
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Stochastic Games with Branching-Time
Winning Objectives

by

Tomáš Brázdil
Václav Brožek
Vojtěch Forejt

Antonín Kučera

FI MU Report Series FIMU-RS-2006-02

Copyright c© 2006, FI MU September 2006

Copyright c© 2006, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Stochastic Games with Branching-Time
Winning Objectives∗

Tomáš Brázdil Václav Brožek Vojtěch Forejt Antonín Kučera

Faculty of Informatics, Masaryk University,

Botanická 68a, 60200 Brno,

Czech Republic.

{brazdil,xbrozek,xforejt,kucera}@fi.muni.cz

Abstract

We consider stochastic turn-based games where the winning objectives are given

by formulae of the branching-time logic PCTL. These games are generally not

determined and winning strategies may require memory and/or randomiza-

tion. Our main results concern history-dependent strategies. In particular, we

show that the problem whether there exists a history-dependent winning strat-

egy in 1 1
2 -player games is highly undecidable, even for objectives formulated in

the L(F=5/8, F=1, F>0, G=1) fragment of PCTL. On the other hand, we show

that the problem becomes decidable (and in fact EXPTIME-complete) for the

L(F=1, F>0, G=1) fragment of PCTL, where winning strategies require only fi-

nite memory. This result is tight in the sense that winning strategies for

L(F=1, F>0, G=1, G>0) objectives may already require infinite memory.

1 Introduction

In this paper we consider stochastic turn-based games where the winning objectives are
given by formulae of the branching-time logic PCTL. Formally, a 21

2-player game G is
a finite directed graph where the vertices are partitioned into three subsets V¤, V♦, V©.
A play is initiated by putting a token on some vertex. The token is then moved from

∗The work is supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0545.

1

vertex to vertex by two players, ¤ and ♦, who are responsible for selecting outgoing
transitions in the vertices of V¤ and V♦, respectively. In the vertices of V©, outgoing
transitions are chosen randomly according to a fixed probability distribution. A strategy
specifies how a player should play. In general, a strategy may or may not depend on
the history of a play (we say that a strategy is history-dependent (H) or memoryless (M)),
and the transitions may be chosen deterministically or randomly (deterministic (D) and
randomized (R) strategies). In the case of randomized strategies, a player chooses a prob-
ability distribution on the set of outgoing transitions. Note that deterministic strategies
can be seen as restricted randomized strategies, where one of the outgoing transitions
has probability 1. Each pair of strategies (σ, π) for players ¤ and ♦ determines a unique
Markov chain G(σ, π) where the states are finite paths in G, and wu → wuu′ with prob-
ability x iff (u, u′) is a transition in the game and x is the probability chosen by player
¤ or ♦ (when u ∈ V¤ or u ∈ V♦, respectively), or the fixed probability of the transition
(u, u′) when u ∈ V©. A winning objective for player ¤ is some property of Markov chains
that is to be achieved. A winning strategy for player ¤ is a strategy σ such that for ev-
ery strategy π of player ♦ the Markov chain G(σ, π) has the desired property. Usually,
the aim of player ♦ is to falsify this property, which means that his winning objective is
dual. A winning strategy for player ♦ is a strategy π such that G(σ, π) does not have
the property for any strategy σ of player ¤. A game is determined if one of the two play-
ers has a winning strategy in every vertex. 11

2 -player games are “restricted” 21
2 -player

games where V♦ = ∅. All of the above introduced notions (except for determinacy) are
applicable also to 11

2-player games.

Infinite games have been studied in various fields of mathematics and computer
science (recently written overviews are, e.g., [16, 5]). For example, model-checking
problems for certain temporal logics (such as the modal µ-calculus) can be naturally
reformulated as the questions to determine the winner in parity games, and a lot of
research effort has been invested into this problem. Our work is mainly motivated by
applications of games in system design, where systems are modeled as games, player ¤
corresponds to a “controller” which determines the system behaviour in a subset of
controllable states, player ♦ models the environment, and the winning objectives for
player ¤ correspond to the desired property of the system. The task is to find a con-
troller (a strategy σ for player ¤) such that the desired property holds no matter what
the environment does (i.e., the strategy σ is winning). As for stochastic games, the ma-
jority of existing results concern games with linear time winning objectives which are
specified by some property of runs in Markov chains. Examples include quantitative
reachability objectives (the probability of all runs that hit a “good” state is at least $),
qualitative Büchi objectives (the probability of all runs along which a “good” vertex ap-

2

pears infinitely often is 1), qualitative/quantitative parity objectives [6, 7], Rabin and
Street objectives [4], etc. In this paper we study branching-time objectives that are for-
malized as formulae of the branching-time probabilistic logic PCTL.

Previous and related work. In [1], it is shown that winning strategies for PCTL objec-
tives may require memory and/or randomization in general. Hence, the MD, MR, HD,
and HR strategies (see above) need to be considered separately. It is also proven that
the problem whether there exists a winning MD strategy in a given 11

2-player game for
a given PCTL objective is NP-complete. MR strategies were considered in [14], where
it is shown that the existence of a winning MR strategy in a given 21

2 -player game for
a given PCTL objective is in EXPTIME. The construction also yields PSPACE upper
bound for 11

2 -player games.

To prevent misunderstanding, we should say that the logic PCTL can also be inter-
preted directly on games (or Markov decision processes). The decidability of the model-
checking problem for stochastic games and PCTL was established in [9] as a simple con-
sequence of the results about quantitative ω-regular games. However, this is a different
problem which is not directly related to the subject of this paper (as we shall, the results
about stochastic games with branching-time winning objectives are quite different from
the results about model-checking).

Main results. We start by observing that stochastic games with branching-time objec-
tives are not determined, even if the objectives are formulae of the L(F=1, F>0) frag-
ment of PCTL (in general, L(Y1, · · · , Yn) denotes the fragment of PCTL containing the
connectives Y1, · · · , Yn, conjunction, and disjunction (negation can be applied only to
atomic propositions)). As a warm-up, we present some simple results about memory-
less strategies in Section 3.1. We show that the problem whether player ¤ has a winning
MD strategy in a given 21

2 -player game for a given PCTL objective is Σ2 = NPNP com-
plete. The Σ2 lower bound holds even for the L(F=1, F>0) fragment of PCTL. Since the
existence of a winning MD strategy for player ¤ in 11

2 -player games with PCTL ob-
jectives is NP-complete [1], we yield a full complexity classification for MD strategies.
The lower complexity bounds carry over to MR strategies and hold even for qualitative
PCTL objectives for which we give the matching upper bounds—we show that the ex-
istence of a winning MR strategy for player ¤ in 11

2 -player (or 21
2 -player) games with

qualitative PCTL objectives is NP-complete (or Σ2 = NPNP complete, resp.). Let us note
that randomized strategies are strictly more powerful than deterministic ones even for
qualitative objectives (a simple example is given in Section 3.1). The existence of a win-
ning MR strategy for player ¤ in 11

2 -player and 21
2 -player games with general PCTL

objectives is known to be in PSPACE and EXPTIME, respectively [14]. We did not man-
age to lift the NP and Σ2 lower bounds, and we also failed to improve the mentioned

3

upper bounds. On the other hand, there is some indication that lowering the bounds
below PSPACE would be quite difficult. We use the same argument as Etessami & Yan-
nakakis in [11], where it is shown that the SQUARE-ROOT-SUM problem is efficiently
reducible to the quantitative reachability problem for one-exit recursive Markov chains.
An instance of SQUARE-ROOT-SUM is a tuple (a1, · · · , an, b) of integers. The question
is whether ∑n

i=1
√

ai ≤ b. This problem is known to be in PSPACE, but its exact com-
plexity is a long-standing open problem in computational geometry. Hence, an efficient
reduction of SQUARE-ROOT-SUM to another problem P ∈ PSPACE can be seen as an in-
dication that the complexity of P is hard to improve. We show that SQUARE-ROOT-SUM

is efficiently reducible to the problem whether player ¤ has a winning MR strategy in
11

2 -player games with PCTL objectives. Let us note that the technique used in the proof
is different from the one of [11].

The main results of this paper concern history-dependent strategies. First, we an-
swer the open question formulated in [1] by showing that the existence of a winning
HD (or HR) strategy in 11

2-player games is highly undecidable even for objectives of
the L(F=5/8, F=1, F>0, G=1) fragment of PCTL. More precisely, we show that the above
problem is complete for the Σ1

1 level of the analytical hierarchy. This is already a deep
result relying on specific tricks which were developed to encode and simulate a compu-
tation of a given nondeterministic Minsky machine. A slight modification of the proof
reveals that the existence of a winning HD (or HR) strategy with finite memory in 11

2-
player games with L(F=5/8, F=1, F>0, G=1) objectives is also undecidable (and complete
for the Σ1 level of the arithmetical hierarchy). The role of the quantitative F=5/8 opera-
tor is very important in these undecidability results1. In general, qualitative questions
tend to be easier than quantitative ones (this also holds for PCTL and certain classes
of infinite-state Markov chains [10, 3, 2]; note that the plays determined by history-
dependent strategies are infinite-state Markov chains). Hence, we turn out attention
to qualitative PCTL objectives. We start by examining the fragments with qualitative
forms of reachability and safety connectives, i.e., Fon$ and Gon$, where on ∈ {=, >, <}
and $ ∈ {0, 1}. Even in this simplified setting, the results are not uniform and dif-
ferent combinations of connectives lead to quite different results. First, we show that
the role of F=5/8 operator in the aforementioned undecidability proof is provably cru-
cial in the sense that the existence of a winning HD strategy in 11

2-player games with
L(F=1, F>0, G=1) objectives is EXPTIME complete. Let us note that

• the EXPTIME upper bound is proven in two phases. First, we show that the exis-
tence of a winning HD strategy in 11

2-player games with L(F=1, F>0, G=1) objectives

1Let us note that 5/8 is not some kind of “magic number”, it is just technically convenient. In principle,
any operator of the form F=x where 0 < x < 1 would suffice for our purposes.

4

is effectively reducible to the existence of a winning HD strategy in 11
2 -player games

with mixed linear-time objectives, which are essentially conjunctions of one qualitative-
Büchi and one sure-Büchi objective. This reduction is exponential. Then, we show
that the existence of a winning HD strategy in 11

2-player games with mixed linear-
time objectives is in P. Note that if we had a conjunction of two qualitative-Büchi or
two sure-Büchi objectives, we could simply apply known results. To the best of our
knowledge, the games where the winning objectives are “mixtures” of stochastic and
non-stochastic requirements have not yet been explicitly considered (perhaps due to
the lack of motivation). The solution we provide is not trivial.

• The EXPTIME lower bound holds even for L(F=1, G=1) objectives and for both HD
and HR strategies.

Our construction also reveals that a winning strategy in 11
2-player games with

L(F=1, F>0, G=1) objectives needs only a finite memory whose size is exponential in
the size of a given objective. This result does not hold for L(F=1, F>0, G=1, G>0)
objectives—we show that even L(F>0, G>0) objectives require infinite memory in gen-
eral. In this sense, the previous result is tight.

Many interesting questions remain open. For example, it is not clear whether the
existence of a winning strategy in 11

2-player games with qualitative PCTL objectives
is decidable or not (all we know is that these strategies may require infinite memory).
Another question is whether some of our positive results can be extended to 21

2 -player
games and/or to concurrent stochastic games with branching-time winning objectives.
Our knowledge about randomized strategies is also limited, we have not addressed the
issue of fairness, and so on. These problems are left for future research.

2 Basic Definitions

We start by recalling basic notions of probability theory. Let A be a finite set. A probabil-
ity distribution on A is a function f : A → [0, 1] such that ∑a∈A f (a) = 1. A distribution
f is rational if f (a) ∈ Q for every a ∈ A, and Dirac if f (a) = 1 for some a ∈ A. The set of
all distributions on A is denoted D(A).

A σ-field over a set X is a setF ⊆ 2X that includes X and is closed under complement
and countable union. A measurable space is a pair (X,F) where X is a set called sample
space and F is a σ-field over X. A probability measure over measurable space (X,F) is
a function P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise
disjoint elements of F , P(

⋃
i∈I Xi) = ∑i∈I P(Xi), and moreover P(X) = 1. A probabilis-

5

tic space is a triple (X,F ,P) where (X,F) is a measurable space and P is a probability
measure over (X,F).

