up fashion) as

follows: For all 0 ≤ i ≤ k and v ∈ V we have that

R(i, v) =



Fi(t) if v ∈ T∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞

=j (T)) if v 6∈ T and i = k

maxa∈E(v)

∑
u∈V P(a)(u) · R(i+ 1, u) if v ∈ V� \ T and i < k

mina∈E(v)

∑
u∈V P(a)(u) · R(i+ 1, u) if v ∈ V♦ \ T and i < k

For all i < k and v ∈ V , we put C(i, v) = a where a is an action maximizing or mini-

mizing
∑
u∈V P(a)(u) ·R(i+ 1, u), depending on whether v ∈ V� or v ∈ V♦, respectively.

The effectivity of computing such an action (this issue is not trivial) is discussed in the

proof of the following theorem.

Theorem 4.3. The BCD strategies σmax and πmin are optimal and effectively computable.

5 Conclusions, Future Work

We have shown that vertices in CTGs with time bounded reachability objectives have

a value, and we classified the subclasses of CTGs where a given player has an optimal

strategy. We also proved that in finite uniform CTGs, both players have optimal BCD

strategies. Finally, we designed algorithms which compute ε-optimal BCD strategies

in finitely-branching CTGs with bounded rates, and optimal BCD strategies in finite

uniform CTGs.
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There are several interesting directions for future research. First, we can consider

more general classes of strategies that depend on the elapsed time (in our setting, strate-

gies are time-abstract). In [4], it is demonstrated that time-dependent strategies can

achieve better results than the time-abstract ones. Further, [8] shows the power of time-

dependent strategies differs when the player knows only the time consumed by the last

action, or the complete timed history of a play. It is not immediately clear whether The-

orem 3.1 still holds for time-dependent strategies, and whether it makes sense to think

about optimal strategies in this setting. Second, a generalization to semi-Markov pro-

cesses and games, where arbitrary (not only exponential) distributions are considered,

would be desirable. Another interesting open problem is the existence of optimal BCD

strategies in (not necessarily uniform) games.
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A Exponentially Distributed Random Variables

For reader’s convenience, in this section we recall basic properties of exponentially dis-

tributed random variables.

A random variable over a probability space (Ω,F ,P) is a function X : Ω → R such

that the set {ω ∈ Ω | X(ω) ≤ c} is measurable for every c ∈ R. We usually write

just X∼c to denote the set {ω ∈ Ω | X(ω) ∼ c}, where ∼ is a comparison and c ∈ R. The

expected value of X is defined by the Lebesgue integral
∫
ω∈Ω X(ω)dP . A function f :

R → R≥0 is a density of a random variable X if for every c ∈ R we have that P(X≤c) =∫c
−∞ f(x) dx. If a random variable X has a density function f, then the expected value of

X can also be computed by a (Riemann) integral
∫∞

−∞ x · f(x) dx. Random variables X, Y

are independent if for all c, d ∈ R we have that P(X≤c ∩ Y≤d) = P(X≤c) · P(Y≤d). If

X and Y are independent random variables with density functions fX and fY , then the

random variable X + Y (defined by X+ Y (ω) = X(ω) + Y(ω)) has a density function f

which is the convolution of fX and fY , i.e., f(z) =
∫∞

−∞ fX(x) · fY(z− x) dx.

A random variable X has an exponential distribution with rate λ if P(X ≤ c) = 1− e−λc

for every c ∈ R≥0. The density function fX of X is then defined as fX(c) = λe−λc

for all c ∈ R≥0, and fX(c) = 0 for all c < 0. The expected value of X is equal to∫∞
−∞ x · λe−λxdx = 1/λ.

Lemma A.1. LetM = (M, → ,Prob,R, Init) be a CTMC, j ∈ N0, t ∈ R≥0, and u0, . . . , uj ∈
M. Let U be the set of all runs (u, t) where u starts with u0, . . . , uj and

∑j
i=0 tj ≤ t . We have

that

P(U) = Fi(t) · Init(u0) ·
j−1∏
`=0

Prob(u` → u`+1)

where i assigns to every rate r the cardinality of the set {k | R(uk) = r, 0 ≤ k ≤ j}

PROOF. By induction on j. For j = 0 the lemma holds, because we P(U) = Init(u0) by

definition.
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Now suppose that j > 0 and the lemma holds for all k < j. We denote by Ut ′

k the set

of all runs (u, t) where u starts with u0, . . . , uj and
∑k
i=0 ti = t ′. We have that

P(U) =

∫ t
0

P(Uxj−1) · Prob(uj−1 → uj) · e−R(uj−1)·(t−x) dx

=

∫ t
0

Fi−1R(uj−1)
(x) ·

(
j−2∏
`=0

Prob(u` → u`+1)

)
Prob(uj−1 → uj) · e−R(uj−1)·(t−x) dx

=

j−1∏
`=0

Prob(u` → u`+1) ·
∫ t
0

Fi−1R(uj−1)
(x) · e−R(uj−1)·(t−x) dx

= Fi(x) ·
j−1∏
`=0

Prob(u` → u`+1)

B A Comparison of the Existing Definitions of CTMDPs

As we already mentioned in Section 2, our definition of CTG (and hence also CTMDP)

is somewhat different from the definition of CTMDP used in [4, 8]. To prevent mis-

understandings, we discuss the issue in greater detail in here and show that the two

formalisms are in fact equivalent. First, let us recall the alternative definition CTMDP

used in [4, 8].

Definition B.1. A CTMDP is a tripleM = (S,A,R), whereM is a finite or countably infinite

set of states, A is a finite or countably infinite set of actions, and R : (S×A× S) → R≥0 is a

rate matrix.

A CTMDPM = (S,A,R) can be depicted as a graph where S is the set of vertices and

s→ s ′ is an edge labeled by (a, r) iff R(s, a, s) = r > 0. The conditional probability of

selecting the edge s (a,r)−→ s ′, under the condition that the action a is used, is defined as

r/R(s, a), where R(s, a) =
∑
s
(a,r̂)
−→ ŝ

r̂. The time needed to perform the action a in s is

exponentially distributed with the rate R(s, a). This means that M can be translated

into an equivalent CTG where S is the set of vertices, the set of actions is

{(s, a) | s ∈ S, a ∈ A,R(s, a, s ′) > 0 for some s ′ ∈ S}

where the rate of a given action (s, a) is R(s, a), and P(s, a)(s ′) = R(s, a, s ′)/R(s, a).

This translation also works in the opposite direction (assuming that V = V� or V = V♦).

To illustrate this, consider the following CTG:
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v1

a
3

b

5

v2

v3

c 4

0.2

0.7

0.6
0.4 0.9

0.10.1

An equivalent CTMDP (in the sense of Definition B.1) looks as follows:

v1

v2

v3

a, 0.6

a, 0.3; b, 2

b, 3; a, 2.1
b, 2

a, 0.3

c, 0.4 c, 3.6; a, 2.1

c, 0.4; a, 0.6

c, 3.6; b, 3

However, there is one subtle issue regarding strategies. In [4, 8], a strategy (controller)

selects an action in every vertex. The selection may depend on the history of a play. In

[4, 8], it is noted that if a controller is deterministic, then the resulting play is a CTMC. If

a controller is randomized, one has to add “intermediate” discrete-time states which im-

plement the timeless randomized choice, and hence the resulting play is not a CTMC,

but a mixture of discrete-time and continuous-time Markov chains. In our setting, this

problem disappears, because the probability distribution chosen by a player is sim-

ply “multiplied” with the probabilities of outgoing edges of actions. For deterministic

strategies, the two approaches are of course completely equivalent.

C Proofs of Section 3

C.1 Proof of Theorem 3.1

THEOREM 3.1. Every vertex v ∈ V has a value.

