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Abstract

We show that controller synthesis and verification problems for Markov decision

processes with qualitative PECTL∗ objectives are 2-EXPTIME complete. More pre-

cisely, the algorithms are polynomial in the size of a given Markov decision process

and doubly exponential in the size of a given qualitative PECTL∗ formula. More-

over, we show that if a given qualitative PECTL∗ objective is achievable by some

strategy, then it is also achievable by an effectively constructible one-counter strat-

egy, where the associated complexity bounds are essentially the same as above. For

the fragment of qualitative PCTL objectives, we obtain EXPTIME completeness and

the algorithms are only singly exponential in the size of the formula.

∗Supported by the research center Institute for Theoretical Computer Science (ITI), project No. 1M0545.
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1 Introduction

A Markov decision process (MDP) [22, 17] is a finite directed graph G =

(V, E, (V�, V©),Prob) where the vertices of V are partitioned into non-deterministic and

stochastic subsets (denotedV� andV©, resp.), E ⊆ V×V is a set of edges, and Prob assigns

a fixed probability to every edge (s, s ′) ∈ Ewhere s ∈ V© so that
∑

(s,s ′)∈E Prob(s, s ′) = 1

for every fixed s ∈ V©. Without restrictions, we assume that each vertex has at least one

and at most two outgoing edges.

MDPs are used as a generic model for discrete systems where one can make deci-

sions (by selecting successors in non-deterministic vertices) whose outcomes are uncer-

tain (this is modeled by stochastic vertices). The application area of MDPs includes

such diverse fields as ecology, chemistry, or economics. In this paper, we focus on more

recent applications of MDPs in the area of computer systems (see, e.g., [25]). Here, non-

deterministic vertices are used to model the environment, unpredictable users, process

scheduler, etc., while stochastic vertices model coin-tossing in randomized algorithms,

bit-flips and other hardware errors whose probability is known empirically, probability

distribution on input events, etc. There are two main problems studied in this area:

• Controller synthesis. The task is to construct a “controller” which selects appropriate

successors at non-deterministic vertices so that a certain objective is achieved.

• Verification. Here, we wonder whether a given objective is achieved for all “adver-

saries” that control the non-deterministic vertices. In other words, we want to know

whether a given system behaves correctly in all environments, under all interleavings

produced by a scheduler, etc.

Both “controller” and “adversary” are mathematically captured by the notion of strat-

egy, i.e., a function which to every computational history vs ∈ V∗V� ending in a non-

deterministic vertex assigns a probability distribution over the set of outgoing edges

of s. General strategies are also referred to as HR strategies because the decision de-

pends on the history of the current computation (H) and it is randomized (R). Strategies

that always return a Dirac distribution1 are deterministic (D), and strategies which de-

pend just on the currently visited vertex are memoryless (M). Thus, one can distinguish

among HR, HD, MD, and MR strategies. In the controller synthesis problem, we usually

want to find the simplest possible strategy (ideally MD) that achieves a given objective,

1A probability distribution is Dirac if it assigns 1 to exactly one element.
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because this makes the controller easy to implement. In the verification problem, we

want to know whether a given objective holds for unrestricted (i.e., HR) strategies.

Since the original application field of MDPs was mainly economics and performance

evaluation, there is a rich and mature mathematical theory of MDPs with discounted

and limit-average objectives [22, 17]. In the context of computer systems, one is usually

interested in objectives related to safety, liveness, fairness, etc. , and these can be natu-

rally formalized as temporal properties. In particular, the subclass of linear-time properties

(such as Büchi, parity, Rabin, Street, or Muller properties) is relatively well understood

even in a more general framework of simple stochastic games. Linear-time properties

classify each run (i.e., an infinite path) as good or bad according to some criterion, and

the associated quantitative (or qualitative) objective is to maximize the probability of good

runs (or to make this probability equal to 1, respectively). There are many results con-

cerning the complexity of algorithms for solving the corresponding controller synthesis

and verification problems, and also results that classify the type of strategies that are

needed to achieve a given objective. For a more detailed information, we refer to recent

overviews such as [18, 26, 9, 7].

Another class of temporal objectives studied in the literature are linear-time multi-

objectives [13, 8], which are Boolean combinations of linear-time objectives. Since there

can be trade-offs among the individual linear-time objectives, i.e., satisfying property P1
with high probability may necessitate satisfying property P2 with low probability, the

corresponding controller synthesis and verification problems are not directly reducible

to the linear-time case. Strategies for linear-time multi-objectives may require both ran-

domization and memory, even in the qualitative subcase [13]. The corresponding con-

troller synthesis problem is solvable in time which is polynomial in the size of MDP and

doubly exponential in the size of the objective.

In this paper, we deal with a more general class of temporal properties that are spec-

ified as formulae of probabilistic branching-time logics PCTL, PCTL∗, and even PECTL∗

[19]. These logics are obtained from their non-probabilistic counterparts CTL, CTL∗,

and ECTL∗ (see, e.g., [10, 24]) by replacing the universal and existential path quantifiers

with the probabilistic operator P./ρ, where ρ is a rational constant and ./ is a compar-

ison such as ≤ or >. Intuitively, the formula P./ρϕ says “the probability of all runs

that satisfy ϕ is ./-related to ρ”. If the probability bound ρ is restricted just to 0 and 1,

we obtain the qualitative fragment of a given logic. Controller synthesis for MDPs with

branching-time objectives has been considered in [1] where it is shown that strategies
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for fairly simple qualitative PCTL objectives may require memory and/or randomiza-

tion. Hence, the classes of MD, MR, HD, and HR strategies (see above) form a strict

hierarchy. Moreover, in the same paper it is also proved that the controller synthesis

problem for PCTL objectives is NP-complete for the subclass of MD strategies. A trivial

consequence of this result is coNP-completeness of the verification problem for PCTL

objectives and MD strategies. In [21], the subclass of MR strategies is examined, and it

is proved that the controller synthesis problem for PCTL objectives and MR strategies

is in PSPACE (the same holds for the verification problem). Some results about history-

dependent strategies are presented in [4], where it is shown that controller synthesis

for PCTL objectives and HD (and also HR) strategies is highly undecidable (in fact, this

problem is complete for the Σ11 level of the analytical hierarchy). This result holds even

for a fragment of PCTL where the set of modal connectives is restricted to P=1F , P=1G,

P>0F , and P=5/8F . The role of the only quantitative connective P=5/8F is rather special2,

and one consequence of the results presented in this paper is that the proof cannot be

completed without quantitative connectives. In [4], it is also demonstrated that the con-

troller synthesis and verification problems are EXPTIME-complete for HD/HR strate-

gies and the fragment of PCTL that contains only the qualitative connectives P=1F ,

P=1G, and P>0F . Moreover, it is shown that strategies for this type of objectives require

only finite memory, and can be effectively constructed in exponential time. This study

is continued in [6] where the memory requirements for objectives of various fragments

of qualitative PCTL are classified in a systematic way (it is noted already in [4] that

strategies for qualitative PCTL objectives may require infinite memory).

Our contribution. In this paper we solve the controller synthesis and verifica-

tion problems for all qualitative PCTL and qualitative PECTL∗ objectives and history-

dependent (i.e., HR and HD) strategies. For the sake of simplicity, we first unify HR

and HD strategies into a single notion of history-dependent combined (HC) strategy. Let

G = (V, E, (V�, V©),Prob) be a MDP and let (VD, VR) be a partitioning of V� into the

subsets of Dirac and randomizing vertices. An HC strategy is a HR strategy σ such that

σ(vs) is a Dirac distribution for every vs ∈ V∗VD. Hence, HC strategies coincide with

HR and HD strategies when VD = ∅ and VD = V�, respectively. Nevertheless, our solu-

tion covers also the cases when ∅ 6= VD 6= V�. Now we can formulate the main result of

this paper.

2There is no “magic” in the number 5/8 itself—any rational constant strictly between 0 and 1 would

suffice for purposes of this proof.
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Theorem 1.1. Let G = (V, E, (V�, V©),Prob) be an MDP, (VD, VR) a partitioning of V�, and

ϕ a qualitative PECTL∗ formula.

• The problem whether there is a HC strategy that achieves the objective ϕ is 2-EXPTIME-

complete. More precisely, the problem is solvable in time which is polynomial in |G| and

doubly exponential in |ϕ|. Since qualitative PECTL∗ objectives are closed under negation, the

same complexity results hold for the verification problem.

• If the objective ϕ is achievable by some HC strategy, then it is also achievable by a

one-counter strategy (see Definition 2.3). Moreover, the corresponding one-counter automa-

ton can effectively be constructed in time which is polynomial in |V |, doubly exponential in

|ϕ|, and singly exponential in bp, where bp is the number of bits of precision for the constants

employed by Prob.

• In the special case when ϕ is a qualitative PCTL formula, the controller synthesis problem is

EXPTIME-complete and the algorithms are only singly exponential in the size of the formula.

This result gives a substantial generalization and unification of the partial results dis-

cussed above and solves some of the major open questions formulated in these papers.

In some sense, it complements the undecidability result for quantitative PCTL objec-

tives given in [4].

The principal difficulty which requires new ideas and insights is that strategies for

qualitative branching-time objectives need infinite memory in general. In Section 3

we give examples demonstrating this fact. Considering the complexity and expres-

sive power of qualitative PECTL∗ objectives, it is somewhat surprising that a single

non-negative integer counter suffices in all these cases. Although the above stated the-

orem itself does not give any explanation of what is actually counted in the counter and

why, the proof does bring a good understanding of this issue. We try to give some basic

intuition in Section 3. Another difference from the previous work is that the precise val-

ues of probabilities that are employed by a given strategy do influence the (in)validity

of qualitative PECTL∗ objectives. This is very different from qualitative linear-time

(multi-)objectives whose (in)validity depends just on the information what edges have

zero/positive probability (the corresponding controller synthesis algorithms are usually

graph-theoretic).

From the practical point of view, the main point of our complexity analysis is the

fact that both controller synthesis and verification problems for qualitative branching-

time objectives are solvable in time which is polynomial in the number of vertices of a
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given MDP. An empirically confirmed fact (which is well-known in the model-checking

community) is that the main limiting factor for effective analysis of computer systems is

the size of the model (i.e., the size of the MDP), while specifications (temporal formulae)

tend to be small. Hence, our results in fact show that the controller synthesis and verifi-

cation problems for MDPs with qualitative branching-time objectives are tractable, and

future software tools for automatic analysis of probabilistic systems can be equipped

with this functionality.

2 Definitions

In this section we recall basic definitions that are needed for understanding key results

of this paper. For reader’s convenience, we also repeat the definitions that appeared

already in Section 1.

In the rest of this paper, N, N0, Q, and R denote the set of positive integers, non-

negative integers, rational numbers, and real numbers, respectively. We also use the

standard notation for intervals of real numbers, writing, e.g., (0, 1] to denote the set

{x ∈ R | 0 < x ≤ 1}.
The set of all finite words over a given alphabet Σ is denoted Σ∗, and the set of all

infinite words over Σ is denoted Σω. Given two sets K ⊆ Σ∗ and L ⊆ Σ∗∪Σω, we use K ·L
(or just KL) to denote the concatenation of K and L, i.e., KL = {ww ′ | w ∈ K,w ′ ∈ L}. We

also use Σ+ to denote the set Σ∗ r {ε} where ε is the empty word. The length of a given

w ∈ Σ∗ ∪ Σω is denoted length(w), where the length of an infinite word is ω. Given a

word (finite or infinite) over Σ, the individual letters of w are denoted w(0), w(1), . . ..

A probability distribution over a finite or countably infinite set X is a function f : X →
[0, 1] such that

∑
x∈X f(x) = 1. A probability distribution is Dirac if it assigns 1 to exactly

one element. A σ-field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under

complement and countable union. A probability space is a triple (Ω,F ,P) where Ω is

a set called sample space, F is a σ-field over Ω whose elements are called events, and

P : F → [0, 1] is a probability measure such that, for each countable collection {Xi}i∈I of

pairwise disjoint elements of F , P(
⋃
i∈I Xi) =

∑
i∈IP(Xi), and moreover P(Ω)=1.

Definition 2.1 (Markov Chain). A Markov chain is a triple M = (S,→,Prob) where S is

a finite or countably infinite set of states, → ⊆ S × S is a transition relation, and Prob is a

function which to each transition s → t of M assigns its probability Prob(s → t) ∈ (0, 1] so
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that for every s ∈ S we have
∑
s→t Prob(s → t) = 1 (as usual, we write s x→ t instead of

Prob(s → t) = x).

A path in M is a finite or infinite word w ∈ S+ ∪ Sω such that w(i−1) → w(i) for every

1 ≤ i < length(w). A run inM is an infinite path inM. The set of all runs that start with

a given finite pathw is denoted Run[M](w). WhenM is clear from the context, we write

Run(w) instead of Run[M](w).

When defining the semantics of probabilistic logics (see below), we need to mea-

sure the probability of certain sets of runs. Formally, to every s ∈ S we associate the

probability space (Run(s),F ,P) where F is the σ-field generated by all basic cylinders

Run(w) where w is a finite path starting with s, and P : F → [0, 1] is the unique prob-

ability measure such that P(Run(w)) = Π
length(w)−1
i=1 xi where w(i−1)

xi→ w(i) for every

1 ≤ i < length(w). If length(w) = 1, we put P(Run(w)) = 1. Hence, only certain subsets

of Run(s) are P-measurable, but in this paper we only deal with “safe” subsets that are

guaranteed to be in F .

Definition 2.2 (Markov Decision Process). A Markov decision process (MDP) is a finite

directed graph G = (V, E, (V�, V©),Prob) where the vertices of V are partitioned into non-

deterministic and stochastic subsets (denoted V� and V©, resp.), E ⊆ V×V is a set of edges,

and Prob assigns a fixed positive probability to every edge (s, s ′) ∈ E where s ∈ V© so that∑
(s,s ′)∈E Prob(s, s ′) = 1 for every fixed s ∈ V©. For technical convenience, we require that

each vertex has at least one and at most two outgoing edges.