Markov chains. A Markov chain is a triple T = (S,→, Prob) where S is a finite or count-
ably infinite set of states, → ⊆ S× S is a transition relation, and Prob is a function which
to each transition s → t of T assigns its probability Prob(s → t) ∈ (0, 1] so that for every
s ∈ S we have ∑s→t Prob(s → t) = 1.

In the rest of this paper we also write s x→ t instead of Prob(s → t) = x. A path in T
is a finite or infinite sequence w = s0, s1, · · · of states such that si → si+1 for every i. We
also use w(i) to denote the state si of w (by writing w(i) = s we implicitly impose the
condition that the length of w is at least i + 1). The prefix s0, s1, . . . , si of w is denoted by
wi. A run is an infinite path. The sets of all finite paths and all runs of T are denoted
FPath and Run, respectively. Similarly, the sets of all finite paths and runs that start in a
given s ∈ S are denoted FPath(s) and Run(s), respectively.

Each w ∈ FPath determines a basic cylinder Run(w) which consists of all runs that
start with w. To every s ∈ S we associate the probabilistic space (Run(s),F ,P) where
F is the σ-field generated by all basic cylinders Run(w) where w starts with s, and
P : F → [0, 1] is the unique probability function such that P(Run(w)) = Πm−1

i=0 xi where
w = s0, · · · , sm and si

xi→ si+1 for every 0 ≤ i < m (if m = 0, we put P(Run(w)) = 1).

The logic PCTL. The logic PCTL, the probabilistic extension of CTL, was introduced
by Hansson & Jonsson in [12]. Let Ap = {p, q, . . . } be a countably infinite set of atomic
propositions. The syntax of PCTL formulae is given by the following abstract syntax
equation:

Φ ::= p | ¬p | Φ1∨Φ2 | Φ1∧Φ2 | Xon$ Φ | Φ1Uon$ Φ2

Here p ∈ Ap, $ ∈ [0, 1], and on ∈ {≤, <,≥, >, =, 6=}.
Let T = (S,→, Prob) be a Markov chain, and let ν : Ap → 2S be a valuation. The

semantics of PCTL is defined below.

s |=ν p iff s ∈ ν(p)
s |=ν ¬p iff s 6∈ ν(p)
s |=ν Φ1 ∨Φ2 iff s |=ν Φ1 or s |=ν Φ2

s |=ν Φ1 ∧Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν Xon$Φ iff P({w ∈ Run(s) | w(1) |=ν Φ}) on $

s |=ν Φ1Uon$ Φ2 iff P({w ∈ Run(s) | ∃j ≥ 0 : w(j) |=ν Φ2 and w(i) |=ν Φ1 for all 0 ≤ i < j}) on $

Note that in our version of PCTL syntax, the negation can be applied only to atomic
propositions. This is no restriction because the syntax is closed under dual connectives
and relations: For every on ∈ {≤, <,≥, >, =, 6=}, let on be the complement of on (for

6

example, ifon is≤, thenon is >). The negation of Xon$Φ and Φ1Uon$ Φ2 then corresponds
to Xon$Φ and Φ1Uon$ Φ2, respectively. The Fon$ and Gon$ operators are defined in the
standard way: Fon$Φ stands for tt Uon$ Φ, and Gon$Φ stands for tt Uôn1−$ ¬Φ, where ôn
is <, >, ≤, ≥, =, or 6=, depending on whether on is >, <, ≥, ≤, =, or 6=, respectively.

Various natural fragments of PCTL can be obtained by restricting the PCTL syn-
tax to certain modal connectives and/or certain operator/number combinations. For
example, the qualitative fragment of PCTL is obtained by restricting the allowed opera-
tor/number combinations to ‘on 0’ and ‘on 1’. Hence, aU<1b∨ F>0c is a qualitative PCTL
formula. In this paper we also consider fragments with unary reachability and safety
connectives. Formally, for each tuple Y1, · · · , Yn, where each Yi is of the form Xon$, Fon$,
or Gon$, we define the L(Y1, · · · , Yn) fragment of PCTL:

Φ ::= p | ¬p | Φ1∨Φ2 | Φ1∧Φ2 | Y1Φ | · · · | YnΦ

For example, F>0(b ∨ G≥0.43(¬c ∧ F<0.5d)) is a formula of L(F>0, G≥0.43, F<0.5). Some-
times we also use formulae of the form p ⇒ Φ which stand for ¬p ∨Φ.

Games, strategies, and objectives. A 21
2 -player game is a tuple G =

(V, E, (V¤, V♦, V©), Prob) where V is a finite set of vertices, E ⊆ V × V is the set
of transitions, (V¤, V♦, V©) is a partition of V, and Prob is a probability assignment which
to each v ∈ V© assigns a rational probability distribution on the set of its outgoing
transitions. For technical convenience, we assume that each vertex has at least one
outgoing transition. The game is played by two players, ¤ and ♦, who move a single
token from vertex to vertex along the transitions of E. Player ¤ selects the moves in the
V¤ vertices, and player ♦ selects the moves in the V♦ vertices. Transitions in the V©
vertices are chosen randomly according to the corresponding probability distribution.
Game graphs are drawn in the standard way; vertices of V¤, V♦, and V© are depicted
as squares, diamonds, and circles, respectively. Probability distributions are usually
uniform, which is indicated by arcs connecting the outgoing transitions of V© vertices.
A strategy for player ¤ is a function σ which to each wv ∈ V∗V¤ assigns a probability
distribution on the set of outgoing transitions of v. We say that a strategy σ is memoryless
(M) if σ(wv) depends just on the last vertex v, and deterministic (D) if σ(wv) is a Dirac
distribution for each wv ∈ V∗V¤. Consistently with [1, 14], strategies that are not
necessarily memoryless are called history-dependent (H), and strategies that are not
necessarily deterministic are called randomized (R). A special type of history-dependent
strategies are strategies with finite memory, which are formally defined as pairs (A, f)
where A = (Q, V, δ, q0) is a deterministic finite-state automaton over the alphabet V
of vertices and f is a function which to each pair (q, v) ∈ Q× V¤ assigns a probability
distribution on the set of outgoing transitions of v. The pair (A, f) determines a unique
strategy σ(A, f) such that σ(A, f)(wv) = f (q, v), where q = δ(q0, wv). Intuitively, the

7

states ofA represent a finite memory of size |Q|where selected properties of the history
of a play are stored. Hence, we can define the following four classes of strategies: MD,
MR, HD, and HR, where MD ⊆ HD ⊆ HR and MD ⊆ MR ⊆ HR, but MR and HD
are incomparable. Strategies for player ♦ are defined analogously. Each pair (σ, π)
of strategies for player ¤ and ♦ determines a unique play of the game G, which is a
Markov chain G(σ, π) where V+ is the set of states, and wu x→ wuu′ iff (u, u′) ∈ E and
one of the following conditions holds:

• u ∈ V© and Prob(u, u′) = x;
• u ∈ V¤ and σ(wu) assigns x to (u, u′);
• u ∈ V♦ and π(wu) assigns x to (u, u′).

An objective is a pair (ν, ϕ), where ν : Ap → 2V is a valuation and ϕ a PCTL formula.
Note that each valuation ν : Ap → 2V determines a valuation ν : Ap → 2V+

defined by
ν(a) = {wu ∈ V+ | u ∈ ν(a)}. For a given objective (ν, ϕ), each state of G(σ, π) either
does or does not satisfy ϕ. A (ν, ϕ)-winning strategy for player ¤ in a vertex v ∈ V is a
strategy σ such that for every strategy π of player ♦ we have that v |=ν ϕ. Similarly, a
(ν, ϕ)-winning strategy for player ♦ in a vertex v ∈ V is a strategy π such that for every
strategy σ of player ¤ we have that v 6|=ν ϕ. The game G is (ν, ϕ)-determined if there is a
(ν, ϕ)-winning strategy for one of the two players in every vertex v of G.

11
2-player games are 21

2 -player games where the set V♦ is empty. Formally, a 11
2 -player

game is a tuple G = (V, E, (V¤, V©), Prob) where all elements have the expected mean-
ing.

3 The Results

We start by observing that stochastic games with branching-time objectives are not de-
termined, even if these objectives are taken from the L(F=1, F>0) fragment of PCTL.
Consider the following game:

s

b c da

Let ν be a valuation which defines the validity of the propositions a, b, c, d as indicated
in the above figure, and let ϕ ≡ F=1(a ∨ c) ∨ F=1(b ∨ d) ∨ (

F>0c ∧ F>0d
)
. Now it is

easy to check that none of the two players has a (ν, ϕ)-winning strategy in the vertex s,
regardless whether we consider MD, MR, HD, or HR strategies.

8

3.1 Memoryless Strategies

In [1], it is shown that the problem whether there exists a winning MD strategy in a
given 11

2 -player game for a given PCTL objective is NP-complete. In fact, the NP lower
bound holds even for the L(F=1) fragment of PCTL. The following theorem gives a
complexity classification for 21

2 -player games.

Theorem 3.1. The existence of a winning MD strategy for player ¤ in 21
2 -player games with

PCTL objectives is Σ2 = NPNP complete. The Σ2 lower bound holds even for L(F=1, F>0)
objectives and for both MD and MR strategies.

Proof. A Σ2 formula is a formula of the form

∃x1, · · · , xn ∀y1, · · · , ym B

where n, m ∈ N and B is a ∧,∨-expression over the (possibly negated) variables
x1, · · · , xn, y1, · · · , ym. The problem whether a given Σ2 formula is valid is Σ2-complete
[15].

Let ψ ≡ ∃x1, · · · , xn ∀y1, · · · , ym B. We construct a 21
2-player game G(ψ), a valuation

ν, and a formula ϕ ∈ L(F=1, F>0) such that player ¤ has a (ν, ϕ)-winning MD (or
MR) strategy in a distinguished vertex v of G(ψ) iff ψ is valid. Let us fix two sets P =
{pi, p̂i | 1 ≤ i ≤ n} and Q = {qj, q̂j | 1 ≤ j ≤ m} of fresh atomic propositions,
and let Pi = Pr{pi}, P̂i = Pr{ p̂i}, Qj = P ∪ {qj}, Q̂j = P ∪ {q̂j} for all 1 ≤ i ≤ n
and 1 ≤ j ≤ m. The structure of G(ψ) together with the valuation ν are shown in the
following figure:

v

Q1 Q̂mQ̂1 QmP̂nPnP̂1P1

Let

ϕ ≡
(m∨

j=1

(F>0qj ∧ F>0q̂j)
)
∨

(
B̂ ∧

n∧

i=1

(F=1pi ∨ F=1 p̂i)
)

where B̂ is the formula obtained from B by substituting each occurrence of xi, ¬xi, yj,
and ¬yj with F=1 pi, F=1 p̂i, F>0qj, and F>0q̂j, respectively. Intuitively, player ¤ chooses
an assignment for the variables x1, · · · , xn (xi is set to true or false by selecting the tran-
sition to a vertex satisfying pi or p̂i, resp.). Note that player ¤ cannot use randomized
moves because then the formula F=1 pi ∨ F=1 p̂i would not hold. Similarly, player ♦

9

chooses an assignment for y1, · · · , ym. Observe that player ♦ cannot use randomized
moves either because this would make some F>0qj ∧ F>0q̂j true. Now it is easy to check
that ψ is valid iff player ¤ has a (ν, ϕ)-winning MD (or MR) strategy in the vertex v.
This establishes the Σ2 lower bound.

The Σ2 upper bound holds for all PCTL objectives. First, let us note that the model-
checking problem for PCTL formulae and Markov chains is in P [12]. Hence, it suffices
to “guess” a winning strategy σ for player ¤, and then ask the NP oracle whether there
is a strategy π of player ♦ such that G(σ, π) does not satisfy a given objective. The
answer of the oracle is then simply negated.

