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Abstract

We consider the model checking problem for probabilistic pushdown au-
tomata (pPDA) and properties expressible in various probabilistic logics. We
start with properties that can be formulated as instances of a generalized ran-
dom walk problem. We prove that both qualitative and quantitative model
checking for this class of properties and pPDA is decidable. Then we show
that model checking for the qualitative fragment of the logic PCTL and pPDA
is also decidable. Moreover, we develop an error-tolerant model checking al-
gorithm for general PCTL and the subclass of stateless pPDA. Finally, we
consider the class of properties definable by determinisichBautomata,

and show that both qualitative and quantitative model checking for pPDA is
decidable.
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1 Introduction

Probabilistic systems can be used for modeling systems that exhibit uncertainty,
such as communication protocols over unreliable channels, randomized distributed
systems, or fault-tolerant systems. Finite-state models of such systems often use
variants of probabilistic automata whose underlying semantics is defined in terms
of homogeneous Markov chains, which are also called “fully probabilistic transi-
tion systems” in this context. For fully probabilistic finite-state systems, algorithms
for various (probabilistic) temporal logics like LTL, PCTL, PCTprobabilisticu-
calculus, etc., have been presented in [LS82, HS84, Var85, CY88, HJ94,95SB
CY95, HK97, CSSO03]. As for infinite-state systems, most works so far considered
probabilistic lossy channel systems [IN97] which model asynchronous communi-
cation through unreliable channels [BE99, ABIJ00, AR03, BS03]. A notable recent
result is the decidability of quantitative model checking of liveness properties spec-
ified by Blchi-automata for probabilistic lossy channel systems [Rab03]. In fact,
this algorithm iserror tolerantin the sense that the quantitative model checking is
solved only up to an arbitrarily small (but non-zero) given error.

In this paper we considgsrobabilistic pushdown automata (pPDAyhich
are a natural model for probabilistic sequential programs with recursive procedure
calls. There is a large number of results about model checking of non-probabilistic
PDA or similar models (see for instance [AEY01, BS97, EHRSO00, Wal01]), but
the probabilistic extension has so far not been considered. As a related work we
can mention [MO98], where it is shown that a restricted subclass of pPDA (where
essentially all probabilities for outgoing arcs are either 1/2) generates a richer
class of languages than non-deterministic PDA. Another work [AMP99] shows the
equivalence of pPDA and probabilistic context-free grammars.

Here we consider model checking problems for pPDA (and its natural subclass
of stateless pPDAenoted pBPA and various probabilistic logics. We start with a
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Figure 1: Bernoulli random walk as a pBPA

class of properties that can be specified as a generaapeldm walk problemTo
get a better intuition about this class of problems, realize that some random walks
can easily be specified by pBPA systems. For example, consider a pBPA with

This is a standard notation adopted in concurrency theory. The subclass of stateless PDA corre-
sponds to a natural subclass of ACP known as Basic Process Algebra [BW90].



just three stack symbolg, I, D and transitonsZ % 17, Z =" Dz, T 5 II,

'S e, DS DD, andD 5 ¢, wherez € [0,1]. Then the transition graph of

Z (see Fig. 1) is the well-knowBernoulli walk A typical question examined in
theory of random walks is “Do we eventually revisit a given state (with probability
one)?”, or more generally “What is the probability of reaching a given state from
another given state?” For example, it is a standard result that theZstdtEig. 1

is revisited with probabilityl iff z = 1/2. This simple example indicates that
answers to qualitative questions about pPDA (i.e., whether something holds with
probability1 or 0) depend on the exact probabilities of individual transitions. This
Is different from finite-state systems where qualitative properties depend only on
the topology of a given finite-state Markov chain.

The generalized random walk problem is formulated as follows:.eind
Cy be subsets of the set of states of a given Markov chain, andbeta state
of C;. What is the probability that, starting at a state ofG, is reached via
a path leading only through states @f? Let us denote this probability by
P(s,C1UC2). The problem of computing (s, C1 U C2) has been previously con-
sidered (and solved) for finite-state systems, where this probability can be com-
puted precisely [HJ94, CY95]. In Section 3, we propose a solution for pPDA
applicable to those set§, Co which areregular, i.e., recognizable by finite-state
automata. More precisely, we show that the problem whe®terG U Cs) ~ o,
where~ € {<,<,>,>,=} andp € [0,1], is decidable. Interestingly, this is
achieved without explicitly computing the probabiliB(s,C; U C;). Neverthe-
less, for an arbitrary precisioh < A < 1 we can compute rational lower and
upper approximation®‘, P* < [0,1] such thatP’ < P(s,C;UCy) < P* and
Pe Pl <\

In Section 4, we consider the model checking problem for pPDA and the logic
PCTL. This is a more general problem than the one about random walks (the class
of properties expressible in PCTL is strictly larger). In Section 4.1, we give a model
checking algorithm for thqualitative fragmenof PCTL and pPDA processes. For
general PCTL formulae and pBPA processeseanr tolerant model checking
algorithm is developed in Section 4.2. The question whether this result can be
extended to pPDA is left open.

Finally, in Section 5 we prove that both qualitative and quantitative model
checking for the class of properties definable by determinisichBautomata is
decidable for pPDA. Again, this is done without computing the probability ex-
plicitly, but rational lower and upper approximations can be computed up to an
arbitrarily small given error.



2 Preliminary Definitions

Definition 2.1. A probabilistic transition systens a triple 7 = (S, —, Prob)

wheresS is a finite or countably infinite set aftates — C S x S is atransition
relation and Prob is a function which to each transition — ¢ of 7 assigns its
probability Prob(s — t) € (0, 1] so that for every € S we have

Z Prob(s — t) € {0,1}

s—t

The sum above can loeif it is empty, i.e., ifs does not have any outgoing transi-
tions.

In the rest of this paper we also write™ t instead ofProb(s — t) = .
A pathin 7 is a finite or infinite sequence = sy, sy, - Of states such that
s; — ;41 for everyi. We also usev(i) to denote the statg of w (by writing
w(i) = s we implicitly impose the condition that the length«ofis at least + 1).
A runis a maximal path, i.e., a path which cannot be prolonged. The sets of all
finite paths, all runs, and all infinite runspfare denoted’'Path, Run, andIRun,
respectively. Similarly, the sets of all finite paths, runs, and infinite runs that start
in a givens € S are denoted’Path(s), Run(s), andIRun(s), respectively.

