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Abstract

We consider the model checking problem for probabilistic pushdown au-
tomata (pPDA) and properties expressible in various probabilistic logics. We
start with properties that can be formulated as instances of a generalized ran-
dom walk problem. We prove that both qualitative and quantitative model
checking for this class of properties and pPDA is decidable. Then we show
that model checking for the qualitative fragment of the logic PCTL and pPDA
is also decidable. Moreover, we develop an error-tolerant model checking al-
gorithm for general PCTL and the subclass of stateless pPDA. Finally, we
consider the class of properties definable by deterministic B¨uchi automata,
and show that both qualitative and quantitative model checking for pPDA is
decidable.

∗Institute for Formal Methods in Computer Science, University of Stuttgart, Universit¨at str. 38,
70569 Stuttgart, Germany.esparza@informatik.uni-stuttgart.de
†Faculty of Informatics, Masaryk University, Botanick´a 68a, CZ-60200 Brno, Czech Republic,

tony@fi.muni.cz. On leave at the Institute for Formal Methods in Computer Science, University
of Stuttgart. Supported by the Alexander von Humboldt Foundation and by the Grant Agency of the
Czech Republic, grant No. 201/03/1161.
‡Department of Computer Science, Albert-Ludwigs-University Freiburg Georges-Koehler-Allee

51, D-79110 Freiburg, Germany.mayrri@informatik.uni-freiburg.de. Supported by Lan-
desstiftung Baden–W¨urttemberg, grant No. 21–655.023.

1



1 Introduction

Probabilistic systems can be used for modeling systems that exhibit uncertainty,
such as communication protocols over unreliable channels, randomized distributed
systems, or fault-tolerant systems. Finite-state models of such systems often use
variants of probabilistic automata whose underlying semantics is defined in terms
of homogeneous Markov chains, which are also called “fully probabilistic transi-
tion systems” in this context. For fully probabilistic finite-state systems, algorithms
for various (probabilistic) temporal logics like LTL, PCTL, PCTL∗, probabilisticµ-
calculus, etc., have been presented in [LS82, HS84, Var85, CY88, HJ94, ASB+95,
CY95, HK97, CSS03]. As for infinite-state systems, most works so far considered
probabilistic lossy channel systems [IN97] which model asynchronous communi-
cation through unreliable channels [BE99, ABIJ00, AR03, BS03]. A notable recent
result is the decidability of quantitative model checking of liveness properties spec-
ified by Büchi-automata for probabilistic lossy channel systems [Rab03]. In fact,
this algorithm iserror tolerant in the sense that the quantitative model checking is
solved only up to an arbitrarily small (but non-zero) given error.

In this paper we considerprobabilistic pushdown automata (pPDA), which
are a natural model for probabilistic sequential programs with recursive procedure
calls. There is a large number of results about model checking of non-probabilistic
PDA or similar models (see for instance [AEY01, BS97, EHRS00, Wal01]), but
the probabilistic extension has so far not been considered. As a related work we
can mention [MO98], where it is shown that a restricted subclass of pPDA (where
essentially all probabilities for outgoing arcs are either1 or 1/2) generates a richer
class of languages than non-deterministic PDA. Another work [AMP99] shows the
equivalence of pPDA and probabilistic context-free grammars.

Here we consider model checking problems for pPDA (and its natural subclass
of stateless pPDAdenoted pBPA1) and various probabilistic logics. We start with a

xxxx

1−x1−x1−x1−x

Z IZ IIZDZDDZ

Figure 1: Bernoulli random walk as a pBPA

class of properties that can be specified as a generalizedrandom walk problem. To
get a better intuition about this class of problems, realize that some random walks
can easily be specified by pBPA systems. For example, consider a pBPA with

1This is a standard notation adopted in concurrency theory. The subclass of stateless PDA corre-
sponds to a natural subclass of ACP known as Basic Process Algebra [BW90].
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just three stack symbolsZ, I,D and transitionsZ
x
→ IZ, Z

1−x
→ DZ, I

x
→ II ,

I
1−x
→ ε, D

1−x
→ DD, andD

x
→ ε, wherex ∈ [0, 1]. Then the transition graph of

Z (see Fig. 1) is the well-knownBernoulli walk. A typical question examined in
theory of random walks is “Do we eventually revisit a given state (with probability
one)?”, or more generally “What is the probability of reaching a given state from
another given state?” For example, it is a standard result that the stateZ of Fig. 1
is revisited with probability1 iff x = 1/2. This simple example indicates that
answers to qualitative questions about pPDA (i.e., whether something holds with
probability1 or 0) depend on the exact probabilities of individual transitions. This
is different from finite-state systems where qualitative properties depend only on
the topology of a given finite-state Markov chain.

The generalized random walk problem is formulated as follows: LetC1 and
C2 be subsets of the set of states of a given Markov chain, and lets be a state
of C1. What is the probability that, starting ats, a state ofC2 is reached via
a path leading only through states ofC1? Let us denote this probability by
P(s, C1 U C2). The problem of computingP(s, C1 U C2) has been previously con-
sidered (and solved) for finite-state systems, where this probability can be com-
puted precisely [HJ94, CY95]. In Section 3, we propose a solution for pPDA
applicable to those setsC1, C2 which areregular, i.e., recognizable by finite-state
automata. More precisely, we show that the problem whetherP(s, C1 U C2) ∼ %,
where∼ ∈ {≤, <,≥, >,=} and% ∈ [0, 1], is decidable. Interestingly, this is
achieved without explicitly computing the probabilityP(s, C1 U C2). Neverthe-
less, for an arbitrary precision0 < λ < 1 we can compute rational lower and
upper approximationsP`,Pu ∈ [0, 1] such thatP` ≤ P(s, C1 U C2) ≤ Pu and
Pu − P` ≤ λ.

In Section 4, we consider the model checking problem for pPDA and the logic
PCTL. This is a more general problem than the one about random walks (the class
of properties expressible in PCTL is strictly larger). In Section 4.1, we give a model
checking algorithm for thequalitative fragmentof PCTL and pPDA processes. For
general PCTL formulae and pBPA processes, anerror tolerant model checking
algorithm is developed in Section 4.2. The question whether this result can be
extended to pPDA is left open.

Finally, in Section 5 we prove that both qualitative and quantitative model
checking for the class of properties definable by deterministic Büchi automata is
decidable for pPDA. Again, this is done without computing the probability ex-
plicitly, but rational lower and upper approximations can be computed up to an
arbitrarily small given error.
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2 Preliminary Definitions

Definition 2.1. A probabilistic transition systemis a triple T = (S,→,Prob)
whereS is a finite or countably infinite set ofstates, → ⊆ S × S is a transition
relation, andProb is a function which to each transitions → t of T assigns its
probabilityProb(s→ t) ∈ (0, 1] so that for everys ∈ S we have∑

s→t

Prob(s→ t) ∈ {0, 1}

The sum above can be0 if it is empty, i.e., ifs does not have any outgoing transi-
tions.

In the rest of this paper we also writes
x
→ t instead ofProb(s → t) = x.

A path in T is a finite or infinite sequencew = s0, s1, · · · of states such that
si → si+1 for everyi. We also usew(i) to denote the statesi of w (by writing
w(i) = s we implicitly impose the condition that the length ofw is at leasti+ 1).
A run is a maximal path, i.e., a path which cannot be prolonged. The sets of all
finite paths, all runs, and all infinite runs ofT are denotedFPath, Run, andIRun,
respectively2. Similarly, the sets of all finite paths, runs, and infinite runs that start
in a givens ∈ S are denotedFPath(s), Run(s), andIRun(s), respectively.

Eachw ∈ FPath determines abasic cylinderRun(w) which consists of
all runs that start withw. To everys ∈ S we associate the probabilistic space
(Run(s),F ,P) whereF is theσ-field generated by all basic cylindersRun(w)
wherew starts withs, andP : F → [0, 1] is the unique probability function such
thatP(Run(w)) = Πm−1

i=0 xi wherew = s0, · · · , sm andsi
xi→ si+1 for every

0 ≤ i < m (if m = 0, we putP(Run(w)) = 1).

2.1 The Logic PCTL

PCTL, the probabilistic extension of CTL, was defined by Hansson & Jonsson in
[HJ94]. LetAp = {a, b, c, . . . } be a countably infinite set ofatomic propositions.
The syntax of PCTL3 is given by the following abstract syntax equation:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | X
∼%ϕ | ϕ1 U

∼%ϕ2

Herea ranges overAp, % ∈ [0, 1], and∼ ∈ {≤, <,≥, >}. Let T = (S,→,Prob)
be a probabilistic transition system. For alls ∈ S, all C, C1, C2 ⊆ S, and all
k ∈ N0, let

2In this paper, theT is always clear from the context.
3For simplicity we omit the bounded ‘until’ operator of [HJ94].
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•Run(s,XC) = {w ∈ Run(s) | w(1) ∈ C}
•Run(s, C1 U C2) = {w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ C2 andw(j) ∈
C1 for all 0 ≤ j < i}
• FPathk(s, C1 U C2) = {s0, · · ·, s` ∈ FPath(s) | 0 ≤ ` ≤ k, s` ∈ C2 andsj ∈
C1rC2 for all 0 ≤ j < `}
• FPath(s, C1 U C2) =

⋃∞
k=0 FPathk(s, C1 U C2)

Obviously,

P(Run(s, C1 U C2)) =
∑

w∈FPath(s,C1 U C2)

P(Run(w)).