The complexity classification for MD strategies is thus established. As for MR strategies,
the NP and Σ2 lower bounds still hold. However, we managed to provide the matching
upper bounds only for the subclass of qualitative PCTL objectives. Note that randomized
strategies are more powerful than deterministic ones even for qualitative objectives—
consider the formula X>0pu ∧ X>0 pv and a simple game G with three vertices t, u, v ∈
V¤ where t → u, t → v, u → u, and v → v. The propositions pu and pv hold only in
u and v, respectively. Obviously, there is no winning (ν, ϕ)-winning MD strategy, but
there are many (ν, ϕ)-winning MR strategies.

Theorem 3.2. The existence of a winning MR strategy for player ¤ in 11
2 -player (or 21

2-player)
games with qualitative PCTL objectives is NP-complete (or Σ2 = NPNP complete, resp.).

Proof. A straightforward induction on the structure of a qualitative PCTL formula ϕ

shows that the (in)validity of ϕ does not depend on the exact values of transition prob-
abilities. It only matters which of the transition have zero/positive probability. Hence,
in the case of 11

2-player games, it suffices to “guess” the subset of outgoing transitions
in each vertex of V¤ which should have positive probability, and then verify that the
guess was correct by a (polynomial time) PCTL model-checking algorithm [12]. The
Σ2 upper bound for 21

2-player games is established analogously (see the proof of Theo-
rem 3.1).

The existence of a winning MR strategy for player ¤ in 11
2-player and 21

2 -player games
with general PCTL objectives is known to be in PSPACE and EXPTIME, respectively
[14]. We did not manage to lift the NP and Σ2 lower bounds, and we also failed to im-
prove the mentioned upper bounds. At least, we provide some evidence that lowering
these bounds below PSPACE is difficult (see the discussion in Section 1). As a byprod-
uct of this construction, we obtain an example of a 11

2 -player game (where V© = ∅)
and an objective (ν, ϕ) where ϕ ∈ L(X>0, U=1/2) such that the only (ν, ϕ)-winning MR
strategy assigns irrational probabilities to transitions.

10

Theorem 3.3. The SQUARE-ROOT-SUM problem is efficiently reducible to the problem whether
player ¤ has a winning MR strategy in 11

2 -player games with PCTL objectives.

Proof. Let a1, · · · , an, b be an instance of SQUARE-ROOT-SUM (see Section 1). Let G be a
game where

• the set V = V¤ contains the vertices v, u, s, c(i), d(i), e(i), f (i), g(i), and h(i) for all
1 ≤ i ≤ n;

• the set of transitions contains v → u, u → u, s → u, v → c(i), c(i) → d(i) → f (i),
c(i) → e(i) → f (i), f (i) → g(i) → s, and f (i) → h(i) → s for all 1≤i≤n.

The structure of G is shown in the following figure:

c(1)

c(n)

d(1)

d(n)

e(n)

e(1)

f (1)

f (n)

g(1)

g(n)

h(n)

h(1)

s
v

u

We assume that for each vertex t ∈ V there is an atomic proposition pt which is valid
only in t (thus we obtain our valuation ν). Slightly abusing notation, we write t instead
of pt in our formulae.

Every strategy σ for player ¤ assigns (some) probabilities p(ci), p(ei), and p(hi) to
transitions v → c(i), c(i) → e(i), and f (i) → h(i), respectively, where 1 ≤ i ≤ n. Let
q = b + ∑n

i=1 ai. We construct a PCTL formula ϕ such that every (ν, ϕ)-winning MR
strategy in v has to assign p(ci) = p(ei) = p(hi) =

√
ai/q for every 1 ≤ i ≤ n. Then

the probability of v → u must be 1− ∑n
i=1
√

ai/q. The formula ϕ contains the clause
X≥1−b/qu. Hence, player ¤ has a (ν, ϕ)-winning MR strategy in v iff 1−∑n

i=1
√

ai/q ≥
1− b/q, i.e., iff ∑n

i=1
√

ai ≤ b.

Now we describe the formula ϕ in greater detail. For every 1 ≤ i ≤ n, let Φi ≡
(v ∨ c(i)) Uai/q2

e(i). Note that v |=ν Φi iff p(ci) · p(ei) = ai/q2. Similarly, we construct
the formulae Ψi and Ξi such that v |=ν Ψi and v |=ν Ξi iff p(ei) · p(hi) = ai/q2 and
p(hi) · p(ci) = ai/q2, respectively:

Ψi ≡ X>0(c(i) ∨ (e(i) ∨ f (i)) Uai/q2
h(i)

)

Ξi ≡ X>0X>0X>0((f (i) ∨ h(i) ∨ s ∨ v) Uai/q2
c(i)

)

11

Observe that if p(ci) · p(ei) = p(ei) · p(hi) = p(hi) · p(ci) = a1/q2, then necessarily
p(ci) = p(ei) = p(hi) =

√
ai/q. We put ϕ ≡ X≥1−b/qu ∧ ∧n

i=1(Φi ∧Ψi ∧ Ξi).

Let us consider the game obtained for n = 1, a1 = 2, and b = 0. Then Φ1 ∧Ψ1 ∧Ξ1 ∈
L(X>0, U1/2) and the only (ν, Φ1 ∧Ψ1 ∧Ξ1)-winning MR strategy in v assigns irrational
probabilities to certain transitions. Thus, we obtain the example promised above.

3.2 History-Dependent Strategies

The results presented in this section constitute the main contribution of our paper. We
start with the negative ones.

Theorem 3.4. The existence of a winning HD (or HR) strategy in 11
2-player games with

L(F=5/8, F=1, F>0, G=1) objectives is undecidable (and Σ1
1-hard).

Proof. The result is obtained by reduction of the problem whether a given nondetermin-
istic Minsky machine with two counters initialized to zero has an infinite computation
such that the initial instruction is executed infinitely often (this problem is known to
be Σ1

1-complete [13]). Formally, a nondeterministic Minsky machine with two counters
c1, c2 is a finite sequence M of numbered instructions 1:ins1, · · · , n:insn, where each insi

is of one of the following forms (where j ∈ {1, 2}):

• cj := cj+1; goto k
• if cj=0 then goto k else cj := cj−1; goto m
• goto {k or m}
Here the indexes k, m range over {1, · · · , n}. We can safely assume that

• insi 6= insj for i 6= j (in the rest of this proof we do not strictly distinguish between
instructions and their corresponding indexes);

• insi does not contain the goto i statement;
• ins1 ≡ c1 := c1+1; goto 2.

A configuration of M is a triple [insi, v1, v2], where insi is the instruction to be executed,
and v1, v2 ∈ N0 are the current values of c1, c2. A computational step ↪→ between con-
figurations is defined in the expected way. A recurrent computation of M is an infinite
computation initiated in [ins1, 0, 0] along which ins1 is executed infinitely often. As we
already mentioned, the problem whether a given M has a recurrent computation is
Σ1

1-complete.

Let M ≡ 1:ins1, · · · , n:insn be a nondeterministic Minsky machine. We construct
a 11

2 game G(M) = (V, E, (V¤, V©), Prob) and a formula ϕ ∈ L(F=5/8, F>0, F=1, G=1)
such that player ¤ has a winning HD or HR strategy in a vertex (q0, 1, res1) ∈ V iff M
has a recurrent computation.

12

We define the game G(M) incrementally (the sets V and E are initially empty). For
the sake of simplicity, we also introduce redundant vertices that are not reachable from
the initial vertex (q0, 1, res1). Let S = {inc1, inc2, dec1, dec2, res1, res2, nil}.

• For all 0 ≤ i ≤ n, j ∈ {1, 2}, and s ∈ S we add a vertex (qi, j, s) to V©, and vertices
(ti, j, s), (ri, s) to V¤. We also fix fresh atomic propositions a(i, j), b(i, j) which will be
used later.

• The outgoing transitions of the (ri, s) vertices are shown in Figure 1 (bottom left).
• For each (qi, j, s) vertex we add four new vertices to V©. The vertices are connected

by transitions as shown in Figure 1 (left). Some of the newly added vertices satisfy the
propositions a(i, j), b(i, j) as indicated in the figure. Note that the structure for i = 0
is slightly different.

• For each (ti, j, s) vertex we add either 7 or 9 new vertices (depending on j and s) to
V© and connect them as indicated in Figure 1 (right). The validity of the propositions
a(i, j), b(i, j) in these new vertices is also shown in the figure.

For all i ∈ {0, · · · , n} and j ∈ {1, 2} we fix a fresh atomic proposition c(i, j) whose
validity is defined as follows:

• all vertices which satisfy b(i, j) satisfy also c(i, j);
• if insi contains the goto k statement, then all vertices which satisfy a(k, j) also satisfy

c(i, j). Moreover, for all s ∈ S the vertex (qk, 2, s) satisfies c(i, 1), and the vertex (rk, s)
satisfies c(i, 2).

• no other vertices satisfy c(i, j).

Finally, we assume that for each vertex v there is a fresh proposition pv which is valid
only in v (we write v instead of pv in our formulae).

Our aim is to construct the formula ϕ so that each play of G(M) which satisfies
ϕ corresponds to a recurrent computation of M. From this point on we restrict our
attention to HD strategies (at the end of this proof we show that the use of randomized
moves can easily be prohibited by ϕ, and hence the presented result also applies to HR
strategies).

The structure of a typical play is shown in Figure 2 (to simplify the figure, the loops
on vertices are not drawn). First, let us realize that every play of G(M) can be identified
with an infinite sequence

[ins1, 0, 0], · · · , [insi, V1, V2], [insk, U1, U2], · · ·

of extended configurations of M, where the counters can also take the ω (i.e., “infinite”)
value. Of course, this sequence does not necessarily correspond to a valid computation
of M. The way how a given play determines its associated sequence is indicated in

13

(ti , j, resj)

(ti , j, incj)
a(i, j)

(ti , j, decj)
a(i, j)

a(i, j)
(ti , j, w)

(q0, 2, s)

(q0, 1, s)

b(0, 1) b(0, 1)

(t0, 1, res1)

(t0, 2, res2)

Here w ranges over {inc1, dec1, res1, nil} if j = 2,
and over {inc2, dec2, res2, nil} if j = 1.

b(0, 2) b(0, 2)(q2, 1, inc1) (r0, s)

(q` , 2, s) (t` , 2, s)

(q` , 1, s)

b(`, 1)
a(`, 1)

b(`, 1)
a(`, 1)

(t` , 1, s)

b(`, 2)
a(`, 2) a(`, 2)

b(`, 2)

if ins` ≡ if cj=0 then goto k; else cj := cj−1; goto m

(qm , 1, decj)
(r` , s)

(qk , 1, resj)

(qm , 1, nil) (qk , 1, nil)
(r` , s)

if ins` ≡ goto {k or m}

(qk , 1, incj)
(r` , s)

(r` , s)

if ins` ≡ cj := cj+1; goto k

b(i, j)

b(i, j)

b(i, j)

b(i, j)a(i, j) a(i, j)

a(i, j)

a(i, j)

In the whole figure:
• ` ranges over {1, · · · , n},
• i ranges over {0, · · · , n},

• s ranges over S
• j ranges over {1, 2}

Figure 1: The structure of G(M)

Figure 2. Each extended configuration in the sequence corresponds to a block of vertices
in the play. For example, a configuration [insi, V1, V2], where insi ≡ c1 := c1+1; goto k,
is represented by a block of vertices that starts in a (qi, 1, s) vertex (where s corresponds
to the instruction of the configuration which immediately precedes [insi, V1, V2] in the
sequence). The counters are encoded as follows: First, observe that when a (ti, j, s)
vertex of the play is visited, player ¤ can choose between transitions leading to a “gray”
or “white” vertex (see Figure 1). If he chooses a gray vertex, then with probability 1/2
he will make another choice in two transitions. Thus, player ¤ may decide to visit a
gray vertex Cj-times, where Cj ranges from 0 to infinity. This Cj represents the value of
counter j. In the play of Figure 2, player ¤ has chosen a gray vertex from a (ti, 1, dec2)
vertex V1-times, and hence the value of the first counter is V1.