Eachw € FPath determines @asic cylinder Run(w) which consists of
all runs that start withw. To everys € S we associate the probabilistic space
(Run(s), F,P) whereF is theo-field generated by all basic cylindef&un (w)
wherew starts withs, andP : F — [0, 1] is the unique probability function such
that P(Run(w)) = I";'z; wherew = sg,--- s, ands; = s;41 for every
0 <i<m(if m=0,we putP(Run(w)) = 1).

2.1 The Logic PCTL

PCTL, the probabilistic extension of CTL, was defined by Hansson & Jonsson in
[HJ94]. LetAp = {a,b,c,...} be a countably infinite set @tomic propositions
The syntax of PCTR.is given by the following abstract syntax equation:

@ = tt|a|@|leiApa | X7 | p1U s

Herea ranges ovedp, o € [0, 1], and~ € {<, <, >,>}. LetT = (S, —, Prob)
be a probabilistic transition system. For alle S, all C,G,Cy C S, and all
k € Ny, let

%In this paper, thd@ is always clear from the context.
3For simplicity we omit the bounded ‘until’ operator of [HJ94].



e Run(s,XC) = {w € Run(s) | w(1l) € C}

e Run(s,CiUUCs) = {w € Run(s) | Ji > 0 : w() € Candw(j) €
Cyforall0 <j <}

oFPathk(S,C1 Z/{CQ) = {80,---,8g - FPath(s) | 0< ¥l < ks €0 ande €
Ci~Coforall0 < j < ¢}

e FPath(s,C1U C2) = | U2y FPath*(s,C1U C2)

Obviously,

P(Run(s,C1UCs)) = > P(Run(w)).
w€ FPath(s,C1 U C2)

Letv : Ap — 2° be avaluation The denotation of a PCTL formulaover7
w.r.t. v, denoted]”, is defined inductively as follows:

[tt]” = S
[a]” = v(a)
[¢]” = S~ [el”
[er Ap2]” = [e1]” N [w2]”
[X~2]" = {s€S|P(Run(s, X[¢]")) ~ o}
[prUd ~2pa]” = {s€S|P(Run(s,[p1]"U[p2]")) ~ o}

As usual, we writes =¥ ¢ instead ofs € [¢]".

The qualitative fragmenof PCTL is obtained by restricting the allowed oper-
ator/number combinations tec*0’ and ‘> 1’, which will be also written as= 0’
and ‘= 1’, resp. (Observe tha 1’, ‘ > 0’ are definable from< 0", * > 1’, and
negation; for exampleyd <16 = —(ald =1b).)

2.2 Probabilistic PDA

Definition 2.2. A probabilistic pushdown automaton (pPDA) a tuple A =
(Q,T, 6, Prob) whereQ is a finite set ofcontrol statesl” is a finitestack alphabet
0 C Q xT x @ xTI*is a finitetransition relationwe writepX — ga instead
of (p, X, q,a) € d), and Prob is a function which to each transitionX — qa
assigns its probabilityProb(pX — ga) € (0,1] sothatforallp € Q andX €T’
we have thad_ « . ., Prob(pX — ga) € {0,1}.

A pBPAis a pPDA with just one control state. Formally, a pBPA is understood
as atripleA = (I, §, Prob) wherej C T" x I'™.

In the rest of this paper we adopt a more intuitive notation, writixg— qgo
instead of Prob(pX — qa) = x. The setQ x I'* of all configurations ofA is
denoted by’ (A). We also assume (w.l.0.g.) thapiX' — ga € 9§, then|a| < 2.
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To A we associate the probabilistic transition systBnwhereC(A) is the set
of states and the probabilistic transition relation is determined®9 = ga iff
pX 5 qa.

The model checking problem for pPDA configurations and PCTL formulae
(i.e., the question whethery =" ¢ for givenpa, ¢, andv) is clearly undecidable
for general valuations. Therefore, we restrict ourselvesgalar valuations which
to everya € Ap assign aegular set of configurations

Definition 2.3. A A-automatoris a triple A = (St,~, Acc) where St is a finite
set of statess.t. @ C St, v : St x I' — St is a (total) transition function and
Acc C St a set ofaccepting states

The functiony is extended to the elementdtfin the standard way. Each-
automatonA determines a set(A) C C(A) given bypa € C(A) iff v(p, o?) €
Acc. Herea®® is the reverse of;, i.e., the word obtained by readingfrom right
to left.

We say that a set C C(A) is regulariff there is aA-automatonA such that
C=C(A).

In other words, regular sets of configurations are recognizable by finite-state au-
tomata which read the stack bottom-up (the bottom-up direction was chosen just
for technical convenience).

3 Random Walks on pPDA Graphs

For the rest of this section, let us fix a pPMA= (Q, T, d, Prob).

An important technical step in our development is the replacement of regu-
lar sets of configurations with “simple” ones for which the membership function
depends just on the control state and the top stack symbol of a given configuration.

Definition 3.1. A set of configurationS is simpleif there isaseG C Q x(I'U{e})
such that for eachpa € C(A) we have thapa € C iff eithera = € andpe € G,
ora=XpgandpX € G.

The next lemma says that regular sets of configurations can be effectively re-
placed with simple ones. This is a standard result (see, e.g., [EKSO03]). For the sake
of completeness, we include an explicit proof.

Lemma 3.2. For each pPDAA = (Q, T, §, Prob) and regular setg;, --- ,Ci, C
C(A) there effectively exist a pPDA = (Q,I",¢, Prob’), simple sets
Ci,---,C. C C(A'), and an injective mapping : C(A) — C(A') such that
for eachpa € C(A) the following conditions are satisfied:



oif pa % g3, thenG(pa) = G(¢B);
e if G(pa) 5 s for somes € C(4A’), then there ipa = ¢3 such thaiG(¢f) = s;
o for eachl < j <k we havepa € C; iff G(pa) € C..

Moreover, ifC C C(A') is regular, therg—1(C) is also regular.

Proof. For eachl < i < k, let A; = (Sti, i, Acc;) be aA-automaton such that
C(A;) = C;. Let States =[], [],eq Sti- For givens € States, 0 < i < k, and
p € @, we denote by(i, p) the component of which corresponds to thieandp.