PROOF. Given σ ∈ Σ, π ∈ Π, j ∈ H, and u ∈ V , we denote by Pσ,π(u, j) the probability

of all runs α ∈ RunG(u,σ,π) such that for some n ∈ N0 the state α(n) hits T and matches j,
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and for all 0 ≤ j < nwe have that α(j) does not hit T . Then we introduce two functions

A,B : H× V → [0, 1] where

A(i, v) = sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t) · Pσ,π(v, j) B(i, v) = inf
π∈Π

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,π(v, j)

Clearly, it suffices to prove that A = B, because then also A(0, v) = B(0, v) = val(v),

where 0 returns zero for every argument. The equality A = B is obtained by demon-

strating that both A and B are equal to the (unique) least fixed point of a mono-

tonic function V : (H× V → [0, 1]) → (H× V → [0, 1]) defined as follows: for every

H : H× V → [0, 1], i ∈ H, and v ∈ V we have that

V(H)(i, v) =


Fi(t) v ∈ T

supa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V� \ T

infa∈E(v)

∑
u∈V P(a)(u) ·H(i + 1R(a), u) v ∈ V♦ \ T

Let us denote by µV the least fixed point of V . We show that µV = A = B. The inequality

A � B is obvious and follows directly from the definition of A and B. Hence, it suffices

to prove the following two claims:

1. A is a fixed point of V (from this we obtain µV � A).

2. For every ε > 0 there is a CD strategy πε ∈ Π such that for every i ∈ H and every

v ∈ V we have that

sup
σ∈Σ

∑
j∈H

Fi+j(t) · Pσ,πε(v, j) ≤ µ(V)(i, v) + ε

(from this we get B � µV).

ad 1. If v ∈ T , we have

A(i, v) = sup
σ∈Σ

inf
π∈Π

Fi(t) = V(A)(i, v)

Assume that v 6∈ T . Given a strategy τ ∈ Σ ∪ Π and a ∈ A, we denote by τa a strategy

defined by τa(wu) := τ(vawu).
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If v ∈ V�,

V(A)(i, v) = sup
a∈E(v)

∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

∑
a∈A

d(a)
∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(a)>0

Fi+j(t) · Pσ
a,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

σ(v)(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(a)>0

Fi+j(t) · Pσ
a,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

∑
j∈H

j(a)>0

Fi+j(t) · σ(v)(a)
∑
u∈V

P(a)(u) · Pσa,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)
∑
a∈A

j(a)>0

σ(v)(a)
∑
u∈V

P(a)(u) · Pσa,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)P
σ,π(u, j)
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If v ∈ V♦,

V(A)(i, v) = inf
a∈E(v)

∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= inf
d∈D(E(v))

∑
a∈A

d(a)
∑
u∈V

P(a)(u) · sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= inf
d∈D(E(v))

sup
σ∈Σ

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
σ∈Σ

inf
d∈D(E(v))

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

Fi+1R(a)+j(t) · Pσ,π(u, j)

= sup
σ∈Σ

inf
d∈D(E(v))

inf
π∈Π

∑
a∈A

d(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(a)>0

Fi+j(t) · Pσ
a,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

σ(v)(a)
∑
u∈V

P(a)(u)
∑
j∈H

j(a)>0

Fi+j(t) · Pσ
a,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
a∈A

∑
j∈H

j(a)>0

Fi+j(t) · σ(v)(a)
∑
u∈V

P(a)(u) · Pσa,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)
∑
a∈A

j(a)>0

σ(v)(a)
∑
u∈V

P(a)(u) · Pσa,πa

(u, j − 1R(a))

= sup
σ∈Σ

inf
π∈Π

∑
j∈H

Fi+j(t)P
σ,π(u, j)

ad 2. The strategy πε can be defined as follows. Given i ∈ H and v ∈ V♦, we put

πε(i, v)(a) = 1 for some a ∈ A satisfying
∑
u∈V P(a)(u)·µV(i+1R(a), u) ≤ µV(i, v)+ ε

2|i|+1 .

We prove that πε is ε-optimal minimizing. For every σ ∈ Σ, every i ∈ H, every v ∈ V
and every k ≥ 0, we denote

Rσk(i, v) :=
∑
j∈H
|j|≤k

Fi+j(t) · Pσ,πε[i](v, j)

Here πε[i] is the strategy obtained from πε by πε[i](j, u) := πε(i + j, u).

We prove that Rσk(i, v) ≤ µV(i, v) +
∑k
j=1

ε
2|i|+j , which implies that Rσ(i, v) =

limk→∞Rσk(i, v) ≤ µV(i, v) + ε.

For v ∈ T we have

Rσk(i, v) = Fi(t) = µV(i, v)
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Assume that v 6∈ T . We proceed by induction on k. For k = 0 we have Rσk(i, v) = 0 ≤
µV(i, v). Assume that v ∈ V� \ T

Rσk(i, v) =
∑
a∈E(v)

σ(v)(a)
∑
u∈V

P(a)(u) · Rσa

k−1(i + 1R(a), u)

≤
∑
a∈E(v)

σ(v)(a)
∑
u∈V

P(a)(u) ·

(
µV(i + 1R(a), u) +

k∑
j=2

ε

2|i|+j

)

=

 ∑
a∈E(v)

σ(v)(a) ·
∑
u∈V

P(a)(u) · µV(i + 1R(a), u)

+

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +

k∑
j=2

ε

2|i|+j

Finally, assume that v ∈ V♦ \ T , and let a ∈ A be the action such that πε(i, v)(a) = 1

Rσk(i, v) =
∑
u∈V

P(a)(u) · Rσa

k−1(i + 1R(a), u)

≤
∑
u∈V

P(a)(u) ·

(
µV(i + 1R(a), u) +

k∑
j=2

ε

2|i|+j

)

=

(∑
u∈V

P(a)(u) · µV(i + 1R(a), u)

)
+

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +
ε

2|i| +

k∑
j=2

ε

2|i|+j

≤ µV(i, v) +

k∑
j=1

ε

2|i|+j

C.2 Proof of Observation 3.2

OBSERVATION 3.2. Optimal minimizing and optimal maximizing strategies in continuous-

time games with time-bounded reachability objectives do not necessarily exist, even if we restrict

ourselves to games with finitely many rates (i.e., R(G) is finite) and finitely many distinct

transition probabilities.

PROOF. Consider a game G = (V,A,E, (V�, V♦),P,R), where V = {vi|i ∈ N0} ∪
{start, down}, A = {ai, bi | i ∈ N} ∪ {d}, E(start) = {ai | i ∈ N}, E(down) = {d}, and

E(vi) = {bi} for all i ∈ N, P(ai)(vi) = 1, P(d)(down) = 1, and P(bi) is the uniform dis-

tribution that chooses down and vi−1 for all i ∈ N, and R assigns 1 to every action. The
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structure of G is shown below (the partition of V into (V�, V♦) is not fixed yet, and the

vertices are therefore drawn as ovals).

start

v0

down

v1

a1

b1
v2

a2

b2
v3

a3

b3
vi

ai

bi

d

If we put V� = V , we obtain that supσ∈ΣP
σ,π
start(Reach≤1({down})) =

∑∞̀
=1

(
1
2`F`(1)

)
where π is the trivial strategy for player ♦. However, there is obviously no op-

timal maximizing strategy. On the other hand, if we put V♦ = V , we have that

infπ∈ΠPσ,πstart(Reach≤1({v0})) = 0 where σ is the trivial strategy for player �, but there

is no optimal minimizing strategy.

C.3 Proof of Theorem 3.3

THEOREM 3.3. If G is finitely-branching, then there is an optimal minimizing CD strategy.

PROOF. It suffices to reconsider the proof of Claim 2 in the proof of Theorem 3.1, where

G is finitely-branching and ε is set to zero. Then the strategy πε constructed in the proof

of Claim 2 becomes an optimal minimizing CD strategy.

C.4 Proof of Observation 3.4

OBSERVATION 3.4. Optimal maximizing strategies in continuous-time games with time-

bounded reachability objectives do not necessarily exist, even if we restrict ourselves to finitely-

branching games.