14

[ins1, 0, 0] of M
The initial configuration

b(0, 1) b(0, 1)

(q0, 1, res1)

(q0, 2, res1)

b(0, 2) b(0, 2)
(r0, res1)

b(i, 1) b(i, 1)

(qi , 1, dec2)

(qi , 2, dec2)

b(i, 2) b(i, 2) a(i, 2) a(i, 2)

chosen V2 times

a(i, 1) a(i, 1)

chosen V1 times

b(k, 1) b(k, 1)

(qk , 1, inc1)

(qk , 2, inc1)

b(k, 2) b(k, 2) a(k, 2) a(k, 2)

chosen U2 times

a(k, 1) a(k, 1)

chosen U1 times

a(i, 1) a(i, 1)

a(i, 2)a(i, 2)

a(k, 2) a(k, 2)

a(k, 1) a(k, 1)

(rk , inc1)

insi ≡ c1 := c1+1; goto k
A configuration [insi , V1, V2] where

b(k, 2)

b(k, 1)

b(i, 1)

b(i, 2)

b(i, 1)

b(i, 2)
(ri , dec2)

a(i, 1)

a(i, 2) a(i, 2)

a(k, 2)

A configuration [insk , U1, U2]

Figure 2: A play of G(M) (the loops on vertices are not drawn).

The initial configuration [ins1, 0, 0] requires a special treatment, because the counters
are initially zero but can become positive when ins1 is revisited. This is the reason why
we introduced the family of zero-indexed vertices such as (q0, j, s), (r0, s), etc.

It is easy to see that the sequence

[ins1, 0, 0], · · · , [insi, V1, V2], [insk, U1, U2], · · ·

does correspond to a recurrent computation of M iff the following conditions are satis-
fied:

(a) Counter values in all extended configurations of the sequence are finite.

(b) The sequence contains infinitely many configurations of the form [ins1, · · ·].

(c) For each pair [insi, V1, V2], [insk, U1, U2] of successive configurations we have that
[insi, V1, V2] ↪→ [insk, U1, U2].

15

We show how to express these conditions in L(F=5/8, F>0, F=1, G=1). Condition (a) is
easy—it suffices to say that whenever a (ti, j, s) vertex is hit, there must be a finite path
to a vertex satisfying b(i, j). This prevents player ¤ from “looping” at gray vertices
forever (see Figure 1). Formally, this is encoded by the formula

Fin ≡ ∧

0≤i≤n,j∈{1,2},s∈S

G=1((ti, j, s) ⇒ F>0b(i, j)
)

Condition (b) can be expressed by the formula

Rec ≡ G=1
((∨

0≤i≤n,s∈S

(qi, 1, s)
) ⇒ (

F>0
∨

s′∈S

(q1, 1, s′)
))

Condition (c) requires more care, and this is where we need the F=5/8 operator. Let
[insi, V1, V2], [insk, U1, U2] be successive configurations in our sequence, and let us first
consider the case when insi ≡ c1:=c1+1; goto k′ (note that this case is visualized in Fig-
ure 2). The definition of G(M) guarantees that k′ = k (see the outgoing transitions
of (ri, s) vertices in Figure 1). The (qk, 1, s) vertex in the block which corresponds to
[insk, U1, U2] must be of the form (qk, 1, inc1). So, all we need to check is that U1 = V1 + 1
and U2 = V2. We claim that

• U1 = V1 + 1 iff the (qi, 1, s) vertex which corresponds to the configuration [insi, V1, V2]
satisfies the formula F=5/8c(i, 1).

• U2 = V2 iff the (qi, 2, s) vertex which corresponds to the configuration [insi, V1, V2]
satisfies the formula F=5/8c(i, 2).

Let us first verify the second claim. By definition, c(i, 2) is valid in the (rk, s) vertices
and in all vertices that satisfy b(i, 2) or a(k, 2). All runs initiated in the (qi, 2, s) vertex
which leave the two blocks of vertices corresponding to [insi, V1, V2] and [insk, U1, U2]
inevitably go through (rk, s), and the total probability of all these runs is 1/8 (here we
need our assumption that insi does not contain the goto i statement; without this as-
sumption, it could happen that k = i and hence the considered probability could be
1/4). So, the considered (qi, 2, s) vertex satisfies the formula F=5/8c(i, 2) iff the proba-
bility of hitting a vertex which satisfies b(i, 2) or a(k, 2) and lies within the two blocks
of vertices corresponding to [insi, V1, V2] and [insk, U1, U2] is exactly 1/2. A closer look
reveals that this probability is equal to the following sum of two binary numbers:

0.011 0 · · · 0︸ ︷︷ ︸
V2

001 + 0.00011 1 · · · 1︸ ︷︷ ︸
U2

1

Obviously, this sum is equal to 1/2 iff U2 = V2, and we are done.

The first claim is verified similarly. In this case, we obtain that the (qi, 1, s) vertex
satisfies F=5/8c(i, 1) iff

0.011 0 · · · 0︸ ︷︷ ︸
V1

001 + 0.00011 1 · · · 1︸ ︷︷ ︸
U1

16

is equal to 1/2, which happens iff U1 = V1 + 1.

If insi ≡ if c1=0 then goto k′; else cj:=cj−1; goto m′ then k = k′ or k = m′ (again,
this follows from the definition of G(M)). The block of vertices which corresponds to
[insk, U1, U2] then contains a vertex of the form (qk, 1, s), where s is either res1 or dec1. We
need to check the following conditions:

(1) U2 = V2.

(2) If s = res1, then U1 = V1 = 0.

(3) If s = dec1, then U1 = V1 − 1.

Similarly as above, one can verify that Condition (1) holds iff the (qi, 2, s) vertex in the
block of vertices corresponding to [insi, V1, V2] satisfies the formula F=5/8c(i, 2). We
claim that Conditions (2) and (3) hold iff the (qi, 1, s) vertex in the same block satisfies
the formula F=5/8c(i, 1). Let us first consider Condition (2). The definition of G(M)
guarantees that U1 = 0 (see the outgoing transitions of (ti, 1, res1) in Figure 1). Hence,
it actually suffices to check that U1 = V1, which is done by the formula F=5/8c(i, 1).
Condition (3) is handled similarly.

If insi operates over the second counter, the arguments are the same as above (there
is no need to change the formulae or the vertices in which they are supposed to hold).
Finally, if insi ≡ goto {k′ or m′}, then k = k′ or k = m′. We need to check that U1 = V1

and U2 = V2, which is again implemented by the formulae F=5/8c(i, 1) and F=5/8c(i, 2).
So, Condition (c) can be encoded by the formula

Succ ≡ ∧

0≤i≤n,j∈{1,2},s∈S

G=1((qi, j, s) ⇒ F=5/8c(i, j)
)

Now we define the formula

ϕ ≡ Fin∧ Rec∧ Succ∧NoRnd

where the subformula NoRnd says that player ¤ cannot use randomized moves (the
formula says that whenever a vertex v ∈ V¤ is hit, there is an immediate successor of v
which is visited with probability 1). This can be expressed using G=1 and F=1 operators.
Hence, our proof applies both to HD and HR strategies.

On the other hand, the existence of a winning HD strategy in 11
2 games with general

PCTL objectives can be encoded by a Σ1
1 formula in a straightforward way. Hence, the

problem is Σ1
1-complete.

A slight modification of the construction presented in Theorem 3.4 reveals the fol-
lowing:

17

Theorem 3.5. The existence of a winning HD (or HR) strategy with finite memory in 11
2 games

with L(F=5/8, F=1, F>0, G=1) objectives is undecidable.

Proof. First, let us realize that the problem is semidecidable (i.e., belongs to the Σ1 level
of the arithmetical hierarchy). Obviously, one can effectively enumerate all (A, f) and
for each such (A, f) decide whether σ(A, f) is winning, because the corresponding play
has only finitely many states (more precisely, the play is obtained as unfolding of an ef-
fectively constructible finite-state Markov chain). The undecidability result is obtained
by a slight modification of the construction presented in Theorem 3.4. In this case, we
reduce the halting problem for “ordinary” deterministic Minsky machines (i.e., there
is no goto {k or m} instruction, and the last instruction is halt). The subformula Rec is
replaced with a formula Halt ≡ F>0 ∨

s∈S(qn, 1, s), which says that a “halting state” is
reachable with positive probability. Note that if a given Minsky machine halts, then it
halts after finitely many steps and the corresponding winning strategy needs only finite
memory (of course, there is no bound on its size). If the machine does not halt, there is
no winning strategy at all.

Now we show that the previous undecidability results are tight in the sense that the
existence of a winning HD strategy in 11

2 -player games withL(F=1, F>0, G=1) objectives
is decidable, and in fact EXPTIME-complete.

Let G be a 11
2 -player game where V is the set of vertices. A mixed objective is a pair

(P, Q) where P, Q ⊆ V. A strategy σ for player ¤ is (P, Q)-winning in a vertex v ∈ V iff
all runs in G(σ) initiated in v visit some state of P infinitely often, and the probability
of all runs which visit some state of Q infinitely often is 1. Hence, a mixed objective is
essentially a conjunction of a sure-Büchi objective specified by P and a qualitative-Büchi
objective specified by Q. The first step towards the promised EXPTIME upper bound is
the following:

Lemma 3.6. Let G be a 11
2 -player game, sin a vertex of G, and (ν, ψ) an objective where ψ ∈

L(F=1, F>0, G=1). Then there effectively exists a 11
2 -player game G′, a vertex s′in of G′, and a

mixed objective (P, Q) such that player ¤ has a (ν, ψ)-winning HD strategy in the vertex sin iff
player ¤ has a (P, Q)-winning HD strategy in the vertex s′in. Moreover, the G′, s′in, and (P, Q)
are computable in time which is linear in the size of G and exponential in the size of ψ.

Since the proof of Lemma 3.6 is relatively long and relies on several auxiliary results, it
has been shifted to Appendix A.1.

Lemma 3.6 shows that the problem of our interest is reducible to another game-
theoretic problem, whose complexity is analyzed in our next lemma.

Lemma 3.7. The existence of a winning strategy in 11
2 -player games with mixed objectives is

decidable in polynomial time.

18

A proof of Lemma 3.7 can by found in Appendix A.2.

A direct consequence of Lemma 3.6 and Lemma 3.7 is that the existence of a winning
HD strategy in 11

2 -player games with L(F=1, F>0, G=1) objectives is in EXPTIME. It
remains to establish the matching lower bound.

Lemma 3.8. The existence of a winning HD (or HR) strategy in 11
2 -player games with

L(F=1, G=1) objectives is EXPTIME-hard.

Proof. We reduce the acceptance problem for alternating LBA (which is known to be
EXPTIME-complete [15]). An alternating LBA is a tuple M = (Q,A, Γ, q0,`,a, δ, P)
where Q is a finite set of control states, A is a finite input alphabet, Γ ⊇ A is a finite tape
alphabet, q0 ∈ Q is the initial control state, `,a ∈ Γ are the left-end and the right-end
markers, δ : Q×Γ → 2Q×Γ×{L,R} is a transition function, and P = (Q∀, Q∃, Qacc, Qrej)
is a partition of Q into universal, existential, accepting, and rejecting states, respectively.
We can safely assume that Q ∩ Γ = ∅, q0 ∈ Q∃, δ(q, A) = ∅ for all q ∈ Qacc ∪ Qrej,
and δ(q, A) has exactly two elements (q1, A1, D1), (q2, A2, D2), where q1 6= q2, for all
q ∈ Q∀ ∪ Q∃. A computational tree for M on a word u ∈ A∗ is a tree T satisfying the
following: the root of T is (labeled by) the initial configuration for u, and if N is a node
of T labeled by a configuration with a control state q, then the following holds:

• if q is accepting or rejecting, then N is a leaf;
• if q is existential, then N has one successor labeled by a configuration reachable from

the configuration of N in one step.
• if q is universal, then the successors of N are the two configurations reachable from

the configuration of N in one step.

M accepts u iff there is a finite computational tree T such that all leafs of T are accepting
configurations. We can safely assume that all computational trees for M are finite.

Let M = (Q,A, Γ, q0,`,a, δ, P) be an alternating LBA and u ∈ A∗ an input word.
We construct (in polynomial time) a 11

2 game G(M, u) = (V, E, (V¤, V©), Prob) and an
objective (ν, ϕ) where ϕ ∈ L(F=1, G=1) such that player ¤ has a (ν, ϕ)-winning HD (or
HR) strategy in a distinguished vertex g(1, 1) ∈ V iff M accepts u. Configurations of
M are written as words over the alphabet Ξ = Q ∪ Γ in the standard way; for example,
the initial configuration for u is written as q0`ua. Another standard result is that one
can efficiently compute the set Comp(M) ⊆ Ξ6 of all compatible 6-tuples such that for
each configuration c (written as a word over Ξ) we have that c′ ∈ Ξ∗ is a one-step
successor of c iff c′ has the same length as c and for all 1 ≤ i ≤ |c|−2 we have that
(c(i), c(i+1), c(i+2), c′(i), c′(i+1), c′(i+2)) ∈ Comp(M).