We putl” = I' x States. The transition functiod’ and probabilitiesProb’ are
defined as follows:

oif pX 5 qe € 6, thenp(X, 5) 5 qe for eachs € States;

oif pX 5 qY €6, thenp(X, 5) = q(Y, 5) for eachs € States;

oif pX 5 qY Z € 6, thenp(X,5) 5 ¢q(Y,1)(Z, 5) for all §,i € States such that
vi(5(i,r), Z) =t(i,r) forall 1 < i < kandr € Q.

So, theA-automatad,, - - - , A; are simulated “on-the-fly” by storing the vector

of current states directly in the stack. Hence, the information whether a gjven
accepts the current configuration is available in the topmost stack symbol. For
every0 < i < k, the underlying sef; of C. (see Definition 3.1) is defined by

Gi = {p(X, 3) | vi(5(1,p), X) € Acc;} U {pe | pe € C;}

The function G is defined by G(pe) = pe, and G(pX;---Xi) =
p(X1,81) -+ (X, 8k), Wheresy(i,q) = ¢, ands;(i,q) = %i(8j+1(4, q), Xj+1)
forall 1 < j < k. It follows immediately from the definitiol and Prod’ that the
parts of 7a and 7, which are reachable fropn andG(pa) are isomorphic (for
everypa € C(A)).

LetC C C(A') be a regular set of configurations. Since some configurations of
C can be “inconsistent” in the sense that the vectors of states that are stored together
with the original stack symbols do not correspond to a valid computation of;the
automata, the s&t—!(C) is not a simple projection af “forgetting” the vectors of
states from the stack symbols. Fortunatél§C(A)) is (obviously) a regular set,
SO we can construct A’-automaton recognizing the set) G(C(A)) and apply
the mentioned projection. H

For the rest of this section, I€4,C, C C(A) be (fixed) simple sets, and let
G1,G2 C Q x (' U {e}) be the sets associateddn Cs in the sense of Defini-
tion 3.1.

Definition 3.3. To simplify our notation, we adopt the following conventions:



e For eachC C C(A), letC* = C ~\ (@x{e}). Observe that i€ is simple, then so
IsC®.

e For everyC C C(A) and everyg € I'*, the symboC3 denotes the sdpas |
pa € C}.

eForall p,g € QandX € I', we usgpXgq] to abbreviateP (p X, C; ~\Ca U {ge}),
and[pXe] to abbreviateP (pX,C; U CS).

e Let A be a set of finite paths which end in the same statad letB a set of
finite or infinite paths that start ih. Then the symbaol ©® B denotes the set of
paths{vw | v € A,tw € B}.

The following auxiliary lemmas are used in the proof of Lemma 3.6:

Lemma 3.4. Let T = (S,—, Prob) be a probabilistic transition system. Let
s,t € Sand(Cy,Co C S. Further, let A = FPath(s,(C;\C2)U{t}) and
B = FPath(t,C U Cy). Then

Z P(Run(w ZP (Run(w Z P(Run(w

wEAGB wEA weB
Proof. Immediate. ]

Lemma 3.5. For all pa € C(A) and € I* we have thaP (Run(pa, Ci U Co)) =
P(Run(paB,C;BUC3)).

Proof. For every finite pathw = piay - - - pho, Of FPath(pa), let w® denote
the finite pathpya15- - - ppa, B8 of FPath(paB). Realize thatP(Run(w)) =
P(Run(wt?)), becausar andw*? execute the same transitions. One can eas-
ily verify that w € FPath(pa,CiUCs) iff wt? € FPath(paf,CBU Caf).
From this we getP(Run(pa,CiUC2)) = > e ppath(pa,ciucy) P (Bun(w)) =
2 _we FPath(pap,ct8u cyp) P (Run(w)) = P(Run(paf, Ct 5U Ca3)). 0

The next lemma says how to comp®éRun(pXj - - - X,,,C1 U Cq)) from the
finite family of all [p X q], [pX | probabilities.

Lemma 3.6. For eachpX;---X,, € C(A) wheren > 0 we have that
P(Run(pXy -+ X,,C1UC2)) equals

Z Z |9 Xi H Xjgqj+1] Z H [4; X;q5+1]

i=1 (ql’”'7qi)te : (q17"'7qn+1)€Qn+1
wherep=q; wherep=q; andg,+1£€Cs

with the convention that empty sum equaénd empty product equals



Proof. By induction onn. Forn = 0 we have thafP (pe, C; U Cy)) is equal either
to 1 or 0, depending on whethee belongs ta’s or not, resp. Now let, > 1, and
let 5 denote the sequencdg, - - - X,,. The setRun(pX13,C1U Cs) is equal to

L—_I-J Run(w)

w€ FPath(pX183,C1 U C2)

LetC' = {qaB | ¢ € Q,a € T'"}. We have that
FPath(pX18,C1U C2) = FPath(pX15,C1NC'UCoNC') W

) FPath(pX18, (C1~C2)NC' U {qB}) ® FPath(qB,C1U C2)

q€qQ
Now observe that for evergimplesetC C C(A) we have thaC N C = C*S.
Hence, the above equation can be rewritten as follows:

FPath(pX18,CUCy) = FPath(pX13,C2BUCH) W

[t FPath(pX18, (C1~C2)*BU {qB}) ® FPath(qB,C1 U Cs)
q€qQ
Using Lemma 3.5 and Lemma 5.6, we obtain that

P(Run(pX18,C1UC2)) = P(Run(pX1,C1UCS)) +
>_geq P(Run(pX18, (Ci\C2) U {qB})) - P(Run(gB3,C1U Cz))
This can be also written as

P(Run(pX18,C1UC2)) = [pX10]+ > [pX1q] - P(Run(qB,C1U Cz))
qeqQ

Now it suffices to apply induction hypothesis®g Run(q3,C; U C2)) and restruc-
ture the resulting expression. H

Now we show that the probabilitigpXq|, [pXe] form the least solution of
an effectively constructible system of quadratic equations. This can be seen as
a generalization of a similar result for finite-state systems [HJ94, CY95]. In the
finite-state case, the equations are linear and can be further modified so that they
have auniquesolution (which is then computable, e.g., by Gauss elimination). In
the case of pPDA, the equations are not linear and cannot be generally solved by
analytical methods. The question whether the equations can be further modified so
that they have a unique solution is left open; we just note that the method used for
finite-state systems is insufficient (this is demonstrated by Example 3.8).