Let G = (V, E, (V�, V©),Prob) be a MDP. A strategy is a function which to every

vs ∈ V∗V� assigns a probability distribution over the set of outgoing edges of s. Each

strategy σ determines a unique Markov chain Gσ where states are finite paths in G

and vs x→ vss ′ iff either s is stochastic, (s, s ′) ∈ E, and Prob((s, s ′)) = x, or s is non-

deterministic, (s, s ′) ∈ E, and x is the probability of (s, s ′) chosen by σ(vs). General

strategies are also called HR strategies, because they are history-dependent (H) and ran-

domized (R). We say that σ is memoryless (M) if σ(vs) depends just on the last vertex s,

and deterministic if σ(vs) is a Dirac distribution. Thus, we obtain the classes of HR, HD,

MR, and MD strategies. For the sake of clarity and uniformity of our presentation, we

also introduce the notion of history-dependent combined (HC) strategy. Here we assume

that the non-deterministic vertices of V� are split into two disjoint subsets VD and VR
of Dirac and randomizing vertices. A HC strategy is a HR strategy σ such that σ(vs) is

a Dirac distribution for every vs ∈ V∗VD. Hence, in the special case when VD = ∅ (or
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VD = V�), every HC strategy is a HD strategy (or a HR strategy). A special type of

history-dependent strategies are finite-memory (F) strategies. A finite-memory strategy

σ is specified by a deterministic finite-state automatonA over the input alphabet V (see,

e.g., [20]), where σ(vs) depends just on the control state entered by A after reading the

word vs. In this paper we also consider one-counter strategies which are specified by

one-counter automata.

Definition 2.3 (One counter automaton). A one counter automaton is a tuple C =

(Q,Σ, qin, δ
=0, δ>0) where Q is a finite set of control states, Σ is a finite input alphabet,

qin ∈ Q is the initial control state, and

δ=0 : Q×Σ → Q×{0, 1}, δ>0 : Q×Σ → Q×{0, 1,−1}

are transition functions. The set of configurations of C isQ×N0. For every u ∈ Σ+ we define

a binary relation u7→ over configurations inductively as follows:

• for all a ∈ Σ we put (q, c)
a7→ (q ′, c + i) iff either c = 0 and δ=0(q, a) = (q ′, i), or c > 0

and δ>0(q, a) = (q ′, i);

• (q, c)
au7→ (q ′, c ′) iff there is (q ′′, c ′′) such that (q, c)

a7→ (q ′′, c ′′) and (q ′′, c ′′)
u7→ (q ′, c ′).

For every u ∈ Σ+, let qu ∈ Q and cu ∈ N0 be the unique elements such that (qin, 0)
u7→ (qu, cu).

Let G = (V, E, (V�, V©),Prob) be a MDP and (VD, VR) a partitioning of V�. A one-

counter strategy is a HC strategy σ for which there is a one-counter automaton C =

(Q,V, qin, δ
=0, δ>0) and a constant k ∈ N such that

• for every vs ∈ V∗VD, σ(vs) is a Dirac distribution that depends only on qvs and the

information whether cvs is zero or not;

• for every vs ∈ V∗VR such that s has two outgoing edges3, σ(vs) is either a Dirac

distribution or a distribution that assigns k−cvs to one edge, and 1− k−cvs to the other

edge. The choice depends solely on qvs.

Before presenting the definition of the logic PECTL∗, we need to recall the notion of

Büchi automaton. Our definition of Büchi automaton is somewhat nonstandard in the

sense that we consider only special alphabets of the form 2{1,...,n} and the symbols as-

signed to transitions in the automaton are interpreted in a special way. These differences

are not fundamental but technically convenient.

3In Definition 2.2, we require that each vertex has either one or two outgoing edges. Randomized

vertices with just one outgoing edge are not interesting because every strategy has to assign probability

1 to the only available edge.
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Definition 2.4 (Büchi automaton). A Büchi automaton of arity n ∈ N is a tuple

B = (Q,qin, δ, A), where Q is a finite set of control states, qin ∈ Q is the initial state,

δ : Q×2{1,...,n} → 2Q is the transition function, and A ⊆ Q is the set of accepting states. A

given infinite word w over the alphabet 2{1,...,n} is accepted by B if there is an accepting com-

putation of B forw, i.e., an infinite sequence of states q0, q1, . . . such that q0 = qin, qj ∈ A for

infinitely many j ∈ N0, and for all i ∈ N0 there is αi ∈ 2{1,...,n} such that qi+1 ∈ δ(qi, αi) and

αi ⊆ w(i). The set of all infinite words over 2{1,...,n} accepted by B is denoted L(B).

Let Ap = {a, b, c, . . .} be a countably infinite set of atomic propositions. The syntax of

PECTL∗ formulae is defined by the following abstract syntax equation:

ϕ ::= a | ¬a | P./ρB(ϕ1, . . . , ϕn)

Here a ranges over Ap, ./ is a comparison (i.e., ./ ∈ {<,>,≤,≥,=}), ρ is a rational con-

stant, n ∈ N, and the B in B(ϕ1, . . . , ϕn) is a Büchi automaton of arity n. The qualitative

fragment of PECTL∗ is obtained by restricting ρ to 0 and 1. For simplicity, from now on

we write B./ρ(ϕ1, . . . , ϕn) instead of P./ρB(ϕ1, . . . , ϕn).

Let M = (S,→,Prob) be a Markov chain, and let ν : S → 2Ap be a valuation. The

validity of PECTL∗ formulae in the states ofM is defined inductively as follows:

s |=ν a iff a ∈ ν(s)

s |=ν ¬a iff a 6∈ ν(s)

s |=ν B./ρ(ϕ1, . . . , ϕn) iff P({w ∈ Run(s) | w[ϕ1, . . . , ϕn] ∈ L(B)}) ./ ρ

Herew[ϕ1, . . . , ϕn] is the infinite word over the alphabet 2{1,...,n} wherew[ϕ1, . . . , ϕn](i)

is the set of all 1 ≤ j ≤ n such that w(i) |=ν ϕj. Let us note that the set of runs

{w ∈ Run(s) | w[ϕ1, . . . , ϕn] ∈ L(B)} is indeed P-measurable in the above introduced

probability space (Run(s),F ,P), and hence the definition of PECTL∗ semantics makes

sense for all PECTL∗ formulae. In the rest of this paper, we often write s |= ϕ instead of

s |=ν ϕwhen ν is clear from the context.

The syntax of PECTL∗ is rather terse and does not include conventional temporal

operators such as G andF . This is convenient for our purposes (proofs become simpler),

but the intuition about the actual expressiveness of PECTL∗ and its sublogics is lost. As

a little compensation4, we show how to encode negation, conjunction, disjunction, and

4A reader familiar with the “standard” definition of Büchi automata can easily become confused by

these examples. In this case, we recommend to read Definition 2.4 carefully.
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temporal connectives G, F , U and X . Negation can be encoded by simply changing

a comparison; for example, formula B>0.3ϕ is the negation of the formula B≤0.3ϕ. The

other operators can be encoded using the automata from the following figure.
BG BFB∧ B∨ BU BX

{1} ∅

{1}

∅

{1, 2}

∅

{1}, {2}

∅ {1}

{2}

∅

∅ {1}

∅

For example, the formula ϕ1 ∧ F=1ϕ2 is then a shortcut for B=1
∧ (ϕ1,B=1

F (ϕ2)). In our

examples we stick to this more readable notation. Now the PCTL fragment of PECTL∗

is obtained by restricting the syntax to

ϕ ::= a | ¬a | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | X ./ρϕ | ϕ1 U ./ρϕ2

We write a ⇒ ϕ instead of ¬a∨ϕ.

3 The Result

As we have already noted, qualitative PECTL∗ formulae are closed under negation, and

hence it suffices to consider only the controller synthesis problem (a solution for the

verification problem is then obtained as a trivial corollary). Formally, the controller

synthesis problem for qualitative PECTL∗ objectives and HC strategies is specified as

follows:

Problem: Controller synthesis for qualitative PECTL∗ objectives and HC strategies.

Instance: A MDP G = (V, E, (V�, V©),Prob), a partition (VD, VR) of V�, sin ∈ V , ν : V →
2Ap, and a qualitative PECTL∗ formula ϕ. (The ν is extended to all vs ∈ V∗V
by stipulating ν(vs) = ν(s).)

Question:Is there a HC strategy σ such that sin |=ν ϕ in Gσ ?

Our solution of the problem (see Theorem 1.1) is based on one central idea underpinned

by many technically involved observations which “make it work”. Roughly speak-

ing, a given objective ϕ is first split into finitely many “sub-objectives” ϕ1, . . . , ϕn that

are achievable by effectively constructible finite-memory strategies σ1, . . . , σn. Then, the

finite-memory strategies σ1, . . . , σn are combined into a single one-counter strategy σ

that achieves the original objective ϕ.

Let us illustrate this idea on a concrete example. Consider the MDP G of the follow-

ing figure, where sin is Dirac.
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G:

sin

a, b
`a, b

u

a, b

d

a, b

r1

a

r2

b

3
4

1
4

1
4

3
4

Gσ:
sin

a, b

u

a, b
r1

a a, b

u

a, b
r1

a a, b

u

a, b
r1

a

`

a, b

`

a, b

`

a, b

a, b

d

a, b
r2

b a, b

d

a, b
r2

b a, b

d

a, b
r2

b

`

a, b

`

a, b

`

a, b

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

W1

W2

The winning objective is the formula ϕ ≡ ϕa ∧ϕb, where ϕa ≡ G=1(a ⇒ G>0a) and

ϕb ≡ G=1(b ⇒ G>0b). The validity of a, b in the vertices of G is also indicated in the

figure. In this case, the “sub-objectives” are the formulaeϕa andϕb, that are achievable

by memoryless strategies σu and σd that always select the transitions sin → u and sin →
d, respectively. Obviously, sin |= ϕa, sin 6|= ϕb in Gσu , and similarly sin |= ϕb, sin 6|= ϕa in

Gσd . Hence, none of these two strategies achieves the objective ϕ (in fact, one can easily

show that ϕ is not achievable by any finite-memory strategy). Now we show how to

combine the strategies σu and σd into a single one-counter strategy σ such that sin |= ϕ

in Gσ.

Let us start with an informal description of the strategy σ. During the whole play,

the mode of σ is either σu or σd, which means that σ makes the same decision as σu or

σd, respectively. Initially, the mode of σ is σu, and the counter is initialized to 1. If (and

only if) the counter reaches zero, the current mode is switched to the other mode, and

the counter is set to 1 again. This keeps happening ad infinitum. During the play, the

counter is modified as follows: each visit to ` decrements the counter, and each visit to

r1 or r2 increments the counter.

Obviously, σ is a one-counter strategy. However, it is not so obvious why it works.

The structure5 of the play Gσ is indicated in the figure above, where the initial state is

labeled sin. The play Gσ closely resembles an “infinite sequence” W1,W2, . . . of one-

dimensional random walks. In each Wi, the probability of going right is 3
4
, the prob-

ability of going left is 1
4
, and whenever the “left end” is entered (i.e., the counter be-

comes zero), the next random walk Wi+1 in the sequence is started. All Wi, where i is

odd/even, correspond to the σu/σd mode. In the above figure, only W1 and W2 are

shown, and their “left ends” are indicated by double circles. By applying standard re-

sults about one-dimensional random walks, we can conclude that for every state s of

5Let us note that the actual graph of Gσ is an infinite tree obtained by unfolding the structure shown in

the figure. However, this does not influence our arguments.
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every Wi that is not a “left end”, the probability of reaching the “left end” of Wi from s

is strictly less than one. Now it suffices to realize the following:

• Let s be a state of Wi, where i is odd. Then s |= G>0a in Gσ. This is because all

states ofWi satisfy a, and the probability of reaching the “left end” ofWi from s is

strictly less than one. For the same reason, all states ofWi, where i is even, satisfy

the formula G>0b.

• Let s be a state of Wi, where i is odd, such that s |= b. Then s |= G>0b. This is

because there is a finite path to a state s ′ in Wi+1 along which b holds (this path

leads through the “left end” of Wi). Since s ′ |= G>0b (as justified in the previous

item), we obtain that s |= G>0b. For the same reason, for every state s of every Wi

such that i is even and s |= awe have that s |= G>0a.

Both claims can easily be verified by inspecting the figure on page 11. Hence, sin |= ϕ in

Gσ as needed.

The main idea of “combining” the constructed finite-memory strategies σ1, . . . , σn
into a single one-counter strategy σ is illustrated quite well by the above example. One

basically “rotates” among the strategies σ1, . . . , σn ad infinitum. Of course, some issues

are (over)simplified in this example. In particular,

• in general, the “sub-objectives” do not correspond to subformulae of ϕ. They

depend both on a given ϕ and a given G;

• the events counted in the counter are not just individual visits to selected vertices;

• the individual random walks obtained by “rotating” the modes σ1, . . . , σn do not

form an infinite sequence but an infinite tree;

• in the previous example, the only way how to leave a given Wi is to pass through

its “left end”. In general, each state of a given Wi can have a transition which

“leaves” Wi. However, these transitions have progressively smaller and smaller

probabilities so that the probability of “staying within”Wi remains positive.

Note that the last item explains why the definition of one-counter strategy admits the

use of “exponentially small” probabilities that depend on the current counter value (the

one-counter strategy defined in the above example only tested the counter for zero). To

demonstrate that the use of “exponentially small” probabilities is unavoidable, consider

the MDP Ĝ of the following figure, where ŝin is randomizing.
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Ĝ:
ŝin

a, b

`

b

r

a

Ĝσ:
ŝin

a, b

`

b

r

a a, b

`

b

r

a a, b

`

b

r

a
1
4

1 − 1
4

1
16

1 − 1
16

1
64

1 − 1
64

Let ϕ̂ ≡ G>0(a ∧ (b ⇒ G>0b)). We claim that every HC strategy κ which achieves

the objective ϕ̂ must satisfy the following: Let K be the set of all probabilities that are

assigned to the edge ŝin → ` in the play Ĝκ. Then all elements of K are positive and

inf(K) = 0, otherwise the formula ϕ̂ ≡ G>0(a ∧ (b ⇒ G>0b)) would not hold. Hence,

κ must inevitably assign “smaller and smaller” positive probability to the edge ŝin → `.

This is achievable by a one-counter strategy σ̂ where σ̂(vŝin) assigns 4−c(vŝin) to ŝin → `

and 1 − 4−c(vŝin) to ŝin → r, where c(vŝin) is the number of occurrences of ŝin in vŝin. The

play Ĝσ̂ is also shown in the above figure. It is easy to see that ŝin |= G>0(a∧(b ⇒ G>0b))
in Ĝσ̂.