PROOF. Consider a game G = (V,A,E, (V�, V♦),P,R), where V = V� = {vi, ui | i ∈
N0}∪ {win, lose}; A = {ai, bi, endi | i ∈ N0}∪ {w, l}, E(win) = {w}, E(lose) = {l}, and E(vi) =

{ai, bi}, E(ui) = {endi} for all i ∈ N0; R(win) = R(lose) = 1, and R(ai) = R(bi) = 2i,

R(endi) = 2i+1 for all i ∈ N0; P(w)(win) = 1, P(l)(lose) = 1, and for all i ∈ N0 we have

that P(ai)(vi+1) = 1, P(bi)(ui) = 1, and P(endi) is the distribution that assigns ri towin

and 1 − ri to lose, where ri is the number discussed below. The structure of G is shown
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below (note that for clarity, the vertices win and lose are drawn multiple times, and their

only enabled actions w and l are not shown).

v0
20

20

u0

21

win lose

v1
21

21

u1

22

win lose

v2
22

22

u2

23

win lose

a0

b0

end0

r0 1−r0

a1

b1

end1

r1 1−r1

a2

b2

end2

r2 1−r2

2i−1
vi

2i

2i

ui

2i+1

win lose

ai

bi

endi

ri 1− ri

For every k ∈ N, let ik ∈ H be the vector that assigns 1 to all r ∈ R such that r ≤ 2k, and

0 to all other rates. Let us fix t ∈ Q and q ≥ 2
3

such that Fik(t) ≥ q for every k ∈ N. This

is indeed possible by Markov inequality and the mean of the variables’ sum being less

than 2. For every j ≥ 0, we fix some rj ∈ Q such that q− 1
2j ≤ Fij+1

(t) · rj ≤ q− 1
2j+1 . It is

easy to check that rj ∈ [0, 1], which means that the function P is well-defined.

We claim that supσ∈ΣP
σ,π
v0

(Reach≤t({win})) = q (where π is the trivial strategy for

player ♦), but there is no strategy σ such that Pσs0(Reach≤t({win})) = q. The first part

follows by observing that player � can reach win with probability at least q − 1
2j for

an arbitrarily large j by selecting the actions a0, . . . , aj−1 and then bj. The second part

follows from the fact that by using bj, the probability of reaching win from v0 becomes

strictly lower than q, and by not selecting bj at all, this probability becomes equal to 0.

C.5 Proof of Lemma 3.5

LEMMA 3.5. Let us assume that G is finitely-branching and has bounded rates. Then we have

the following:

1. For every ε > 0, k ≥ (supR)te2 − ln ε, σ ∈ Σ, π ∈ Π, and v ∈ V we have that

Pσ,πv (Reach≤t(T)) − ε ≤ Pσ,πv (Reach≤t≤k(T)) ≤ P
σ,π
v (Reach≤t(T))

2. For every k ∈ N, there are k-step optimal BCD strategies σk ∈ Σ and πk ∈ Π. Further,

for all ε > 0 and k ≥ (supR)te2− ln ε we have that every k-step optimal strategy is also

an ε-optimal strategy.
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PROOF. ad 1. Let us fix a rate r = supR. It suffices to see that (here, the random

variables used to define Fi have rate r)
∞∑

n=k+1

Pσ,πv (Reach≤t=n(T)) ≤
∞∑

n=k+1

Fn(t) · Pσ,πv (Reach≤∞
=n (T))

≤
∞∑

n=k+1

Fk+1(t) · Pσ,πv (Reach≤∞
=n (T))

= Fk+1(t) ·
∞∑

n=k+1

Pσ,πv (Reach≤∞
=n (T))

≤ Fk+1(t)

which is less than ε for k ≥ rte2 − ln ε by the following lemma.

Lemma C.6. For every ε ∈ (0, 1) and n ≥ rte2 − ln ε we have Fn(t) < ε.

PROOF.

Fn(t) = 1− e−rt

n−1∑
i=0

(rt)i

i!
= e−rt

∞∑
i=n

(rt)i

i!
= (∗)

By Taylor’s theorem for ex =
∑∞
i=0

xi

i!
and Lagrange form of the remainder we get

(∗) ≤ e−rt (rt)
n

n!
ert =

(rt)n

n!
= (∗∗)

By Stirling’s formula n! ≈
√
n(n/e)n) we get

(∗∗) <
(
rte

n

)n
<

(
1

e

)− ln ε

= ε

by assumptions.

ad 2. We proceed similarly as in the proof of Theorem 3.1 (we also use some notation of

the proof of Theorem 3.1). Recall that given σ ∈ Σ, π ∈ Π, j ∈ H, and u ∈ V , we denote

by Pσ,π(u, j) the probability of all runs α ∈ RunG(u,σ,π) such that for some n ∈ N0 the

state α(n) hits T and matches j, and for all 0 ≤ j < nwe have that α(j) does not hit T .

Given (σ, π) ∈ Σ× Π, i ∈ H such that |i| ≤ k, and v ∈ V , we define

P̄σ,π(i, v) :=
∑
j∈H

|j|≤k−|i|

Fi+j(t) · Pσ,π(v, j)

the probability of reaching T from v before time t in at most k − |i| steps using the

strategies σ and π and assuming that the history matches i.

To define the CD strategies σk and πk we express the value supσ∈Σ infπ∈Π P̄σ,π(i, v)

(= infπ∈Π supσ∈Σ P̄
σ,π(i, v), see below) using the following recurrence.
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Given i ∈ H, where |i| ≤ k, and v ∈ V , we define

R̄(i, v) :=



Fi(t) if v ∈ T

0 if v 6∈ T and |i| = k

maxa∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V� \ T and |i| < k

mina∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

For v 6∈ T and |i| < k we define σk(i, v) and πk(i, v) in the following way. If v ∈ V�, we

put σk(i, v)(a) = 1 for some action a which realizes the maximum in the definition of

R̄(i, v). Similarly, if v ∈ V♦, we put πk(i, v)(a) = 1 for some action a which realizes the

minimum in the definition of R̄(i, v). For |i| ≥ k and v ∈ V we define σk(i, v) and πk(i, v)

arbitrarily so that σk and πk remain BCD.

For every CD strategy τ ∈ Σ ∪ Π and i ∈ H, we denote by τ[i] the strategy obtained

from τ by τ[i](j, u) := τ(i + j, u).

Given π ∈ Π, i ∈ H where |i| ≤ k, and v ∈ V , we define

Zπ(i, v) := P̄σ
k[i],π(i, v)

Similarly, given σ ∈ Σ, i ∈ H where |i| ≤ k, and v ∈ V , we define

Zσ(i, v) := P̄σ,π
k[i](i, v)

We prove the following lemma.

Lemma C.7. Let i ∈ H, where |i| ≤ k, and v ∈ V . Then

R̄(i, v) = inf
π∈Π

Zπ(i, v) (1)

= sup
σ∈Σ

Zσ(i, v) (2)

= sup
σ∈Σ

inf
π∈Π

P̄σ,π(i, v) (3)

= inf
π∈Π

sup
σ∈Σ

P̄σ,π(i, v) (4)

In particular, the strategies σk and πk are k-step optimal because P̄σ,π(0, v) =

Pσ,πv (Reach≤t≤k(T)).

PROOF. First, if v ∈ T , then for all (σ, π) ∈ Σ × Π we have P̄σ,π(i, v) = Fi(t) = R̄(i, v).

Assume that v 6∈ T . We proceed by induction on n = k − |i|. For n = 0 we have

P̄σ,π(i, v) = 0 = R̄(i, v). Assume the lemma holds for n, we show that it holds also for

n+ 1.
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We start by proving the equation (1). Using the notation of the proof of Theorem 3.1,

given a strategy τ ∈ Σ ∪ Π and a ∈ A, we denote by τa a strategy defined by τa(wu) :=

τ(vawu).

If v ∈ V� and σk(i, v)(b) = 1,

inf
π∈Π

Zπ(i, v) = inf
π∈Π

∑
u∈V

P(b)(u) · Zπb

(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · inf
π∈Π

Zπ
b

(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · inf
π∈Π

Zπ(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · R̄(i + 1R(b), u)

= max
a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

= R̄(i, v)

If u ∈ V♦,

inf
π∈Π

Zπ(i, v) = inf
π∈Π

∑
a∈E(v)

π(v)(a)
∑
u∈V

P(a)(u) · Zπa

(i + 1R(a), u)

= inf
d∈D(E(v))

∑
a∈E(v)

d(a)
∑
u∈V

P(a)(u) · inf
π∈Π

Zπ
a

(i + 1R(a), u)

= min
a∈E(v)

∑
u∈V

P(a)(u) · inf
π∈Π

Zπ(i + 1R(a), u)

= min
a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

= R̄(i, v)

The equation (2) can be proved in a similar manner.

The lemma follows from the following

R̄(i, v) = inf
π∈Π

Zπ(i, v) ≤ sup
σ∈Σ

inf
π∈Π

P̄σ,π(i, v) ≤ inf
π∈Π

sup
σ∈Σ

P̄σ,π(i, v) ≤ sup
σ∈Σ

Zσ(i, v) = R̄(i, v)

The rest of the lemma is easily obtained from 1. as follows. Let ε > 0 and consider

k ≥ (supR)te2 − ln ε. Then 1. implies that the value R̄(0, v) of the k-step game initiated
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in v satisfies val(v) − ε ≤ R̄(0, v) ≤ val(v). Therefore all k-step optimal strategies are

ε-optimal.