Let V = {(pXq), (pXe) | p,q € Q,X € T'} be a set of “variables”. Let us
consider the system of recursive equations constructed as follows:

9



oif pX ¢ G1\Gs, then(pXq) = 0 for eachq € @Q; otherwise, we put

(pXq) = Z Z (rYt) - (tZq) -+ Z z-(rYq + Z x

pXS5rY Z teqQ pXSrY pX Sqe

oif pX € Gy, then(pXe) = 1; if pX ¢ G1 UG2, then(pXe) = 0; otherwise we
put

(pXo)= > x-((rYe) + > (Yt)-(tZe)) + Y x-(rYe)

pX5rYyZ teqQ pXSrY

For givent € [0,1]V], p,q € Q, andX € T we use(pXg), and (pXe), to

denote the component ofwhich corresponds to the variableX ¢) and (pXe),
respectively. The above defined system of equations determines a unique operator
F:10,1)V! — [0, 1]V whereF(t) is the tuple of values obtained by evaluating

the right-hand sides of the equations where(aK ¢) and (pXe) are substituted

with (pXq), and(pXe),, respectively.

Theorem 3.7. The operatotF has the least fixed-poipt Moreover, for allp, ¢ €
@ and X € I' we have tha(qu>M = [pXyq| and<pXo>M = [pXe].

Proof. Since F is monotonic and continuous, it has the least fixed ppint

Vieo F*(0), where0 is the tuple of zeros. One can readily check that the tu-
ple 7 of all [pX¢| and[pX e] probabilities forms a solution of the above system;
this is done just by partitioning the associated sets of runs into appropriate disjoint
subsets similarly as in the proof of Lemma 3.6. Hence; 7. To prove that also

m < u, we approximate thepX ¢] and[pX e] probabilities in the following way:

For eachk € Ny we define

o [pXq|* = > P(Run(w))
weFPath® (pX,C1~CoU {qe})
o [pXeolF = > P(Run(w))

wEFPath® (pX,C1UCY)

Let 7% be the tuple of all[pXq]® and [pXe]* probabilities. Clearlyr =
limy_,.o 7*. By induction onk we prove thatr® < p for eachk € Ny, hence
alsom < p as needed.

The base casé (= 0) follows immediately. We show that ﬂﬁXq]’“ < (qu)M

and[pXo]k < <qu>u’ then alsc{qu]kJrl < <qu>u and[pXo]’“chl < <qu>u'
If pX ¢ G1~\Ga, then[pXq)*™" = (pXq), = 0. Otherwise, by applying the

10



definitions we obtain

pXq* = ) =z > P(Run(w))

pXZrYZ — wEFPath®(rY Z,C1~CaU {qe})

+ Z x - Z P(Run(w))

pXZrY weFPath®(rY,C1~CoU {ge})

pX£>q€
and
<qu>u = Z Z rYt th + Z a:-(qu)M + Z x
pX—>rYZ teQ pXiWY pXiqs
Since
> P(Run(w)) = [rYd",
weFPath®(rY,C1~CoU {ge})
we have

> P(Run(w)) < (rYq),

w€FPath® (rY,C1~Ca U {qe})

by induction hypothesis. Further,
Z x - Z P(Run(w))
pX5rYZ  weFPath®(rY Z,C1~ColU {qe})

is surely bounded by

Z Z rYt] th ,

pXZryz  tEQ

which is bounded by

Z Z rYt th

pXSryz  t€Q

by induction hypothesis. To sum up, we have t[}ﬁYq]k+1 < (pXgq),. The
inequality[pX ¢]**! < (pXe) , is proved similarly. H

11



Example 3.8. Let us consider the pBPA systemnof Fig. 1, and letC; = T'*,
Co = {Z}. Then we obtain the following system of equations (sihd&s only
one control state, we write(X, o) and (X, ¢) instead of p X e) and (pXp), resp.):

(Z,¢) = 1

(Z,e) = z,e){Z,e) + (1-x)(D,e)(Z,¢)
(I,o) = x((I,0) + ([,&)(,9))

(I,ey = z(I,e){l,e) + 1—x

(D,o) = (1=z)((D,e) + (D,e)}(D,e))
(D,e) = (-z)(D,e)(D,e) +

As the least solution we obtain the probabilitigse] = 1, [Z,e] =0, [I,e] = 0,
[I,e] = min{l, (1—z)/z}, [D,e] =0, [D,e] = min{l,z/(1—z)}. By applying
Lemma 3.6 we further obtain that, e §(112,C, U C3) = min{1, (1—z)?/z?}.

In Example 3.8, the least solution of the constructed system of equations could
be computed explicitly. This is generally impossible, but certain properties of the
least solution are still decidable. For our purposes, it suffices to consider the class
of properties defined in the next theorem.

Theorem 3.9. Let Const = Q U {[pXq], [pXe] | p,q € QandX € I'}, where
Q is the set of all rational constants. L&}, E», be expressions built oveTonst
using “’ and ‘+’, and let~ € {<,=}. Itis decidable whethek; ~ Es.

Proof. We show that, due to Theorem 3H,, ~ FE is effectively expressible as a
closed formula of R, +, x, <). Hence, the theorem follows from the decidability
of first-order arithmetic of reals [Tar51].

Forallp,q € Q andX € T, letz(pXq), z(pXe), y(pXq), andy(pXe) be
first order variables, and 1éf andY be the vectors of alt(pXq), z(pXe), and
y(pXq), y(pXe) variables, respectively. Let us consider the fornfutzonstructed
as follows:

3X : 0<X <1 A
ANWY : (0<Y<TAY=F®Y)) = X<Y))
A Ey[X /7] ~ EoX /7]

Observe that the conditiod§ = F(X) andY = F(Y) are expressible only using
multiplication, summation, and equality. The expressiBnsX /7] and E,[ X /]
are obtained fronk; and E» by substituting al[p X ¢] and[pX e] with z(pX ¢) and
x(pXe), respectively. It follows immediately th# ~ Es iff ® holds. ]

An immediate consequence of Theorem 3.9 is the following:
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Input: pX € C(A),0< A< 1

Output: P¢, P

1: PL=0;P%:=1;

2: for i=1to [—log, ]

30 i [pXo]+ e, [PXq] = (P = PY))2
4: then P! := (P* — Pt /2

5 else P := (P* — P*)/2

6 fi

Figure 2: Computing?, P*

Theorem 3.10.Letpa € C(A), 0 € [0,1], ~ € {<, <, >,>}and0 < A < 1. Itis
decidable whetheP (pa, C; U C2) ~ 0. Moreover, there effectively exist rational
numbersP?, P* such thatP! < P(pa,Ci U Cy) < P* andP* — PL < .