3.1 A Proof of the Result

Due to space constraints, we cannot give a full proof of Theorem 1.1 in the main body of

the paper. Here we only outline the structure of our proof, identify the milestones, and

try to “map” the vague notions introduced earlier to precise technical definitions. The

presented notes should also provide basic “guidelines” for reading the full technical

exposition given in the appendix. Roughly speaking, our proof has two major phases.

(1) The controller synthesis problem for qualitative PECTL∗ objectives and HC strate-

gies is reduced to the controller synthesis problem for “consistency objectives” and

HC strategies. The “consistency objectives” are technically simpler than PECTL∗

objectives, and they in fact represent the very core of the whole problem.

(2) The controller synthesis problem for consistency objectives and HC strategies is

solved.

The most important insights are concentrated in Phase (2). Our complexity results are

based on a careful analysis of the individual steps which constitute Phase (1) and (2).

Since all of our constructions are effective, one can also effectively construct the strategy

for the original PECTL∗ objective by taking the strategy for the constructed consistency

objective and modifying it accordingly.

We start by a formal definition of consistency objectives. First, we need to recall the

notion of a deterministic Muller automaton, which is a tupleM = (Q,Σ, δ,A) where Q is

a finite set of control states, Σ is a finite alphabet, δ : Q× Σ → Q is a transition function
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(which is extended to the elements of Q× Σ∗ in the standard way), and A ⊆ 2Q is a set

of accepting sets6. A computation of M on w ∈ Σω initiated in q ∈ Q is the (unique)

infinite sequence of control states γ = q0, q1, . . . such that q0 = q and δ(qi, w(i)) = qi+1

for all i ∈ N0. A computation γ is accepting if inf(γ) ∈ A, where inf(γ) is the set of all

control states that occur infinitely often in γ.

Definition 3.1 (Consistency objective). Let G = (V, E, (V�, V©),Prob) be a MDP, sin ∈
V an initial vertex, and (VD, VR) a partition of V�. A consistency objective is a triple

(M, (Q>0, Q=1), L), where M = (Q,V, δ,A) is a deterministic Muller automaton over the

alphabet V , (Q>0, Q=1) is a partition of Q such that for all q ∈ Q>0, q ′ ∈ Q=1 and w ∈ V∗ we

have that δ(q,w) ∈ Q>0 and δ(q ′, w) ∈ Q=1, and L : V → 2Q is a labeling.

Let σ be a HC strategy, and let Gsin
σ be the play Gσ restricted to states that are reachable

from sin in Gσ. For every state vs of Gsin
σ and every q ∈ Q, let Acc(vs, q) be the set of all

runs v0s0, v1s1, . . . initiated in vs such that for every i ∈ N0 we have that δ(q, s0 · · · si) ∈
L(si+1) and the computation of M on s0s1 · · · initiated in q is accepting. For every

comparison ./ and every rational constant ρ, we write vs |=σ Acc./ρ(q) ifP(Acc(vs, q)) ./

ρ in Gσ.

A HC strategy σ achieves the consistency objective (M, (Q>0, Q=1), L) if for every

state vs ∈ V∗V of the play Gsin
σ , every q ∈ Q, and every ./ρ ∈ {=1,>0} we have that if

q ∈ Q./ρ ∩ L(s), then vs |= Acc./ρ(q).

Phase (1). Let G = (V, E, (V�, V©),Prob) be a MDP, (VD, VR) a partition of V�, sin ∈ V ,

ν : V → 2Ap a valuation, and ϕ a qualitative PECTL∗ formula. We construct a MDP

G ′ = (V ′, E ′, (V ′�, V
′
©),Prob ′), a partitioning (V ′D, V

′
R), a vertex s ′in ∈ V , and a con-

sistency objective (M, (Q>0, Q=1), L) such that the existence of HC strategy σ where

sin |=ν ϕ in Gσ implies the existence of a HC strategy π that achieves the objective

(M, (Q>0, Q=1), L) in G ′s
′
in
π , and vice versa. The size of G ′ is polynomial in |G| and expo-

nential in |ϕ|.

The construction is partly based on ideas of [6] and proceeds as follows. First, all

Büchi automata that occur in ϕ are replaced with equivalent deterministic Muller au-

tomata. The resulting formula is further modified so that all probability bounds take

the form “>0” or “=1” (to achieve that, some of the deterministic Muller automata may

be complemented). Thus, we obtain a formula ϕ ′. Let M>0 and M=1 be the sets of

6For the purposes of a complexity analysis, we represent A in a special way that allows to perform

complementation in polynomial time. Formal definition is presented in the beginning of Appendix A.
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all deterministic Muller automata that appear in ϕ ′ with the probability bound >0 and

=1, respectively. The automatonM is essentially the disjoint union of all automata in

M>0 and M=1. The sets Q>0 and Q=1 are unions of sets of control states of all Muller

automata in M>0 and M=1, respectively. The tricky part is the construction of G ′. In-

tuitively, the MDP G ′ is the same as G, but several instances of Muller automata from

M>0∪M=1 are simulated “on the fly”. Moreover, some “guessing” vertices are added so

that a strategy can decide what “subformulae ofϕ ′” are to be satisfied in a given vertex.

The structure of G ′ itself does not guarantee that the commitments chosen by a strategy

are fulfilled. This is done by the automaton M and the condition that vs |= Acc./ρ(q)

for all q ∈ Q./ρ ∩ L(s). (Intuitively, this condition says that the play G ′s
′
in
π is “consistent”

with the commitments chosen in the guessing vertices.)

Phase (2). The controller synthesis problem for consistency objectives and HC strategies

is solved in two steps:

(a) We solve the special case when the strategy is strictly randomizing.

(b) We reduce the general (unrestricted) case to the special case of (a).

Now we describe the two steps in more detail. Let G = (V, E, (V�, V©),Prob) be a MDP,

sin ∈ V an initial vertex, (VD, VR) a partition of V�, and (M, (Q>0, Q=1), L) a consistency

objective, whereM = (Q,V, δ,A).

In step (a), we concentrate on the special case where bothQ>0 andQ=1 may be non-

empty, but the set of strategies is restricted to strictly randomizing HC (srHC) strategies.

A srHC strategy is a HC strategy σ such that σ(vs) assigns a positive probability to

all outgoing edges whenever s ∈ VR. This is perhaps the most demanding part of the

whole construction, where we formalize the notion of “sub-objective” mentioned ear-

lier, invent the technique of “rotating” the finite-memory strategies for the individual

“sub-objectives”, etc. The main technical ingredient is the notion of entry point.

Definition 3.2. A set X ⊆ V is closed if each s ∈ X has at least one immediate successor in

X, and every s ∈ X which is stochastic or randomizing has all immediate successors in X. Each

closed X determines a sub-MDP G|X which is obtained from G by restricting the set of vertices

to X.

Let X be a closed set. An entry point for X is a pair (s, q) ∈ X ×Q>0 for which there is a

HD strategy ξ in G|X satisfying the following conditions:

1. s |=ξ Acc=1(q);
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2. for every state vt of (G|X)sξ and every p ∈ L(t) ∩Q=1 we have that vt |=ξ Acc=1(p);

3. for all states vt of (G|X)sξ and all p ∈ L(t) ∩ Q>0 we have the following: if there is

no state of V∗V© reachable from vt in (G|X)sξ, then either wt |=ξ Acc=1(p), or there is

a finite path v0t0, . . . , vktk initiated in vt such that tk ∈ VR and tk has two outgoing

edges (tk, r1), (tk, r2) ∈ E such that ξ(vktk) selects the edge (tk, r1) and δ(p, t0 · · · tk) ∈
L(r2) ∩Q>0.

Intuitively, entry points correspond to the finitely many “sub-objectives” discussed ear-

lier. The next step is to show that the set of all entry points for a given closed set X

can be effectively computed in time which is polynomial in |G| and exponential in |Q|.

Further, we show that for each entry point (s, q) one can effectively construct a finite-

memory deterministic strategy ξ(s, q) which has the same properties as the HD strategy

ξ of Definition 3.2 (this is what we meant by “achieving a sub-objective”). Here we

use the results of step (a). Technically, the key observation of step (b) is the following

proposition7:

Proposition 3.3. The consistency objective (M, (Q>0, Q=1), L) is achievable by a srHC strat-

egy σ iff there is a closed X ⊆ V such that sin ∈ X and for all s0 ∈ X and q0 ∈ L(s0)∩Q>0 there

is finite sequence (s0, q0), . . . , (sn, qn) such that (si, si+1) ∈ E, qi ∈ L(si) and δ(qi, si) = qi+1

for all 0 ≤ i < n, and (sn, qn) is an entry point for X.

Both directions of the proof require effort, and the “if” part can safely be declared as

difficult. This is where we introduce the counter and “rotate” the ξ(s, q) strategies

for the individual entry points to obtain a srHC strategy that achieves the objective

(M, (Q>0, Q=1), L). This part is highly non-trivial and relies on many subtle observa-

tions. Nevertheless, the whole construction is effective and admits a detailed complex-

ity analysis.

Step (b) is relatively simple (compared to step (b)). The 2-EXPTIME lower bound

for qualitative PECTL∗ objectives also requires a proof (the bound does not follow from

the previous work). Here we use a standard technique for simulating an exponentially

bounded alternating Turing machine employing some ideas presended in [2], where

the techniques for encoding the necessary properties in qualitative PECTL∗ formulae

were developed. The EXPTIME lower bound for qualitative PCTL has been established

already in [4].

7The proposition holds when several technical assumptions are imposed. These assumptions do not

cause any loss of generality and are presented at the beginning of Appendix B.2.
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4 Future Work

There are at least two natural directions for future work. First, we may wonder whether

similar results can be achieved in a more general setting of 21
2
-player games, where

the non-deterministic vertices are split into two subsets controlled by two players with

opposite objectives. Another possible generalization is to consider classes of MDPs with

infinitely many states. Some of the recent results achieved for probabilistic extensions of

pushdown automata [11, 12, 5, 3] (or, equivalently, recursive state machines [15, 16, 14])

indicate that this is not completely hopeless, at least in some restricted cases.

References

[1] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for proba-

bilistic systems. In Proceedings of IFIP TCS’2004, pp. 493–506. Kluwer, 2004.

[2] T. Brázdil, V. Brožek, and V. Forejt. Branching-time model-checking of probabilistic push-

down automata. In Proceedings of INFINITY’2007, pp. 24–33, 2007.

[3] T. Brázdil, V. Brožek, V. Forejt, and A. Kučera. Reachability in recursive Markov decision
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Appendix

A Phase (1)

Let G = (V, E, (V�, V©),Prob) be a MDP, (VD, VR) a partition of V�, sin ∈ V , ν :

V → 2Ap a valuation, and ψ a qualitative PECTL∗ formula. We construct a MDP

G ′ = (V ′, E ′, (V ′�, V
′
©),Prob ′), a partitioning (V ′D, V

′
R), a vertex s ′in ∈ V , and a con-

sistency objective (M, (Q>0, Q=1), L) such that the existence of HC strategy σ where

sin |=ν ψ in Gσ implies the existence of a HC strategy π that achieves the objective

(M, (Q>0, Q=1), L) in G ′s
′
in
π , and vice versa.

Given an infinite sequence α = a0, a1, . . . we use αi and αi to denote the sequences

ai, ai+1, . . . and a0, a1, . . . , ai, respectively. Given a finite sequence β = b0, b1 . . . , bn we

define last(β) = bn. We also write L>0(s) and L=1(s) instead of L(s)∩Q>0 and L(s)∩Q=1,

respectively.

First, we transform the formula ψ to an equivalent formula ϕ such that each subfor-

mula of ϕ of the form B./ρ(ψ1, . . . , ψn) satisfies the following:

1. The automaton B is a deterministic Muller automaton8 over the alphabet 2{1,...,n}

with a set of states QB, an initial state, and the set of accepting sets AB such that

the following holds:

• the size of QB is exponential in |ψ|;

• there is a set AccB ⊆ 2QB × 2QB such that |AccB| depends polynomially on |ψ|

and AB is either equal to

{A ⊆ QB | ∃(X, Y) ∈ AccB : A ∩ X 6= ∅, A ∩ Y = ∅}

or to

2QB\{A ⊆ QB | ∃(X, Y) ∈ AccB : A ∩ X 6= ∅, A ∩ Y = ∅}

(i.e., B is in fact either a Rabin automaton, or a Streett automaton).

The formula ψ can be transformed to the above form using results of [23]. This

form of the acceptance condition is crucial in the complexity analysis (see Ap-

pendix A.1 and Appendix B).

8The definition of semantics of qualitative PECTL∗ can easily be adapted to deal with Muller automata

instead of Büchi automata if we equip Muller automata with an initial state.
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2. For arbitrary state s of an arbitrary Markov chain and for arbitrary valuation ν

we have that if q X→ q ′ is a transition of B such that s |=ν
∧
i∈Xψi, then s 6|=ν∨

j∈{1,...,n}\Xψj.

Note that each subformula B./ρ(ψ1, . . . , ψn) which does not have this property,

can be replaced with a formula of the form B̄./ρ(ψ1, . . . , ψn,¬ψ1, . . . ,¬ψn) where

B̄ has the same set of states, the same initial state, and the same set of accepting sets

as B and transitions of B̄ are defined as follows: q X ′∪X ′′→ q ′ in B̄ for X ′ ⊆ {1, . . . , n}

and X ′′ ⊆ {n + 1, . . . , 2n} if and only if X ′′ = {n + j | j ∈ {1, . . . , n}\X ′} and there is

X ⊆ X ′ such that q X→ q ′ in B.

3. We have that ./ρ is either of the form =1, or >0. The formula can be trans-

formed to this form using the dualities B<1(ψ1, . . . , ψn) ≡ B̄>0(ψ1, . . . , ψn) and

B=0(ψ1, . . . , ψn) ≡ B̄=1(ψ1, . . . , ψn) where B̄ is obtained by switching accepting

and nonaccepting sets of states (observe that the special form of accepting sets

described in 2. allows complementation in polynomial time).

In what follows we define the decision process G ′. The vertices of G ′ will contain

information about states ofM, so first we have to define the setsQ,Q=1 andQ>0. ToQ

we put all states of all Muller automata that occur in ϕ, and to Q>0 we put states of all

Muller automata B such that a subformula of the form B>0(ψ1, . . . , ψn) occurs in ϕ. We

putQ=1 = Q \Q>0. By Litwe denote the set of all literals (i.e., atomic propositions and

their negations) that occur in ϕ and by Lit(s) where s ∈ V we denote the set of literals

satisfied in s.