C.6 Proof of Theorem 3.6

THEOREM 3.6. If G is finitely-branching and has bounded rates, then there is an optimal

maximizing CD strategy.

PROOF. For the sake of this proof, given a set of runs R ⊆ RunG(v̂,σ,π), we denote

Pσ,πv̂ (R) the probability of R in G(v̂, σ, π). For every k ∈ N we fix a k-step optimal BCD

strategy σk of player � (see Lemma 3.5). Let us order all numbers r such that R(a) = r

for some a into an enumerable sequence r1, r2 . . . and the set V into an enumerable se-

quence v1, v2 . . .. We define a sequence of sets of strategies Σ ⊇ Γ0 ⊇ Γ1 ⊇ · · · as follows.

We put Γ0 = {σ` | ` ∈ N} and we construct Γ` to be an infinite subset of Γ`−1 such that

we have σ(i, vn) = σ ′(i, vn) for all σ, σ ′ ∈ Γ`, all n ≤ ` and all i ∈ H such that |i| ≤ `
and i(rj) = 0 whenever j > `. Note that such a set exists since Γ`−1 is infinite and the

conditions above partition it into finitely many classes, one of which must be infinite.

Now we define the optimal strategy σ. Let i ∈ H and vn ∈ V , we choose a number

` such that ` > |i|, ` > n and i(j) = 0 for all j > ` (note that such ` exists for any i ∈ H
and vn ∈ V). We put σ(i, vn) = σ ′(i, vn) where σ ′ ∈ Γ`. It is easy to see that σ is a CD

strategy, it remains to argue that it is optimal. Suppose the converse, i.e. that it is not

ε-optimal in some vin for some ε > 0.

Let us fix k satisfying conditions of part 1 of Lemma 3.5 for ε
4
. For each a ∈ A

there is a set Ba ⊆ V such that V \ Ba is finite and P(a)(Ba) ≤ ε
4k

. For all strategies

σ ′ and π ′ and all k we have that Pσ ′,π ′
v (Uv,σ

′,π ′

i ) ≤ ε
2k

where Uv,σ ′,π ′

i is the set of all

runs of G(v, σ ′, π ′) that do not contain any state of the form v0a0 . . . ai−1vi−1an where

vi−1 ∈ Bai−1
. As a consequence we have Pσ ′,π ′

v (
⋂k
i=1U

v,σ ′,π ′

i ) ≤ ε
4
. In the sequel, we

denote Uv,σ ′,π ′
=
⋂k
i=1U

v,σ ′,π ′

i and we write just U instead of Uv,σ ′,π ′ if v, σ and π are

clear from the context.

LetW be the set of histories of the form v0a0 . . . vi−1ai−1vi where i ≤ k, v0 = vin, and

for all 0 ≤ j < iwe have aj ∈ E(vj), P(aj)(vi+j) > 0 and vj+1 6∈ Baj
. We claim that there is

m ≥ n s.t. σm is ε
4
-optimal and satisfies σ(w) = σm(w) for all w ∈W. To see that such a

strategy exists, observe that W is finite, which means that there is a number ` such that

k ≤ ` and for all w ∈W, there is no vi in w such that i > ` and whenever a is in w, then

R(a) = ri for i < `. Now it suffices to choose arbitrary ε
4
-optimal strategy σm ∈ Γ`.
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One can prove by induction on the length of path from vin to T that the following

equality holds true for all π.

Pσm,π
vin

(Reach≤t≤k(T) \U) = Pσ,πvin
(Reach≤t≤k(T) \U)

Finally, we obtain

min
π∈Π
Pσ,πvin

(Reach≤t≤k(T) \U) = min
π∈Π
Pσm,π
vin

(Reach≤t≤k(T) \U)

≥ min
π∈Π
Pσm,π
vin

(Reach≤t≤m(T) \U) −
ε

4

≥ min
π∈Π
Pσm,π
vin

(Reach≤t≤m(T)) −
ε

2

≥ val(vin) −
ε

4
−
ε

2
≥ val(vin) − ε

which means that σ is ε-optimal in vin.

C.7 Proof of Lemma 3.8

LEMMA 3.8. There is a greedily maximizing stationary strategy σg, and a greedily minimizing

stationary strategy πg. Moreover, the strategies σg and πg are computable in polynomial time.

PROOF. W.l.o.g. let us assume that all states in T are absorbing, i.e. the only transitions

leading from them are self-loops. Indeed, if the behavior of a greedy strategy is changed

after reaching T it still remains greedy. Also due to Theorem 3.3 and Theorem 3.6 we

may restrict our attention to CD strategies. Therefore, in this proof, Σ and Π denote sets

of CD strategies only.

The following algorithm computes which actions can be chosen in greedily minimiz-

ing and greedily maximizing strategies. We begin with the original game and keep on

pruning inoptimal transitions until we reach a fix-point. In the first step, we compute

the value R1(v) for each vertex vwhich is the optimized probability of reaching T in one

step. We remove all transitions that are not optimal in this sense. In the next step, we

consider reachability in precisely two steps. Note that we chose among the one-step op-

timal possibilities only. Transitions not optimal for two-steps reachability are removed

and so forth. After stabilization, using the remaining transitions only thus results in

greedy optimal behavior. Hence any such stationary strategy is a greedy optimal sta-

tionary strategy.
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R0(v) =

1 if v ∈ T,

0 otherwise.

E0(v) = E(v)

Ri+1(a) =
∑
u∈V

Prob(a)(u) · Ri(u)

Ri+1(v) =

maxa∈Ei(v) Ri+1(a) if v ∈ V�,

mina∈Ei(v) Ri+1(a) otherwise.

Ei+1(v) = Ei(v) ∩ {a | Ri+1(a) = Ri+1(v)}

In order to prove the correctness and state the complexity of the algorithm, we need

the following definitions. We recall that a strategy τ[h] is defined by τ[h](j, u) = τ(h +

j, u). The probability to reach T within time t using strategies σ and π from v having

already taken h steps before continuing from v is denoted by

Pσ,πh,v (Reach≤t(T)) =

∞∑
j=0

Fh+j(t)Pσ[h],π[h]
v (Reach<∞

=i (T))

Similarly, the probability to reach T within i steps using strategies σ and π from v having

already taken h steps before continuing from v is denoted by

Pσ,πh,v (Reach<∞
≤i (T)) = Pσ[h],π[h]

v (Reach<∞
≤i (T))

Note that since there is no time limit here, it is determined by the underlying discrete

Markov chain.

For n ∈ N, we say that σ ∈ Σ is greedily maximizing on n steps if for every h ∈
N0 and v ∈ V , every σ ′ ∈ Σ and every i ≤ n we have minπ∈ΠPσ,πh,v (Reach<∞

≤i (T)) =

minπ∈ΠPσ
′,π

h,v (Reach<∞
≤i (T)) unless there is j ≤ i satisfying minπ∈ΠPσ,πh,v (Reach<∞

≤j (T)) >

minπ∈ΠPσ
′,π

h,v (Reach<∞
≤j (T)). We write σ ∈ ΣG(n).

Similarly, for n ∈ N, we say that σ ∈ Σ is greedily minimizing on n steps if for every

h ∈ N0 and v ∈ V , every σ ′ ∈ Σ and every i ≤ n we have maxσ∈ΣPσ,πh,v (Reach<∞
≤i (T)) =

maxσ∈ΣPσ,π
′

h,v (Reach<∞
≤i (T)) unless there is j ≤ i satisfying maxσ∈ΣPσ,πh,v (Reach<∞

≤j (T)) <

maxσ∈ΣPσ,π
′

h,v (Reach<∞
≤j (T)). We write π ∈ ΠG(n).

A strategy τ ∈ Σ ∪ Π is greedily optimizing if it is greedily maximizing or greedily

minimizing.
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Lemma C.10. Strategies σ ∈ Σ and π ∈ Π are greedily maximizing on n steps, and greedily

minimizing on n steps, respectively, iff they use transitions from En only.