Let ν : Ap → 2S be avaluation. The denotation of a PCTL formulaϕ overT
w.r.t. ν, denoted[[ϕ]]ν, is defined inductively as follows:

[[tt]]ν = S

[[a]]
ν = ν(a)

[[¬ϕ]]ν = S r [[ϕ]]ν

[[ϕ1 ∧ ϕ2]]ν = [[ϕ1]]ν ∩ [[ϕ2]]ν

[[X∼%ϕ]]
ν

= {s ∈ S | P(Run(s,X [[ϕ]]
ν
)) ∼ %}

[[ϕ1 U
∼%ϕ2]]ν = {s ∈ S | P(Run(s, [[ϕ1]]ν U [[ϕ2]]ν)) ∼ %}

As usual, we writes |=ν ϕ instead ofs ∈ [[ϕ]]ν .
Thequalitative fragmentof PCTL is obtained by restricting the allowed oper-

ator/number combinations to ‘≤ 0’ and ‘≥ 1’, which will be also written as ‘= 0’
and ‘= 1’, resp. (Observe that ‘< 1’, ‘> 0’ are definable from ‘≤ 0’, ‘≥ 1’, and
negation; for example,aU <1b ≡ ¬(aU ≥1b).)

2.2 Probabilistic PDA

Definition 2.2. A probabilistic pushdown automaton (pPDA)is a tuple ∆ =
(Q,Γ, δ,Prob) whereQ is a finite set ofcontrol states, Γ is a finitestack alphabet,
δ ⊆ Q × Γ × Q × Γ∗ is a finite transition relation(we writepX → qα instead
of (p,X, q, α) ∈ δ), andProb is a function which to each transitionpX → qα

assigns its probabilityProb(pX → qα) ∈ (0, 1] so that for allp ∈ Q andX ∈ Γ
we have that

∑
pX→qα Prob(pX → qα) ∈ {0, 1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is understood
as a triple∆ = (Γ, δ,Prob) whereδ ⊆ Γ× Γ∗.

In the rest of this paper we adopt a more intuitive notation, writingpX
x
→ qα

instead ofProb(pX → qα) = x. The setQ × Γ∗ of all configurations of∆ is
denoted byC(∆). We also assume (w.l.o.g.) that ifpX → qα ∈ δ, then|α| ≤ 2.
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To ∆ we associate the probabilistic transition systemT∆ whereC(∆) is the set
of states and the probabilistic transition relation is determined bypXβ

x
→ qαβ iff

pX
x
→ qα.
The model checking problem for pPDA configurations and PCTL formulae

(i.e., the question whetherpα |=ν ϕ for givenpα, ϕ, andν) is clearly undecidable
for general valuations. Therefore, we restrict ourselves toregularvaluations which
to everya ∈ Ap assign aregular set of configurations:

Definition 2.3. A ∆-automatonis a tripleA = (St , γ,Acc) whereSt is a finite
set of statess.t. Q ⊆ St , γ : St × Γ → St is a (total) transition function, and
Acc ⊆ St a set ofaccepting states.

The functionγ is extended to the elements ofΓ∗ in the standard way. Each∆-
automatonA determines a setC(A) ⊆ C(∆) given bypα ∈ C(A) iff γ(p, αR) ∈
Acc. HereαR is the reverse ofα, i.e., the word obtained by readingα from right
to left.

We say that a setC ⊆ C(∆) is regulariff there is a∆-automatonA such that
C = C(A).

In other words, regular sets of configurations are recognizable by finite-state au-
tomata which read the stack bottom-up (the bottom-up direction was chosen just
for technical convenience).

3 Random Walks on pPDA Graphs

For the rest of this section, let us fix a pPDA∆ = (Q,Γ, δ,Prob).
An important technical step in our development is the replacement of regu-

lar sets of configurations with “simple” ones for which the membership function
depends just on the control state and the top stack symbol of a given configuration.

Definition 3.1. A set of configurationsC is simpleif there is a setG ⊆ Q×(Γ∪{ε})
such that for eachpα ∈ C(∆) we have thatpα ∈ C iff eitherα = ε andpε ∈ G,
or α = Xβ andpX ∈ G.

The next lemma says that regular sets of configurations can be effectively re-
placed with simple ones. This is a standard result (see, e.g., [EKS03]). For the sake
of completeness, we include an explicit proof.

Lemma 3.2. For each pPDA∆ = (Q,Γ, δ,Prob) and regular setsC1, · · · , Ck ⊆
C(∆) there effectively exist a pPDA∆′ = (Q,Γ′, δ′,Prob′), simple sets
C′1, · · · , C

′
k ⊆ C(∆

′), and an injective mappingG : C(∆) → C(∆′) such that
for eachpα ∈ C(∆) the following conditions are satisfied:
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• if pα
x
→ qβ, thenG(pα)

x
→ G(qβ);

• if G(pα)
x
→ s for somes ∈ C(∆′), then there ispα

x
→ qβ such thatG(qβ) = s;

• for each1 ≤ j ≤ k we havepα ∈ Cj iff G(pα) ∈ C′j .

Moreover, ifC ⊆ C(∆′) is regular, thenG−1(C) is also regular.

Proof. For each1 ≤ i ≤ k, letAi = (St i, γi,Acci) be a∆-automaton such that
C(Ai) = Ci. Let States =

∏k
i=1

∏
p∈Q St i. For given~s ∈ States, 0 ≤ i ≤ k, and

p ∈ Q, we denote by~s(i, p) the component of~s which corresponds to thei andp.
We putΓ′ = Γ× States. The transition functionδ′ and probabilitiesProb′ are

defined as follows:

• if pX
x
→ qε ∈ δ, thenp(X,~s)

x
→ qε for each~s ∈ States ;

• if pX
x
→ qY ∈ δ, thenp(X,~s)

x
→ q(Y,~s) for each~s ∈ States;

• if pX
x
→ qY Z ∈ δ, thenp(X,~s)

x
→ q(Y,~t)(Z,~s) for all ~s,~t ∈ States such that

γi(~s(i, r), Z) = ~t(i, r) for all 1 ≤ i ≤ k andr ∈ Q.

So, the∆-automataA1, · · · ,Ak are simulated “on-the-fly” by storing the vector
of current states directly in the stack. Hence, the information whether a givenAi
accepts the current configuration is available in the topmost stack symbol. For
every0 ≤ i ≤ k, the underlying setGi of C′i (see Definition 3.1) is defined by

Gi = {p(X,~s) | γi(~s(i, p), X) ∈ Acci} ∪ {pε | pε ∈ Ci}

The function G is defined by G(pε) = pε, and G(pX1 · · ·Xk) =
p(X1, ~s1) · · · (Xk, ~sk), where~sk(i, q) = q, and~sj(i, q) = γi(~sj+1(i, q), Xj+1)
for all 1 ≤ j < k. It follows immediately from the definitionδ′ andProb′ that the
parts ofT∆ andT∆′ which are reachable frompα andG(pα) are isomorphic (for
everypα ∈ C(∆)).

Let C ⊆ C(∆′) be a regular set of configurations. Since some configurations of
C can be “inconsistent” in the sense that the vectors of states that are stored together
with the original stack symbols do not correspond to a valid computation of theAi
automata, the setG−1(C) is not a simple projection ofC “forgetting” the vectors of
states from the stack symbols. Fortunately,G(C(∆)) is (obviously) a regular set,
so we can construct a∆′-automaton recognizing the setC ∩ G(C(∆)) and apply
the mentioned projection.

For the rest of this section, letC1, C2 ⊆ C(∆) be (fixed) simple sets, and let
G1, G2 ⊆ Q × (Γ ∪ {ε}) be the sets associated toC1, C2 in the sense of Defini-
tion 3.1.

Definition 3.3. To simplify our notation, we adopt the following conventions:
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• For eachC ⊆ C(∆), let C• = C r (Q×{ε}). Observe that ifC is simple, then so
is C•.
• For everyC ⊆ C(∆) and everyβ ∈ Γ∗, the symbolCβ denotes the set{pαβ |
pα ∈ C}.
• For all p, q ∈ Q andX ∈ Γ, we use[pXq] to abbreviateP(pX, C1rC2 U {qε}),

and[pX•] to abbreviateP(pX, C1 U C•2 ).
• LetA be a set of finite paths which end in the same statet, and letB a set of

finite or infinite paths that start int. Then the symbolA � B denotes the set of
paths{vw | v ∈ A, tw ∈ B}.

The following auxiliary lemmas are used in the proof of Lemma 3.6:

Lemma 3.4. Let T = (S,→,Prob) be a probabilistic transition system. Let
s, t ∈ S and C1, C2 ⊆ S. Further, letA = FPath(s, (C1\C2)U {t}) and
B = FPath(t, C1 U C2). Then∑

w∈A�B

P(Run(w)) =
∑
w∈A

P(Run(w)) ·
∑
w∈B

P(Run(w)).

Proof. Immediate.

Lemma 3.5. For all pα ∈ C(∆) andβ ∈ Γ∗ we have thatP(Run(pα, C1 U C2)) =
P(Run(pαβ, C•1β U C2β)).

Proof. For every finite pathw = p1α1 · · · pnαn of FPath(pα), let w+β denote
the finite pathp1α1β · · · pnαnβ of FPath(pαβ). Realize thatP(Run(w)) =
P(Run(w+β)), becausew andw+β execute the same transitions. One can eas-
ily verify that w ∈ FPath(pα, C1 U C2) iff w+β ∈ FPath(pαβ, C•1β U C2β).
From this we getP(Run(pα, C1 U C2)) =

∑
w∈FPath(pα,C1 U C2) P(Run(w)) =∑

w∈FPath(pαβ,C•1β U C2β) P(Run(w)) = P(Run(pαβ, C•1β U C2β)).