Let ψ be a subformula of ϕ of the form B./ρ(ψ1, . . . , ψn). We denote Init(ψ) the

initial state of the automaton B. Given a state q of B we use Form(q) to denote the

formula B./ρ
q (ψ1, . . . , ψn) where Bq is obtained from B by changing its initial state to q.

Given a transition q X→ q ′ of B we denote Start(q X→ q ′) the smallest subset of Q ∪ Lit
which for all i ∈ X contains either ψi, or Init(ψi), depending on whether ψi is a literal,

or not.

The process G ′ = (V ′, E ′, (V ′�, V
′
©), Prob ′) is constructed as follows. The set V ′ con-

sists of the following vertices.

• (s,A)f for s ∈ V and A ⊆ Q;

• (s,D)g for s ∈ V and D ⊆ {(t,A)|(s, t) ∈ E and A ⊆ Q} where for each (s, t) ∈ E
the set D contains exactly one element with t in the first component.
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The set E ′ consists of the following transitions9.

• ((s,A)f, (s,D)g) iff for every q ∈ A there is q ′ such that all of the following holds.

– q X→ q ′ and Start(q X→ q ′) ⊆ A ∪ Lit(s);

– if q ∈ Q=1, then q ′ ∈
⋂

(t,B)∈D B;

– if q ∈ Q>0, then q ′ ∈
⋃

(t,B)∈D B;

• ((s,D)g, (t,A)f) iff (t,A) ∈ D;

• ((s,A)f, Dead) for all (s,A)f;

• (s ′in, (sin, A)f) iff Init(ϕ) ∈ A;

• (Dead,Dead).

The set V ′© consists of all vertices of the form (s,D)g where s ∈ V©, and we define

V ′� = V ′\V ′©. Finally, we define Prob ′((s,D)g, (t,A)f) = Prob(s, t) for all (s,D)g ∈ V ′©
and ((s,D)g, (t,A)f) ∈ E ′.

The set V ′R contains all vertices (s,D)g where s ∈ VR and the set V ′D contains all other

vertices from V ′�. Now we define the automaton M = (Q,V ′, δ,A). The set Q has

already been defined above. Given a state q ∈ Q, we denote B[q] the unique automaton

which occurs in ϕ and contains the state q. The transition function δ is defined as

follows:

• for all q ∈ Q and (s,D)g ∈ V ′ we define δ(q, (s,D)g) = q;

• for all q, q ′ ∈ Q and (s,A)f ∈ V ′ we put δ(q, (s,A)f) = q ′ if and only if there is

exactly one X such that q X→ q ′ in B[q] and Start(q X→ q ′) ⊆ Lit(s) ∪A.

The set A consists of all accepting sets of all automata occurring in ϕ. Finally we define

the labeling L as follows:

• for (s,A)f ∈ V ′ we define L((s,A)f) = A;

• for (s,D)g ∈ V ′ we define L((s,D)g) = (Q>0 ∩
⋃

(t,B)∈D B) ∪ (Q=1 ∩
⋂

(t,B)∈D B).

The rest of this section is devoted to the proof of the following lemma.

9Note that here we do not require each vertex of V ′� to have at most two outgoing edges (as opposed

to Definition 2.2). In Lemma B.1 we show that the game G ′ can be turned back into a game that obeys the

definition.
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Lemma A.1. There is a HC strategy σ in G such that sin |=σ ϕ iff there is a consistent10 HC

strategy π in G ′.

In this proof we use the following notation: Given a state q ∈ Q, we denote ψ[q] the

subformula of ϕ of the form B./ρ(ψ1, . . . , ψn) such that q is a state of B. Similarly as

above the automaton B is denoted B[q].

A.0.1 From π to σ.

Let π be a consistent HC strategy in G ′. We construct a HC strategy σ in G and show

that sin |=σ ϕ. In what follows, states ofG ′π of the form u ·(s,A)f and u ·(s,D)g are called

f-states and g-states, respectively. Let R be the set of all f-states reachable from s ′in in

G ′π. We define a function Λ : R → V+ as follows.

• Λ(s ′in · (sin, A)f) = sin

• Λ(u · (s,D)g · (t,A)f) = Λ(u) · t

It follows immediately from the definition ofG ′ and V ′R thatΛ is injective. Let us ∈ Λ(R)

and let Λ−1(us) · (s,D)g be the unique successor of Λ−1(us) in G ′π. We define

σ(us)(s, t) = π(Λ−1(us) · (s,D)g)((s,D)g, (t,A)f)

The following lemma can straightforwardly be proved by induction.

Lemma A.2. Let u ∈ Λ(R). Then u x→ us in Gσ iff Λ−1(u)
1→ v

x→ v ′ where Λ(v ′) = us.

Now we prove that sin |=σ ϕ. We show that if q ∈ L(u) for an f-state u reachable from

s ′in, then Λ(u) |=σ Form(q). The rest follows from the fact that Init(ϕ) ∈ L(Λ−1(sin)).

Let us fix an f-state u and q ∈ L(u). Let us impose some linear ordering< onQ such

that q ′ < q whenever ψ[q ′] is a subformula of ψ[q]. Suppose that for all f-states v and

all q ′ ∈ Q such that q ′ < qwe have Λ(v) |=σ Form(q ′) whenever q ′ ∈ L(v).
We analyze only the case for q ∈ Q>0 here. The case for q ∈ Q=1 is similar. Because

π is consistent and q ∈ L>0(u), there is a set U ⊆ Run[G ′π](u) such that P(U) > 0 and for

everyω ∈ U the word last(ω(0))last(ω(1)) · · · is accepted byM initiated in q. LetU ′ be

10If a consistency objective is clear from the context, we shall write that a strategy is consistent to denote

that the strategy achieves the consistency objective.
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the set of all sequences of the form Λ(ω(0)), Λ(ω(2)), . . . , Λ(ω(2i)), . . .whereω ∈ U. It

follows from Lemma A.2 that each sequence ofU ′ is a run inGσ and P(U ′) = P(U) > 0.

Let us denote Form(q) = B>0(ψ1, . . . , ψn). We show that B(ψ1, . . . , ψn) accepts

all runs11 of U ′. Let ω ′ = Λ(ω(0)), Λ(ω(2)), . . . be a run of U ′. Let us denote

last(ω ′(i)) = (si, Ai)
f. Let p0, p1, p2, . . . be the unique accepting computation ofM on

last(ω(0))last(ω(1)) · · · . It follows from definition of G ′ and M that for every i ≥ 0

we have p2i ∈ L(ω(i)) = Ai and there is exactly one transition p2i
X→ p2(i+1) of B such

that Start(p2i
X→ p2(i+1)) ⊆ Ai ∪ L(s). However, L(ω ′(i)) = Ai and thus ω ′(i) |=σ ψk

for all k ∈ X by induction. By our assumptions about ϕ, we have that ω ′(i) 6|=σ ψ`

for all ` ∈ {1, . . . , n}\X. Hence, B(ψ1, . . . , ψn) accepts all runs of U ′. It follows that

Λ(u) |=σ Form(q).

From σ to π. Let σ be a HC strategy in G such that sin |=σ ϕ. Let R be a set of states

reachable from sin in Gσ. We define a strategy π and a function Λ : R → (V ′)∗ as

follows. We put π(s ′in)(s
′
in, (sin, A)f) = 1 and Λ(sin) = s ′in · (sin, A)f where A consists

of all q ∈ Q such that sin |=σ Form(q). Given u ∈ R such that last(Λ(u)) = (s,A)f we

define π(Λ(u))((s,A)f, (s,D)g) = 1where

• ((s,A)f, (s,D)g) ∈ E ′

• for each successor ut of u in Gσ there is some (t, B) ∈ D;

• B consists of all q ∈ Q such that ut |= Form(q).

We define Λ(ut) = Λ(u) · (s,D)g · (t, B)f for (t, B) ∈ D. If s ∈ V�, then we define

π(Λ(u) · (s,D)g)((s,D)g, (t,A)f) = σ(us)(s, t) for (t,A) ∈ D
It is straightforward to show that π is indeed a HC strategy in G ′ and that Λ is

injective.

Lemma A.3. Let u ∈ R. Then u x→ us in Gσ iff Λ(u)
1→ v

x→ v ′ where Λ−1(v ′) = us.

For the sake of our proof we need to prove the following technical lemma.

Lemma A.4. Let T = (S,→, Prob) be a Markov chain, s ∈ S its state, ν a valuation and ψ

a qualitative PECTL∗ formula of the form B>0(ψ1, . . . , ψn) such that s |= ψ. Let Y ⊆ Run(s)

be the set of runs accepted by B(ψ1, . . . , ψn) such that for all ω ∈ Y and i ≥ 0 we have

ω(i) |= Form(pi) where p0, p1, . . . is the accepting computation of B(ψ1, . . . , ψn) onω. Then

P(Y) > 0.
11We say that B(ψ1, . . . , ψn) accepts a runω if there is a wordw accepted by B such that for all 1 ≤ i ≤

n and ` ≥ 0we have i ∈ w(`) iff ψi |= ω(`).
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Proof. For every ω ∈ Run(s) we denote γω = p0, p1, . . . the unique computation of

B(ψ1, . . . , ψn) on ω. Let W ⊆ Run(s) be the set of all runs accepted by B(ψ1, . . . , ψn)

and let U = W\Y. Suppose that P(Y) = 0, i.e., that P(U|W) = 1. For all ω ∈ U there is

iω ≥ 0 such thatω(iω) 6|= Form(γω(iω)).

LetUω denote the set of all runs from Run(ωiω) accepted by B(ψ1, . . . , ψn). Observe

that P(Uω) = P(Run(ωiω)) · c where c is the probability of all runs of Run(ω(iω))

accepted by B(ψ1, . . . , ψn) initiated in γω(iω). Because ω(iω) 6|= Form(γω(iω)) we get

c = 0, and hence P(Uω) = 0.

We have U ⊆
⋃
ω∈UUω and thus P(U) ≤

⋃
ω∈UUω. Since P(

⋃
ω∈UUω) ≤∑

ω∈UP(Uω) = 0, we have P(U) = 0 and P(Y) = 0, which contradicts P(W) =

P(U ∪ Y) > 0.

Now let u ∈ R and let q ∈ L>0(Λ(u)). We show that Λ(u) |=π Acc
>0(q). Let us denote

Form(q) = B>0(ψ1, . . . , ψn). Given a run ω ∈ Run(u) we denote γω = p0, p1, . . . the

unique computation of B(ψ1, . . . , ψn) onω such that p0 = q.

Because q ∈ L(Λ(u)), we have u |=σ Form(q). Hence, by Lemma A.4 there is a set

of runs Y ⊆ Run(u) such that P(Y) > 0 which satisfies the following: for all ω ∈ Y and

all i ≥ 0 we have ω(i) |=σ Form(γ(i)). By Lemma A.3 there is a unique run Λ(ω) ∈
Run[G ′π](Λ(u)) such that Λ(ω)(2i) = Λ(ω(i)) for all i ≥ 0. It follows from Lemma A.3

that P({Λ(ω) | ω ∈ Y}) = P(Y) > 0.

By definition γω(i) ∈ L(Λ(ω)(2i)) for all i ≥ 0 because γω(0) = q ∈ L(Λ(u)) =

L(Λ(ω)(0)). Let us assume that Λ(ω)(2i) = v · (s,A)f. We show that δ(γ(i), (s,A)f) =

γ(i + 1) (remember that δ is the transition function of M). Let δB be the transition

function of B. Observe that there is X such that δB(γ(i), X) = γ(i + 1) and ω(i) |=

Form(ψj) for all j ∈ X. It follows that Start(γ(i)
X→ γ(i + 1)) ⊆ A ∪ L(ω(i)), and thus

δ(γ(i), (s,A)f) = γ(i+ 1).

It remains to show that Λ(u) · (s,D)g |=σ Acc
./ρ(q) whenever q ∈ L./ρ(Λ(u) · (s,D)g)

and Λ(u) · (s,D)g is the unique successor of Λ(u). The proof is similar to the proof for

f-states and is omitted here.

A.1 Complexity Analysis

Here we use the notation from 1. in the beginning of this proof. The size of G ′ is in

|G| · 2p(|ψ|) where p is a polynomial. The size of Q is in 2p(ψ) (if ψ is a qualitative PCTL

formula, then the size of Q is polynomial in the size of ψ).
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Now let us denote Rab the set of all Muller automata B that occur in ϕ that satisfy

AB = {A ⊆ QB | ∃(X, Y) ∈ AccB : A ∩ X 6= ∅, A ∩ Y = ∅}

Let Saf be the set of all Muller automata that occur in ϕ and are not in Rab. Let R be the

union of all sets of states of all automata of Rab. Let S be the union of all sets of states of

all automata of Saf. Let {(A1, B1), . . . , (An, Bn)} ⊆ 2R × 2R be the union of all sets AccB
for all B ∈ Rab. Let {(C1, D1), . . . , (Cm, Dm)} ⊆ 2S × 2S be the union of all sets AccB for

all B ∈ Saf. It is easy to show that

A = {A ⊆ R | ∃i : A ∩Ai 6= ∅, A ∩ Bi = ∅} ∪ (2S\{A ⊆ S | ∃i : A ∩ Ci 6= ∅, A ∩Di = ∅})

where the numbers n andm are polynomial in both |G| and |ψ|.

B Phase (2)

B.1 Technical assumptions

To make the proofs in this section simpler, we impose several technical assumptions on

MDPs and Muller automata. This section defines these assumptions and argues that

they don’t cause any loss of generality.

Let G = (V, E, (V�, V©),Prob) be a MDP, sin ∈ V an initial vertex, (VD, VR) a partition

of V�, and (M, (Q>0, Q=1), L) a consistency objective, whereM = (Q,V, δ,A).

First, we assume that each vertex s ∈ V has exactly two outgoing transitions. From

the following lemma we have that this is no restriction.

Lemma B.1. There is a game G ′ = (V ′, E ′, (V ′�, V
′
©), Prob ′) in which each vertex has ex-

actly two successors, (V ′D, V ′R) a partition of V ′ and a consistency objective (M ′, (Q>0, Q=1), L)

whereM ′ = (Q ′, V ′, δ ′, A) such that the following holds: There is a HC (or srHC) consistent12

strategy in G iff there is HC (or srHC) consistent strategy in G ′. Moreover, the size of G ′ and

M ′ is polynomial in the size of G andM, respectively.