Proof. We can assume w.l.o.g. that = X for someX € I'. Note that
P(pX,CLUCs) ~ oiff [pX o]+ . [pXg] ~ obyLemma 3.6. Hence, we can
apply Theorem 3.9. The numbeR$, P* are computable, e.g., by the algorithm of
Fig. 2. m

4 Model Checking PCTL for pPDA Processes

4.1 Qualitative Fragment of PCTL
For the rest of this section we fix a pPDX= (Q, T, d, Prob).

Lemma4.1. LetC C C(A) be a simple set. The sdtsa € C(A) | P(pa, XC) =
1} and{pa € C(A) | P(pa, XC) = 0} are effectively regular.

Proof. Immediate. ]

Lemma 4.2. Let C;,C2 C C(A) be simple sets. The sépa € C(A) |
P(pa,CiUCy) = 1} is effectively regular.

Proof. Let R(pX) = {g € Q | [pX¢q] > 0} forallp € Q, X €T'. Foreach € Ny
we define the se¥; C C(A) inductively as follows:

e So={qe| ge € Co} U{qXa|[gXe] =1, "}
o Sit1 ={pXB|[pXe] +>  crpx)pXq] =1andvg € R(pX) : ¢B € S}

Using Lemma 3.6, we can easily check thdf°,S; = {pa € C(A) |
P(pa,CiUCy) = 1}. To see that the sgf:°, S; is effectively regular, for each

13



p € @ we construct a finite automatow,, such thatL,(M,) = {a € I'* | pa. €

U2, Si}. A A-automatonA recognizing the sét)° S; can then be constructed
using standard algorithms of automata theory (in particular, note that regular lan-
guages are effectively closed under reverse). The statdd,adre all subsets of

Q, {p} is the initial state[" is the input alphabet, final states are th@se&_ @
where for everyy € T we have thate € C; (in particular, note tha is a final

state), and transition function is given ﬁyﬁ U iff for every g € T we have that

[gX o] + 3, cpgx)laXr] = 1andU = {J,er R(¢X). Note that) % 0 for each
X e T'. The definition ofM,, is effective due to Theorem 3.9. It is straightforward
to check thatL(M,) = {a € T | pa € U3, Si}- O

Lemma 4.3. Let C;,C2 C C(A) be simple sets. The sépa € C(A) |
P(pa,C1 U Cy) = 0} is effectively regular.

Proof. Let R(pX) = {qg € Q | [pX¢] > 0} forallp € Q, X €T'. Foreach € Ny
we define the se¥; C C(A) inductively as follows:

® So = {qe | ¢e & C3}

¢ Siy1 = {pXpB|[pXe] =0andvq € R(pX) : g8 € S;}

The fact|J;2, S; = {pa € C(A) | P(pa,CiUC2) = 0} follows immediately

from Lemma 3.6. The sét):°, S; is effectively regular, which can be shown by
constructing a finite automatot, recognizing the sefoe € I'™ | pa € | J;2, Si}-

This construction and the rest of the argument are very similar to the ones of the
proof of Lemma 4.2. Therefore, they are not given explicitly. [

Theorem 4.4.Letp be a qualitative pCTL formula anda regular valuation. The
set{pa € C(A) | pa " ¢} is effectively regular.

Proof. By induction on the structure @f. The cases whe = tt andy = a

follow immediately. For Boolean connectives we use the fact that regular sets
are closed under complement and intersection. The other cases are covered by
Lemma 4.1, 4.2, and 4.3 (here we also need Lemma 3.2). H

4.2 Model Checking PCTL for pBPA Processes

In this section we provide an error tolerant model checking algorithm for PCTL

formulae and pBPA processes. Since it is not so obvious what is meant by error

tolerance in the context of PCTL model checking, this notion is defined formally.
Let7 = (S, —, Prob) be a probabilistic transition system ahek A < 1. For

every negation-free PCTL formula and valuationv we define the denotation of

@ overT w.r.t. v with error tolerance), denoted¢]y;, in the same way ajp]”.

The only exception i U ~%p2 Where
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oif ~ € {<, <}, then[ps U ~2ps]y = {s € S | P(Run(s, [pr]5 U [2]5)) ~ 0+ A}
oif ~ € {> >} then[p1 U ~2po]\ = {s € S | P(Run(s, [p1]X U [¢2]})) ~ 0 — A}

Note that for every negation-free formutawe have thaje]” C [¢]5. Nega-
tions can be “pushed inside” to atomic propositions using dual connectives (note
that, e.g..~ (U Z9) is equivalent tap U <21)), and for regular valuations we can
further replace every.a with a fresh propositioh wherev(b) is the complement
of v(a). Hence, we can assume w.l.0.g. thés negation-free.

An error tolerant PCTL model checking algorithisian algorithm which, for
each PCTL formulg, valuationv, s € S, and0 < A < 1, outputs YES/NO so
that

oif s € [¢]”, then the answer is YES;
o if the answer is YES, then € [¢]5.

For the rest of this section, let us fix a pBRA= (T, d, Prob). SinceA has
just one (or “none”) control state we write[ X, o] and[ X, €] instead ofpX e] and
[pXp], respectively.

Lemma 4.5. LetC C C(A) be a simple sefp € [0,1], and~ € {<,<,>,>}.
The sefa € C(A) | P(a, XC) ~ p} is effectively regular.

Proof. Immediate. ]

The following lemma presents the crucial part of the algorithm. This is the
place where we need the assumption thas stateless.

Lemma 4.6. LetC;,Cy C C(A) be simple sets. Foralf € [0,1] and0 < A < 1
there effectively exigk-automata4> and.A< such that for alle € C(A) we have
that

oif P(a,C1UCs) > o (or P(a,CLUCo) < ), thena € C(AZ) (or a € C(AS),
respectively.)

eif o € C(AZ) (or a € C(A%)), thenP(a, CtUC2) > 0— ) (Or P, CLUCa) <
0 + A, respectively.)