The next lemma says how to computeP(Run(pX1 · · ·Xn, C1 U C2)) from the
finite family of all [pXq], [pX•] probabilities.

Lemma 3.6. For each pX1 · · ·Xn ∈ C(∆) where n ≥ 0 we have that
P(Run(pX1 · · ·Xn, C1 U C2)) equals

n∑
i=1

∑
(q1,··· ,qi)∈Qi

wherep=q1

[qiXi•] ·
i−1∏
j=1

[qjXjqj+1] +
∑

(q1,··· ,qn+1)∈Qn+1

wherep=q1 andqn+1ε∈C2

n∏
j=1

[qjXjqj+1]

with the convention that empty sum equals0 and empty product equals1.
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Proof. By induction onn. Forn = 0 we have thatP(pε, C1 U C2)) is equal either
to 1 or 0, depending on whetherpε belongs toC2 or not, resp. Now letn ≥ 1, and
let β denote the sequenceX2 · · ·Xn. The setRun(pX1β, C1 U C2) is equal to⊎

w∈FPath(pX1β,C1 U C2)

Run(w)

Let C′ = {qαβ | q ∈ Q,α ∈ Γ+}. We have that

FPath(pX1β, C1 U C2) = FPath(pX1β, C1∩C′ U C2∩C′) ]⊎
q∈Q

FPath(pX1β, (C1rC2)∩C′ U {qβ})� FPath(qβ, C1 U C2)

Now observe that for everysimplesetC ⊆ C(∆) we have thatC ∩ C′ = C•β.
Hence, the above equation can be rewritten as follows:

FPath(pX1β, C1 U C2) = FPath(pX1β, C•1β U C
•
2β) ]⊎

q∈Q

FPath(pX1β, (C1rC2)•β U {qβ})� FPath(qβ, C1 U C2)

Using Lemma 3.5 and Lemma 5.6, we obtain that

P(Run(pX1β, C1 U C2)) = P(Run(pX1, C1 U C•2)) +∑
q∈QP(Run(pX1β, (C1rC2)U {qβ})) · P(Run(qβ, C1 U C2))

This can be also written as

P(Run(pX1β, C1 U C2)) = [pX1•] +
∑
q∈Q

[pX1q] · P(Run(qβ, C1 U C2))

Now it suffices to apply induction hypothesis toP(Run(qβ, C1 U C2)) and restruc-
ture the resulting expression.

Now we show that the probabilities[pXq], [pX•] form the least solution of
an effectively constructible system of quadratic equations. This can be seen as
a generalization of a similar result for finite-state systems [HJ94, CY95]. In the
finite-state case, the equations are linear and can be further modified so that they
have auniquesolution (which is then computable, e.g., by Gauss elimination). In
the case of pPDA, the equations are not linear and cannot be generally solved by
analytical methods. The question whether the equations can be further modified so
that they have a unique solution is left open; we just note that the method used for
finite-state systems is insufficient (this is demonstrated by Example 3.8).

Let V = {〈pXq〉, 〈pX•〉 | p, q ∈ Q,X ∈ Γ} be a set of “variables”. Let us
consider the system of recursive equations constructed as follows:
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• if pX 6∈ G1rG2, then〈pXq〉 = 0 for eachq ∈ Q; otherwise, we put

〈pXq〉 =
∑

pX
x
→rY Z

x ·
∑
t∈Q

〈rY t〉 · 〈tZq〉 +
∑

pX
x
→rY

x · 〈rY q〉 +
∑

pX
x
→qε

x

• if pX ∈ G2, then〈pX•〉 = 1; if pX 6∈ G1 ∪G2, then〈pX•〉 = 0; otherwise we
put

〈pX•〉 =
∑

pX
x
→rY Z

x · (〈rY •〉 +
∑
t∈Q

〈rY t〉 · 〈tZ•〉) +
∑

pX
x
→rY

x · 〈rY •〉

For givent ∈ [0, 1]| V |, p, q ∈ Q, andX ∈ Γ we use〈pXq〉t and 〈pX•〉t to
denote the component oft which corresponds to the variable〈pXq〉 and〈pX•〉,
respectively. The above defined system of equations determines a unique operator
F : [0, 1]| V | → [0, 1]| V | whereF(t) is the tuple of values obtained by evaluating
the right-hand sides of the equations where all〈pXq〉 and〈pX•〉 are substituted
with 〈pXq〉t and〈pX•〉t, respectively.

Theorem 3.7. The operatorF has the least fixed-pointµ. Moreover, for allp, q ∈
Q andX ∈ Γ we have that〈pXq〉µ = [pXq] and〈pX•〉µ = [pX•].

Proof. SinceF is monotonic and continuous, it has the least fixed pointµ =∨∞
k=0F

k(~0), where~0 is the tuple of zeros. One can readily check that the tu-
ple π of all [pXq] and [pX•] probabilities forms a solution of the above system;
this is done just by partitioning the associated sets of runs into appropriate disjoint
subsets similarly as in the proof of Lemma 3.6. Hence,µ ≤ π. To prove that also
π ≤ µ, we approximate the[pXq] and[pX•] probabilities in the following way:
For eachk ∈ N0 we define

• [pXq]k =
∑

w∈FPathk(pX,C1rC2 U {qε})

P(Run(w))

• [pX•]k =
∑

w∈FPathk(pX,C1 U C•2 )

P(Run(w))

Let πk be the tuple of all[pXq]k and [pX•]k probabilities. Clearlyπ =
limk→∞ π

k. By induction onk we prove thatπk ≤ µ for eachk ∈ N0, hence
alsoπ ≤ µ as needed.

The base case (k = 0) follows immediately. We show that if[pXq]k ≤ 〈pXq〉µ
and[pX•]k ≤ 〈pXq〉µ, then also[pXq]k+1 ≤ 〈pXq〉µ and[pX•]k+1 ≤ 〈pXq〉µ.

If pX 6∈ G1rG2, then [pXq]k+1 = 〈pXq〉µ = 0. Otherwise, by applying the
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definitions we obtain

[pXq]k+1 =
∑

pX
x
→rY Z

x ·
∑

w∈FPathk(rY Z,C1rC2 U {qε})

P(Run(w))

+
∑

pX
x
→rY

x ·
∑

w∈FPathk(rY,C1rC2 U {qε})

P(Run(w))

+
∑

pX
x
→qε

x

and

〈pXq〉µ =
∑

pX
x
→rY Z

x ·
∑
t∈Q

〈rY t〉µ · 〈tZq〉µ +
∑

pX
x
→rY

x · 〈rY q〉µ +
∑

pX
x
→qε

x

Since ∑
w∈FPathk(rY,C1rC2 U {qε})

P(Run(w)) = [rY q]k,

we have ∑
w∈FPathk(rY,C1rC2 U {qε})

P(Run(w)) ≤ 〈rY q〉µ

by induction hypothesis. Further,∑
pX

x
→rY Z

x ·
∑

w∈FPathk(rY Z,C1rC2 U {qε})

P(Run(w))

is surely bounded by ∑
pX

x
→rY Z

x ·
∑
t∈Q

[rY t]k · [tZq]k,

which is bounded by ∑
pX

x
→rY Z

x ·
∑
t∈Q

〈rY t〉µ · 〈tZq〉µ

by induction hypothesis. To sum up, we have that[pXq]k+1 ≤ 〈pXq〉µ. The

inequality[pX•]k+1 ≤ 〈pX•〉µ is proved similarly.
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Example 3.8. Let us consider the pBPA system∆ of Fig. 1, and letC1 = Γ∗,
C2 = {Z}. Then we obtain the following system of equations (since∆ has only
one control statep, we write〈X, •〉 and〈X, ε〉 instead of〈pX•〉 and〈pXp〉, resp.):

〈Z, •〉 = 1

〈Z, ε〉 = x〈I, ε〉〈Z, ε〉 + (1−x)〈D, ε〉〈Z, ε〉

〈I, •〉 = x(〈I, •〉 + 〈I, ε〉〈I, •〉)

〈I, ε〉 = x〈I, ε〉〈I, ε〉 + 1−x

〈D, •〉 = (1−x)(〈D, •〉 + 〈D, ε〉〈D, •〉)

〈D, ε〉 = (1−x)〈D, ε〉〈D, ε〉 + x

As the least solution we obtain the probabilities[Z, •] = 1, [Z, ε] = 0, [I, •] = 0,
[I, ε] = min{1, (1−x)/x}, [D, •] = 0, [D, ε] = min{1, x/(1−x)}. By applying
Lemma 3.6 we further obtain that, e.g.,P(IIZ, C1 U C2) = min{1, (1−x)2/x2}.

In Example 3.8, the least solution of the constructed system of equations could
be computed explicitly. This is generally impossible, but certain properties of the
least solution are still decidable. For our purposes, it suffices to consider the class
of properties defined in the next theorem.

Theorem 3.9. Let Const = Q ∪ {[pXq], [pX•] | p, q ∈ Q andX ∈ Γ}, where
Q is the set of all rational constants. LetE1, E2 be expressions built overConst
using ‘·’ and ‘+’, and let∼ ∈ {<,=}. It is decidable whetherE1 ∼ E2.