Let n = |u|+ 3. The structure of G(M, u) is shown in Figure 3. The set V consists of
the following vertices:

19

c(2, 1, Ym)

c(2, 1, Y1)

g(2, 3)g(2, 2)g(2, 1) g(2, n+1)

c(2, 2, Ym)

c(2, 2, Y1)

s(2, [r, B])

s(2, [q, A]) x(2, r)

x(2, p)

c(1, 1, Ym)

c(1, 1, Y1)

g(1, 3)g(1, 2) g(1, n+1)

c(1, 2, Ym)

c(1, 2, Y1)

s(1, [r, B])

s(1, [q, A]) x(1, r)

x(1, p)

`(1) a(1)

`(2) a(2)

g(1, 1)

Figure 3: The structure of G(M, w)

• g(j, i), where j ∈ {1, 2} and 1 ≤ i ≤ n+1;
• c(j, i, Y), where j ∈ {1, 2}, 1 ≤ i ≤ n+1, and Y ∈ Ξ;
• s(j, [q, A]), where j ∈ {1, 2}, q ∈ Q, and A ∈ Γ;
• x(j, q), where j ∈ {1, 2} and q ∈ Q;
• `(1), `(2), a(1), a(2).

The set E contains the following transitions:

• g(j, i) → c(j, i, Y) and c(j, i, Y) → g(j, i+1) for all j ∈ {1, 2}, i ∈ {1, · · · , n}, and
Y ∈ Ξ;

• g(j, n+1) → s(j, [q, A]) for all j ∈ {1, 2}, q ∈ Q, and A ∈ Γ;
• s(j, [q, A]) → s(j, [q, A]) for all j ∈ {1, 2}, A ∈ Γ, and q ∈ Q where q is accepting or

rejecting;
• s(j, [q, A]) → x(j, q′) for all j ∈ {1, 2}, A ∈ Γ, and q, q′ ∈ Q where q is existential or

universal and δ(q, A) contains a triple of the form (q′, B, D);
• x(j, q) → `(j) for all j ∈ {1, 2} and q ∈ Q;
• `(1)→g(2, 1), `(1)→a(1), `(2)→g(1, 1), `(2)→a(2);
• a(1) → a(1), a(2) → a(2).

The set V© consists of `(1), `(2) and all s(j, [q, A]) where q ∈ Q∀. The other vertices
belong to V¤. The function Prob always assigns the uniform probability distribution
over the set of outgoing transitions.

20

A play starts in g(1, 1). The intended scenario is the following: Player ¤ succes-
sively “guesses” the configurations ofM by choosing appropriate moves in the vertices
g(1, 1), · · · , g(1, n) and g(2, 1), · · · , g(2, n). In the states g(1, n+1) and g(2, n+1), player
¤ chooses the successor s(1, [q, A]) and s(2, [q, A]) where q is the control state and A
the scanned tape symbol in the configuration just guessed. If q is accepting or rejecting,
there is a loop on the corresponding vertex (we call these vertices accepting/rejecting).
If q is existential, in the next move player ¤ chooses one of the two control states which
can be entered by M after performing one computational step in the configuration just
guessed. If q is universal, this choice is random. In the next guessing phase, player ¤
will use the chosen control state and hence he “guesses” the configuration chosen in the
previous round. This goes on until a loop is reached, which can happen either in a ac-
cepting/rejecting vertex, or in the vertices a(1), a(2). The formula ϕ constructed below
ensures that player ¤ cannot violate this scenario, cannot use randomized moves, and
has to enter a(1), a(2), or an accepting vertex with probability one. It turns out that M
accepts w if player ¤ has a HD (or HR) strategy such that ϕ is satisfied in g(1, 1).

Now we describe the formula ϕ in detail. For each v ∈ V we fix a fresh atomic
proposition pv which is valid only in v. Slightly abusing notation, we write v instead of
pv. We put

ϕ ≡ Init∧ Succ∧ Ctrl∧ Choice∧Accept∧NoRnd

The subformula Init says that the initial configuration w = q0`ua is guessed from g(1, 1)
at the beginning of a play. Hence, Init ≡ ∧n

i=1 F=1c(1, i, w(i)). Note that if player ¤
selects, e.g., c(1, 1,`) instead of c(1, 1, q0), the formula F=1c(1, 1, q0) is not satisfied in
g(1, 1); this is because the vertex c(1, 1, q0) can then be visited only after passing through
the vertex `(1), which enters the a(1)-loop with probability 1/2.

The subformula Succ is of the form Succ1∧Succ2. Succ1 says that whenever the vertex
g(1, 1) is entered, one of the following conditions holds:

• the control state of the configuration which is to be guessed from g(1, 1) is accepting;
• for every 1 ≤ i ≤ n−2, the symbols chosen in g(1, i), g(1, i+1), g(1, i+2) and in g(2, i),

g(2, i+1), g(2, i+2) form a compatible 6-tuple.

For all X1, X2, X3 ∈ Ξ, let C(X1, X2, X3) be the set of all triples Y1, Y2, Y3 such that
(X1, X2, X3, Y1, Y2, Y3) ∈ Comp(M). The formula Succ1 looks as follows:

G=1
(

g(1, 1) ⇒ (
Acc ∨

n−2∧

i=1

∨

~X∈Ξ3

Pos(1, i, ~X)
))

where Acc ≡ ∨
q∈QAcc,A∈Γ

F=1s(1, [q, A]) and Pos(1, i, ~X) stands for

F=1c(1, i, ~X1) ∧ F=1c(1, i+1, ~X2) ∧ F=1c(1, i+2, ~X3) ∧ F=1ψ

21

where ψ is the formula

a(1) ∨ ∨

~Y∈C(~X)

c(2, i,~Y1) ∧ F=1(c(2, i+1,~Y2) ∧ F=1c(2, i+2,~Y3)
)

The formula Succ2 says analogous conditions about the vertex g(2, 1) and is imple-
mented similarly as Succ1.

The subformula Ctrl is of the form Ctrl1 ∧ Ctrl2. Ctrl1 says that the vertex chosen
from g(1, n+1) corresponds to the control state and the scanned tape symbol in the
configuration just guessed. This can be written as follows:

∧

1≤i<n
q∈Q

G=1
(

c(1, i, q) ⇒ ∨

A∈Γ

(
F=1c(1, i+1, A) ∧ F=1s(1, [q, A])

))

Ctrl2 encodes an analogous property for the vertex chosen from g(2, n+1).
The subformula Choice ≡ Choice1 ∧ Choice2 says that whenever a vertex of the form

x(1, q) (or x(2, q)) is visited, then the configuration guessed next will have q as its control
state. We write just Choice1 (Choice2 is constructed analogously):

∧

q∈Q

G=1
(

x(1, q) ⇒ F=1(a(1) ∨ ∨

A∈Γ

s(2, [q, A])
))

The subformula Accept says that the probability of visiting a(1), a(2), or one of the
accepting vertices, is equal to one:

F=1
(

a(1) ∨ a(2) ∨ ∨

j∈{1,2},q∈Qacc,A∈Γ

s(j, [q, A])
)

Note that due to the assumption that every computational tree of M is finite, the previ-
ous formulae already guarantee that player ¤ surely (i.e., in the non-probabilistic sense)
enters a(1), a(2), or an accepting/rejecting vertex after finitely many rounds. Hence,
there is no infinite path in the computational tree constructed by the play, and the sub-
formula Accept guarantees that all leafs in this tree are accepting.

Finally, the subformula NoRnd says that player ¤ does not use randomized moves.
This subformula is actually needed only if player ¤ uses a HR strategy (NoRnd is redun-
dant for HD strategies). This is implemented simply by saying that whenever a vertex
of V¤ with more than one successor is visited, then one of its successors is visited with
probability one in the next move. For example, for g(1, 1) the formula looks as follows:

G=1
(

g(1, 1) ⇒ ∨

α∈Ξ

F=1c(1, 2, α)
)

The formulae for the other vertices of V¤ look similarly.

A simple corollary of Lemma 3.6, Lemma 3.7, and Lemma 3.8 is the following:

22

Theorem 3.9. The existence of a winning HD strategy in 11
2 -player games with

L(F=1, F>0, G=1) objectives is EXPTIME-complete. The EXPTIME lower bound holds even
for L(F=1, G=1) objectives.

It follows from the proofs of Lemma 3.6 and Lemma 3.7 that a winning HD strategy in
11

2 -player games with L(F=1, F>0, G=1) objectives actually requires only finite memory
whose size is linear in the size of a given game and exponential in the size of a given
objective. A natural question is whether Theorem 3.9 can be generalized to a larger class
of qualitative PCTL objectives. One natural possibility is to add the G>0 operator, which
yields the L(F=1, F>0, G=1, G>0) fragment. However, there is a strong evidence that the
method of Lemma 3.6 cannot be generalized to this class of objectives. This is because
these objectives may already require infinite memory, which is demonstrated in our last
theorem:

Theorem 3.10. A winning HD strategy in 11
2 games with L(F>0, G>0) objectives may require

infinite memory.

Proof. Let ϕ ≡ G>0(¬stop ∧ F>0stop
)

and let G be the following game (the valuation ν

for atomic propositions stop, left, and right is also indicated in the figure):

s

left

rightright

stop

v1 v2

3/4 3/4

1/41/4

First we show that there is a (ν, ϕ)-winning HD strategy σ for player ¤ in the vertex v1.
We define σ(ws) to be the Dirac distribution which assigns 1 to the transition leading
to v1 or v2, depending on whether #right(w) − #left(w) ≤ 0 or #right(w) − #left(w) > 0,
respectively. Here #right(w) denotes the number of occurrences of a state satisfying the
proposition right in w. We claim that the state v1 in the play G(σ) satisfies the formula
G=2/3(¬stop ∧ F>0stop

)
and hence also the formula ϕ. To see this, realize that the play

G(σ) corresponds to the unfolding of the following infinite Markov chain:

3/4 3/4

1/4 1/4 1/4

1 11

1 1 1

3/4

1
v1

stop

1/4

A standard calculation reveals that the probability of hitting the stop state from v1 is
equal to 1/3. Hence, the probability of all runs initiated in v1 which do not hit the stop
state is 2/3. All states in all these runs can reach the stop state with positive probability.
Hence, v1 satisfies the formula G=2/3(¬stop∧ F>0stop

)
.

23

Now we show that there is no (ν, ϕ)-winning HD strategy with finite memory. Sup-
pose the converse. Let (A, f) be such a strategy where the automaton A = (Q, V, δ, q0)
has n states. We show that the state v1 in the corresponding play satisfies the for-
mula G=0(¬stop ∧ F>0stop

)
, which means that v1 does not satisfy ϕ. We say that a

state w in the play G(σ(A, f)) is live if there is a state ww′s such that w →∗ ww′s and
f (δ(q0, ww′s), s) assigns 1 to the transition leading to v1. A state which is not live is dead.
We claim that there is a fixed ε > 0 such that the probability of hitting a stop state from a
given live state w is at least ε. To see this, it suffices to observe that whenever w is a live
state, then there is a path from w to a stop state of length at most 3n+1. Note that a state
w is dead iff w is a stop state or w cannot reach a stop state at all. By applying standard
arguments of Markov chain theory, we can now conclude that the probability of hitting
a dead state from v1 is equal to one. Since a dead state does not satisfy ¬stop ∧ F>0stop,
we obtain that v1 satisfies G=0(¬stop∧ F>0stop

)
and we are done.

References

[1] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski. Controller synthesis for proba-

bilistic systems. In Proceedings of IFIP TCS’2004. Kluwer, 2004.

[2] T. Brázdil, J. Esparza, and A. Kučera. Analysis and prediction of the long-run behavior of

probabilistic sequential programs with recursion. In Proceedings of FOCS 2005, pp. 521–530.