Proof. We describe just the construction gf (the A-automatonA< is con-
structed similarly). LetS = {X € I' | [X,¢] # 1}. For everya € I, leta(S) be
the string obtained by deleting all symbolsIof.S from «. For eachs € S* we
define the seCl(B) = {a € T | a(S) = g}. It follows directly from Lemma 3.6
that for allg € S* anda € CI(8) we have thaP(3,C1 U Cs) = P(a,C1UCy).
Further, for alln € Ny andg € |J!*_, S™ we define the set

Cl(B) ifae S Ai<n
{ad/ |a € Cl(B),a €eT*} ifaec S

Genn(6) = {

15



Input: pBPAA,0 <A <1
Output: n, K, v, [X, o]%, [X, €)%, [X, o]%, [X, e]“

17:
18:

S:={Xel|[X,e] #1};

v:=1,n:= o0

: foreach X € S do

(X, ]t :=0;[X, 0] :=0;[X,e]":=1;[X,0]% :=1;
done
repeat
foreach X €T do
avg = ([X,e]" — [X, E]e)/z;
avg® = ([X,e]" — [X, .]e)/2;
if [X,e] >avg then [X, ]’ := avg;
else [ X, e]* := av(f;
if [X,e] >avg then [X,e]’ := avg;
else [X, o] := av(;
done
vi=1v/2;
k= max{[X,e]* | X € S};
if k<1 then n:=[(log(A\/3)/logk]
until k <1 and n(v+v(n+1)(14+v)") < A/3

Figure 3: A part of the algorithm for pBPA
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We prove that for ever§ < A < 1 there effectively exist € Ny andg C | JI_, S°
such that for every € I'™* we have that

o if P(a,C1UCs) > p, thena € Uﬂeg Geny(B);
oif a € Ugeg Genn(B), thenP(a,CUC2) > 0 — A.

This suffices for our purposes, because th¢ kg, Gen,,(3) is clearly recogniz-
able by an effectively constructibl&-automaton4=.

The crucial part of the algorithm for computing the geits shown in Fig. 3.
The algorithm starts by computing the $efnote thatS is effectively computable
due to Theorem 3.9). For each < S, there are four rational variabléX, e,
[X, €)%, [X, o], and[X, ]* whose values are lower and upper approximations of
the probabilities X, ] and[ X, e], resp. These variables are initialized in lines 3-5
and successively refined in lines 7-14. Note that the conditions df sketements
in lines 10 and 12 are effective due to Theorem 3.9. The current “precision”, i.e.,
the difference between the upper and the lower approximation is stored in the ratio-
nal variablev. The subtle point is the termination condition. First, one necessary
condition for termination is that = max{[X,e]* | X € S} becomes less than
one. This must happen eventually, becapses] < 1 for everyX € S. An
important observation is that can onlydecreaseby performing the assignment
in line 16. This means that = [(log(A/3)/log k]| also onlydecreasegsince
both A andx are less than, we havelog(A/3)/logx = |log(A/3)|/|log k|; and
if 0 < k¥ < k < 1, then|logx’| > |logkl|). Therefore, we eventually find a
sufficiently smallv such thate(v + v(n + 1)(1 + v)*) < A\/3.

The output of the algorithm of Fig. 3 are the (values of the) variahles &,
(X, e]f, [X,e]%, [X,e]!, and[X, e]* where X ranges ovelS. For each3 ¢ S,
let PY(B,C1U Co) andP¥(B3,C1 U C2) be the lower and upper approximations of
P(3,C1U Co) obtained by using the formula of Lemma 3.6 whigXecl’, [ X, o]f,
and[X,e]*, [X, o]* are used instead 9, <], [X, o], respectively. The s is
constructed as follows:

G = {8e€80<i<n,PYB,CiUCy> o}
U {BeS"|PYB,CLUC, > o— N\/3}

To verify that the seg has the properties mentioned above, we need to formulate
two auxiliary observations.

(a) for all g € "™ anda € I'* we have that

IP(B,C1UCo) — P(Ba, CLUCo)| < \/3
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This follows immediately from the following (in)equalities:
P(Ba,CLUC) = P(B,CLUCS) + P(B,CiColh {e}) - P, CLUCy)
P(B,C1UC) < P(B,CLUCS) + P(B,Ci~CalU {e})

P(B,CinCoU{c}) < A/3

The first two (in)equalities are obtained just by applying Lemma 3.6. The
last one is derived as follows?(3,Ci~\Co U {€}) is surely bounded by" (by
Lemma 3.6 and the definition a&f). Sincen = [(log(A/3)/logk], we have
n -log k <log(A\/3). Hencelog k™ < log(A/3), thusk™ < A/3.

(b) for eachs € |JI_, S* we have that

'Pu(ﬁ,C1UCQ) — 'P(ﬁ,(ﬁUCz) < )\/3

Let & = length(B). A straightforward induction onk reveals that
PYB,C1UC) < (k+1)-(1+ v)*. Now we prove (again by induction on
k) that

PUB,C1UC) —P(B,C1UC) < k(v+v(k+1)(1+ I/)k)

The base case (wheh = 0) is immediate, becaus®(e,CiUCs) =
P(e,C1UC3). Now let 3 = Xpg'. By definition, P*(X3',C1UCy) —
P(XG,C1UCs) is equal to

(X, o] + [X,e]" - PUB, CLUCy) — ([X, 0] + [X,e] - P(B,C1UUC2)) (1)

Since[ X, o]* < [X, o]|4+vand[X,e]* < [X,e]|+v, the expression (1) is bounded
by

v + [X,e]- (P“(ﬁ’,CllJCg) — P(ﬁ’,CllJCz)) + v Pu(ﬁ/,C1UC2) (2)
By applying induction hypothesis and the facts tHaf,e] < 1 and

PYB,C1UC) < (k+1)- (14 v)F (see above), we obtain that the expres-
sion (2) is bounded by

v+ k(v +vk+ DA+ )P + vk + 1)1+ )k

which is bounded byk + 1)(v + v(k + 2)(1 4 v)**1) as required. This finishes
the inductive step.

Sincen(v +v(n+ 1)(1 +v)") < A/3andk < n, we haveP“(3,C1 U Cs) —
P(B,C1UC) < k(v +v(k+ 1)1+ v)F) < A/3.