PROOF. ⇐: We proceed by induction and prove that, moreover, for all h ∈ N0 and

v ∈ V

Rn(v) = max
σ∈ΣG(n−1)

min
π∈Π
Pσ,πh,v (Reach<∞

≤n (T)) = min
π∈Π
Pσn,π
h,v (Reach<∞

≤n (T))

= min
π∈ΠG(n−1)

max
σ∈Σ
Pσ,πh,v (Reach<∞

≤n (T)) = max
σ∈Σ
Pσ,πn
h,v (Reach<∞

≤n (T))

for all strategies σn, πn using transitions from En only.

The case n = 0 is trivial. Now consider n + 1. We prove the maximizing part, the

minimizing part is similar. Let σ use transitions from En+1 only. Using the induction

hypothesis and the definition of greediness on n + 1 steps, it is sufficient to prove that

minπ∈ΠPσ,πh,v (Reach<∞
≤n+1(T)) ≥ minπ∈ΠPσ

′,π
h,v (Reach<∞

≤n+1(T)) for all h ∈ N0 and v ∈ V and

σ ′ ∈ ΣG(n), i.e. those using transitions in En only. For v ∈ V� \ T ,

min
π∈Π
Pσ,πh,v (Reach<∞

≤n+1(T)) = min
π∈Π

∑
u∈V

σ(h, v)(u)Pσ,πh+1,u(Reach<∞
≤n (T))

=
∑
u∈V

σ(h, v)(u) min
π∈Π
Pσ,πh+1,u(Reach<∞

≤n (T))

(by IH and En+1 ⊆ En) =
∑
u∈V

σ(h, v)(u) · Rn(u)

(σ uses En+1 only) = max
a∈En(v)

∑
u∈V

Prob(a)(u) · Rn(u) = (∗)

(by IH) = max
a∈En(v)

∑
u∈V

Prob(a)(u) max
σ∈ΣG(n−1)

min
π∈Π
Pσ,πh+1,u(Reach<∞

≤n (T))

= max
σ∈ΣG(n)

min
π∈Π
Pσ ′,π
h,v (Reach<∞

≤n+1(T))

Since (∗) = Rn+1(v), the equality with the first and the last expression proves the two

auxiliary induction assumptions. For v ∈ V♦\T , we simply use the induction hypothesis

for the successors of v. And to prove the two auxiliary induction assumptions, we need

to show that

Rn+1(v) = min
a∈Ei(v)

∑
u∈V

Prob(a)(u)·Rn(u) = min
a∈Ei(v)

∑
u∈V

Prob(a)(u)· max
σ∈ΣG(n−1)

min
π∈Π
Pσ,πu (Reach<∞

≤n (T))

is (i) equal to

max
σ∈ΣG(n)

min
π∈Π
Pσ,πv (Reach<∞

≤n+1(T)) = max
σ∈ΣG(n)

min
π∈Π

min
a∈Ei(v)

∑
u∈V

Prob(a)(u)Pσ,πu (Reach<∞
≤n (T))
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which is clear and (ii) equal to

min
π∈Π
Pσ,πv (Reach<∞

≤n+1(T)) = min
a∈Ei(v)

∑
u∈V

Prob(a)(u) min
π∈Π
Pσ,πu (Reach<∞

≤n (T))

for every σ using transitions from En+1 only, which follows by IH, since

minπ∈ΠPσ,πu (Reach<∞
≤n (T)) is maximized by every σ using transitions in En only hence

also by every σ using transitions in En+1 only. The case with v ∈ T is trivial.⇐: Let σ be a greedily maximizing strategy on n + 1 steps. If σ used a transition

a ∈ En \ En+1 in v then it would not be greedily maximizing on n + 1 steps, since the

n+ 1 steps maximum (equal to Rn+1(v)) is not realized by a as it has been cut off in the

(n+ 1)-th step. Again similarly for the minimizing part.

Since the number of transitions is finite, there is a fix-point En = En+1, moreover,

n ≤ |E|. Therefore, any strategies using E|E| are greedily optimizing on m steps for all

m, hence greedily optimal. The complexity is thus polynomial in the size of the game

graph.

As there is always a transition enabled in each vertex (the last one is trivially op-

timal), we can choose one transition in each vertex arbitrarily and thus get a greedy

optimal stationary strategy.

C.8 Proof of Theorem 3.9

THEOREM 3.9. Let σg be a greedily maximizing stationary strategy, and πg a greedily min-

imizing stationary strategy. Let σ be an optimal maximizing CD strategy, and π an optimal

minimizing CD strategy. Then for all sufficiently large k ∈ N we have that BCD strategies

σ ′ ∈ Σ and π ′ ∈ Π defined by

σ ′(i, v) =

σ(i, v) if i < k;

σg(v) otherwise.
π ′(i, v) =

π(i, v) if i < k;

πg(v) otherwise.

are optimal. Moreover, if all transition probabilities in G are rational, then σ ′ and π ′ are optimal

for all k ≥ rt(1+m|A|2·|V |2), wherem is the maximal denominator of transition probabilities.

PROOF. W.l.o.g. let us assume that all states in T are absorbing. Indeed, after reaching

T any strategy can be applied without changing the Pσ,πv (Reach≤t(T)). Also due to The-

orem 3.3 and Theorem 3.6 we may restrict our attention to CD strategies. Therefore, in

this proof, Σ and Π denote sets of CD strategies only.
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Firstly, we prove a weaker version of the theorem for continuous-time Markov deci-

sion processes, and then extend it to games. From now on, let G be a finite game with

one rate r and V♦ = ∅. The case with V� = ∅ is dual here. We write Pσ instead of Pσ,π

where π is the only strategy in Π.

Let us denote

ψn(t) = Fn(t) − Fn+1(t) = e−r·t (rt)
n

n!

the probability that by the time t exactly n subsequent actions take place. Using the

notation from the proof of Lemma 3.8 in Section C.7 we have

Pσ,πh,v (Reach≤t(T)) =

∞∑
i=0

ψh+i(t)Pσ,πh,v (Reach<∞
≤i (T))

The following lemma proves a key argument that after enough time has elapsed, the

probability of taking only one more step before the time limit is much larger than that

of taking more than one.

Lemma C.12. For every ε > 0 for all n ≥ rt(1+ 1
ε
)

Fn+1(t)

ψn(t)
< ε

PROOF.
Fn+1(t)

ψn(t)
=
1

n!

∞∑
i=1

(rt)i

(n+ i)!
<

∞∑
i=1

(rt)i

(n+ 1)i
=

rt

n+ 1− rt
< ε

Nextly, we prove that any optimal strategy must eventually behave greedily, at least

for a particular number of steps (recall the definition of greediness on n steps from Sec-

tion C.7). Subsequently, we prove that greediness on a large number of steps coincides

with greediness. To cover the notion of finiteness of the game, we introduce granular-

ity of the game to be the least common multiple of probabilities’ denominators, i.e. we

denote

M = lcm{r | ∃α ∈ A, v ∈ V, q, r ∈ N : P(α)(u) =
q

r
, gcd(q, r) = 1}

Lemma C.13. For every n ∈ N there is δ > 0 such that for all h ≥ rt(1 + 1/δ), for every

optimal CD strategy σ, the strategy σ[h] is greedily optimizing on n steps. Moreover, if all

transition probabilities are rational, then δ = (1/M)n.
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PROOF. Let σg be greedily maximizing CD strategy and σ an optimal CD strategy

supposed, for a contradiction, not to be greedily maximizing. Then there is j ≤ n such

that

Pσg

h,v(Reach<∞
≤j (T)) > Pσh,v(Reach<∞

≤j (T))

and for all i < j

Pσg

h,v(Reach<∞
≤i (T)) = Pσh,v(Reach<∞

≤i (T))

Therefore,

Pσg

h,v(Reach≤t(T)) − Pσh,v(Reach≤t(T)) =

=

∞∑
i=0

ψh+i(t)Pσg

h,v(Reach<∞
≤i (T)) −

∞∑
i=0

ψh+i(t)Pσh,v(Reach<∞
≤i (T)) ≥

≥ ψh+j(t)Pσg

h,v(Reach<∞
≤i (T)) −ψh+j(t)Pσh,v(Reach<∞

≤i (T)) − Fh+j+1 = (∗)

By the finiteness of the game there is δ > 0 such that δ < Pσg

h,v(Reach<∞
≤i (T)) −

Pσh,v(Reach<∞
≤i (T)) for all σ ∈ Σ, v ∈ V and i ≤ n whenever this difference is non-zero.