IEEE Computer Society Press, 2005.

[3] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability of temporal properties of

probabilistic pushdown automata. In Proceedings of STACS’2005, vol. 3404 of Lecture Notes
in Computer Science, pp. 145–157. Springer, 2005.

[4] K. Chatterjee, L. de Alfaro, and T. Henzinger. The complexity of stochastic Rabin and

Streett games. In Proceedings of ICALP 2005, vol. 3580 of Lecture Notes in Computer Science,

pp. 878–890. Springer, 2005.

[5] K. Chatterjee and T. Henzinger. Semiperfect-information games. In Proceedings of FST&TCS
2005, vol. 3821 of Lecture Notes in Computer Science, pp. 1–18. Springer, 2005.

[6] K. Chatterjee, M. Jurdzinski, and T. Henzinger. Simple stochastic parity games. In Proceed-
ings of CSL’93, vol. 832 of Lecture Notes in Computer Science, pp. 100–113. Springer, 1994.

[7] K. Chatterjee, M. Jurdzinski, and T. Henzinger. Quantitative stochastic parity games. In

Proceedings of SODA 2004, pp. 121–130. SIAM, 2004.

24

[8] L. de Alfaro. Computing minimum and maximum reachability times in probabilistic sys-

tems. In Proceedings of CONCUR’99, vol. 1664 of Lecture Notes in Computer Science, pp. 66–81.

Springer, 1999.

[9] L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. Journal of
Computer and System Sciences, 68:374–397, 2004.

[10] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In

Proceedings of LICS 2004, pp. 12–21. IEEE Computer Society Press, 2004.

[11] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and

monotone systems of non-linear equations. In Proceedings of STACS’2005, vol. 3404 of Lec-
ture Notes in Computer Science, pp. 340–352. Springer, 2005.

[12] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6:512–535, 1994.

[13] D. Harel. Effective transformations on infinite trees with applications to high undecidabil-

ity dominoes, and fairness. Journal of the Association for Computing Machinery, 33(1), 1986.

[14] A. Kučera and O. Stražovský. On the controller synthesis for finite-state Markov decision

processes. In Proceedings of FST&TCS 2005, vol. 3821 of Lecture Notes in Computer Science,

pp. 541–552. Springer, 2005.

[15] Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[16] W. Thomas. Infinite games and verification. In Proceedings of CAV 2003, vol. 2725 of Lecture
Notes in Computer Science, pp. 58–64. Springer, 2003.

25

A Appendix

A.1 A Proof of Lemma 3.6

For the rest of this proof, let us fix a 11
2-player game G = (V, E, (V¤, V©), Prob), a vertex

sin ∈ V, and an objective (ν, ψ) where ψ ∈ L(F=1, F>0, G=1). For technical convenience,
we assume that all subformulae of ψ are pairwise distinct (this can be achieved by re-
placing atomic propositions in ϕ with fresh propositions so that each proposition has a
unique occurrence in ψ; the valuation ν is extended accordingly). Our aim is to define
another 11

2 -player game G′, a vertex s′in of G′, and a mixed objective (P, Q) such that
player ¤ has a (ν, ψ)-winning HD strategy in sin iff player ¤ has a (P, Q)-winning HD
strategy in s′in.

Let L be the set of all literals, i.e., atomic propositions and their negations. Let
S be the set of all subformulae of ψ, where negation is not considered as a con-
nective (for example, if ψ ≡ F=1¬q, then S = {¬q, F=1¬q}). For each connective
α ∈ {F=1, F>0, G=1,∨,∧}, we use Sα to denote the subset of S consisting of all formulae
where the topmost connective is α. We also use SAp, SF, STemp, SBool, and SF̄ to denote
the sets S ∩ L, SF=1 ∪ SF>0 , SF=1 ∪ SF>0 ∪ SG=1 , S∨ ∪ S∧, and {F̄on$

ϕ | Fon$ ϕ ∈ SF},
respectively. The purpose of “barred” formulae of SF̄ becomes clear later.

In the following, we assume that S = {ϕ1, . . . , ϕn} where i < j implies that ϕi

is not a subformula of ϕj. The first step towards the definition of G′ is the function

Θ : 2S → 22S∪SF̄ which decomposes subformulae of ψ into “subgoals”. Let A ⊆ S . If
A ⊆ SAp, then Θ(A) = {A}. Otherwise, let i be the least index such that ϕi ∈ ArSAp.
We distinguish among the following possibilities:

• If ϕi ≡ ϕk ∨ ϕ`, then

Θ(A) = Θ((Ar{ϕi}) ∪ {ϕk}) ∪Θ((Ar{ϕi}) ∪ {ϕ`})

• If ϕi ≡ ϕk ∧ ϕ`, then Θ(A) = Θ((Ar{ϕi}) ∪ {ϕk, ϕ`})
• If ϕi ≡ G=1ϕj, then

Θ(A) = {D ∪ {G=1(ϕj)} | D ∈ Θ((Ar{ϕi}) ∪ {ϕj})}

• ϕi ≡ Fon$ ϕj; then

Θ(A) = {D ∪ {Fon$(ϕj)} | D ∈ Θ(Ar{ϕi})}
∪ {D ∪ {F̄on$(ϕj)} | D ∈ Θ((Ar{ϕi}) ∪ {ϕj})}

The intuition behind the function Θ is the following: to find out whether there is a (ν, ψ)-
winning HD strategy in sin, we extend each vertex of G (and hence each state of an arbi-
trary play of G) with a set A of subformulae of ψ that should be valid when the play is

26

in the state. Some of these formulae represent temporal “goals” which can be achieved
either in the current state or in its successors. The function Θ “offers” all admissible
possibilities how to distribute the goals among the current state and its successors so
that all formulae in A are valid. Selecting the right alternative becomes the responsibil-
ity of player ¤. For example, Θ({F=1 p}) = {{F=1 p}, {F̄=1 p, p}}, because the “current”
state satisfies F=1 p iff either all of its successors satisfy F=1 p (the goal is “postponed”),
or the proposition p is satisfied in the current state (the goal is “achieved”). In the latter
case, the function Θ also “marks” the current state with F̄=1(p), which means that the
goal F=1(p) has been achieved. The exact purpose of these marks will be clarified later.

Before defining the game G′, we formulate several properties of Θ that are useful
in proofs. The next two lemmas are proven by a straightforward induction on the total
number of connectives in the formulae of A.

Lemma A.1. Let s be a state of some play of G, and let A ⊆ S . Then s satisfies all formulae of
A iff there is D ∈ Θ(A) such that s satisfies all formulae of D ∩ S .

Lemma A.2. For all non-empty disjoint sets A, B ⊆ S we have that Θ(A ∪ B) = {X ∪ Y |
X ∈ Θ(A), Y ∈ Θ(B)}.

Corollary A.3. Let A ⊆ S be a non-empty set.

• If G=1ξ ∈ A, then Θ(A) is equal to

{{G=1ξ} ∪ X ∪Y | X ∈ Θ(Ar{G=1(ξ)}), Y ∈ Θ({ξ})}

• If Fonxξ ∈ A, then Θ(A) is equal to

{{Fon$ξ} ∪ X | X ∈ Θ(Ar{Fon$ξ})}
∪{{F̄on$

ξ} ∪ X ∪Y | X ∈ Θ(Ar{Fon$ξ}), Y ∈ Θ({ξ})}

The game G′ = (V′, E′, (V′
¤, V′

©), Prob′) is defined as follows. The set of vertices V′

consists of vertices of the following two forms (f -vertices and g-vertices):

• f -vertices are of the form (s, A, B, C) f where s ∈ V, A ⊆ S , B ⊆ SF=1 ∪ {•}, and
C ⊆ SF>0 . Intuitively, the set A consists of formulas that should be satisfied in the
current state (see the intuitive description of Θ above). The sets B and C assure that all
subgoals of the form F=1ϕ and F>0ϕ are eventually fullfiled (see the mixed winning
objective defined below).

• g-vertices are of the form (s, A, B, C, ~D)g where s ∈ V, A ⊆ S ∪ SF̄, B ⊆ SF=1 ∪ {•},
C ⊆ SF>0 , and ~D ∈ ∏t∈V 2SF>0 . The purpose of B and C is similar as in the case of
f -vertices. The set A consists of subgoals that should be satisfied in successors of the
current state. The vector ~D is used to distribute the subgoals of the form F>0ϕ to the
successors of the current state.

27

The set V′
¤ consists of all f -vertices and of all g-vertices of the form (s, A, B, C, ~D)g where

s ∈ V¤. The set V′
© consists of all g-vertices of the form (s, A, B, C, ~D)g where s ∈ V©.

The set E′ of transitions of G′ is defined as follows:

1. (s, A, B, C) f → (s, A′, B′, C′, ~D)g iff the following conditions are satisfied:

• A′ ∈ Θ(A)
• B′ is equal to

− {•}, if A′ ∩Ap 6⊆ ν(s) or there is ¬p ∈ A′ such that p ∈ ν(s);
− A′ ∩ SF=1 , if B = ∅;
− Br {F=1ξ | F̄=1

ξ ∈ A′} otherwise.

• if C = ∅, then C′ = A′ ∩ SF>0 ; otherwise C′ = Cr {F>0ξ | F̄>0
ξ ∈ A′}.

• ⋃
(s,t)∈E ~Dt = A′ ∩ SF>0

• if s ∈ V¤ then for each t ∈ V such that (s, t) ∈ E we have that Dt = A′ ∩ SF>0 .

Intuitively, the f -vertices are controlled by player ¤ who chooses a set of sub-
goals A′ ∈ Θ(A). The atomic propositions in A′ are immediately verified (if there
is some inconsistency then • is put into B′) while the other formulae in A′ are
passed to successors. The sets B′ and C′ are updated depending on which sub-
goals (subformulae) are chosen by player ¤ as “achieved” in the current state (cf.
the intuitive description of Θ above). Note that the vertex s is not changed in
the successors of f -vertices. The transitions of G are simulated in g-vertices (see
below).

2. (s, A, B, C, ~D)g → (t, A′, B′, C′) f if (s, t) ∈ E, A′ = (Ar (SF>0 ∪ SF̄ ∪ SAp)) ∪ ~Dt,
B′ = B, and C′ = C ∩ ~Dt

3. There are no other transitions in E′ than those given by the rules 1. and 2.

Prob′ is defined as follows: For all s ∈ V©, the probability of (s, A, B, C, ~D)g →
(t, A′, B′, C′) f is the same as the probability of s → t in G. We put s′in = (sin, {ψ}, ∅, ∅) f .
Finally, we define the mixed (P, Q) objective as follows:

• the set P consists of all vertices of the form (s, A, B, ∅, ~D)g;
• the set Q consists of all vertices of the form (s, A, ∅, C, ~D)g.

It remains to show that player ¤ has a (ν, ψ)-winning HD strategy in sin iff player ¤ has
a (P, Q)-winning HD strategy in s′in. We demonstrate both implications separately in
subsequent subsections. First, we fix some notation which is used in both parts of our
proof.

For a given a f -vertex (s, A, B, C) f , the i-th component of the tuple (s, A, B, C) is
denoted ρi((s, A, B, C) f). For example, ρ2((s, A, B, C) f) = A. An analogous notation

28

is used also for g-vertices. The last symbol of a given non-empty word w is denoted
last(w).

A.1.1 Transfering winning strategies from G′ to G.

Let σ′ be a (P, Q)-winning HD strategy in s′in. The states in G′(σ′) of the form
u · (s, A, B, C) f are called f -states, and states of the form u · (s, A, B, C, ~D)g are called
g-states.

Let R be the set of all g-states of G′(σ′) that are reachable from s′in. We define a
function Λ : R → V∗ inductively as follows:

• Λ(s′in · σ′(s′in)) = sin

• Λ(v · (s, A, B, C) f (s, A′, B′, C′, ~D)g) = Λ(v) · s

A routine check confirms the following:

Lemma A.4. Λ is injective.

We define a strategy σ : V∗V¤ → V as follows: For a given v ∈ Λ(R) such that
σ′(Λ−1(v)) = (t, A, B, C) f we put σ(v) = t. For v ∈ (V∗V¤)r Λ(R) we put σ(v) to
an arbitrary value (as we show these strings are not states of G(σ)).