Now we are ready to prove that the sehas the required properties. Lete I'*
such thatP(a, C1 U C2) > p, and letG = «(S). There are two possibilities:
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e length(B) < n. ThenP“(3,CtUC) > o, hence € G anda €
Ugeg Genn(B).

e length(B) > n. Let 3 = v+ wherelength(y) = n. Due to the observation
(a) above we have tha@(~,Ci U C2) > o — A/3, hence als®“(vy,Ci U Ca) >
o — A/3, which means that € G and thusy € (Jzcg Genn(B).

Now leta € Gen, () for somes € G. Again, we distinguish two possibilities:

e length(B) < n. ThenP“(3,C1U Cy) > o, which means thaP(3,C, U Ca) >
0 — A/3 by the observation (b) above. Hen@«,C; U C2) > 0 — A/3.

e length(B) = n. ThenP*(5,CiUC2) > o — A/3, which means that
P(B,C1UC2) > 0 — 2)\/3 due to the observation (b). Further, for evefye T’
we have thaP(5a/,C1 U Cy) > o — A due to the observation (a) above. Hence,
P(a,CiUCy) > o — X as required.

The automatotd= is constructed similarly. Here, the sgis computed using
the lower approximationsX, e and[X, ¢]¢. Since this construction is analogous
to the one just presented, it is not given explicitly. H

Theorem 4.7.There is an error-tolerant PCTL model checking algorithm for pBPA
processes.

Proof. The proof is similar to the one of Theorem 4.4, using Lemma 4.5 and 4.6

instead of Lemma 4.1, 4.2, and 4.3. Note that Lemma 3.2 is applicable also to
pBPA (the systeni\’ constructed in Lemma 3.2 has the same set of control states
as the original system). n

5 Model Checking Deterministic Bichi Automata Speci-
fications

Definition 5.1. A deterministic Bichi automatois a tupleB = (X, B, g, by, Acc),
whereX is a finitealphabet B is a finite set ofstatesp: B x ¥ — B is a (total)
transition function(we writeb % ¥’ instead ofo(b, a) = ¥), by is theinitial statg
and Acc C B is a set ofaccepting states

A runof B is an infinite sequencigb; . .. of states such that for evefy> 0
there isa € ¥ such thath; = b;1. A runbgb; ... is acceptingf b; € Acc for
infinitely many indices > 0.

For the rest of this section, we fix a pPDRA= (Q, T, J, Prob).

Definition 5.2. Given a configuratiop X o of A, we callpX theheadand « the
tail of pX . The set) x I of all heads ofA is also denoted b (A).
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We consider specifications given by deterministigcld automata having
H(A) as their alphabet. It is well known that every LTL formula whose atomic
propositions are interpreted over simple sets can be encoded maode@termin-
istic Blichi automaton having{(A) as alphabet. DeterministidiBhi automata
can encode the fragment of LTL that can also be expressed in the alternation-free
modal u-calculus [KV98]. Our results can be extended to atomic propositions in-
terpreted over arbitrary regular sets of configurations using the same technique as
in [EKSO03].

Definition 5.3. The productof A and B is a probabilistic pushdown automa-
ton AB = (QxB,T',d, Prob’) whered’ and Prob’ are determined as follows:

[p, 0] X 5 [p/,b]aiff pX 5 p'a andb X ¥ are transitions ofA and 5, respec-
tively.

Notice that every (finite or infinite) path iz corresponds to a unique path
in 7A obtained by projecting the control state of every configurdtiobl« of the
path onto its first component, yielding the configuration Conversely, for each
path in7a (starting in somea) and eaclb € B there is exactly one path ifng
starting in[p, bja becausés is deterministic.

Definition 5.4. A configuration[p, bja of AB is acceptingf b € Acc. Arunin
Tag is acceptingf it visits accepting configurations infinitely often. A rurijinis
accepting if its corresponding run if\ is accepting.

The probabilityP (pa, B) that a configuratiorpa of A satisfies the specifica-
tion B is defined ad (pa, B) = P({w € Run(pa) | w is accepting).

We solve the following two problems for a given configurati@nof A:

(@) Givenp € [0,1] and~ € {<, <, >, >,=}, do we haveP (pa, B) ~ 0 ?
(b) Given0 < X\ < 1, compute rational®’, P* such thatP’ < P(pa, B) < P*
andP® — Pf < .

For finite-state automata, the problem can be solved as follows (see [CY95]).
Let A be a finite-state automaton. Since the product automadtans is finite, it
can be transformed into a finite Markov chaihby just ‘copying’ the probabilities
of the system [CY95]. Itis then possible to reduce problems (a),(b) to the problem
of computing the probability of hitting a bottom strongly connected component of
M which contains a state of the forfws, b), whereb is accepting.

In our case, the product automatAi88 is again a pPDA, and so its associated
probabilistic transition system is infinite. The key to our solution for (a) and (b) is
the construction of a new finite Markov chalfn 5 that plays theale of M in the
case of finite automata.
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5.1 The Markov chain Mx

A BuchipPDA is a tupleA = (Q,T, 4, Prob, Acca), where all elements except
for Acca are defined as for pPDA amdicca C @ is a set ofaccepting states
A configurationpa of A is acceptingif p € Acca. A run of A is accepting
if it visits accepting configurations infinitely often. For gl Q andX € T', the
probability that a runw € Run(pX) is accepting is denoted IB(p X, Acc).
Obviously, the model checking problems (a),(b) of the previous section can
be reduced to the following problems about a given configuratiérof a Bichi
pPDAA (wherepX € H(A)):

(A) Givenp € [0,1] and~ € {<, <, >,>,=}, do we haveP(pX, Acc) ~ o ?
(B) Given0 < X < 1, compute rational®’, P* such thatP’ < P(pX, Acc) < P
andP* — Pt < .

For the rest of this section, we fix &18hi pPDAA = (Q, T, 6, Prob, Acca).

Definition 5.5. Letw = pyag, p1a1,--- be an infinite run infA. For eachi € N
we define thé®® minimumof w, denotednin; (w), inductively as follows:

e min; (w) = prax, Wherek € Ny is the least number such thiat,/| > |ay| for
eachk’ > k.

e min; 1 (w) = ming (we41), Wheremin;(w) = pyay. Herewy; is the suffix of
w that starts withpy 1 a1 1.

We say thatw flashesat min;(w) if eitheri = 1 and min; (w) is accepting, or

i > 1 andw visits an accepting configuration betwesiin; ; (w) and min;(w)
(wheremin;_; (w) is not included).