Proof. We show that, due to Theorem 3.7,E1 ∼ E2 is effectively expressible as a
closed formula of(R,+, ∗,≤). Hence, the theorem follows from the decidability
of first-order arithmetic of reals [Tar51].

For all p, q ∈ Q andX ∈ Γ, let x(pXq), x(pX•), y(pXq), andy(pX•) be
first order variables, and let~X and~Y be the vectors of allx(pXq), x(pX•), and
y(pXq), y(pX•) variables, respectively. Let us consider the formulaΦ constructed
as follows:

∃ ~X : ~0 ≤ ~X ≤ ~1 ∧ ~X = F( ~X)

∧ (∀~Y : (~0 ≤ ~Y ≤ ~1 ∧ ~Y = F(~Y )) ⇒ ~X ≤ ~Y ))

∧ E1[ ~X/π] ∼ E2[ ~X/π]

Observe that the conditions~X = F( ~X) and~Y = F(~Y ) are expressible only using
multiplication, summation, and equality. The expressionsE1[ ~X/π] andE2[ ~X/π]
are obtained fromE1 andE2 by substituting all[pXq] and[pX•] with x(pXq) and
x(pX•), respectively. It follows immediately thatE1 ∼ E2 iff Φ holds.

An immediate consequence of Theorem 3.9 is the following:

12



Input: pX ∈ C(∆), 0 < λ < 1
Output: P`, Pu

1: P` := 0; Pu := 1;
2: for i = 1 to d− log2 λe
3: if [pX•] +

∑
qε∈C2

[pXq] ≥ (Pu − P`)/2
4: then P` := (Pu − P`)/2
5: else Pu := (Pu − P`)/2
6: fi

Figure 2: ComputingP`,Pu

Theorem 3.10.Letpα ∈ C(∆), % ∈ [0, 1],∼ ∈ {≤, <,≥, >} and0 < λ < 1. It is
decidable whetherP(pα, C1 U C2) ∼ %. Moreover, there effectively exist rational
numbersP`,Pu such thatP` ≤ P(pα, C1 U C2) ≤ Pu andPu − P` ≤ λ.

Proof. We can assume w.l.o.g. thatα = X for someX ∈ Γ. Note that
P(pX, C1 U C2) ∼ % iff [pX•]+

∑
qε∈C2

[pXq] ∼ % by Lemma 3.6. Hence, we can

apply Theorem 3.9. The numbersP`,Pu are computable, e.g., by the algorithm of
Fig. 2.

4 Model Checking PCTL for pPDA Processes

4.1 Qualitative Fragment of PCTL

For the rest of this section we fix a pPDA∆ = (Q,Γ, δ,Prob).

Lemma 4.1. LetC ⊆ C(∆) be a simple set. The sets{pα ∈ C(∆) | P(pα,XC) =
1} and{pα ∈ C(∆) | P(pα,XC) = 0} are effectively regular.

Proof. Immediate.

Lemma 4.2. Let C1, C2 ⊆ C(∆) be simple sets. The set{pα ∈ C(∆) |
P(pα, C1 U C2) = 1} is effectively regular.

Proof. LetR(pX) = {q ∈ Q | [pXq] > 0} for all p ∈ Q,X ∈ Γ. For eachi ∈ N0

we define the setSi ⊆ C(∆) inductively as follows:

• S0 = {qε | qε ∈ C2} ∪ {qXα | [qX•] = 1, α ∈ Γ∗}
• Si+1 = {pXβ | [pX•] +

∑
q∈R(pX)[pXq] = 1 and∀q ∈ R(pX) : qβ ∈ Si}

Using Lemma 3.6, we can easily check that
⋃∞
i=0 Si = {pα ∈ C(∆) |

P(pα, C1 U C2) = 1}. To see that the set
⋃∞
i=0 Si is effectively regular, for each

13



p ∈ Q we construct a finite automatonMp such thatL(Mp) = {α ∈ Γ∗ | pα ∈⋃∞
i=0 Si}. A ∆-automatonA recognizing the set

⋃∞
i=0 Si can then be constructed

using standard algorithms of automata theory (in particular, note that regular lan-
guages are effectively closed under reverse). The states ofMp are all subsets of
Q, {p} is the initial state,Γ is the input alphabet, final states are thoseT ⊆ Q

where for everyq ∈ T we have thatqε ∈ C2 (in particular, note that∅ is a final

state), and transition function is given byT
X
→ U iff for every q ∈ T we have that

[qX•] +
∑

r∈R(qX)[qXr] = 1 andU =
⋃
q∈T R(qX). Note that∅ X

→ ∅ for each
X ∈ Γ. The definition ofMp is effective due to Theorem 3.9. It is straightforward
to check thatL(Mp) = {α ∈ Γ∗ | pα ∈

⋃∞
i=0 Si}.

Lemma 4.3. Let C1, C2 ⊆ C(∆) be simple sets. The set{pα ∈ C(∆) |
P(pα, C1 U C2) = 0} is effectively regular.

Proof. LetR(pX) = {q ∈ Q | [pXq] > 0} for all p ∈ Q,X ∈ Γ. For eachi ∈ N0

we define the setSi ⊆ C(∆) inductively as follows:

• S0 = {qε | qε 6∈ C2}
• Si+1 = {pXβ | [pX•] = 0 and∀q ∈ R(pX) : qβ ∈ Si}

The fact
⋃∞
i=0 Si = {pα ∈ C(∆) | P(pα, C1 U C2) = 0} follows immediately

from Lemma 3.6. The set
⋃∞
i=0 Si is effectively regular, which can be shown by

constructing a finite automatonMp recognizing the set{α ∈ Γ∗ | pα ∈
⋃∞
i=0 Si}.

This construction and the rest of the argument are very similar to the ones of the
proof of Lemma 4.2. Therefore, they are not given explicitly.

Theorem 4.4.Letϕ be a qualitative pCTL formula andν a regular valuation. The
set{pα ∈ C(∆) | pα |=ν ϕ} is effectively regular.

Proof. By induction on the structure ofϕ. The cases whenϕ ≡ tt andϕ ≡ a

follow immediately. For Boolean connectives we use the fact that regular sets
are closed under complement and intersection. The other cases are covered by
Lemma 4.1, 4.2, and 4.3 (here we also need Lemma 3.2).

4.2 Model Checking PCTL for pBPA Processes

In this section we provide an error tolerant model checking algorithm for PCTL
formulae and pBPA processes. Since it is not so obvious what is meant by error
tolerance in the context of PCTL model checking, this notion is defined formally.

Let T = (S,→,Prob) be a probabilistic transition system and0 < λ < 1. For
every negation-free PCTL formulaϕ and valuationν we define the denotation of
ϕ overT w.r.t. ν with error toleranceλ, denoted[[ϕ]]νλ, in the same way as[[ϕ]]ν .
The only exception isϕ1 U ∼%ϕ2 where

14



• if ∼ ∈ {<,≤}, then[[ϕ1 U ∼%ϕ2]]νλ = {s ∈ S | P(Run(s, [[ϕ1]]νλ U [[ϕ2]]νλ)) ∼ %+ λ}
• if ∼ ∈ {>,≥}, then[[ϕ1 U ∼%ϕ2]]νλ = {s ∈ S | P(Run(s, [[ϕ1]]νλ U [[ϕ2]]νλ)) ∼ %− λ}

Note that for every negation-free formulaϕ we have that[[ϕ]]ν ⊆ [[ϕ]]νλ. Nega-
tions can be “pushed inside” to atomic propositions using dual connectives (note
that, e.g.,¬(ϕU ≥%ψ) is equivalent toϕU <%ψ), and for regular valuations we can
further replace every¬a with a fresh propositionb whereν(b) is the complement
of ν(a). Hence, we can assume w.l.o.g. thatϕ is negation-free.

An error tolerant PCTL model checking algorithmis an algorithm which, for
each PCTL formulaϕ, valuationν, s ∈ S, and0 < λ < 1, outputs YES/NO so
that

• if s ∈ [[ϕ]]ν , then the answer is YES;
• if the answer is YES, thens ∈ [[ϕ]]νλ.

For the rest of this section, let us fix a pBPA∆ = (Γ, δ,Prob). Since∆ has
just one (or “none”) control statep, we write[X, •] and[X, ε] instead of[pX•] and
[pXp], respectively.

Lemma 4.5. Let C ⊆ C(∆) be a simple set,% ∈ [0, 1], and∼ ∈ {≤, <,≥, >}.
The set{α ∈ C(∆) | P(α,XC) ∼ %} is effectively regular.

Proof. Immediate.

The following lemma presents the crucial part of the algorithm. This is the
place where we need the assumption that∆ is stateless.

Lemma 4.6. Let C1, C2 ⊆ C(∆) be simple sets. For all% ∈ [0, 1] and0 < λ < 1
there effectively exist∆-automataA≥ andA≤ such that for allα ∈ C(∆) we have
that

• if P(α, C1 U C2) ≥ % (or P(α, C1 U C2) ≤ %), thenα ∈ C(A≥) (or α ∈ C(A≤),
respectively.)
• if α ∈ C(A≥) (or α ∈ C(A≤)), thenP(α, C1 U C2) ≥ %−λ (or P(α, C1 U C2) ≤
% + λ, respectively.)