Lemma A.5. Λ(R) is precisely the set of states that are reachable from sin in G(σ), and for all
v, v′ ∈ Λ(R) we have P(v →∗ v′) = P(Λ−1(v) →∗ Λ−1(v′)).

Proof. Let v ∈ Λ(R). We show that v x→ v′ iff v′ ∈ Λ(R) and Λ−1(v) x→ u 1→ Λ−1(v′),
where u is the unique predecessor of Λ−1(v′) in G′(σ′).

Assume that last(v) = s and last(Λ−1(v)) = (s, A, B, C, ~D)g. There are two possibili-
ties:

• If s ∈ V©, then we have that v x→ v′ iff v′ = v · t for some t ∈ V such that s x→ t iff

Λ−1(v) x→ Λ−1(v) · (t, A′, B′, C′) f 1→ Λ−1(v′)
• If s ∈ V¤, then we have that v 1→ v′ iff v′ = v · t for t = σ(v) and σ′(Λ−1(v)) =

(t, A′, B′, C′) f iff Λ−1(v) 1→ Λ−1(v) · (t, A′, B′, C′) f 1→ Λ−1(v′)

It follows that there is a (unique) path v = v0, . . . , vn = v′ from v
to v′ iff there is a (unique) path π from Λ−1(v) to Λ−1(v′). More-
over, π = Λ−1(v0), u1, Λ−1(v1), u2, . . . , Λ−1(vn) and hence by applying the
above arguments we obtain that P(v →∗ v′) = P(Run(v0, . . . , vn)) =
P(Run(Λ−1(v0), u1, Λ−1(v1), u2, . . . , Λ−1(vn))) = P(Λ−1(v) →∗ Λ−1(v′)).

The last technical step is the following lemma:

29

Lemma A.6. Let A ⊆ S be a non-empty set, and let D ∈ Θ(A) be a set such that G=1ξ ∈ D
or F̄on$

ξ ∈ D. Then there is Y ∈ Θ({ξ}) such that Y ⊆ D.

Proof. Let us first consider the case when G=1ξ ∈ D. Let us assume that G=1ξ ≡ ϕi, and
let ϕj ∈ A be the formula with the least index in A. Note that j ≤ i because G=1ξ is a
subformula of some formula in A. We proceed by induction in i− j.

If i = j, then by Corollary A.3 we have that

Θ(A) = {{G=1ξ} ∪ X ∪Y | X ∈ Θ(Ar {G=1ξ}), Y ∈ Θ(ξ)}

from which the claim follows. The induction step for j < i is completed simply by
considering all possible forms of ϕj and applying the definition of Θ.

The case when F̄on$(ξ) ∈ D is handled similarly.

Now we show the main result of this subsection:

Lemma A.7. sin |=ν ψ

Proof. By induction on the structure of ψ we show that for all ϕ ∈ S and for all states
of R of the form v = v′ · (s, A, B, C) f (s, A′, B′, C′, ~D)g we have that Λ(v) |=ν ϕ whenever
ϕ ∈ A′ ∩S . Together with Lemma A.1, this implies that sin |=ν ψ because there is a state
of the form (sin, {ψ}, ∅, ∅) f (sin, A′′, B′′, C′′, ~D′)g in R where A′′ ∈ Θ({ψ}).

Since (s, A, B, C) f → (s, A′, B′, C′, ~D)g, we have that A′ ∈ Θ(A). First, observe that
if ϕ is a Boolean combination of some formulae, then ϕ 6∈ A′ ∈ Θ(A) and we are done.
The other cases are analyzed below.

• If ϕ ∈ SAp, then Λ(v) |=ν ϕ because otherwise B′ = {•} by definition of G′. Note
that if B′ = {•} then σ′ is not winning strategy for G′ because • is never removed and
hence the (P, Q)-winning objective is not achieved.

• Let ϕ ≡ G=1ξ. First we show that if G=1ξ ∈ A′ then Λ(v) |=ν ξ. By Lemma A.6
we have that if G=1ξ ∈ A′ then there is D ∈ Θ({ξ}) such that D ⊆ A′. Then, Λ(v)
satisfies all formulae of D∩S by induction hypothesis (note that all formulae of D∩S
are subformulae of ξ) and hence Λ(v) |=ν ξ by applying Lemma A.1. Now observe
that for every u reachable from v we have that G=1ξ ∈ ρ2(last(u)) which implies that
Λ(u) |= ξ. The rest now follows from Lemma A.5.

• Let ϕ ≡ F=1ξ. Similarly as for G=1ξ we show that whenever F̄=1
ξ ∈ A′, then Λ(v) |=ν

ξ. We prove that almost every run of Run(v) contains a g-state u such that F̄=1
ξ ∈

ρ2(last(u)). Let ω be a run initiated in v that does not contain such a state. Observe
that for all i ≥ 0 we have F=1ξ ∈ ρ2(last(ω(i))). However, this means that either
ρ3(last(ω(i))) 6= ∅ for all i ≥ 0, or there is j ≥ 0 such that ρ3(last(ω(j))) = ∅ and
for all k > j we have F=1ξ ∈ ρ3(last(ω(k))). In both cases, the run ω does not satisfy

30

the qualitative Büchi objective specified by the set Q in the mixed winning objective
(P, Q), and we know that the probability of all such runs is 0.
It follows that almost every run initiated in v reaches a state u ∈ R such that Λ(u) |=ν

ξ. Hence, Λ(v) |=ν F=1ξ due to Lemma A.5.
• Let ϕ ≡ F>0ξ. Similarly as in the previous cases we show that whenever F̄>0

ξ ∈ A′

then Λ(v) |=ν ξ. We prove that there is a state u reachable from v such that F̄>0
ξ ∈

ρ2(last(u)). By definition of G′ we have that there is a run ω ∈ Run(v) such that
either F̄>0

ξ ∈ ρ2(ω(j)) for some j ≥ 0, or F>0ξ ∈ ρ2(ω(j)) for all j ≥ 0. We show that
the latter case contradicts the sure-Büchi objective specified by the set P in the mixed
winning objective (P, Q). There are two possibilities: either ρ4(ω(i)) 6= ∅ for all i ≥ 0,
or there is j ≥ 0 such that ρ4(ω(j)) = ∅ and for all k > j we have F>0ξ ∈ ρ4(ω(j)). In
both cases, the run ω visits the states of P only finitely many times. The rest follows
from Lemma A.5.

Transfering winning strategies from G to G′.

Let σ : V∗V¤ → V be a strategy such that sin |=ν ψ. Let R be the set of states of G(σ) that
are reachable from sin.

Lemma A.8. For all v ∈ R and A ⊆ S such that v satisfies all formulae of A there is D ∈ Θ(A)
such that

• v satisfies all formulae of D ∩ S ;
• if Fon$ξ ∈ D then v 6|=ν ξ.

Proof. For each X ∈ Θ(A) we put F(v, X) = {Fon$ξ ∈ X | v |=ν ξ}, and we denote
rank(X) = min{i | ϕi ∈ F(v, X)} (we put rank(X) = ∞ if F(v, X) = ∅). By Lemma A.1,
we know that there is A′ ∈ Θ(A) such that v satisfies all formulae of A′ ∩ S . Let us
assume that F(v, A′) 6= ∅ (otherwise we put D = A′ and we are done). We show
that there is A′′ ∈ Θ(A) such that v satisfies all formulae of A′′ ∩ S and rank(A′′) >

rank(A′).

Let 1 ≤ i ≤ n be the least index such that ϕi = Fon$ξ ∈ F(v, A′), and let ϕj ∈ A be
the formula with the least index in A. Clearly j ≤ i. We show by induction on j− i that
there is A′′ ∈ Θ(A) such that rank(A′′) > rank(A′).

If i = j then by Corollary A.3 we have that A′ = X ∪ {Fon$ξ} where X ∈ Θ(Ar
{Fon$ξ}). Note that v satisfies all formulae of X ∩ S . However, by Corollary A.3 we
have that X ∪ {F̄on$

ξ} ∪ Y ∈ Θ(A) for every Y ∈ Θ({ξ}). Since v |= ξ, by applying
Lemma A.1 we obtain that there is Y ∈ Θ({ξ}) such that v satisfies all formulae of
Y ∩ S , and hence all formulae of (X ∪ Y) ∩ S . Hence, we put A′′ = X ∪ {F̄on$

ξ} ∪ Y.

31

Observe, that an index of arbitrary formula of X ∪ Y is greater than i. In particular,
rank(A′′) > rank(A′).

The induction step for j < i is completed by considering all possible forms of ϕj and
applying the definition of Θ.

Definition A.9. Given a formula ξ ∈ S and a state v of G(σ), we denote Dist(v, ξ) the length
of the shortest path from v to a state which satisfies ξ (we put Dist(v, ξ) = ∞ if there is no such
state).

Lemma A.10. Let vs ∈ R where s ∈ V and vs 6|= ξ. Then the following holds:

• If s ∈ V¤ and vs |=ν Fon$ξ, then vsσ(s) |=ν Fon$ξ.
• If s ∈ V© and vs |=ν F=1ξ, then for all t ∈ V such that s → t we have vst |=ν F=1ξ.
• If s ∈ V© and vs |=ν F>0ξ, then there is t ∈ V such that s → t, vst |=ν F>0ξ and

Dist(vst, ξ) < Dist(vs, ξ).

We define a function Γ : R → (V′)∗ and a strategy σ′ : (V′)∗(V ′
¤) → V′ inductively as

follows: Γ(sin) = (sin, {ψ}, ∅, ∅) f . For a given v ∈ R such that last(Γ(v)) = (s, A, B, C) f

where v satisfies all formulae in A we define σ′(Γ(v)) to be one of the vertices (chosen
arbitrarily) of the form (s, A′, B′, C′, ~D)g where

• A′ ∈ Θ(A), v satisfies all formulae in A′ ∩ S , and if Fon$ξ ∈ A′ then v 6|=ν ξ.
• The sets B′ and C′ are determined by A′, B, and C (see the definition of G′)
• ~D is compatible with the definition of G′, and if s ∈ V© then F>0ξ ∈ ~Dt implies that

vt |= F>0ξ and Dist(vt, ξ) < Dist(v, ξ).

Due to Lemma A.8 and Lemma A.10, there must be at least one vertex of the form
(s, A′, B′, C′, ~D)g satisfying the three properties above. Furthermore,

• if s ∈ V¤, we put σ′(Γ(v) · (s, A′, B′, C′, ~D)g) = (t, A′′, B′′, C′′) f where σ(v) = t;
• if s ∈ V©, then for all t ∈ V such that s → t we put Γ(vt) =

Γ(v)(s, A′, B′, C′, ~D)g(t, A′′, B′′, C′′) f);
• if s ∈ V¤ and t = σ(v), we put Γ(vt) = Γ(v)(s, A′, B′, C′, ~D)g(t, A′′, B′′, C′′) f

In all these cases, the sets A′′, B′′, C′′ are uniquely determined (see the definition of G′).
Note that the invariant “v satisfies all formulae in A” is maintained throughout the
inductive definition. For other strings of (V′)∗(V ′

¤) we define σ′ arbitrarily.

Lemma A.11. Γ(R) is precisely the set of all f -states of G′(σ′) that are reachable from s′in.
Moreover, for all v, v′ ∈ R we have that P(v →∗ v′) = P(Γ(v) →∗ Γ(v′)).

32

Proof. It is easy to show that for a given v ∈ R we have v x→ v′ iff Γ(v) x→ u 1→ Γ(v′),
where u is the unique predecessor of Γ(v′) in G′(σ′). The proof can be completed using
the same arguments as in the proof of Lemma A.5.

Lemma A.12. Let Γ(v) ∈ Γ(R). Then almost all runs of Run(Γ(v)) contain a state u such
that ρ3(last(u)) = ∅.