Proof. We can suppose that there are no s ∈ V© with exactly one successor (if there

is such s, it can be moved to V�). We put V ′ = V ∪ {s1, s2, . . . , sn−1 | ∀s ∈
V� where s has n > 2 successors} (note that the set V ′� in game G ′ from Appendix A

can contain vertices with more than 2 successors). The set E ′ contains the following

transitions:
12Similarly to the previous section, we shall write that a strategy is consistent if it achieves a consistency

objective that is clear from the context.
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• (s, t) for all (s, t) ∈ E where either s ∈ V©, or s is a vertex from V� with precisely

two successors;

• if s ∈ V� has exactly one successor t, then we put (s, t) and (s, sX) to E ′;

• if s ∈ V� has n successors where n > 2, then to E ′ we put transitions (s, s2), (s, t1),

(sn−1, tn) and transitions (si, si+1) for 2 ≤ i < n− 1 and (si, ti) for 2 ≤ i < n;

• transitions sX → sX, sX → sY , sY → sY and sY → sX.

We define Prob ′ = Prob. The set V ′R contains vertices s ∈ V� ∩ VR that have more than

one successor, and also all newly created vertices s2, s3, . . . , sn−1 for s ∈ VR. The set V ′D
contains all vertices from V ′� \ V ′R.

We put Q ′ = Q ∪ {q} where q is a fresh state and we create δ ′ by extending δ with

transitions δ ′(s, q) = q for all states q ∈ Q ′ and vertices s ∈ V ′� \ V�. The labeling L ′ is

defined by

• L ′(sX) = L ′(sY) = {q} for the state q ∈ Q ′ \Q

• L ′(s) = L(s) for all vertices s ∈ V�

• L ′(si) = {q ′ | δ(s, q) = q ′ for some q ∈ Q} for all vertices si that were added for

vertex s ∈ V� with more than two successors.

It is a mere technicality to show that each strategy in G has it’s counterpart in G ′ (and

vice versa).

To obtain optimal complexity estimates we assume that the automaton M has the

following special form: Q is a disjoint union of two non-empty sets R and S, and there

are no transitions from R to S and vice versa. The set A of accepting sets is described by

two collections {(A1, B1), . . . , (An, Bn)} ⊆ 2R× 2R and {(C1, D1), . . . , (Cm, Dm)} ⊆ 2S× 2S

in such a way that

A = {A ⊆ R | ∃i : A ∩Ai 6= ∅, A ∩ Bi = ∅} ∪ (2S\{A ⊆ S | ∃i : A ∩ Ci 6= ∅, A ∩Di = ∅})

B.2 Step (a)

Let G = (V, E, (V�, V©),Prob) be a MDP, sin ∈ V an initial vertex, (VD, VR) a partition

of V�, and (M, (Q>0, Q=1), L) a consistency objective, whereM = (Q,V, δ,A). In this

section we show how to solve the general consistency problem for srHC strategies.
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To further simplify the consistency problem we impose the following assumptions

on the MDPG and the automatonM (these are the assumptions under which the Propo-

sition 3.3 holds):

• For all s ∈ V and all states q, q ′ ∈ Q satisfying q ∈ L(s) and q s→ q ′ we assume

that

1. if either q ∈ Q=1, or s ∈ VD, then for all (s, t) ∈ Ewe have that q ′ ∈ L(t);

2. if q ∈ Q>0 and s ∈ V© ∪ VR, then for some (s, t) ∈ Ewe have that q ′ ∈ L(t).

• We have that L>0(s) 6= ∅ for all s ∈ V .

In the rest of this section we prove the Proposition 3.3 that gives an alternative char-

acterization of existence of a consistent srHC strategy in terms of the sets EP(X). It

follows from the proof that the problem of existence of a consistent srHC strategy is

decidable in time (|G| · |δ|)O(1) · 2O(|Q|nm) and that the existence of a consistent srHC

strategy implies existence of a one-counter consistent srHC strategy computable in time

(|G| · |δ|)O(1) · 2O(|Q|nm). The following lemma says that we can compute the set EP(X) for

a given X.

Lemma B.2. The problem whether (s0, q0) ∈ EP(X) is decidable in time (|G|· |δ|)O(1) ·2O(|Q|nm).

Moreover, if (s0, q0) ∈ EP(X), then there is a FD strategy ζ witnessing that (s0, q0) ∈ EP(X)

which is computable in time (|G| · |δ|)O(1) · 2O(|Q|nm).

Proof. We define a new Markov decision process G = (V ′, E ′, (V ′�, V
′
©),Prob ′), a parti-

tion (V ′D, V
′
R) of V ′� and a consistency objective (M ′, (Q ′>0, Q

′
=1), L) such that there is a

consistent HC strategy in G ′ if (s0, q0) ∈ EP(X). We put V ′ = X ×Q>0 and define tran-

sitions in G ′ as follows: ((s, p), (t, p ′)) ∈ E ′ iff s, t ∈ X, (s, t) ∈ E and p ′ = δ(p, s). We

define Prob ′((s, p), (t, δ(p, s))) = Prob(s, t). We put V ′� = (V� ∩ X)×Q>0.
We define a Muller automatonM ′ = (Q ′, V ′, δ ′,A ′) where Q ′ = Q ∪ {Accept} and

transitions are defined as follows: Given p ∈ Qwe define

δ ′(p, (s, p ′)) =

Accept if p ∈ Q>0 and p 6= p ′ and s ∈ V© ∪ VR;

δ(p, s) otherwise.

We define δ ′(Accept, (s, p)) = Accept and A ′ = A ∪ {{Accept}} and L ′((s, p)) = L(s) ∪
{Accept} for all (s, p) ∈ V ′. We define Q ′=1 = Q ′ and Q ′>0 = ∅ and s ′in = (s0, q0).

Let V ′R = ∅ and V ′D = V ′� and let us assume that there is a HC strategy in G ′ that

achieves the objective (M ′, (Q>0, Q=1), L) from vertex s ′in. Then, as we show in Section
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B.2.2, there is also an FD consistent strategy ζ computable in time (|G| · |δ|)O(1) · 2O(|Q|nm).

We define a strategy ξ as follows: Given s0 · · · sn ∈ V∗V� we put ξ(s0 · · · sn)(sn, t) =

ζ((s0, p0) · · · (sn, pn))((sn, pn), (t, q)) where p0, . . . , pn, q is the unique computation of

M on s0 · · · sn such that p0 = q0. Then ξ is an FD strategy which witnesses that (s0, q0) ∈
EP(X). Clearly the strategy ξ can be computed in time (|G| · |δ|)O(1) · 2O(|Q|nm).

Note also that using the same equation one can define a consistent HC strategy ζ in

G ′ using a HD strategy ξwhich witnesses that (s0, q0) ∈ EP(X).

B.2.1 Proof of Proposition 3.3: Right to Left

Throughout this proof we assume that there is an (arbitrary) ordering on the set of states

ofM. Given a set A of states ofM we denote min(A) ∈ A ∪ {⊥} the least state of A in

the ordering (here min(∅) = ⊥). Similarly we impose an arbitrary ordering on the set of

vertices of G.

Proposition B.3. Let T be a probabilistic tree and let T ′ be a tree obtained by cutting off some

subtrees of T . Let A ⊆ IPath[T ′](v) be a measurable set. Then the probability of A in T ′ is

equal to the probability of A in T .

Constructing the strategy σ: Let (s, q) ∈ EP(X) and let ζ be an FD strategy in G|X

witnessing that (s, q) ∈ EP(X) (see Definition 3.2 and Lemma B.2).

We define

D0 = {vt ∈ V+V | last(v) ∈ VR and ζ(v)(last(v), t) = 0}

We show that there is a probabilistic tree E(s,q) obtained from Gsζ by adding states of

D0 and by cutting off some subtrees such that E(s,q) has the following properties:

1. The probability of IPath[E(s,q)](s) is non-zero (this implies that s satisfies Acc>0(q)

in E(s,q).)

2. If p ∈ L>0(v) for a state v of E(s,q), then either there is a path ω in E(s,q) from v to a

leaf of E(s,q) such that Comp(p,ω) 6= ⊥, or v satisfies Acc>0(p) in E(s,q).

3. If p ∈ L=1(v) for a state v of E(s,q), then for almost all ω ∈ IPath[E(s,q)](v) the

computation Comp(p,ω) is accepting.

Later we glue the trees E(s,q) together and obtain a tree which corresponds to a con-

sistent strategy.
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In order to define E(s,q) we label states of Gsξ with values of a counter (similarly to

the example from page 11) which simulates asymmetric one-dimensional random walk.

Then we add states ofD0 while modifying probabilities of transitions to obtain Markov

chain similar to the Markov chain Ĝσ̂ from page 12. Finally, we cut off subtrees rooted

either in states of D0, or in states labeled with 0. Properties of random walk ensure that

in the resulting tree a leaf is reached with a probability less than one. To ensure the

properties 2. and 3., the labeling with values of the counter has to take into account

the labeling L. Hence, we start by defining a labeling I which labels each state v with a

subset of L(v) and a labeling Jwhich picks a state from I(v). Consequently we use these

labelings to define the labeling C : T → Z which labels states with values of the counter.

Let us define the labelings I : T → 2Q>0 and J : T → Q>0 ∪ {⊥} as follows: Define

I(s) = L>0(s) and J(s) = min(L>0(s)). Let v ∈ T be a state of Gsξ and let us assume that

I(v) and J(v) have already been defined. If I(v) = ∅, then for all successors vt of v we

define I(vt) = L>0(t) and J(vt) = min(L>0(t)). Otherwise, let us denote

A = {δ(p, last(v)) | p ∈ I(v)} 6= ∅

If last(v) ∈ V�, then for all successors vt of v we define I(vt) = A and J(vt) =

δ(J(v), last(v)). If last(v) ∈ V© and vt1, vt2 are the two successors of v such that t1
is less than t2 in the fixed ordering on V , then we define I(vt1) = A ∩ L>0(t1) and

I(vt2) = (A ∩ L>0(t2))\I(vt1), and for i ∈ {1, 2} we define

J(vti) =

δ(J(v), last(v)) if δ(J(v), last(v)) ∈ I(vti);

min(I(vti)) otherwise.

Observe that if last(v) ∈ V©, then I(vt1) ∩ I(vt2) = ∅, and moreover, the successor t1 is

in some sense privileged: All states of the form δ(p, last(v)), where p ∈ I(v), that are in

L>0(t1) are also in I(t1). Hence also δ(J(v), last(v)) is either in I(vt1), or I(vt2), but not in

both (and whether δ(J(v), last(v)) is put to I(vt1), or to I(vt2) depends only on J(v) and

last(v)). Also observe that |I(vti)| ≤ |I(v)| whenever I(v) is non-empty. These properties

of I and J are essential in ensuring the condition 2. (see Lemma B.5).

Now we define a function C : T → Z. Let p = max{p ′ | s
p ′→ s ′ in G} and let λ be

a number13 such that pλ < 1
8
. Let us denote size = |V | · |Q| · |ξ| where |ξ| is the size of

the FD strategy ξ. Let us define C(s) = 1. Let v be a state of Gsξ such that C has already

13Note that size of λ can be singly exponential in number of bits of precision of p. The role of λ will be

explained later.
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been defined for all ancestors of v. Let v0, . . . , vn+1 be a (unique) path in Gsξ such that

C(v1) = · · · = C(vn) and vn+1 = v and either C(v0) 6= C(v1), or v0 = s. If last(v) ∈ V©
and n > λ · size, then we define C(v) = C(vn) + 1. If last(v) ∈ V© and n ≤ λ · size and

there is a tuple 1 < i1 < i2 < · · · < iλ−1 ≤ n such that last(v1) = last(vi1) = last(vi2) =

· · · = last(viλ−1
) ∈ V© and J(v1) = J(vi1) = J(vi2) = · · · = J(viλ−1

), then we define

C(v) =

C(vn) − 1 if last(v2) = last(vi1+1) = last(vi2+1) = · · · = last(viλ−1+1);

C(vn) + 1 otherwise.

Otherwise, if there is no state from V∗V© reachable from v in Gζ, then we define C(v) =

C(vn) + 1. Otherwise, we define C(v) = C(vn). Let us denote C0 = {v ∈ T | C(v) =

0 and C(u) 6= 0 for all predecessors u of v}.

Now we add states of D0 to the probabilistic tree Gsζ (recall that each Markov chain

can be treated as a probabilistic tree). We add the set D0 to the set of states of Gsζ and

modify the probabilities of edges as follows. For every state vt ∈ V∗VD the probabilities

of outgoing edges remain intact. For every state vt ∈ V∗VR we put a probability of

(vt, vtt ′) equal to (8 · λ · size)−C(vt) and 1− (8 · λ · size)−C(vt) for t ′ ∈ V \D0 and t ′ ∈ D0,
respectively. The tree E(s,q) is now obtained by cutting of all subtrees rooted in states of

C0 ∪D0. Let us denote E(s,q) the set of states of E(s,q).

Lemma B.4. The probability of reaching C0 ∪D0 from s in E(s,q) is at most 2
3
.

Sketch. Let us have the following Markov chainM1:

0 1 2 3 4

1 ′ 2 ′ 3 ′

1

1
4

3
4

− 1
81

1
81

1
4

3
4

− 1
82

1
82

1
4

3
4

− 1
83

1
83

1
4

1 1 1

We prove that the probability of reaching the double circled states A = {0, 1 ′, 2 ′, . . .}

from 1 is strictly less than one.

Let us consider the following Markov chainM2.
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0 1

1 ′

2

2 ′

3

1
4

3
4

− 1
87

1
87

1

1

1
4

3
4

− 1
88

1
88

1

1

1
4

Clearly, the probability of reaching {0, 1 ′, 2 ′, . . .} from 1 in M1 is greater than 0 iff the

probability of reching A := {0, 1 ′, 2 ′, . . .} from 1 inM2 is greater than 0. Hence, in the

rest of this proof we consider onlyM2.

LetZ1, Z2, . . . be a sequence of random variables defined on Run(0) as follows: Given

w ∈ Run(0) we put Zk(w) = w(2k). Observe that for k ≥ 1 and arbitrary states

m,n1, . . . , nk−1 we have

P(Zk+1 = m+ 1 | Zk = m,Zk−1 = nk−1, . . . Z1 = n1) = P(Zk+1 = m+ 1 | Zk = m) =
3

4

P(Zk+1 = m− 1 | Zk = m,Zk−1 = nk−1, . . . Z1 = n1) = P(Zk+1 = m− 1 | Zk = m) =
1

4

Hence, Z1, Z2, . . . is a random walk on N0 with an absorbing barrier in 0. This means

that the probability of reaching 0 from 1 is equal to 2
3
.