Proof. We describe just the construction ofA≥ (the ∆-automatonA≤ is con-
structed similarly). LetS = {X ∈ Γ | [X, ε] 6= 1}. For everyα ∈ Γ∗, letα(S) be
the string obtained by deleting all symbols ofΓrS from α. For eachβ ∈ S∗ we
define the setCl(β) = {α ∈ Γ∗ | α(S) = β}. It follows directly from Lemma 3.6
that for allβ ∈ S∗ andα ∈ Cl(β) we have thatP(β, C1 U C2) = P(α, C1 U C2).
Further, for alln ∈ N0 andβ ∈

⋃n
i=0 S

n we define the set

Genn(β) =

{
Cl(β) if α ∈ Si ∧ i < n

{αα′ | α ∈ Cl(β), α′ ∈ Γ∗} if α ∈ Sn

15



Input: pBPA∆, 0 < λ < 1
Output: n, κ, ν, [X, •]`, [X, ε]`, [X, •]u, [X, ε]u

1: S := {X ∈ Γ | [X, ε] 6= 1};
2: ν := 1; n :=∞;
3: for each X ∈ S do
4: [X, ε]` := 0; [X, •]` := 0; [X, ε]u := 1; [X, •]u := 1;
5: done
6: repeat
7: for each X ∈ Γ do
8: avgε := ([X, ε]u − [X, ε]`)/2;
9: avg• := ([X, •]u − [X, •]`)/2;
10: if [X, ε] ≥ avgε then [X, ε]` := avgε;
11: else [X, ε]u := avgε;
12: if [X, •] ≥ avg• then [X, •]` := avg•;
13: else [X, •]u := avg•;
14: done
15: ν := ν/2;
16: κ := max{[X, ε]u | X ∈ S};
17: if κ < 1 then n := d(log(λ/3)/ logκe
18: until κ < 1 and n(ν + ν(n+ 1)(1 + ν)n) ≤ λ/3

Figure 3: A part of the algorithm for pBPA
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We prove that for every0 < λ < 1 there effectively existn ∈ N0 andG ⊆
⋃n
i=0 S

i

such that for everyα ∈ Γ∗ we have that

• if P(α, C1 U C2) ≥ %, thenα ∈
⋃
β∈G Genn(β);

• if α ∈
⋃
β∈G Genn(β), thenP(α, C1 U C2) ≥ % − λ.

This suffices for our purposes, because the set
⋃
β∈G Genn(β) is clearly recogniz-

able by an effectively constructible∆-automatonA≥.
The crucial part of the algorithm for computing the setG is shown in Fig. 3.

The algorithm starts by computing the setS (note thatS is effectively computable
due to Theorem 3.9). For eachX ∈ S, there are four rational variables[X, ε]`,
[X, ε]u, [X, •]`, and[X, •]u whose values are lower and upper approximations of
the probabilities[X, ε] and[X, •], resp. These variables are initialized in lines 3–5
and successively refined in lines 7–14. Note that the conditions of theif statements
in lines 10 and 12 are effective due to Theorem 3.9. The current “precision”, i.e.,
the difference between the upper and the lower approximation is stored in the ratio-
nal variableν. The subtle point is the termination condition. First, one necessary
condition for termination is thatκ = max{[X, ε]u | X ∈ S} becomes less than
one. This must happen eventually, because[X, ε] < 1 for everyX ∈ S. An
important observation is thatκ can onlydecreaseby performing the assignment
in line 16. This means thatn = d(log(λ/3)/ logκe also onlydecreases(since
bothλ andκ are less than1, we havelog(λ/3)/ logκ = | log(λ/3)|/| logκ|; and
if 0 < κ′ < κ < 1, then | log κ′| > | logκ|). Therefore, we eventually find a
sufficiently smallν such thatn(ν + ν(n + 1)(1 + ν)n) ≤ λ/3.

The output of the algorithm of Fig. 3 are the (values of the) variablesn, ν, κ,
[X, ε]`, [X, ε]u, [X, •]`, and[X, •]u whereX ranges overS. For eachβ ∈ S∗,
let P`(β, C1 U C2) andPu(β, C1 U C2) be the lower and upper approximations of
P(β, C1 U C2) obtained by using the formula of Lemma 3.6 where[X, ε]`, [X, •]`,
and [X, ε]u, [X, •]u are used instead of[X, ε], [X, •], respectively. The setG is
constructed as follows:

G = {β ∈ Si | 0 ≤ i < n,Pu(β, C1 U C2 ≥ %}

∪ {β ∈ Sn | Pu(β, C1 U C2 ≥ % − λ/3}

To verify that the setG has the properties mentioned above, we need to formulate
two auxiliary observations.

(a) for allβ ∈ Sn andα ∈ Γ∗ we have that

|P(β, C1 U C2) − P(βα, C1 U C2)| ≤ λ/3
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This follows immediately from the following (in)equalities:

P(βα, C1 U C2) = P(β, C1 U C
•
2 ) + P(β, C1rC2 U {ε}) · P(α, C1 U C2)

P(β, C1 U C2) ≤ P(β, C1 U C
•
2 ) + P(β, C1rC2 U {ε})

P(β, C1rC2 U {ε}) ≤ λ/3

The first two (in)equalities are obtained just by applying Lemma 3.6. The
last one is derived as follows:P(β, C1rC2 U {ε}) is surely bounded byκn (by
Lemma 3.6 and the definition ofκ). Sincen = d(log(λ/3)/ logκe, we have
n · log κ ≤ log(λ/3). Hence,logκn ≤ log(λ/3), thusκn ≤ λ/3.

(b) for eachβ ∈
⋃n
i=0 S

i we have that

Pu(β, C1 U C2) − P(β, C1 U C2) ≤ λ/3

Let k = length(β). A straightforward induction onk reveals that
Pu(β, C1 U C2) ≤ (k + 1) · (1 + ν)k. Now we prove (again by induction on
k) that

Pu(β, C1 U C2)− P(β, C1 U C2) ≤ k(ν + ν(k + 1)(1 + ν)k)

The base case (whenk = 0) is immediate, becausePu(ε, C1 U C2) =
P(ε, C1 U C2). Now let β = Xβ′. By definition, Pu(Xβ′, C1 U C2) −
P(Xβ′, C1 U C2) is equal to

[X, •]u + [X, ε]u · Pu(β′, C1 U C2) − ([X, •] + [X, ε] · P(β′, C1 U C2)) (1)

Since[X, •]u ≤ [X, •]+ν and[X, ε]u ≤ [X, ε]+ν, the expression (1) is bounded
by

ν + [X, ε] · (Pu(β′, C1 U C2)− P(β′, C1 U C2)) + ν · Pu(β′, C1 U C2) (2)

By applying induction hypothesis and the facts that[X, ε] ≤ 1 and
Pu(β, C1 U C2) ≤ (k + 1) · (1 + ν)k (see above), we obtain that the expres-
sion (2) is bounded by

ν + k(ν + ν(k + 1)(1 + ν)k) + ν(k + 1)(1 + ν)k

which is bounded by(k+ 1)(ν+ ν(k+ 2)(1 + ν)k+1) as required. This finishes
the inductive step.
Sincen(ν + ν(n + 1)(1 + ν)n) ≤ λ/3 andk ≤ n, we havePu(β, C1 U C2) −
P(β, C1 U C2) ≤ k(ν + ν(k + 1)(1 + ν)k) ≤ λ/3.

Now we are ready to prove that the setG has the required properties. Letα ∈ Γ∗

such thatP(α, C1 U C2) ≥ %, and letβ = α(S). There are two possibilities:
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• length(β) < n. Then Pu(β, C1 U C2) ≥ %, henceβ ∈ G and α ∈⋃
β∈G Genn(β).

• length(β) ≥ n. Let β = γγ′ wherelength(γ) = n. Due to the observation
(a) above we have thatP(γ, C1 U C2) ≥ % − λ/3, hence alsoPu(γ, C1 U C2) ≥
% − λ/3, which means thatγ ∈ G and thusα ∈

⋃
β∈G Genn(β).

Now letα ∈ Genn(β) for someβ ∈ G. Again, we distinguish two possibilities:

• length(β) < n. ThenPu(β, C1 U C2) ≥ %, which means thatP(β, C1 U C2) ≥
% − λ/3 by the observation (b) above. Hence,P(α, C1 U C2) ≥ % − λ/3.
• length(β) = n. Then Pu(β, C1 U C2) ≥ % − λ/3, which means that
P(β, C1 U C2) ≥ % − 2λ/3 due to the observation (b). Further, for everyα′ ∈ Γ
we have thatP(βα′, C1 U C2) ≥ % − λ due to the observation (a) above. Hence,
P(α, C1 U C2) ≥ % − λ as required.

The automatonA≤ is constructed similarly. Here, the setG is computed using
the lower approximations[X, •]` and[X, ε]`. Since this construction is analogous
to the one just presented, it is not given explicitly.

Theorem 4.7.There is an error-tolerant PCTL model checking algorithm for pBPA
processes.

Proof. The proof is similar to the one of Theorem 4.4, using Lemma 4.5 and 4.6
instead of Lemma 4.1, 4.2, and 4.3. Note that Lemma 3.2 is applicable also to
pBPA (the system∆′ constructed in Lemma 3.2 has the same set of control states
as the original system∆).

5 Model Checking Deterministic B̈uchi Automata Speci-
fications

Definition 5.1. A deterministic B̈uchi automatonis a tupleB = (Σ, B, %, bI ,Acc),
whereΣ is a finitealphabet, B is a finite set ofstates, % : B × Σ → B is a (total)
transition function(we writeb

a
→ b′ instead of%(b, a) = b′), bI is theinitial state,

andAcc ⊆ B is a set ofaccepting states.
A run of B is an infinite sequenceb0b1 . . . of states such that for everyi ≥ 0

there isa ∈ Σ such thatbi
a
→ bi+1. A run b0b1 . . . is acceptingif bi ∈ Acc for

infinitely many indicesi ≥ 0.