Proof. Let us suppose that σ′(Γ(v)) = (s, A, B, C, ~D)g and let F=1ξ ∈ B ⊆ A. Let v′

be a state reachable from v such that v′ |= ξ. It follows from the definition of σ′ that
σ′(Γ(v′)) = (s, A′, B′, C′, ~D)g where F=1ξ 6∈ B′. Moreover, P(Γ(v) →∗ Γ(v′)) = P(v →∗

v′) due to Lemma A.11. It follows that for every F=1ξ ∈ B and for almost all runs of
Run(Γ(v)) there is i ≥ 0 such that F=1ξ 6∈ ρ3(last(ω(i))). From this we can deduce that
almost all ω ∈ Run(Γ(v)) satisfy the following condition: for every formula F=1ξ ∈ B
there is i ≥ 0 such that F=1ξ 6∈ ρ3(last(ω(i))) (it follows from the fact that the inter-
setion of finitely many sets which have probability 1 has also probability 1). However,
this property together with the definition of G′ implies that there is j ≥ 0 such that
ρ3(last(ω(j))) = ∅.

Lemma A.13. Let Γ(v) ∈ Γ(R). Then every run of Run(Γ(v)) contains a state u such that
ρ4(last(u)) = ∅.

Proof. Let us suppose that σ′(Γ(v)) = (s, A, B, C, ~D)g and let F>0ξ ∈ C ⊆ A. Let ω ∈
Run(Γ(v)) be a run such that for all i ≥ 0 we have that last(ω(2i)) = (ti, g, Ai, Bi, Ci, ~Di)
where F>0ξ ∈ Ci. Since v |= F>0ξ, we have that Dist(v, ξ) < ∞. However, by the
definition of σ′ we have that Dist(vt1 · · · ti+1, ξ) < Dist(vt1 · · · ti, ξ) which contradicts
the fact that Dist is a non-negative function. From this we obtain that for every ω ∈
Run(Γ(v)) and every formula F>0ξ ∈ C there is i ≥ 0 such that F>0ξ 6∈ ρ4(last(ω(i))).
The definition of G′ implies that there is j ≥ 0 such that ρ4(last(ω(i))) = ∅.

Corollary A.14. The strategy σ′ is a (P, Q)-winning strategy in s′in.

A.2 A Proof of Lemma 3.7

In order to prove Lemma 3.7, we need some technical tools that allow us to do modify
Markov chains induced by strategies. Since these Markov chains are trees we start by
introducing an auxiliary notion of probabilistic tree.

Probabilistic trees.

Let us fix a finite set V. A probabilistic tree is a pair T = (X, P) where X ⊆ V+

is a nonempty prefix-closed set containing exactly one s ∈ V (the root of T) and

33

P : (V+ × V+) → (0, 1] is a function with domain {(w, ws) | w, ws ∈ X, s ∈ V} (i.e., P
is defined exactly on edges of T) such that for each w ∈ X we have ∑ws∈T P(w, ws) = 1.
Note that P is formally a subset of (V+ × V+)× (0, 1], and hence we can apply set op-
erations on P. Elements of X are called nodes of T, a node ws where s ∈ V is a successor
of w, and nodes without any successors are called leaves. Infinite probabilistic trees are
probabilistic trees without leaves. Note that infinite probabilistic trees can be seen as
Markov chains. In what follows we do not distinguish between infinite probabilistic
trees and their corresponding Markov chains.

Given a node ws ∈ X where s ∈ V, we define a subtree of T in ws as a tuple Tws =
(Xws, Pws) where Xws = {sv | wsv ∈ T} and Pws is induced by P in the obvious way.
Given a subtree Tw of T, we denote by T r Tw the tree obtained from T by cutting
off the subtree Tw, where only the node w is left. Formally, T r Tw = (X′, P′) where
X′ = Xr ({w} ·V+) and P′ is the induced restriction of P.

Given two trees T1 and T2, we define the concatenation of T1 and T2, denoted T1 ¯ T2,
to be the tree (X1 ¯ X2, P1 ¯ P2) where

X1 ¯ X2 = X1 ∪ {wsv | ws is a leaf of T1, sv ∈ X2}
and P1 ¯ P2 is induced by P1 and P2 in the obvious way.

Finally, given an infinite tree T = (X, P) and two nodes v, w ∈ X such that last(v) =
last(w), we denote Tw→v = (T r Tv) ¯ Tw the tree obtained from T by cutting off Tv

and pasting Tw to its place.

The proof.

Let us fix a 11
2 -player game G = (V, E, (V¤, V©), Prob) and a mixed objective (P, Q). In

what follows we say that a strategy is (P, Q)-winning in a vertex s without explicitly
mentioning the player who is always player ¤. We denote VP = {ws | w ∈ V∗, s ∈ P}
and VQ = {ws | w ∈ V∗, s ∈ Q}.

Given a strategy σ and a vertex s ∈ V we denote T [s, σ] the part of G(σ) that is
reachable from s. By a run in T [s, σ] we mean a run from the root s of the tree T [s, σ]
unless explicitly stated otherwise. Observe that T [s, σ] is an infinite probabilistic tree.

We show that the existence of a (P, Q)-winning strategy in s ∈ V it is decidable in
polynomial time. We start with the following simple observation:

Lemma A.15. Given a (P, Q)-winning strategy σ and states w, v ∈ T [s, σ] such that
last(w) = last(v), there is a (P, Q)-winning strategy σ′ such that T[s, σ]w→v = T [s, σ′].

Lemma A.16. If there is a (P, Q)-winning strategy in s ∈ V, then there is a (P, Q)-winning
strategy σ′ in s such that there is a run in T [s, σ′] that reaches the set VQ in at most 2|V| steps
and any run in T [s, σ′] reaches VP in at most |V| steps.

34

Proof. Let σ be a (P, Q)-winning strategy in s. First, observe that there is k ≥ 1 such that
an arbitrary run from s in T [s, σ] reaches a state of VP in less than k steps. Indeed, if this
was not true, then we could inductively define an infinite run in T [s, σ] which does not
contain any state of VP, which contradicts the assumption that σ is (P, Q)-winning.

Let us assume that there is a vertex t ∈ V and a run in T [s, σ] which contains states
of the form wt and wtvt before the first occurrence of a state of VP. Then we can apply
Lemma A.15 and obtain a (P, Q)-winning strategy σ′ such that T [s, σ′] = T [s, σ]wtvt→wt.
Repeating the procedure finitely many times, we obtain a (P, Q)-winning strategy σ′′

such that no run in T [s, σ′′] contains a duplicated vertex before the first occurrence of a
state of VP. Hence, the distance of states of VP from the root of T [s, σ′′] is at most |V|.

Because σ′′ is (P, Q)-winning in s, there is a path ω in T [s, σ′′] from s to a state
v ∈ VQ. If there are no states of VP before v in the path ω then we are done. Otherwise,
let us assume that ω(i) is the first occurrence of a state of VP in ω and let us consider the
suffix ω′ = ω(i), ω(i+1), . . . , ω(|ω|−1). Duplicate states in ω′ can be eliminated using
the above “copying” procedure, which yields a strategy σ′′′ which satisfies the desired
properties.

Lemma A.17. If there is a (P, Q)-winning strategy in s ∈ V, then there is a strategy σ′ in s
such that T [s, σ′] satisfies the following conditions:

1. Along every run initiated in an arbitrary state of T [s, σ′], a state of VP is reached within
at most 2|V| steps.

2. There is ε > 0 such that the probability of reaching VQ from any state of T [s, σ′] is at
least ε.

Proof. Let us denote V̄ = {t | wt ∈ X} the set of vertices of G that occur in the play
induced by σ. For a given t ∈ V̄, we fix a node wt of T [s, σ] such that last(wt) = t.
Observe that for each t ∈ V̄ the strategy σ induces a (P, Q)-winning strategy in t which
yields the tree Twt . By Lemma A.16 we obtain that there is a (P, Q)-winning strategy σt

in t which satisfies the conclusion of Lemma A.16.

We denote Tt = (Xt, Pt) a (finite) probabilistic tree obtained from T [t, σt] by cutting
off all nodes whose distance from t is greater than 2|V|. Now, we gradually construct a
new infinite tree T′ as follows: we start with Ts and then in every stage we concatenate
all trees Tt to the current tree. Formally, we define sequences of trees K0, K1, K2, . . . and
Kt

1 = (Xt
1, Pt

1), Kt
2 = (Xt

2, Pt
2), . . . where K0 = Ts and for all i ≥ 0 and all t ∈ V̄ we have

• Kt
i+1 = Ki ¯ Tt

• Ki+1 = (
⋃

t∈V̄ Xt
i+1,

⋃
t∈V̄ Pt

i+1)

35

Note that
⋃

t∈V̄ Pt
i+1 is a function for every i ≥ 0, because for a fixed i the functions Pt

i+1

agree on edges in Ti.

We claim that there is a strategy σ′ such that T [s, σ′] = (
⋃∞

i=1 Xi,
⋃∞

i=1 Pi). Indeed,
the strategy σ′ behaves like σs until it reaches a leaf wt of Ts (i.e., during the first 2|V|
steps), then it starts to behave like the strategy σt for the next 2|V| steps, and so on.

Finally, we put ε = min{pt | t ∈ V̄} where each pt equals the probability of reaching
a state of VQ in T [t, σt] in at most 2|V| steps. Now, it is easy to see that σ′ satisfies the
conditions 1. and 2.

Corollary A.18. If there is a (P, Q)-winning strategy in s ∈ V, then there is a (P, Q)-winning
strategy σ′ such that along any run from an arbitrary state of T [s, σ′] a state of VP is reached
within at most 2|V| steps.

Proof. It follows from Lemma A.17 using standard tools of probability theory.

Theorem A.19. Let G be a 11
2 -player game, s a vertex of G, and (P, Q) a mixed objective. If

there is a (P, Q)-winning HD strategy in s, then there is a (P, Q)-winning HD strategy with
finite memory (A, f) whose size is polynomial in the size of G. Moreover, the existence of such
a strategy is decidable in P.

Proof. We construct a new game G′, its vertex s′, and a subset P′ of vertices of G′ such
that player ¤ has a (P, Q)-winning HD strategy in s iff player ¤ has a (P′, ∅)-winning
strategy in s′. Thus, we “reduce” (P, Q)-winning objectives to qualitative Büchi objec-
tives for which a polynomial-time algorithm exists.

Corollary A.18 implies that in order to ensure that vertices of P are entered infinitely
often along a play, it suffices to count the number of vertices between two successive oc-
currences of vertices of P, and to give up the whole play whenever this number exceeds
2|V|.

Let us define a new game G′ = (V′, E′, (V′
¤, V ′

©), Prob′) (which extends the game G
with a counter) where V′ = V × {1, . . . , 2|V|,⊥}, V ′

¤ = V¤ × {1, . . . , 2|V|,⊥}, V′
© =

V′ rV′
¤, E′ is the least set (w.r.t. ⊆) such that for each (u, v) ∈ E we have

• ((u, i), (v, 1)) ∈ E′ if u ∈ VP and i ≤ 2|V|
• ((u, i), (v, i+1)) ∈ E′ if u ∈ VrP and i < 2|V|
• ((u, 2|V|), (v,⊥)) ∈ E′ if u ∈ VrP
• (u,⊥), (v,⊥)) ∈ E′

The function Prob′ is defined for each ((u, α), (v, β)) ∈ E′ as Prob′((u, α), (v, β)) =
Prob(u, v).

Observe that the game G′ faithfully simulates the game G in the first component
of states, and in the second component it merely counts the actual number of steps

36

after the last occurrence of a vertex of P. Hence, for every strategy σ′ in G′ there is
a corresponding strategy in G which “forgets” the second component of vertices (and
vice versa). If the number of steps outside of P exceeds 2|V| then the second component
of a state changes to ⊥, which remains there forever. Hence, a state containing ⊥ is
reachable (with positive probability) in T [(s, 1), σ′] iff there is a path of length greater
than 2|V| in T [(s, 1), σ′] which does not contain states of VB. Let P′ = Q×{1, . . . , 2|V|}.
Now it is easy to check that there is a (P, Q)-winning strategy in s iff there is a (P′, ∅)-
winning strategy in s′ = (s, 1).

The existence of a (P′, ∅)-winning strategy in s′ is decidable in polynomial time
[8, 6]. Moreover, if there is some winning strategy, then there is also a memoryless and
deterministic winning strategy σ′. Hence, we can construct a (P, Q)-winning HD strat-
egy with finite memory for s from the strategy σ′. Since the only information that is kept
in memory is the actual value of the counter, we obtain a polynomial upper bound on
the size of the memory.

37