Moreover, if all transition probabilities are rational, then δ can be chosen to be (1/M)n.

Indeed, Pτv (Reach<∞
≤i (T)) is clearly expressible as `/Mi for some ` ∈ N0. Hence,

(∗) > ψh+j(t)δ− Fh+j+1(t) > 0

by Lemma C.12 for all h ≥ rt(1+ 1/δ), a contradiction with optimality of σ.

Lemma C.14. If a strategy is greedily optimizing on |E| steps, then it is greedily optimizing.

PROOF. Using the notation of the algorithm in the proof of Lemma 3.8, E|E| contains

exactly the transitions allowed for strategies that are greedily optimizing on |E| steps

(by Lemma C.10). These are also exactly the transitions allowed for greedily optimizing

strategies as E|E| = E|E|+i for all i ∈ N.

Corollary C.15. Let k = rt(1 +M|E|). Then for all v ∈ V and h ≥ k, for every optimal CD

strategy σ, the strategy σ[h] is greedily optimizing.

Note that since the number of probabilities is not greater than |A| · |V |, we haveM ≤
m|A|·|V |, wherem is the greatest denominator of transition probabilities. Moreover, since

|E| ≤ |V | · |A|, we get M|E| ≤ m|A|2·|V |2 . Furthermore, for probabilities encoded in binary,

where bp is the maximum bit-length, we getm ≤ 2bp and thusM ≤ 2bp·|A|·|V |.

We now turn our attention to the proof for games in general. From now on, let G be

a uniform, i.e. with one rate, finite game. Let us recall σ to be an optimal CD strategy,
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σg a stationary greedily maximizing strategy and σ ′ such that σ ′(h, v) = σg(v) for all

h ≥ k = rt(1 +M|E|), and σ ′ = σ otherwise, i.e. on the first k steps. Then for all v ∈ V
and h ≥ k

min
π∈Π
Pσ ′,π
h,v (Reach≤t(T)) − min

π∈Π
Pσ,πh,v (Reach≤t(T)) =

= min
π∈Π

∞∑
i=0

ψh+i(t)Pσg,π
h,v (Reach<∞

≤i (T)) − min
π∈Π

∞∑
i=0

ψh+i(t)Pσ,πh,v (Reach<∞
≤i (T)) = (∗)

Lemma C.16. For πg a greedily minimizing strategy

max
σ∈Σ

∞∑
i=0

ψk+i(t)Pσ,πg
v (Reach<∞

≤i (T))

is realized by all greedily maximizing strategies. Similarly, for σg a greedily maximizing strategy

min
π∈Π

∞∑
i=0

ψk+i(t)Pσg,π
v (Reach<∞

≤i (T))

is realized by all greedily minimizing strategies.

PROOF. Let G(v̂,−, πg) denote the unfold of the game according to πg and leaving the

�-nondeterminism thus resulting in a Markov decision process. By Corollary C.15 the

maximum is realized by all greedily maximizing strategies inG(v̂,−, πg). We prove that

these are exactly the greedily minimizing strategies in G. Consider the algorithm from

proof of Lemma 3.8 in Section C.7 applied on G(v̂,−, πg) yielding R ′i and E ′i. We prove

that Ri = R ′i and Ei(v) = E ′i(v) for all i and v ∈ V�.

Clearly, R0 = 1T = R ′0 and E0(v) = E(v) = E ′0(v) for v ∈ V�. On the one hand, for

v ∈ V� the algorithm computes the same R ′i+1(v) = Ri+1(v) and thus E ′i+1(v) = Ei+1(v)

using the induction hypothesis. On the other hand, R ′i+1(v) = Ri+1(v) for v ∈ V♦ since

the transition πg(v) realizes the minimum by greediness of πg.

Therefore, we conclude again by characterization of greedy strategies in Lemma C.10

and the fix-point argument for E|E|.

The minimizing part is dual.

The first minimum in (∗) is realized by a greedily minimizing strategy πg ∈ Π by

Lemma C.16 for minimizer. Hence
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(∗) =

∞∑
i=0

ψh+i(t)Pσg,πg

h,v (Reach<∞
≤i (T)) − min

π∈Π

∞∑
i=0

ψh+i(t)Pσ,πh,v (Reach<∞
≤i (T)) ≥

≥
∞∑
i=0

ψh+i(t)Pσg,πg

h,v (Reach<∞
≤i (T)) −

∞∑
i=0

ψh+i(t)Pσ,πg

h,v (Reach<∞
≤i (T)) ≥

≥
∞∑
i=0

ψh+i(t)Pσg,πg

h,v (Reach<∞
≤i (T)) − max

σ∈Σ

∞∑
i=0

ψh+i(t)Pσ,πg

h,v (Reach<∞
≤i (T)) = (∗∗)

Considering G(v̂, πg) and using Lemma C.16 again now for maximizer, σg being

greedily maximizing implies (∗∗) = 0. Since σ = σ ′ on the first k steps, summing these

inequalities for h = k over all v ∈ V (weighted by probabilities of being in v after h

steps) yields

min
π∈Π
Pσ ′,π
v̂ (Reach≤t(T)) − min

π∈Π
Pσ,πv̂ (Reach≤t(T)) ≥ 0

Hence, σ ′ is optimal. The minimizing part is similar.

C.9 Proof of Observation 3.10

OBSERVATION 3.10. Optimal BCD strategies do not necessarily exist in infinite-state uni-

form CTGs, even if they are finitely-branching and use only finitely many distinct transition

probabilities.

PROOF. Consider a game G = (V,A,E, (V�, V♦),P,R) where V = V� = {vi, ui, ūi, ûi |

i ∈ N0} ∪ {down}, A = {ai, hati, bari, b̂i, b̄i |∈ N0}, E(vi) = {ai}, E(ui) = {bari, hati},

E(ûi) = {b̂i}, and E(ūi) = {b̄i} for all i ∈ N0. P is defined as follows:

• P(a0) is the uniform distribution on {v0, v1, u0}, P(ai) where i > 0 is the uniform

distribution on {ui, vi+1},

• P(hati)(ûi) = 1 and P(bari)(ūi) = 1,

• P(b̄0)(û0) = 1, and P(b̄j)(ūj−1) = 1 for j > 0,

• P(b̂1)(down) = 3
4
, P(b̂1)(û0) = 1

4
, and for j > 1 we set P(b̂j) to be the uniform

distribution on {ûi−1, down}.

We set R(a) = 1 for all a ∈ A. The structure of G is shown below.
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v0

u0

ū0

down

û0

bar0 hat0

3
4

1
4

v1

u1

ū1

down

û1

bar1 hat1

v2

u2

ū2

down

û2

bar2 hat2

vi

ui

ūi

down

ûi

bari hati

Observe that player � has a real choice only in states ui.
We show that if the history is of the form v0a0 . . . viaiui (where i ∈ N0), the optimal

strategy w.r.t. reaching û0 must choose the action bari. We need to show that F2i+3(1) >
1

2i+2 · F2i+2(1), i.e., that F2i+2(1)
F2i+3(1)

< 2i+2. This follows by observing that

F2i+2(1)

F2i+3(1)
=

∑∞
j=2i+2

1
j!∑∞

j=2i+3
1
j!

<

∑∞
j=2i+2

1
j!

1
(2i+3)!

< (2i+ 3) +

∞∑
k=0

1

(2i+ 3)k
= 2i+ 3+

2i+ 4

2i+ 3
< 2i+ 5 < 2i+2 .

On the other hand, from Corollary C.15 one can deduce that for all i there is j such

that any optimal strategy must choose hati if the history is of the form (v0a0)
j . . . viaiui

D Proofs of Section 4

D.1 Proof of ε-optimality of the strategies σε and πε

Lemma D.1. The strategies σε and πε (defined in Section 4.1) are ε-optimal.

PROOF. We use some notation of the proof of Theorem 3.1. Remember that given

σ ∈ Σ, π ∈ Π, j ∈ H, and u ∈ V , we denote by Pσ,π(u, j) the probability of all runs

α ∈ RunG(u,σ,π) such that for some n ∈ N0 the state α(n) hits T and matches j, and for all

0 ≤ j < nwe have that α(j) does not hit T .