For the rest of this section, we fix a pPDA∆ = (Q,Γ, δ,Prob).

Definition 5.2. Given a configurationpXα of ∆, we callpX theheadandα the
tail of pXα. The setQ × Γ of all heads of∆ is also denoted byH(∆).
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We consider specifications given by deterministic Büchi automata having
H(∆) as their alphabet. It is well known that every LTL formula whose atomic
propositions are interpreted over simple sets can be encoded into anondetermin-
istic Büchi automaton havingH(∆) as alphabet. Deterministic Büchi automata
can encode the fragment of LTL that can also be expressed in the alternation-free
modalµ-calculus [KV98]. Our results can be extended to atomic propositions in-
terpreted over arbitrary regular sets of configurations using the same technique as
in [EKS03].

Definition 5.3. The productof ∆ and B is a probabilistic pushdown automa-
ton ∆B = (Q×B,Γ, δ′,Prob ′) whereδ′ and Prob ′ are determined as follows:

[p, b]X
x
→ [p′, b′]α iff pX

x
→ p′α andb

pX
→ b′ are transitions of∆ andB, respec-

tively.

Notice that every (finite or infinite) path inT∆B corresponds to a unique path
in T∆ obtained by projecting the control state of every configuration[p, b]α of the
path onto its first component, yielding the configurationpα. Conversely, for each
path inT∆ (starting in somepα) and eachb ∈ B there is exactly one path inT∆B
starting in[p, b]α becauseB is deterministic.

Definition 5.4. A configuration[p, b]α of ∆B is acceptingif b ∈ Acc. A run in
T∆B is acceptingif it visits accepting configurations infinitely often. A run inT∆ is
accepting if its corresponding run inT∆B is accepting.

The probabilityP(pα,B) that a configurationpα of ∆ satisfies the specifica-
tionB is defined asP(pα,B) = P({w ∈ Run(pα) | w is accepting}).

We solve the following two problems for a given configurationpα of ∆:

(a) Given% ∈ [0, 1] and∼ ∈ {≤, <,≥, >,=}, do we haveP(pα,B) ∼ % ?
(b) Given0 < λ < 1, compute rationalsP`,Pu such thatP` ≤ P(pα,B) ≤ Pu

andPu − P` ≤ λ.

For finite-state automata, the problem can be solved as follows (see [CY95]).
LetA be a finite-state automaton. Since the product automatonA × B is finite, it
can be transformed into a finite Markov chainM by just ‘copying’ the probabilities
of the system [CY95]. It is then possible to reduce problems (a),(b) to the problem
of computing the probability of hitting a bottom strongly connected component of
M which contains a state of the form(s, b), whereb is accepting.

In our case, the product automaton∆B is again a pPDA, and so its associated
probabilistic transition system is infinite. The key to our solution for (a) and (b) is
the construction of a new finite Markov chainM∆B that plays the r̂ole ofM in the
case of finite automata.
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5.1 The Markov chainM∆

A Büchi pPDA is a tuple∆ = (Q,Γ, δ,Prob ,Acc∆), where all elements except
for Acc∆ are defined as for pPDA andAcc∆ ⊆ Q is a set ofaccepting states.

A configurationpα of ∆ is acceptingif p ∈ Acc∆. A run of ∆ is accepting
if it visits accepting configurations infinitely often. For allp ∈ Q andX ∈ Γ, the
probability that a runw ∈ Run(pX) is accepting is denoted byP(pX,Acc).

Obviously, the model checking problems (a),(b) of the previous section can
be reduced to the following problems about a given configurationpX of a B̈uchi
pPDA∆ (wherepX ∈ H(∆)):

(A) Given% ∈ [0, 1] and∼ ∈ {≤, <,≥, >,=}, do we haveP(pX,Acc) ∼ % ?
(B) Given0 < λ < 1, compute rationalsP`,Pu such thatP` ≤ P(pX,Acc) ≤ Pu

andPu − P` ≤ λ.

For the rest of this section, we fix a Büchi pPDA∆ = (Q,Γ, δ,Prob ,Acc∆).

Definition 5.5. Letw = p0α0, p1α1, · · · be an infinite run inT∆. For eachi ∈ N
we define theith minimumofw, denotedmini(w), inductively as follows:

•min1(w) = pkαk, wherek ∈ N0 is the least number such that|αk′ | ≥ |αk| for
eachk′ ≥ k.
•mini+1(w) = min1(w`+1), wheremini(w) = p`α`. Herew`+1 is the suffix of
w that starts withp`+1α`+1.

We say thatw flashesat mini(w) if either i = 1 and min1(w) is accepting, or
i > 1 andw visits an accepting configuration betweenmini−1(w) andmini(w)
(wheremini−1(w) is not included).

Sometimes we abuse language and usemini(w) to denote not only a configu-
ration, but the particularoccurrenceof the configuration that corresponds to theith

minimum.
For all pX ∈ H(∆) and all i ∈ N we define a random variableV (i)

pX over

Run(pX) as follows: The possible values ofV (i)
pX are all pairs of the form(qY, f ),

whereqY ∈ H(∆) andf ∈ {0, 1} is a boolean flag; there is also a special value

⊥. For a givenw ∈ Run(pX), V (i)
pX(w) is determined as follows:

• if w is finite thenV (i)
pX(w) = ⊥;

• if conditions (1)–(3) below are satisfied, thenV (i)
pX(w) = (qY, 1);

(1)w is infinite;
(2) the head ofmini(w) is qY ;
(3)w flashes atmini(w).
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• if conditions (1) and (2) above are satisfied and condition (3) is not satisfied, then
V

(i)
pX(w) = (qY, 0)

Notice that the random variables are well defined, because they assign to each run
exactly one value.

Now we formulate two auxiliary lemmas which will be used in the proof of
Lemma 5.8.

For every finite or infinite pathw = p1α1 p2α2 · · · in T∆ and everyβ ∈ Γ∗, the
symbolw+β denotes the pathp1α1β p2α2β · · · obtained fromw by concatenating
β to the stack content in every configuration. Similarly, ifR is a set of paths inT∆
andβ ∈ Γ∗, then[R]+β denotes the set{w+β | w ∈ R}.

Lemma 5.6. Let pX ∈ Q×Γ and β ∈ Γ∗. ThenP([IRun(pX)]+β) =
P(IRun(pX)).

Proof. Let Dead = Q×{ε} ∪ {qY α | qY has no transitions inδ, α ∈ Γ∗}. We
have that

P([IRun(pX)]+β) = 1− P(Run(pXβ, C(∆)•β U Deadβ))

= 1− P(Run(pX, C(∆)U Dead)) (by Lemma 3.5)

= P(IRun(pX)).

Lemma 5.7. Let s0 · · · sn be a path in a probabilistic transition system, and let
X be a measurable subset ofRun(sn). Then{s0 · · · sn} � X is a measurable
subset ofRun(s0), and moreoverP({s0 · · · sn} � X) = Πn

i=1xi · P(X), where

si
xi+1
−→ si+1 for every0 ≤ i < n. (The ‘�’ operator has been introduced in

Definition 3.3.)

Proof. Standard.

Lemma 5.8. For all pX ∈ H(∆), n ∈ N, and v1, · · · , vn, the probability of

V
(1)
pX =v1 ∧ · · · ∧ V

(n)
pX =vn exists (i.e., the set of allw ∈ Run(pX) which satisfy

this condition isP-measurable). Moreover, for every rational constanty there
is an effectively constructible formula of(R,+, ∗,≤) which holds if and only if

P(V
(1)
pX =v1 ∧ · · · ∧ V

(n)
pX =vn) = y.

Proof. For the sake of clarity, assume for the moment that the possible values of
V

(i)
pX are⊥ or the headsqY of ∆, instead of pairs(qY, f ). At the end of the proof

we show how to modify it in order to take into account the boolean flagf .
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Let R ⊆ Run(pX) be a set of runs. We say thatP(R) is well-definable
if P(R) is effectively definable from a finite family of probabilities of the form
P(Run(qY, C1 U C2)), whereC1, C2 are simple sets, using only summation, mul-
tiplication, and rational constants. Note that ifP(R) is well-definable, it can be
expressed in(R,+, ∗,≤) using the results of Section 3.

By induction onn we prove thatP(V
(1)
pX =v1 ∧ · · · ∧ V

(n)
pX =vn) is well-

definable. The base case whenn = 1 follows immediatelly, becauseP(V
(1)
pX =v1)

equals eitherP(IRun(pX)), 1 − P(IRun(pX)), or 0, depending on whether
v1 = pX , v1 = ⊥, or pX 6= v1 6= ⊥, respectively. Observe that
P(IRun(pX)) = 1 − P(Run(pX, C(∆)U Dead)), whereDead = Q×{ε} ∪
{qY α | qY has no transitions inδ, α ∈ Γ∗}.