In the following text, we use I(n) to denote the set of all runs initiated in n that never

enter n− 1. Note that P(I(n)) = 2
3

for all n ≥ 1.
For each run w ∈ I(n) and ` ≥ 0, we define `-th strict minimum m`(w) to be the

number j ≥ 1 such that

• Zj(w) = Z1(w) + ` = n+ `;

• for all i > j holds Zi(w) > Z1(w) + `.

If there is no such j, we define m`(w) = ∞. However, it is easy to show that for almost

all w ∈ I(n) we have that m`(w) < ∞ for all `. Hence, we may safely assume that all

runs of I(n) satisfym`(w) < ∞ for all `.

For every run w ∈ Run(n) and every i ≥ 0 we denote Xi(w) = w(i). This defines a

sequence of random variables X1, X2, . . ..

Now we come to the central notion of this proof. Let R be the set of all runs w ∈
Run(1) such that for every ` ≥ 0 holds m`+1(w) −m`(w) ≤ 2 · (` + 1)2. Let N be the set

of all runs w ∈ Run(1) such that for every ` ≥ 0 and m`(w) ≤ k ≤ m`(w) + 2 · (` + 1)2

holds Xk 6∈ A. We prove the following:

1. P(R | I(1)) ≥ 1
2
;
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2. P(N | I(1)) ≥ 3
4

Putting 1. and 2. together we obtain that

P(

∞∧
i=0

Xi 6∈ A | I(1)) ≥ P(R ∩N | I(1)) ≥ 1
4

Proof of 1. We proceed as follows:

(a) Let us denote F(n) = Run(n) r I(n). For every run w ∈ F(n) we define Kn(w) =

min{m | Zm(w) = n − 1}. For every n ≥ 1, let en := E(Kn | F(n)). We prove that

en = 2 for every n ≥ 1.

(b) For every ` ≥ 0, let E` := E(m`+1 −m` | I(1)). Using (a), we prove that E` = 2.

(c) We prove that P(R) ≥ 1
2

using (b), Markov inquality applied tom`+1−m`, and the

fact that
∏∞
n=1(1− 1

n2
) = 1

2
(see below).

We start with (a). For every n we denote R(n) the set of all finite paths of the form

k1 . . . ki satysfying k1 = n, ki = n− 1, and kr ≥ n for all 1 ≤ r < i.

en =
1

P(F(n))

∑
v∈R(n)

|v| · P(v)

= 3 ·
(1
4

+
3

4
·

∑
v∈R(n+1)

∑
u∈R(n)

(1+ |v| + |u|)P(v)P(u)
)

= 3 ·
(1
4

+
3

4
·
( ∑
v∈R(n+1)

∑
u∈R(n)

P(v)P(u) +
∑

v∈R(n+1)

∑
u∈R(n)

|v|P(v)P(u) +

+
∑

v∈R(n+1)

∑
u∈R(n)

|u|P(v)P(u)
))

= 3 ·
(1
4

+
3

4
·
(
P(F(n+ 1))P(F(n)) + P(F(n))

∑
v∈R(n+1)

|v|P(v) + P(F(n+ 1))
∑
u∈R(n)

|u|P(u)
))

= 3 ·
(1
4

+
3

4
·
(1
3

1

3
+
1

3

1

3
en+1 +

1

3

1

3
en
))

=
3

4
+
1

4
·
(
1+ 2en

)
Then (a) follows from the fact that en = 2 is the unique solution of en = 3

4
+ 1
4
·
(
1+2en

)
.

Now we prove (b). For every nwe denoteQ(n) the set of all finite paths of the form

k1 . . . ki satysfying k1 = n, ki−1 = n, ki = n+ 1, and kr ≥ n for all 1 ≤ r < i. We denote
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R(1, n) the set of all paths from 1 to n. We have

E` = E(m`+1 −m` | I(1))

=
1

P(I(1))

∑
v∈R(1,`)

P(v)
∑
u∈Q(`)

|u|P(u)P
(
I(`+ 1)

)
=

P(R(1, `))

P(R(1, `))P(I(`))

∑
u∈Q(`)

|u|P(u)P
(
I(`+ 1)

)
=

1

P(I(`))

∑
u∈Q(`)

|u|P(u)P
(
I(`+ 1)

)
Also

1

P(I(`))

∑
u∈Q(`)

P(u)P
(
I(`+ 1)

)
=

1

P(I(`))
P(I(`)) = 1

Hence

E` =
1

P(I(`))

∑
v∈Q(`)

|v| · P(v)P
(
I(`+ 1)

)
=

1

P(I(`))

(3
4
· P
(
I(`+ 1)

)
+
3

4
·

∑
v∈R(`+1)

∑
u∈Q(`)

(1+ |v| + |u|)P(v)P(u)P
(
I(`+ 1)

))
=

3

4
+
3

4
·
( ∑
v∈R(`+1)

P(v) · 1

P(I(`))

∑
u∈Q(`)

P(u)P
(
I(`+ 1)

)
+

∑
v∈R(`+1)

|v|P(v) · 1

P(I(`))

∑
u∈Q(`)

P(u)P
(
I(`+ 1)

)
+

∑
v∈R(`+1)

P(v) · 1

P(I(`))

∑
u∈Q(`)

|u|P(u)P
(
I(`+ 1)

))
=

3

4
+
3

4
·
(
P(F(`+ 1)) +

1

3
e`+1 + P(F(`+ 1))E`

)
=

3

4
+
3

4
·
(1
3

+
1

3
e`+1 +

1

3
E`
)

=
3

4
+
1

4
·
(
3+ E`

)
=

3

2
+
1

4
E`

Then (b) follows from the fact that E` = 2 is the unique solution of E` = 3
2

+ 1
4
E`.
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Finally, we prove (c). Let us denoteM` = m`+1 −m`. First, we need the following

P(

n∧
`=1

M` ≤ k` | I(1)) =
1

P(I(1))

n∑
`=1

∑
v`∈Q(`),|v`|≤k`

P(v1) · · · P(vn)P(I(`))

=

n∏
`=1

∑
v`∈Q(`),|v`|≤k`

P(v`)

=

n∏
`=1

∑
v`∈Q(`),|v`|≤k`

P(R(1, `))

P(R(1, `)) · P(I(`))
P(v`)P(I(`))

=

n∏
`=1

1

P(I(1))

∑
v`∈Q(`),|v`|≤k`

P(R(1, `))P(v`)P(I(`))

=

n∏
`=1

P(M` ≤ k` | I(1))

In particular,

P(

∞∧
`=1

M` ≤ 2(`+ 1)2 | I(1)) =

∞∏
`=1

P(M` ≤ 2(`+ 1)2 | I(1))

We finish the proof of 1. by showing that

∞∏
`=1

P(M` ≤ 2(`+ 1)2 | I(1)) ≥
∞∏
n=2

(1−
1

n2
) =

1

2

The inequality follows directly from Markov inequality because E` = E(M` | I(1)) = 2

and thus

P(M` ≤ 2(`+ 1)2 | I(1)) = 1− P(M` > 2(`+ 1)2 | I(1)) ≥ 1−
2

2 · (k+ 1)2
= 1−

1

(k+ 1)2

The fact that
∏∞
n=2(1− 1

n2
) = 1

2
can be proved as follows: Clearly,

∞∏
n=2

(1−
1

n2
) =

1

2

iff

ln
∞∏
n=2

(1−
1

n2
) = ln

1

2
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We have

ln
∞∏
n=2

(1−
1

n2
) =

∞∑
n=2

ln(1−
1

n2
) (1)

=

∞∑
n=2

ln(
n2 − 1

n2
) (2)

=

∞∑
n=2

ln(
(n+ 1)(n− 1)

n2
) (3)

=

∞∑
n=2

(
ln(n+ 1) + ln(n− 1) − lnn2

)
(4)

=

∞∑
n=2

(
ln(n+ 1) + ln(n− 1) − 2 lnn

)
(5)

= ln 1− ln 2+ ln 2+

∞∑
n=2

(
ln(n+ 1) − lnn

)
(6)

= ln 1− ln 2 (7)

= ln
1

2
(8)

Here, (1) follows from the continuity of ln. To see that 5 follows from the preceding

term, see that ln(n − 1) in the n+1-th summand is eliminated by half of 2 lnn of n-th

summand. To see that (6) follows from (5), observe that ln(n+ 1) in the n-th summand

is eliminated by the remaining − lnn in n+1-th summad.

Proof of 2. For every ` ≥ 1 and every k ≥ 1we have

P(Xm`+k ∈ A | I(1)) = P(Xk ∈ A | I(`)) ≤ P(Xk ∈ A)

P(I(`))
≤ 3
2

1

8`+7

Thus

P(

∞∨
`=1

4·(`+1)2∨
k=1

Xm`+k ∈ A | I(1)) ≤
∞∑
`=1

4·(`+1)2∑
k=1

P(Xm`+k ∈ A | I(1))

≤
∞∑
`=1

3

2

1

8`+7
4 · (`+ 1)2

=

∞∑
`=1

(`+ 1)2

8`+6

≤
∞∑
`=1

1

4`+6
(`+ 1)2

2`+6

≤
∞∑
`=1

1

4`+6
≤ 1
4
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Here the last inequality follows from the fact that (`+ 1)2 < 2`+6 for all ` ≥ 1. Finally,

P(N | I(1)) = P(

∞∧
`=1

4·(`+1)2∧
k=1

Xm`+k 6∈ A | I(1)) = 1− P(

∞∨
`=1

4·(`+1)2∨
k=1

Xm`+k ∈ A | I(1)) ≥ 3
4

We first define a Markov chain S = (S,→, P), in which probability of reaching given

states is at most 2
3
. Then we show that there is a correspondence among finite paths of

S and E(s,q), from which the lemma follows.

The set S contains vertices ai for all i > N0 and bi for all i > N. For all i ∈ N

there are transitions ai
1

8i→ bi, ai
1
4→ ai−1, ai

3
4
− 1

8i→ ai+1, bi
1→ bi and a0

1→ a0. Using

standard results of probability theory one can show that the probability of reaching the

set {bi | i ∈ N} ∪ {a0} is at most 2
3
.

Let R be a set of states v0 of E(s,q) such that either v0 = s, or v0 = v ′t where C(v ′) 6=
C(v0). For each v0 ∈ R we define sets Next>(v0), Next<(v0) ⊆ R and B(v0) ⊆ D0 as

follows. Next./(v0) where ./∈ {<,>} is a set of all states vn ∈ R for which C(vn) ./ C(v0)

and there is a finite path v0, v1, . . . , vn in E(s,q) such that C(v0) = C(vi) for all 1 ≤ i < n.

The set B(v0) is a set of all states vn ∈ D0 for which there is a finite path v0, v1, . . . , vn in

E(s,q) such that C(v0) = C(vi) for all 1 ≤ i < n.

We define a function Θ : R ∪ D0 → S by Θ(v) = ai if C(v) = i and v 6∈ D0, and

Θ(v) = bi if C(v) = i and v ∈ D0. In particular, Θ(E(s,q) ∩ (C0 ∪ D0)) = {a0} ∪ {bi |

i ∈ N}. The function Θ reveals the correspondence between E(s,q) and S: to each path

from v ∈ R ∪ D0 to v ′ ∈ R ∪ D0 corresponds a unique path from Θ(v) to Θ(v ′) in S
(note that this correspondence is not injective). Observe that for each state v ∈ R the

probability of reaching B(v) andNext<(v) is at most 8−C(v) and 1
4
, respectively (here the

role of the number λ from the definition of C is crucial). Now it can be shown that the

probability of reachingC0∪D0 from s can not be greater than the probability of reaching

{a0} ∪ {bi | i ∈ N} from a1.

Now we show that E(s,q) satisfies the properties 1. – 3. The property 1. follows immedi-

ately from Lemma B.4. The property 2. follows from the following lemma.

Lemma B.5. For every v ∈ E(s,q) and every p ∈ L>0(v) there is a finite path ω in E(s,q)

initiated in v such that Comp(p,ω) 6= ⊥ and last(ω) is either a leaf of E(s,q), or last(ω)

satisfies Acc>0(last(Comp(p,ω))) in E(s,q).

Proof. If there is a path ω in Gsξ initiated in v such that Comp(p,ω) 6= ⊥ and last(ω) ∈
D0, then we are done. In what follows we assume that this case does not occur.
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Assume that p ∈ I(v). We proceed by induction on |I(v)|. Letω be the unique infinite

path in Gsξ initiated in v such that for all i ≥ 0we have that J(ω(i)) = Comp(J(v),ω)(i).

Note that for all i, j ≥ 0 such that last(ω(i)) = last(ω(j)) ∈ V© and J(ω(i)) = J(ω(j)) we

have last(ω(i+ 1)) = last(ω(j+ 1)).

We claim that either there are only finitely many occurrences of vertices of V© in ω,

or limj→∞C(ω(j)) = −∞. Indeed, assume that there are infinitely many occurrences of

vertices of V© inω. Because ξ is an FD strategy, we obtain that there are 0 ≤ k, ` ≤ size
such that for all j ≥ k we have last(ω(j)) = last(ω(j + `)) and J(ω(j)) = J(ω(j+ `))

and last(ω(j + 1)) = last(ω(j + ` + 1)). Hence, whenever for some j ≥ k we have that

last(ω(j)) ∈ V©, then there are numbers 0 < j1 < j2 < · · · < jλ ≤ λ · size such that

last(ω(j)) = last(ω(j1)) = last(ω(j2)) = · · · = last(ω(jλ)) and J(ω(j)) = J(ω(j1)) =

J(ω(j2)) = · · · = J(ω(jλ)) and last(ω(j + 1)) = last(ω(j1 + 1)) = last(ω(j2 + 1)) = · · · =
last(ω(jλ + 1)). It follows that for all j ≥ k holds C(ω(j)) > C(ω(j+ λ · size)).