Given (σ, π) ∈ Σ× Π, i ∈ H, where |i| ≤ k, and v ∈ V , we define

P̄σ,π(i, v) :=
∑
j∈H

|j|≤k−|i|

Fi+j(t) · Pσ,π(v, j)

the probability of reaching T from v before time t in at most k − |i| steps using the

strategies σ and π and assuming that the history already matches i. We have shown in
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the proof of Lemma C.7 that for every i ∈ H, where |i| ≤ k, and v ∈ V , the value

max
σ∈Σ

min
π∈Π

P̄σ,π(i, v) = min
π∈Π

max
σ∈Σ

P̄σ,π(i, v)

is equal to R̄(i, v) defined by the following equations:

R̄(i, v) :=



Fi(t) if v ∈ T

0 if v 6∈ T and |i| = k

maxa∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V� \ T and |i| < k

mina∈E(v)

∑
u∈V P(a)(u) · R̄(i + 1R(a), u) if v ∈ V♦ \ T and |i| < k

Note that P̄σ,π(0, v) = Pσ,πv (Reach≤t≤k(T)) and thus R̄(0, v) = valk(v), the k-step value in v.

Note that assuming li(t) = Fi(t) for all i ∈ H satisfying |i| ≤ k, we would obtain that

each R(i, v) is precisely R̄(i, v) and hence that σε and πε are k-step optimal strategies.

Let us allow imprecisions in the computation of li(t). We proceed as follows: First

we show, by induction, that each value R(i, v) approximates the value R̄(i, v) with rel-

ative error ε2|i|+1

22|i|+1 (Lemma D.2 below). From this we get, also by induction, that both

minπ∈Π P̄σε,π(i, v) and maxσ∈Σ P̄σ,πε(i, v) approximate R̄(i, v) with relative error ε2|i|+1

22|i|+1 as

well (Lemma D.3 below). In other words, σε and πε are ε
2
-optimal strategies in the k-

step game. Together with the assumptions imposed on k we obtain that σε and πε are

ε-optimal strategies.

We denote by errn the number ε2n+1

22n+1 .

Lemma D.2. For all i ∈ H and v ∈ V we have

(1− err|i|) · R̄(i, v) ≤ R(i, v) ≤ (1+ err|i|) · R̄(i, v)

PROOF. If v ∈ T , then R̄(i, v) = Fi(t) and R(i, v) = li(t), and the inequality follows from

the definition of li(t). Assume that v 6∈ T . We proceed by induction on n = k − |i|. For

n = 0 we have R̄(i, v) = 0 = R(i, v). Assume the inequality holds for any v and i ∈ H
such that |i| = k− n. Let us consider i ∈ H such that |i| = k− n− 1 and v ∈ V . If v ∈ V�

we have

R(i, v) = max
a∈E(v)

∑
u∈V

p(a)(u) · R(i + 1R(a), u)

≤ max
a∈E(v)

∑
u∈V

P(a)(u) · (1+ err|i|+1) · R̄(i + 1R(a), u) · (1+ err|i|+1)

= (1+ err|i|+1)
2 · max

a∈E(v)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u)

≤ (1+ err|i|) · R̄(i, v)
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and, similarly,

R(i, v) ≥ (1− err|i|) · R̄(i, v)

For v ∈ V♦ the proof is similar.

We denote by ΣCD and ΠCD the sets of all CD strategies of Σ and Π, respectively. Given

a strategy τ ∈ ΣCD ∪ ΠCD and i ∈ H, we denote by τ[i] the strategy obtained from τ by

τ[i](j, u) := τ(i + j, u).

Given i ∈ H and π ∈ Π, we define

Kπ(i, v) := P̄σε[i],π[i](i, v)

Similarly, given i ∈ H and σ ∈ Σ, we define

Kσ(i, v) := P̄σ[i],πε[i](i, v)

Lemma D.3. Let i ∈ H, where |i| ≤ k, and v ∈ V . We have

min
π∈ΠCD

Kπ(i, v) ≥ R̄(i, v) · (1− err|i|)

max
σ∈ΣCD

Kσ(i, v) ≤ R̄(i, v) · (1+ err|i|)

PROOF. If v ∈ T , then Kπ(i, v) = Kσ(i, v) = Fi(t) and R̄(i, v) = li(t), and similarly as

above, the result follows from the definition of li(t). Assume that v 6∈ T . We proceed by

induction on n := k − |i|. For n = 0 we have 0 = Kπ(i, v) = Kσ(i, v) = R̄(i, u). Assume

the lemma holds true for n and consider n+ 1. If v ∈ V� and σε(i, v)(b) = 1,

min
π∈ΠCD

Kπ(i, v) = min
π∈ΠCD

∑
u∈V

P(b)(u) · Kπ(i + 1R(b), u)

=
∑
u∈V

P(b)(u) · min
π∈ΠCD

Kπ(i + 1R(b), u)

≥
∑
u∈V

P(b)(u) · R̄(i + 1R(b), u) · (1− err|i|+1)

≥
∑
u∈V

p(b)(u) · 1

1+ err|i|+1
· R(i + 1R(b), u) ·

1− err|i|+1

1+ err|i|+1

= R(i, v) ·
1− err|i|+1

(1+ err|i|+1)2

≥ R̄(i, v) · (1− err|i|+1) ·
1− err|i|+1

(1+ err|i|+1)2

≥ R̄(i, v) · (1− err|i|)
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and

max
σ∈ΣCD

Kσ(i, v) = max
σ∈Σ

∑
a∈E(v)

σ(i, v)(a)
∑
u∈V

P(a)(u) · Kσ(i + 1R(a), u)

= max
a∈E(v)

∑
u∈V

P(a)(u) ·max
σ∈Σ

Kσ(i + 1R(a), u)

≤ max
a∈E(u)

∑
u∈V

P(a)(u) · R̄(i + 1R(a), u) · (1+ err|i|+1)

≤ R̄(i, u) · (1+ err|i|) .

For u ∈ V♦ the proof is similar.

D.2 Proof of Theorem 4.1

THEOREM 4.1. Assume that G is finite. Then for every ε > 0 there are ε-optimal BCD

strategies σε ∈ Σ and πε ∈ Π computable in time |V |2 · |A| · bp · (|R| + 1)O((maxR)·t+ln 1
ε
).

First, we show that the phase 1. takes time exponential w.r.t. k and polynomial w.r.t.
1
ε
. We approximate the value of Fi(t) to the relative precision (ε/2)2k+1 as follows. Ac-

cording to [1], the value of Fi(t) is expressible as
∑
r∈R qre

−rt, where qr is a polynomial

in t and can be precisely computed using exponentially many (in k) arithmetical opera-

tions on polynomially large integers, hence is in EXPTIME w.r.t. k, i.e. (maxR)t+ ln 1
ε
.

We approximate this fraction with a floating point representation with relative error

(ε/4)2k+1. This can be done in linear time w.r.t. the length of numbers and k ln 1
ε
, hence

in the same exponential time w.r.t. k.

For every r ∈ R, the value of e−rt can be approximated using Taylor’s theorem. After

the n-th summand is computed, the remainder is smaller than
(
ert
n

)n using Stirling’s

formula. For n = k(4/ε) > 4(maxR)te2/ε we get the relative error to be less than(
ε
4

)n
<
(
ε
4

)2k+1. To compute the n-th approximation, time polynomial in n is sufficient.

Hence, its complexity is polynomial w.r.t. k/ε, i.e. ((maxR)t + ln 1
ε
)/ε and linear w.r.t.

bp.

Note that the above procedure has to be repeated for every i ∈ H, where |i| ≤ k. The

number of all i ∈ H, where |i| ≤ k, is
(

|R|+k−1
k

)
≤ |R|k. So computing all values Fi(t)

takes time |R|k · |R| · bp ·
(
1
ε

)O(1) · 2O((maxR)·t+ln 1
ε
).

Using similar procedure as above, for every a ∈ A and u ∈ V , we compute the

floating point approximation p(a)(u) of P(a)(u) to the relative precision (ε/4)2k+1 in

time linear in k ln 1
ε

and bp. (Here we assume that the probabilities P(a)(u) are given
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as fractions with both numerator and denominator represented in binary with length

bounded by bp.)

So the first phase takes time |R|k · |A| · |V | · |R| ·
(
1
ε

)O(1) · bp · 2O((maxR)·t+ln 1
ε
).

Second, we evaluate the complexity of phase 2. In phase 2., the algorithm computes

the table R and outputs the results into the table C. The complexity is thus determined

by the product of the table size and the time to compute one item in the table. The size

of the tables is
(

|R|+k−1
k

)
· |V | ≤ |R|k|V |.