Now letn ≥ 2. For each1 ≤ i ≤ n, let Sati be the set of all runs that satisfy
V

(1)
pX =v1 ∧ · · · ∧ V

(i)
pX=vi. If P(Satn−1) = 0, which is decidable by induction

hypothesis, thenP(Satn) = 0 as well. IfP(Satn−1) 6= 0 and there isi ≤ n − 1
such thatvi = ⊥, then for allj ≤ n − 1 we have thatvj = ⊥, andP(Satn) is
equal either toP(Satn−1) or 0, depending on whethervn = ⊥ or not, respectively.
If P(Satn−1) 6= 0, vi 6= ⊥ for all i ≤ n − 1, andvn = ⊥, thenP(Satn) = 0. So,
the only interesting case is whenP(Satn−1) 6= 0 andvi 6= ⊥ for all i ≤ n. Since

P(Satn) =
P(V

(n)
pX =vn | Satn−1)

P(Satn−1)

andP(Satn−1) is well-definable by induction hypothesis, it suffices to show that

the conditional probabilityP(V
(n)
pX =vn | Satn−1) is also well-definable. For this

we use a general result of basic probability theory saying that ifA,B are events
andB = ]i∈IBi, whereI is a finite or countably infinite index set, then

P(A | B) =

∑
i∈I P(A | Bi) · P(Bi)

P(B)

An immediate consequence of this equation is that if the probabilityP(A|Bi) is

independent ofi, thenP(A|B) = P(A|Bi). In our case,A is the eventV (n)
pX =vn,

andB is Satn−1. Let

Chop = {w(0) · · ·w(minn−1(w)) | w ∈ Satn−1}.

Observe that ify ∈ Chop, then the last configuration ofy is of the form
pn−1Xn−1α. We denote theα by Stack (y). For everyy ∈ Chop, let

Satn−1(y) = {y} � [IRun(pn−1Xn−1)]+Stack (y) (3)
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Now we can easily check that

Satn−1 =
⊎

y∈Chop

Satn−1(y)

Hence,Chop plays the role ofI , andSatn−1(y) plays the role ofBi. We show

thatP(V
(n)
pX =vn | Satn−1(y)) is independent ofy, which means that

P(V
(n)
pX =vn | Satn−1(y)) = P(V

(n)
pX =vn | Satn−1).

By definition of conditional probability,

P(V
(n)
pX =vn | Satn−1(y)) =

P(V
(n)
pX =vn ∧ Satn−1(y))

P(Satn−1(y))
(4)

The denominator of the fraction in equation (4) is well-definable, because

P(Satn−1(y)) = P(Run(y)) · P(IRun(pn−1Xn−1))

Here we used Lemma 5.6, Lemma 5.7, and equation (3). Now we show that
P(V

(n)
pX =vn ∧ Satn−1(y)) is also well-definable. LetR be the set of all runs satis-

fying V (n)
pX =vn ∧ Satn−1(y), and letα = Stack(y). Obviously, eachw ∈ R starts

with y. Now let us consider what transitions can be performed from the final state
pn−1Xn−1α of y.

•Obviously, transitions which decrease the stack cannot be performed, because
pn−1Xn−1α would not be a minimum then (i.e.,w would not belong toR).
• If a transition of the formpn−1Xn−1α

x
→ rZα is performed, thenrZα must be

then-th minimum, because the stack cannot be decreased belowZ (otherwise,
pn−1Xn−1α would not be a minimum). So, ifw ∈ R, we must have thatrZ =
pnXn.
• If a transition of the formpn−1Xn−1α

x
→ rPQα is performed, then the stack

cannot be decreased belowQ. Now there are two possibilities:

− If the stack is never decreased belowP , then the configurationrPQα is the
n-th minimum. Hence, ifw ∈ R, we must have thatrP = pnXn.
− If the stack is decreased belowP , i.e., if a sequence of transitions of the form
rPQα →∗ tQα, whererP →∗ tε, is performed, thentQα is then-th mini-
mum. Hence, ifw ∈ R, we must have thattQ = pnXn.
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From the above discussion, it follows thatR can be partitioned as follows:

R =
⊎

pn−1Xn−1
x
→pnXn

{y} � {pn−1Xn−1α pnXnα} � [IRun(pnXn)]+α

⊎
pn−1Xn−1

x
→pnXnY

Y ∈Γ

{y} � {pn−1Xn−1α pnXnY α} � [IRun(pnXn)]+Y α

⊎
pn−1Xn−1

x
→qYXn

q∈Q,Y∈Γ

{y} � [FPath(qY, C(∆)U {pnε})]
+α � [IRun(pnXn)]+α

Using Lemma 5.6, Lemma 5.7, and the above equation, we obtain that

P(V
(n)
pX =vn ∧ Satn−1(y)) = P(Run(y)) · P(IRun(pnXn)) · S

where

S =
∑

pn−1Xn−1
x
→pnXn

x +
∑

pn−1Xn−1
x
→pnXnY

Y ∈Γ

x +

∑
pn−1Xn−1

x
→qY Xn

q∈Q,Y ∈Γ

x · P(Run(qY, C(∆)U {pnε})) (5)

Equation (4) can now be rewritten to

P(V
(n)
pX =vn | Satn−1(y)) =

P(IRun(pnXn))

P(IRun(pn−1Xn−1))
· S (6)

where the meaning ofS is given by equation (5). So,P(V
(n)
pX =vn | Satn−1(y))

is indeed independent ofy, and hence equation (6) also defines the probability
P(V

(n)
pX =vn | Satn−1).
We still have to consider the case in which thevi’s are pairs of the form

(piXi, fi). For this we can use the same construction as above with a minor mod-
ification in equation (5). Let us first consider the case whenvn = (pnXn, 0).

If pn is accepting, thenP(V
(n)
pX =(pnXn, 0) | Satn−1) is zero. Otherwise,

P(V
(n)
pX =(pnXn, 0) | Satn−1) is given by the right-hand side of equation (6) where

the following sumS′ is used instead ofS:

S′ =
∑

pn−1Xn−1
x
→pnXn

x +
∑

pn−1Xn−1
x
→pnXnY

Y ∈Γ

x +

∑
pn−1Xn−1

x
→qY Xn

q∈Q,Y ∈Γ

x · P(Run(qY, (QrAcc∆)×Γ+ U {pnε}))
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Finally, let us consider the case whenvn = (pnXn, 1). If pn is accepting, then

P(V
(n)
pX =(pnXn, 1) | Satn−1) = 1. Otherwise, we use the right-hand side of

equation (6) whereS is replaced withS′′ given by

S′′ =
∑

pn−1Xn−1
x
→qY Xn

q∈Q,Y ∈Γ

x ·D

where

D = P(Run(qY, C(∆)U {pnε}))− P(Run(qY, (QrAcc∆)×Γ+ U {pnε}))

The following lemma proves the Markov property. In fact, it follows immediatelly
from equation (6) used in the proof of Lemma 5.8.

Lemma 5.9. The conditional probability ofV (n)
pX = vn on the hypothesisV (1)

pX =

v1 ∧ · · · ∧ V
(n−1)
pX = vn−1 is equal to the probability ofV (n)

pX = vn conditioned on

V
(n−1)
pX = vn−1, assuming that the probability ofV (1)

pX = v1∧· · ·∧V
(n−1)
pX = vn−1

is non-zero.

For each control stateq ∈ Q we define a flagfq, which is equal either to1 or
0 depending on whetherq ∈ Acc∆ or not, respectively. Another consequence of
Lemma 5.8 is the following:

Lemma 5.10. The conditional probability ofV (n)
pX =(q′Y ′, f ′) on the hypothesis

V
(n−1)
pX =(qY, f )) is equal to the conditional probability ofV (2)

qY =(q′Y ′, f ′) on the

hypothesisV (1)
qY =(qY, fq), assuming thatP(V

(n−1)
pX =(qY, f )) 6= 0.

Now we can define the finite Markov chainM∆.

Definition 5.11. LetM∆ be a finite-state Markov chain where the set of states is

{(qY, 0) | q 6∈ Acc∆, Y ∈ Γ,P(V
(1)
qY =(qY, 0)) > 0}

∪ {(qY, 1) | qY ∈ H(∆),P(V
(1)
qY =(qY, fq)) > 0}

∪ H(∆) ∪ {⊥}

and transition probabilities are defined as follows:

• Prob(⊥ → ⊥) = 1,

• Prob(pX → (qY, f )) = P(V
(1)
pX =(qY, f )),
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• Prob(pX → ⊥) = P(V
(1)
pX =⊥),

• Prob((qY, f ) → (q′Y ′, f ′)) = P(V
(2)
qY =(q′Y ′, f ′) | V (1)

qY =(qY, fq)).

One can readily check thatM∆ is indeed a Markov chain, i.e., for every state
s of M∆ we have that the sum of probabilities of all outgoing transitions ofs is
equal to one.

A trajectoryinM∆ is an infinite sequenceσ(0)σ(1) · · · of states ofM∆ where
Prob(σ(i)→ σ(i+ 1)) > 0 for everyi ∈ N0.

To every runw ∈ Run(pX) of ∆ we associate itsfootprint, denotedσw, which
is an infinite sequence of states ofM∆ defined as follows:

• σw(0) = pX

• if w is finite, then for everyi ∈ N we haveσw(i) = ⊥;
• if w is infinite, then for everyi ∈ N we haveσw(i) = (piXi, fi), wherepiXi is

the head ofmini(w), andfi = 1 iff w flashes atmini(w).

We say that a givenw ∈ Run(pX) is good if σw is a trajectory inM∆. Our next
lemma reveals that almost all runs are good.

Lemma 5.12. Let pX ∈ H(∆), and let Good be the subset of all good runs of
Run(pX). ThenP(Good) = 1.