Assume that Comp(p,ω) 6= ⊥. If there are infinitely many vertices of V© in ω,

then limj→∞C(ω(j)) = −∞ and we are done. If there are only finitely many vertices

of VR ∪ V© in ω, then P({ω}) > 0 and Comp(p,ω) is accepting by Definition 3.2 (3.)

and we are done. Assume that there are finitely many vertices of V© inω and infinitely

many vertices of VR in ω. Let i ≥ 0 be a number such that for all j ≥ i we have

that ω(j) 6∈ V∗V©. Let us denote q = LS(p,ωi). By our assumption, for all j ≥ i we

have ω(j) 6∈ D0 and also if ω(j) ∈ V∗VR and ω(j)t is a successor of ω(j) distinct from

ω(j+ 1), then δ(Comp(p,ω)(j), last(ω(j))) 6∈ L>0(t) (becauseω(j)t ∈ D0 by definition).

It is easy to show that P({ω}) > 0. However, last(ω(i)) ∈ X and thus there is a strategy

ξ ′ such thatω(i) |=ξ ′ Acc
>0(q) because (last(ω(i)), q) ∈ EP(X). By the above arguments

we have that ω is the only run of Run[Gξ ′ ](ω(i)) such that Comp(q,ω) 6= ⊥. Hence,

Comp(q,ω) has to be accepting.

Let us assume that Comp(p,ω) = ⊥. Let k be the least number such that

Comp(p,ωk+1) = ⊥. Let v ′ be the successor of ω(k) distinct from ω(k + 1). Note

that |I(v ′)| < |I(ω(k)| ≤ I(v) (in particular, δ(J(ω(k)), last(ω(k))) 6∈ I(v ′) by definition)

and that Comp(p,ωk · v ′) 6= ⊥. Let us denote p ′ = LS(p,ωk · v ′). Because |I(v ′)| < |I(v)|,

we may apply induction hypothesis and conclude that the proposition holds for v ′ and

p ′. However, then clearly it holds also for v and p.

Now assume that p 6∈ I(v). Similarly as above, we proceed by induction on |I(v)|.

If |I(v)| = 0, then there is a successor v ′ of v such that δ(p, last(v)) ∈ I(v ′), and we can

apply the above argument to v ′ and δ(p, last(v)) and obtain the result. Now assume that
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|I(v)| > 0. Letω be the unique infinite path in Gsξ initiated in v such that for all i ≥ 0we

have that J(ω(i)) = Comp(J(v),ω)(i). If Comp(p,ω) 6= ⊥, then we can use the same

argumentation as above. Assume that Comp(p,ω) = ⊥. Let k be the least number

such that Comp(p,ωk+1) = ⊥. Let v ′ be the successor of ω(k) distinct from ω(k + 1).

Then |I(v ′)| < |I(v)| and we may apply induction to v ′ and LS(p,ωk · v ′) and obtain the

result.

The following lemma is an immediate consequence of Proposition B.3.

Lemma B.6. For every v ∈ E(s,q) and every p ∈ L=1(v), almost all ω ∈ IPath[E(s,q)](v) satisfy

that Comp(p,ω) is accepting.

Now we show how the trees E(s,q) can be combined together to an infinite tree that

is generated by a consistent strategy.

In what follows we use the following concept to simplify our notation. Let T = (T, P)

be a probabilistic tree rooted in s ∈ V , let I : T → 2Q>0 , and let A ⊆ Q>0 be a nonempty

set. We say that I is a labeling of T determined by A iff I(s) = A and for all states v ∈ T
and all successors w of v in T we have that

I(w) =

δ(I(v), last(v)) ∩ L>0(w) if δ(I(v), last(v)) ∩ L>0(w) 6= ∅;

L>0(w) otherwise.

where δ(I(v), last(v)) = {δ(p, last(v)) | p ∈ I(v)}.
For every s0 ∈ X and let q0 ∈ L>0(s0) we fix a sequence s0, . . . , sn of vertices of X and

a sequence q0, . . . , qn of states of M such that (sn, qn) ∈ EP(X) and for all 0 < i ≤ n
we have that (si−1, si) ∈ E and δ(qi−1, si−1) = qi and qi ∈ L(si). We denote ep(s0, q0) =

s0 · · · sn and es(s0, q0) = qn. We define a probabilistic tree T(s0,q0) = (T(s0,q0), P(s0,q0))

where

T(s0,q0) = {s0 · · · si | 0 ≤ i ≤ n} ∪ {s0 · · · sit | 0 ≤ i < n, si ∈ V© ∪ VR, (si, t) ∈ E}

and

P(s0,q0)(s0 · · · si, s0 · · · sit) =


Prob(si, t) if si ∈ V©;

1
2

if si ∈ VR;

1 otherwise.

We define a sequence of probabilistic trees T n = (Tn, Pn) and labelings In : Tn → 2Q>0

as follows: We define T 0 = ({sin}, ∅) and I0(sin) = L>0(sin). Now let us assume that
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T n−1 and In−1 have already been defined. Let u be a leaf of T n−1 of minimal distance

from the root. Let q = min(In−1(u)), let v = ep(last(u), q), and let p = es(last(u), q). We

define

T n = T n−1 �u (T(last(u),q) �v E(last(v),p))

Let K : T(last(u),q) → 2Q>0 be the labeling of T(last(u),q) determined by In−1(u)\{q}. We

define a labeling I ′ obtained from K by changing the value for last(u) to In−1(u). Now

let I ′′ : E(last(v),p) → 2Q>0 be the labeling of E(last(v),p) determined by I ′(v). Now labelings

In−1, I ′ and I ′′ induce a labeling In of T n = T n−1�u (T(last(u),q)�v E(last(v),p)) in an obvious

way.

Let us define T = (
⋃∞
n=0 T

n,
⋃∞
n=0 P

n) and I =
⋃∞
n=0 I

n. Observe that there is a srHC

strategy σ such that T = Gsinσ .

Lemma B.7. If w is a state of T and r ∈ L>0(w), then w satisfies Acc>0(r).

Proof. Assume thatw is an inner state of T n = T n−1�u (T(last(u),q)�v E(last(v),p)) but is not

an inner state of T n−1.

Let us first assume that r ∈ I(w). We proceed by induction on |I(w)|. We distinguish

two cases:

1a. w = u : If r = q, then we are done due to Lemma B.4, Lemma B.3, and definition

of T(last(u),q) �v E(last(v),p). Assume that r 6= q. Then |I(w)| ≥ 2 and there is t such

that δ(r, last(w)) ∈ I(wt) and by definition |I(wt)| < |I(w)|. We may apply the

induction hypothesis and conclude that wt satisfies Acc>0(δ(r, last(w))), which

implies that w satisfies Acc>0(r).

2a. w 6= u : Then by Lemma B.5 and the definition of T(last(u),q) �v E(last(v),p) there is

a finite path ω initiated in w such that Comp(r,ω) 6= ⊥ and |I(last(ω))| ≤ |I(w)|

and either last(ω) satisfies Acc>0(LS(r,ω)) in T n, or last(ω) is a leaf of T n. In the

former case we are done. Let us assume that u ′ = last(ω) is a leaf of T n. There

is m ≥ n such that T m = T m−1 �u ′ (T(last(u ′),q ′) �v ′ E(last(v ′),p ′)) for some q ′, p ′,

and v ′. Now we may resort to the previous case and conclude that u ′ satisfies

Acc>0(LS(r,ω)) in T , which implies that w satisfies Acc>0(r) in T .

Now assume that r 6∈ I(w). We proceed by induction on |I(w)|. If there is a finite pathω

initiated in w such that Comp(r,ω) 6= ⊥ and LS(r,ω) ∈ I(last(ω)), then we may resort

to the previous case and conclude that w satisfies Acc>0(r) in T . We distinguish two

cases:
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1b. w = u : There is t such that wt is a successor of w and δ(r, last(w)) ∈ L>0(wt). If

|I(w)| = 1, then δ(r, last(w)) ∈ I(wt) which contradicts our assumptions. Hence,

|I(w)| ≥ 2 and by definition |I(wt)| < |I(w)|. We apply induction hypothesis and

conclude that wt satisfies Acc>0(δ(r, last(w))), and thus that w satisfies Acc>0(r).

2b. w 6= u : It follows from our assumptions that for every finite path ω initiated in

w such that Comp(r,ω) 6= ⊥ we have that |I(ω(i))| ≤ |I(w)|. Hence, we can use

precisely the same argument as in 2a.

Given s ∈ X and q ∈ L>0(s) we denote µ(s,q) the probability of reaching a leaf of T(s,q)

along the path wp(s, q). Let us denote µ = min{µ(s,q) | s ∈ X and q ∈ L>0(s)}. For every

n ≥ 0 and v ∈ Tn we denote pvn the probability of reaching a leaf of Tn from v.

Lemma B.8. Let v ∈ T n. For every k ≥ n there ism ≥ k such that

pvm ≤
1

2
pvk(1− µ

1

3
) +

1

2
pvk ≤ pvk(1−

µ

3
)

Hence, limk→∞ pvk = 0.

Proof. Given j ≥ 0, we denote pvk,≤j and pvk,>j the probabilities of reaching a leaf of T k

from v in at most j steps and in at least j + 1 steps, respectively. There is j ≥ 0 such

that pvk,≤j ≥ 1
2
pvk and hence pvk,>j = pvk − pvk,≤j ≤ pvk − 1

2
pvk = 1

2
pvk. By definition, there

is m ≥ k such that each leaf reachable in T k in at most j steps is not a leaf in T m. Let

U be the set of all leaves of T k reachable from v in at most j steps. By Lemma B.4, the

probability that a leaf of T m is not reached from a fixed state of U is at least µ1
3
. Let ν be

the maximal probability of reaching a leaf of T m from a state of U . Clearly ν ≤ 1− µ1
3
.

Now a leaf of T m can be reached from v in two ways: Either follow a path of length

less than or equal to j to a state of U and then reach a leaf of T m, or avoid states of U
in the first j steps and then reach a leaf of T m. The first case has the probability at most

pvk,≤j · ν ≤ pvk,≤j · (1 − µ1
3
). The second case has the probability at most pvk,>j. Hence,

pvm ≤ pvk,≤j · (1− µ1
3
) + pvk,>j ≤ 1

2
pvk(1− µ1

3
) + 1

2
pvk.

Let us denote ρ = 1− µ
3
< 1. We show that for every j there is k ≥ n such that pvk ≤ ρj

(this implies that limk→∞ pvk = 0 because pvk ≥ pvk+1 for every k ≥ n). For j = 0 we have

pvk ≤ ρj = 1. Assume that pvk ≤ ρj. There is m ≥ k ≥ n such that pvm ≤ pvkρ ≤ ρj+1 and

we are done.

Lemma B.9. If w is a state of T and r ∈ L=1(w), then w satisfies Acc=1(r).
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Proof. Let us assume that w ∈ T n. For m ≥ n we denote Am ⊆ IPath[T m](w) and

denote Bm the set of all ω ∈ Am such that Comp(r,ω) is accepting. It follows from

Lemma B.6 that P(Bm | Am) = 1. Also Bm ⊆ Bm+1 ⊆ · · · and by Lemma B.8 we have

that P(
⋃∞
k=m Bm) = limm→∞P(Bm) = limm→∞P(Am) = limm→∞ 1 − pwm = 1. Thus

almost all ω ∈ IPath[T ](w) satisfy that Comp(r,ω) is accepting, and hence w satisfies

Acc=1(r).

B.2.2 Complexity of Strategy Synthesis

Let us assume that for every (s, q) ∈ EP(X) there is a finite-memory strategy ξ(s,q) wit-

nessing that (s, q) ∈ EP(X). In section B.2.3 we show that the size of each strategy ξ(s,q)

is in (|G||δ|)O(1) · 2O(|Q|mn). Let us assume without the loss of generality that the size of

each tree T(s,q) is polynomial. Observe that each tree E(s,q) is induced by the strategy

ξ(s,q) which stops whenever the counter is 0. The strategy inducing T should behave

like ξ(s,q) in E(s,q) part of T . Once a leaf of E(s,q) is reached, then the strategy switches

to the mode in which traverses the trees T(s,q) until it reaches the root of another tree

E(s ′,q ′). The order in which the trees T(s,q) are traversed is prescribed by the labeling I.

The information needed by a strategy τwhich generates T is following:

1. values of the labelings I, J, C in the current state;

2. the vertex t that occurred directly after the last change of the counter C, the num-

ber of occurrences of t after the last change of the counter C (up to λ), and the

information whether all of these occurrences of t were followed by the same ver-

tex;

3. the number of transitions after the last change of the counter C (up to the numer

size)

4. the position in a tree T(s,q) if the play is currently in the T(s,q) part of T ;

5. the current state of the strategy ξ(s,q) if the play is currently in the E(s,q) part of T .

It is easy to see that the size of this information is in (λ · |G||δ|)O(1) · 2O(|Q|mn). Moreover,

this information can be stored in states of a finite-state automaton and updated while

reading vertices of the MDP G. Thus, it is a mere technicality to define a one-counter

strategy τ of the size (λ · |G||δ|)O(1) · 2O(|Q|mn) which generates T .
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B.2.3 Proof of Proposition 3.3: Left to Right

We define X to be the set of all vertices reachable from sin in Gσ. Let s0 ∈ X and let

q0 ∈ L>0(s0). Also, let us fix v0 a state reachable from sin in Gσ such that last(v0) = s0.

We inductively define a sequence of functions I0, I1...I|Q| : V+×Q → {⊥, •}∪A, states

u0, u1, . . . , u|Q| ∈ V+ and sets of runs R0, R1, . . . R|Q| ⊆ Run[Gσ](sin) as follows.

Base step There is a state u0 reachable from v0, a set A ∈ A and a set of runs R0 of

nonzero measure such that the following holds: Everyω ∈ R0 contains u0, and we have

occ(Comp(q̄,ω ′)) = inf(Comp(q̄,ω ′)) = A where q̄ = LS(q0, v0 . . . u0) and ω ′ is the

prefix ofω initiated in u0.

We put I0(v ′, q ′) = A for all tuples (v ′, q ′) such that q ′ = LS(q̄, u0 . . . v
′) and u0 . . . v ′

is a finite path contained in some run in R0. Also, for all tuples (v ′, q ′) such that there

are v ′′ and q ′′ satisfying I0(v ′′, q ′′) = A and LS(q ′, v ′ . . . v ′′) = q ′′ we define I0(v ′, q ′) = •.
Otherwise, we set I0(v ′, q ′) = ⊥.