The value of R(i, u) according to the first case has already been computed in phase

1. To compute the value according to the third or fourth case we have to compare

numbers whose representation has at most
(
1
ε

)O(1)
2O(k) + k · k ln(1

ε
) · bp · |V | bits. To

compute R(i, v), we need to compare |A| such numbers. So the phase 2. takes time

|R|k|V | · |A| · (
(
1
ε

)O(1)
2O(k) + k · k ln(1

ε
) · bp · |V |).

Altogether, the overall complexity is

|V |2 · |A| · |R|O(k) ·
(
1

ε

)O(1)

· bp · 2O(k) = |V |2 · |A| · bp · (|R| + 1)O((maxR)t+ln 1
ε
)

D.3 Proof of Corollary 4.2

COROLLARY 4.2. Let G be a finitely-branching game with bounded rates and let v ∈ V .

Assume that the vertices and actions of G reachable from v in a given finite number of steps are

effectively computable, and that an upper bound on rates is also effectively computable. Then

for every ε > 0 there are effectively computable BCD strategies σε ∈ Σ and πε ∈ Π that are

ε-optimal in v.

PROOF. By Lemma 3.5, there is k ∈ N such that all k-step optimal strategies are ε
4
-

optimal. Thus we may safely restrict the set of vertices of the game G to the set Vreach

of vertices reachable from v in at most k steps (i.e. for all v ′ ∈ Vreach there is a sequence

v0 . . . vk ∈ V∗ and a0 . . . ak ∈ A∗ such that, v0 = v, vn = v ′, ai ∈ E(vi) for all 0 ≤ i ≤ n
and P(ai)(vi+1) > 0 for all 0 ≤ i < n). Moreover, for every action a ∈ Awhich is enabled

in a vertex of Vreach there is a finite set Ba of vertices such that 1 −
∑
u∈Ba

P(a)(u) < ε
4k

.

We restrict the domain of P(a) to Ba by assigning the probability 0 to all vertices of V\Ba

and adding the probability 1 −
∑
u∈Ba

P(a)(u) to an arbitrary vertex of Ba. Finally, we

restrict the set of vertices once more to the vertices reachable in k steps from v using the

restricted P. Then the resulting game is finite and by Theorem 4.1 there is an ε
4
-optimal
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BCD strategy σ ′ in this game. Now it suffices to extend σ ′ to a BCD strategy σ in the

original game by defining, arbitrarily, its values for vertices and actions removed by the

above procedure. It is easy to see that σ is an ε-optimal BCD strategy in G.

D.4 Proof of Theorem 4.3

THEOREM 4.3. The BCD strategies σmax and πmin are optimal and effectively computable.

PROOF. We start by showing that σmax and πmin are optimal. Let us denote by Σg
(resp. Πg) the set of all CD strategies σ ∈ Σ (resp. π ∈ Π) such that for all u ∈ V�

(u ∈ V♦) and i ≥ kwe have σ(i, u) = σg(u). By Theorem 3.9, for every v ∈ V we have

val(v) = max
σ∈Σg

min
π∈Πg

Pσ,πv (Reach≤t(T)) = min
π∈Πg

max
σ∈Σg

Pσ,πv (Reach≤t(T))

Let us denote

P̄σ,π(i, v) =

∞∑
j=0

Fi+j(t) · Pσ,πv (Reach<∞
=j (T))

(This corresponds to P̄σ,π(i, v), as defined in the proof of Lemma 3.5 (2.), for uniform

games).

For every i ≥ 0we put

val(i, v) = max
σ∈Σg

min
π∈Πg

P̄σ,π(i, v) = min
π∈Πg

max
σ∈Σg

P̄σ,π(i, v) (5)

(Here the second equality follows from Theorem 3.1.)

Remember that given a CD strategy τ and i ≥ 0, we denote by τ[i] a strategy obtained

from τ by τ[i](j, u) = τ(i+ j, u). We denote by ΣCD and ΠCD the sets of all CD strategies

of Σ and Π, respectively.

Given i ≥ 0 and π ∈ Π, we define

K̄π(i, v) := P̄σmax[i],π[i](i, v)

Similarly, given i ∈ H and σ ∈ Σ, we define

K̄σ(i, v) := P̄σ[i],πmin[i](i, v)

Lemma D.7. Let i ≤ k and v ∈ V . We have

min
π∈ΠCD

K̄π(i, v) = R(i, v) = max
σ∈ΣCD

K̄σ(i, v) (6)

R(i, v) = val(i, v) (7)
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PROOF. We start by proving the equation (6). If v ∈ T , then Kπ(i, v) = Kσ(i, v) =

Fi(t) = R(i, v). Assume that v 6∈ T . We proceed by induction on n = k− i. For n = 0 we

have

K̄π(i, v) = K̄σ(i, v) = P̄σg,πg(i, v) = R(i, v)

Assume the lemma holds true for n and consider n+ 1. If v ∈ V� and σmax(i, v)(b) = 1,

min
π∈ΠCD

K̄π(i, v) = min
π∈ΠCD

∑
u∈V

P(b)(u) · K̄π(i+ 1, u)

=
∑
u∈V

P(b)(u) · min
π∈ΠCD

K̄π(i+ 1, u)

=
∑
u∈V

P(b)(u) · R(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) · R(i+ 1, u)

= R(i, v)

and

max
σ∈ΣCD

K̄σ(i, v) = max
σ∈Σ

∑
a∈E(v)

σ(i, v)(a)
∑
u∈V

P(a)(u) · K̄σ(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) ·max
σ∈Σ

K̄σ(i+ 1, u)

= max
a∈E(v)

∑
u∈V

P(a)(u) · R(i+ 1, u)

= R(i, u)

For u ∈ V♦ the proof is similar.

Now the equation (7) follows easily:

R(i, v) = min
π∈ΠCD

K̄π(i, v) ≤ max
σ∈ΣCD

min
π∈ΠCD

P̄σ,π(i, v) =

min
π∈ΠCD

max
σ∈ΣCD

P̄σ,π(i, v) ≤ max
σ∈ΣCD

K̄σ(i, v) = R(i, v)

This proves that σmax and πmin are optimal.
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Effective computability of σmax and πmin. We show how to compute the table C(i, v).

Assume that we have already computed the symbolic representations of the values R(i+

1, u) for all u ∈ V . Later we show that
∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞

=j (T)) can effectively

be expressed as a linear combination of transcendental numbers of the form ect where c

is algebraic. Therefore, for u, u ′ ∈ V we have that R(i+1, u)−R(i+1, u ′) can effectively

be expressed as a finite sum
∑
j ηje

δj where the ηj and δj are algebraic complex numbers

and the δj’s are pairwise distinct. Now it suffices to apply Lemma 2. of [2] to decide

whether R(i+ 1, u) − R(i+ 1, u ′) > 0, or not.

It remains to show that
∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞

=j (T)) is effectively expressible in

the form
∑
j ηje

δj . Consider a gameG ′ obtained fromG by adding new vertices v1, . . . , vi
and new actions a1, . . . , ai, setting E(vj) = {aj} for 0 ≤ j ≤ i, and setting P(ai)(v) = 1,

and P(aj)(vj+1) = 1 for 0 ≤ j < i (intuitively, we have just added a simple path of length

i from a new vertex v1 to v). We put R(aj) = r for 0 ≤ j ≤ i. As the strategies σg and πg
are stationary, they can be used in G ′ (we just make them select aj in vj).

Since vj 6∈ T for all 0 ≤ j ≤ iwe obtain

Pσg,πg
v1

(Reach≤t(T)) =

∞∑
j=0

Fj(t) · Pσg,πg
v1

(Reach<∞
=j (T)) =

∞∑
j=0

Fi+j(t) · Pσg,πg
v1

(Reach<∞
=i+j(T)) =

∞∑
j=0

Fi+j(t) · Pσg,πg
v (Reach<∞

=j (T))

As σg and πg are stationary, the chain G ′(v1, σg, πg) can be treated as a finite contin-

uous time Markov chain. Therefore we may apply results of [1] and obtain the desired

form of Pσg,πg
v1 (Reach≤t(T)), and hence also of

∑∞
j=0 Fi+j(t) · P

σg,πg
v (Reach<∞

=j (T)).
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