Proof. Let Bad = Run(pX) r Good. Let Fail be the set of all finite sequences
v0 · · · vi+1 of states ofM∆ such thati ∈ N0, v0 = pX , v0 · · · vi is a trajectory
in M∆, andProb(vi → vi+1) = 0, whereProb is the probability assignment of
M∆. Eachy ∈ Fail determines a setBady = {w ∈ Bad | σw starts withy}.
Obviously,Bad =

⊎
y∈Fail Bady. We prove thatP(Bady) = 0 for eachy ∈ Fail.

Let y = v0 · · · vi+1. By applying definitions, we obtain

P(Bady) = P(V
(1)
pX =v1 ∧ · · · ∧ V

(i+1)
pX =vi+1)

=
P(V

(i+1)
pX =vi+1 | V

(i)
pX=vi ∧ · · · ∧ V

(1)
pX =v1)

P(V
(i)
pX=vi ∧ · · · ∧ V

(1)
pX =v1)

SinceP(V
(i)
pX=vi ∧ · · · ∧ V

(1)
pX =v1) 6= 0, the last fraction makes sense and it is

equal to
Prob(vi → vi+1)

P(V
(i)
pX=vi ∧ · · · ∧ V

(1)
pX =v1)

which equals zero.

It follows directly from the definition ofM∆ that if both(qY, 0) and(qY, 1)
are states ofM∆, then they have the “same” outgoing arcs (i.e.,(qY, 0)

x
→ (rZ, f )
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iff (qY, 1)
x
→ (rZ, f ), wherex > 0). In particular, this means that(qY, 0) and

(qY, 1) either belong to thesamebottom strongly connected component ofM∆, or
do not belong to a bottom strongly connected component ofM∆.

Definition 5.13. We say that a givenqY ∈ H(∆) is recurrentif there is a bottom
strongly connected componentCqY of M∆ such that(qY, f ) ∈ CqY for some
f ∈ {0, 1} (here the statepX ofM∆ is considered as a root ofM∆).

Each recurrent head is eitheracceptingor rejecting, depending on whether
CqY contains a state of the form(rZ, 1) or not, respectively.

We say that a runw ∈ Run(pX) hits a headqY ∈ H(∆) if there is some
i ∈ N such that the head ofmini(w) is qY . The next lemma says that an infinite
run eventually hits a recurrent head.

Lemma 5.14. Let us assume thatP(IRun(pX)) > 0. Then the conditional prob-
ability thatw ∈ Run(pX) hits a recurrent head on the hypothesis thatw is infinite
is equal to one.

Proof. Let Recdenote the event that a run ofRun(pX) hits a recurrent head. Due
to Lemma 5.12, we have that

P(Rec| IRun(pX)) = P(Rec| IRun(pX) ∩Good) (7)

A run belongs toIRun(pX)∩Goodiff its footprint is a trajectory inM∆ that does
not hit the state⊥. A runw ∈ IRun(pX)∩GoodsatisfiesReciff its footprint hits a
state of the form(qY, f ), whereqY is a recurrent head. It follows directly from the
definition ofM∆ that the right-hand side of equation (7) is equal to the probability
that a trajectory frompX in M∆ hits a bottom strongly connected component on
the hypothesis that the state⊥ is not visited. SinceM(∆) is finite, this happens
with probability one by ergodicity.

So, an infinite run eventually hits a recurrent head. Now we prove that if this
head is accepting/rejecting, then the run will be accepting/rejecting with probabil-
ity one.

Lemma 5.15. LetqY be an accepting/rejecting head. The conditional probability
thatw ∈ Run(pX) is accepting/rejecting on the hypothesis that the first recurrent
head hit byw is accepting/rejecting is equal to one.

Proof. The argument is similar as in the proof of Lemma 5.14. LetC be a bottom
strongly connected component ofM∆. By ergodicity, the conditional probability
that an infinite trajectory inM∆ hits each state ofC infinitely often on the hypoth-
esis that the trajectory hitsC is equal to one.
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A simple consequence of Lemma 5.15 is the following:

Lemma 5.16. (cf. Proposition 4.1.5 of [CY95]) LetpX ∈ H(∆). P(pX,Acc)
is equal to the probability that a trajectory frompX in M∆ hits a state of the
form (qY, f ) whereqY is an accepting head (this is equivalent to saying that the
trajectory hits a bottom strongly connected component ofM∆ which contains a
state of the form(rZ, 1)).

Theorem 5.17. Let ∆ be a B̈uchi pPDA. Given a headpX ∈ H(∆), ∼ ∈
{≤, <,≥, >,=}, and% ∈ [0, 1], we can decide ifP(pX,Acc) ∼ %. Further, for
each0 < λ < 1 we can compute rationalsP`,Pu such thatP` ≤ P(pX,Acc) ≤
Pu andPu − P` ≤ λ.

Proof. Similarly as in Theorem 3.9, we compute a closed formulaΦ of
(R,+, ∗,≤) such thatP(pX,Acc) ∼ % iff Φ holds. Then, the rationalsP`,Pu

can be computed by a simple binary search similarly as in Fig. 2.
Due to Lemma 5.16 we know thatP(pX,Acc) = P(pX, C1UC2), whereC1

is the set of all states ofM∆, andC2 consists of all states of the form(qY, f )
whereqY is an accepting head. This means that there is a system of recursive
equations such thatP(pX,Acc) appears in the tuple of values which form the least
solution of the system (we can assume thatP(pX,Acc) is, e.g., the first element of
this tuple). SinceM∆ is finite, these equations are linear and by using the results
of [HJ94, CY95] we can even assume that there is a unique solution. The only
problem is that numeric coefficients in this system of equations are the probabilities
of transitions inM∆ which cannot be precisely computed. This can be overcome as
follows: we construct the mentioned system of linear equations where we replace
each coefficient with a fresh first-order variable; let~C be the tuple of all variables
which correspond to the coefficients. Now we can effectively construct the formula

Ψ ≡ ∃~Z : ~Z = L(~Z) ∧ ~Z1 ∼ %

where~Z = L(~Z) says that the tuple of variables~Z is a solution of the constructed
system of linear equations. Note thatΨ is not closed because the variables of~C

(which appear in the~Z = L(~Z) subformula) are free. Due to Lemma 5.8, for
each of these coefficients there effectively exists a formula of(R,+, ∗,≤) which
says that a given coefficient is equal to the probability of the corresponding transi-
tion inM∆ (we just “translate” the definition ofProb given in Definition 5.11 into
(R,+, ∗,≤), using the formulae provided by Lemma 5.8). LetΨ~C

by a conjunc-
tion of all these formulae. The formulaΦ is constructed as follows:

Φ ≡ ∃~Z : ∃~C : Ψ~C
∧ ~Z = L(~Z) ∧ ~Z1 ∼ %

Obviously,P(pX,Acc) ∼ % iff Φ holds.
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We conclude this section by trying to explain why our results cannot be directly
extended to nondeterministic Büchi automata. First of all, notice that we cannot
assign probabilities to the transitions of∆B in a meaningful way, because a tran-
sition pα

x
→ qβ of ∆ should ‘split’ into several transitions of∆B. In the case of

a finite automatonA, this problem can be solved by working with the product of
A anddB, wheredB is the result of applying the determinization construction to
B. LetAdB denote this product. In [CY95], a definition of recurrence is provided,
which characterizes the states[s, b] of AdB that, loosely speaking, return to[s, b]
with probability 1 in terms of topological properties of the probabilistic transition
systemAdB. It is then possible to compute the accepting recurrent states.

Unfortunately, this construction does not seem to generalize to the case of push-
down automata. The problem is that the Büchi pPDA∆dB has infinitely many
states, and so it must be replaced by the chainM∆dB. However, inM∆dB we can-
not directly ‘observe’ the points at which a run hits an accepting state; we can only
observe the points at which a run hits a minimum. While we can useM∆dB to com-
pute the recurrent minima, i.e., the heads to which one can return with probability
1 at a minimum, at the moment we do not know how to compute the accepting
recurrent minima, i.e., the recurrent minima that not only return, but also visit an
accepting configuration along the way. More precisely, we know how to decide for
a given headpX if the runs starting at it will almost surely hitsomeheadpiXi out
of a setH = {p1X1, . . . , pnXn} and visit some accepting configuration along the
way. We can also decide ifsomeheadpjXj ∈ H(∆) will hit pX with probability
one. However, since we do not know whetheri = j or not, this information is not
sufficient to decide ifpX is an accepting recurrent minimum.

6 Conclusions

We have provided model checking algorithms for pushdown automata against
PCTL specifications, and against linear-time specifications represented as deter-
ministic Büchi automata. Contrary to the case of finite automata, qualitative prop-
erties (i.e., whether a property holds with probability 0 or 1), depend on the exact
probabilities of the transitions.

There are many possibilities for future work. An obvious question is what is
the complexity of the obtained algorithms. Since the formulae of first order arith-
metic which are constructed in our algorithms have a fixed alternation depth, we
can apply a powerful result of Grigoriev [Gri88] which says that the validity of
such formulae is decidable in single exponential time. From this we can easily
derive the time complexity of some of our algorithms (for example, the qualita-
tive/quantitative random walk problem of Section 3 is decidable in exponential
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time). Since the complexity issues were not the main priority of our work, the
efficiency of our algorithms can be improved even by relatively straightforward
optimizations. Moreover, there is a lot of space for advanced numerical algorithms
which might be used to compute the required probabilities with enough precision.

An obvious question about linear-time specifications is whether our procedure
can be improved to deal with nondeterministic Büchi automata. Another possibility
is to consider LTL specifications and try to generalize the technique of [CY95],
which modifies the probabilistic transition systems step-by-step and at the same
time simplifies the formula, until it becomes a propositional formula.
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