Induction step Now suppose we have fixed Ii, ui and Ri. First, suppose there is u ∈ V+

and q ∈ L(u) such that Ii(u, q) = ⊥ and there is a nonzero measure of runs ω ∈ Ri
such that Comp(q,ω ′) (where ω ′ is the suffix of ω initiated in v) is accepting. Then

there is ui+1 ∈ V+, qi+1 ∈ L(vi+1), A ∈ A and Ri+1 ⊆ Ri such that inf(Comp(qi+1,ω)) =

occ(Comp(qi+1,ω)) = A for all ω ∈ Run[Gσ](ui+1) that are a suffix of some run from

Ri+1. For all states v ′ and q ′ ∈ L(v ′) we define Ii+1(v ′, q ′) as follows:

• If Ii(v ′, q ′) 6= ⊥, then Ii+1(v ′, q ′) = Ii(v
′, q ′)

• We put Ii+1(v ′, q ′) = A if q ′ = LS(qi+1, ui+1 . . . v
′) for ui+1 . . . v ′a finite path con-

tained in some run from Ri+1.

• For all tuples (v ′′, q ′′) such that I0(v ′, q ′) = A and LS(q ′′, v ′′ . . . v ′) = q ′ and v ′′ . . . v ′

is a finite path contained in some run from Ri+1, we define I0(v ′′, q ′′) = •.

• Otherwise, we set I0(v ′, q ′) = ⊥.

If there is no such u, we put Ii+1 = Ii, ui+1 = ui and Ri+1 = Ri. Finally, we denote

v = u|Q|, R = R|Q| and I = I|Q|.

In the rest of this section, we prove the following lemma.

Lemma B.10. Let q = Comp(q̄, v0 . . . v). The tuple (last(v), q) is an entry point for X.

To see this, we define a HD strategy ξ that witnesses that (last(v), q) is an entry

point for X.
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For each state u reachable from v in Gσ and for all r ∈ L(u) we fix a sequence

α(u, r) = u0u1 . . . un of states such that all of the following holds:

• u0 = u

• for all i ≥ 0 and r ′ ∈ L(ui) we have that if δ(r ′, ui) ∈ L(ui+1), then I(ui, r ′) ≤
I(ui+1, δ(r

′, ui)) (here, we impose the ordering in which ⊥ < • and • < A for all

A ∈ A)

• σ assigns a nonzero probability to go to last(ui+1) from ui if ui ∈ V∗V�.

• If I(u0, r) = A for some A ∈ A, then Comp(r, u0 . . . un) contains all states from A.

• If I(u0, r) = •, then I(un, r ′) = A for some A ∈ Awhere r ′ = LS(r, u0 . . . un).

• If I(u0, r) = ⊥, then one of the following holds:

– For r ′ = LS(q, u0 . . . un) we have I(un, r ′) = • or I(un, r ′) = A for some

A ∈ A.

– No vertex from V© is reachable from u in Gσ, last(un−1) ∈ VR and

for the successor v ′ of last(un−1) different from last(un), we have that

Comp(r, u0 . . . un−1u
′) is defined.

In the following, we define the strategy ξ inductivelly. Together with ξ, we build a

function J : V+ × Q → {⊥, •} ∪ A and a function K that to each state u ∈ V+ assigns a

linear order on L(u).

Let α(v, q) = u0 . . . un (where q ∈ L(v) is arbitrary state) and let us denote

si = last(ui) for all 0 ≤ i ≤ n. For each 0 ≤ i < n, whenever si ∈ V�, we define

ξ(s0, . . . , si) = si+1. For each 0 ≤ i ≤ n and r ∈ L(si) we define J(s0 . . . si, r) = I(ui, r)

and for all states v ′ that are of the form s ′ = s0 . . . sis
′
i+1 . . . s

′
m where s ′j ∈ V© for

i < j ≤ m, and for all r ∈ L(v ′) we define J(v ′, r) = I(uis
′
i+1 . . . s

′
m, r).

For all states v ′ that are of the form s0 . . . sis
′
i+1 . . . s

′
m where 0 < i ≤ n and m ≤ i,

we define K(v ′) so that it satisfies the following (here, us and uss ′ are two successive

states):

• If for some r ′, r ′′ ∈ L(s) we have r ′ < r ′′ in the order K(us), then δ(r ′, s) < δ(r ′′, s)

in the order K(uss ′).

• All states r ′ ∈ L(s ′) for which there is no r ′′ ∈ L(s) such that δ(r ′, s) = r ′′ are placed

at the end of the order K(uss ′).
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Now let u ∈ V∗V� be a state such that ξ is defined for all predecessors of u but is

not defined for u, and let r be the first state in K(u). Let us take a state u ′ that occurs

in some ω ∈ R such that L(u) = L(u ′) and for all r ′ ∈ L(u), J(u, r ′) = I(u ′, r ′). Let

α(u ′, r) = u0, . . . un and let us denote si = last(ui) for all 0 ≤ i ≤ n. For each 0 ≤ i < n,

whenever si ∈ V�, we define ξ(us1 . . . si) = si+1. For all states v ′ that are of the form

v ′ = us0 . . . sis
′
i+1 . . . s

′
m (where m ≥ i and sj ∈ V© for i ≤ j ≤ m), and for all r ′ ∈ L(v ′),

we define J(v ′, r ′) = I(uis0 . . . sis
′
i+1 . . . s

′
m, r

′).

For all states v ′ that are of the form us0 . . . sis
′
i+1 . . . s

′
m where 0 < i ≤ n, m ≤ i and

sj ∈ V© for i ≤ j ≥ m, we define K(v ′) so that it satisfies the following (here, v ′s and

v ′ss ′ are two successive states):

• δ(q, v ′) is the last state in the order K(v ′s1)

• If for some r ′, r ′′ ∈ L(s) we have r ′ < r ′′ in the order K(v ′s), then δ(r ′, s) < δ(r ′′, s)

in the order K(v ′ss ′). (with the exception of the previous item)

• All states r ′ ∈ L(s ′) for which there is no r ′′ ∈ L(s) such that δ(r ′, s) = r ′′ are placed

at the end of the order K(v ′ss ′).

In the remaining, we argue that the strategy ξ is the strategy satisfying the conditions

of Definition 3.2.

Lemma B.11. For every state ut of (G|X) and every p ∈ L=1(t) we have ut |=ξ Acc
=1(p)

Proof. First, if I(ut, p) = A for some A ∈ A, then for all runs ω initiated in ut,

occ(Comp(p,ω)) = inf(Comp(p,ω)) = A. Indeed, due to the definition of ξ there

can not exist p ′ 6∈ A and k such that p ′ = LS(p,ω(0) . . .ω(k)) (this is ensured by

the definition of I). On the other hand, for almost all runs ω there is k such that

for p ′ = LS(p,ω(0) . . .ω(k)) we have that p ′ is the first state in the ordering de-

fined by ω(k). Then, there is a finite path u0, u1, . . . un initiated in ω(k) such that

Comp(p ′, u0, u1 . . . un) contains all states of A. Because (G|X)ξ may be viewed as a

finite Markov chain, one can easily see that ut |=ξ Acc
=1(p).

If I(ut, p) = •, then for almost all runs ω initiated in ut there is k such that for

p ′ = LS(p,ω(0) . . .ω(k)) we have I(ut, p ′) = A for some A. The remaining follows

from the above paragraph.

The case I(ut, p) = ⊥may not occur due to the definition of Ii.

To prove that s |=ξ Acc
=1(q), one uses arguments similar to the arguments from the

first paragraph of Lemma B.11.
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Lemma B.12. For all states ut of (G|X)ξ and all p ∈ L>0(t) we have the following: if there

is no state of V∗V© reachable from ut in (G|X)ξ, then either wt |=ξ Acc
=1(p), or there is a

finite path u0t0, . . . , uktk initiated in ut such that tk ∈ VR and tk has two outgoing edges

(tk, r1), (tk, r2) ∈ E such that ξ(uktk) selects the edge (tk, r1) and δ(p, t0 · · · tk) ∈ L>0(r2).

Proof. Suppose that there is no state of V∗V© reachable from ut in (G|X)ξ and let ω be

the run initiated in ut. If I(ut, p) 6= ⊥, one may apply same arguments as in the proof

of Lemma B.11.

Otherwise, one of the following holds

• Comp(p,ω) = ⊥. Then, let ` be the biggest number such that

Comp(p,ω(0) . . .ω(`)) is defined. Surely, we must have that last(ω(k)) is a state

of VR satisfying the requirements of the lemma.

• Comp(p,ω) 6= ⊥. Then, there is ` such that for p ′ = LS(p,ω(0) . . .ω(`)) we have

that p ′ is the first state of K(ω(k)). Then there is a finite path ū1ū2 . . . ūn initiated

inω(k) such that last(ūn) ∈ VR is a state satisfying the conditions of the lemma.

Now let us analyze the size of ξ. Surely, ξ is a finite memory strategy. Thus,

one can perform the analysis using the results of [6]. First, we need to show that

we can reduce the problem of the existence of the strategy satisfying the objective

(M, (Q>0, Q=1), L) to the problem of the existence of a strategy satisfiyng a detPECTL∗

formulaψ. We construct the formulaψ as follows. Let us order the setQ into a sequence

q1, q2, . . . q|Q|. Remember that the winning condition A ofM is defined using two sets

Rab = {(Ai, Bi)|1 ≤ i ≤ n} and Saf = {(Ci, Di)|1 ≤ i ≤ m} where the first set specifies

a Rabin winning condition and the latter specifies a Streett winning condition. For each

tuple (X, Y) ∈ Rab and state q ∈ Q we construct an automaton Bq,(X,Y) as follows. The

set of states of B(X,Y) is equivallent to the set of states ofM, the accepting set is X and

the transitions are defined as follows:

• for all q ′ ∈ Q \ Y and q ′′ ∈ Qwe have q ′ T→ q ′′ if there is a transiton q ′ s→ q ′′ inM
and T = {i|qi ∈ L(s)}.

• for all q ′ ∈ Y, q ′ ∅→ q ′.

For each tuple (X, Y) ∈ Saf state q ∈ Q we construct an automaton Bq,(X,Y) as follows.

The states of Bq,(X,Y) are tuples (q ′, x) where q ′ ∈ Q and x ∈ {1, 2}, the initial state
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is (q, 1), the accepting set is {(q, x)|x = 1 ∨ q ∈ Y} and the transitions are defined as

follows:

• for all q ′ ∈ Q \ X and q ′′ ∈ Q, we have (q ′, 1)
T→ (q ′′, 1) if there is a transition

q ′
s→ q ′′ inM such that T = {i|qi ∈ L(s)}.

• for all q ′ ∈ X and q ′′ ∈ Q we have (q ′, 1)
T→ (q ′′, 2) if there is a transition q ′ s→ q ′′

inM such that T = {i|qi ∈ L(s)}.

• for all q ′, q ′′ ∈ Q we have (q ′, 2)
T→ (q ′′, 2) if there is a transition q ′ s→ q ′′ inM

such that T = {i|qi ∈ L(s)}.

For each Bq,(X,Y) we create a formula ψq,(X,Y) = B=1
q (q1, . . . , q|Q|). Let us order all

these formulae into an (arbitrary) sequence and let us denote ψ(i) the i-th formula in

the sequence.

Now for all q ∈ Q we define an automaton Bq. The automaton has states Q ∪
{accept}, where accept is a distinguished state. The state accept is the only accepting

state of Bq, q is the initial state and the transition function of Bq is defined as follows:

• for all q ′, q ′′ ∈ Q we have q ′ T→ q ′′ if there is a transiton q ′ s→ q ′′ in M and

T = {i|qi ∈ L(s)}.

• for all q ′ ∈ Q and (X, Y) ∈ Rab there is a transiton q ′
{j}→ q ′′ where ψ(j − |Q|) =

ψq ′,(X,Y).

• for all q ′ ∈ Q there is a transiton q ′
{j1,...,jm}→ q ′′ where ψ(ji − |Q|) = ψq ′,(Ci,Di).

• accept ∅→ accept

Now for 1 ≤ i ≤ |Q| we define φ(i) = B∼r
qi

(q1, . . . q|Q|, ψ(1), . . . , ψ(|Q| ∗ (m + n)))

where ∼ r is either > 0 or = 1, depending on whether qi ∈ L>0, or qi ∈ L=1

Now we construct an automaton B. B has the set of states V , initial state sin and

transitions s T→ t where T = {i|qi ∈ L(s)}. All states of B are accepting. We put ψ =

B=1(φ(1), . . . , φ(|Q|)). It is easy to verify that the resulting formula is a detPECTL∗

formula and that the construction described above can be performed in polynomial

time.

Lemma B.13. For all FD strategies σ the following holds: The consistency objective

(M, (Q>0, Q=1, L) is achievable by σ iff the formula ψ is satisfied in Gσ with valuation L.
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Now we can use the results of [6] and deduce that iff the consistency objective is

achievable, then there is a strategy of size (|G||δ|O(1)2|Q|mn. Moreover, such strategy can

be synthesized in time (|G||δ|O(1)2|Q|mn.

B.3 Step (b)

Corollary B.14. The problem of existence of a consistent HC strategy is decidable in time (|G| ·
|δ|)O(1) · 2O(|Q|nm). Moreover, existence of a consistent HC strategy implies existence of a one-

counter consistent HC strategy computable in time (|G| · |δ|)O(1) · 2O(|Q|nm).

Proof. There is a gameG ′ = (V ′, E ′, (V ′�, V©), Prob ′), an automatonM ′ = (Q ′, V ′, δ ′,A),

a set Q ′>0 ⊆ Q ′, a set V ′R ⊆ V ′�, a set VD = V� \ VR and a labeling L ′ : V ′ → 2Q such that

there is a consistent HC strategy in G iff there is a srHC strategy in G ′ that achieves a

consistency objective (M, (Q>0, Q=1), L). Applying Proposition 3.3, we obtain an algo-

rithm that decides the existence of a consistent HC strategy in G.

We only sketch the construction of G ′ here. For each s ∈ VR with successors t1 and

t2 we add vertices s1, s2 and s1,2 to V�, remove transitions (s, t1), (s, t2) from E and add

transitions (s1, t1), (s1,2, t1), (s1,2, t2) and (s2, t2) to E. We put L(s1) = L(s2) = L(s1,2) =

{q ′|δ(q, s) = q ′ for some q ∈ L(s)} and δ(s1, q) = δ(s2, q) = δ(s1,2, q) = q for all q. The

set V ′R is created from VR and contains the vertex s1,2 instead of s.

The constructed game need not have the form required in Proposition 3.3 (e.g. it

may not have binary branching), but it can be transformed using constructions given

earlier in the Appendix.

48