Sometimes we abuse language andmigg(w) to denote not only a configu-
ration, but the particulasccurrenceof the configuration that corresponds to ie
minimum. ‘

For all pX € H(A) and alli € N we define a random variablg(;g over

Run(pX) as follows: The possible values bj}? are all pairs of the forniqY’, f),
whereqY € H(A) andf € {0, 1} is a boolean flag; there is also a special value

1. For agiverw € Run(pX), V;gg(w) is determined as follows:
o if w is finite thenVy) (w) = L;
e if conditions (1)—(3) below are satisfied, thb’ﬁg (w) = (qY,1);

(1) w is infinite;
(2) the head ofnin;(w) is ¢Y;
(3) w flashes atnin; (w).
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e if conditions (1) and (2) above are satisfied and condition (3) is not satisfied, then
Vi (w) = (¥, 0)

Notice that the random variables are well defined, because they assign to each run
exactly one value.

Now we formulate two auxiliary lemmas which will be used in the proof of
Lemma 5.8.

For every finite or infinite pathv = p1a; poas - - - INTa and evenys € I'*, the
symbolw™? denotes the paih o1 5 p2aa - - - obtained fromw by concatenating
0 to the stack content in every configuration. SimilarlyRifs a set of paths ifix
andg € T'*, then[R] ™ denotes the sdtw*’ | w € R}.

Lemma 5.6. Let pX € QxI and 8 € I'*. ThenP([IRun(pX)|tP) =
P(IRun(pX)).

Proof. Let Dead = @x{e} U {¢Y« | ¢Y has no transitions i, € T*™}. We
have that

P([IRun(pX)]™?) = 1—P(Run(pXB,C(A)*SU Deads))
= 1—P(Run(pX,C(A)UDead) (byLemma 3.5)
= P([Run(pX)).

[

Lemma 5.7. Let s - - - s, be a path in a probabilistic transition system, and let
X be a measurable subset 8tun(s,). Then{sy---s,} ® X is a measurable
subset ofRun(sp), and moreoveP({sg---s,} ® X) = I ,x; - P(X), where

s =4 si+1 for every0 < i < n. (The ®' operator has been introduced in
Definition 3.3.)

Proof. Standard. O

Lemma 5.8. For all pX € H(A), n € N, anduvy,--- ,v,, the probability of
Vp()l():vl AR V;)(;):vn exists (i.e., the set of alb € Run(pX) which satisfy
this condition isP-measurable). Moreover, for every rational constarthere
is an effectively constructible formula @&, +, x, <) which holds if and only if

P(Vp()l():vl R V;gé):vn) = 1.

Proof. For the sake of clarity, assume for the moment that the possible values of

V;f;g are | or the headgY of A, instead of pairgqY, f). At the end of the proof
we show how to modify it in order to take into account the booleanjfflag
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Let R C Run(pX) be a set of runs. We say th@&(R) is well-definable
if P(R) is effectively definable from a finite family of probabilities of the form
P(Run(qY,CrUCy)), whereCy,Cs are simple sets, using only summation, mul-
tiplication, and rational constants. Note thafifR) is well-definable, it can be
expressed ifiR, +, x, <) using the results of Section 3.

By induction onn we prove thatP(V;)l():vl A A V;gé):vn) is well-

definable. The base case wher= 1 follows immediatelly, becauSE(léf)l():vl)
equals eitherP(IRun(pX)), 1 — P(IRun(pX)), or 0, depending on whether
vy = pX, vy = L, or pX # wv; # 1, respectively. Observe that
P(IRun(pX)) = 1 — P(Run(pX,C(A)U Dead)), where Dead = @Qx{e} U
{¢Y | ¢Y has no transitions i, a € T™*}.

Now letn > 2. For eachl < i < n, let Sat; be the set of all runs that satisfy
VY=v1 A - AV =vi. If P(Sat,_1) = 0, which is decidable by induction
hypothesis, the®(Sat,,) = 0 as well. IfP(Sat,—1) # 0 and thereig <n — 1
such thaw; = L, then for allj < n — 1 we have that; = L, andP(Sat,,) is
equal either t&(Sat,—1) or 0, depending on whethey, = L or not, respectively.
If P(Sat,—1) #0,v; # Lforalli <n—1,andv, = L, thenP(Sat,) = 0. So,
the only interesting case is whét{(Sat,,—1) # 0 andv; # L for all i < n. Since

PV =vn | Saty-1)
P(Satn_l)

P(Sat,) =

andP(Sat,_1) is well-definable by induction hypothesis, it suffices to show that

the conditional probabilitVD(V;j(;):vn | Sat,—1) is also well-definable. For this
we use a general result of basic probability theory saying thdt B are events
andB = W, B;, wherel is a finite or countably infinite index set, then

2.ic1 P(A| Bi) - P(Bi)
P(B)

P(A| B) =

An immediate consequence of this equation is that if the probal#ljity| B;) is
independent of, thenP(A|B) = P(A|B;). In our caseA is the evenﬁ/;f;):vn,
andB is Sat,,_1. Let

Chop = {w(0) - - - w(min,_1(w)) | w € Sat,—1}.

Observe that ify € Chop, then the last configuration af is of the form
Prn—1Xn—10. We denote ther by Stack(y). For everyy € Chop, let

Satn—1(y) = {y} © [IRun(pp—1 X, 1)) 5+ (3)

23



Now we can easily check that

Sat,_1 = H—J Sat,—1(y)
ye€ Chop

Hence, Chop plays the role ofl, and Sat,,—1(y) plays the role ofB;. We show
thatP(V;)(;}):vn | Sat,—1(y)) is independent of, which means that

PV =0, | Satn-1(y) = P(VW=v, | Saty_1).
By definition of conditional probability,

P(VP(;)Z% A Satn-1(y))
P(Satn—1(y))

The denominator of the fraction in equation (4) is well-definable, because

PV =0, | Sata_1(y)) = 4)

P(Satn-1(y)) = P(Run(y)) - P(IRun(pn—1Xn-1))

Here we used Lemma 5.6, Lemma 5.7, and equation (3). Now we show that
P(V;g?:vn A Sat,_1(y)) is also well-definable. Lek be the set of all runs satis-

fying V;g}):vn A Sat,—1(y), and leta = Stack(y). Obviously, eachw € R starts
with y. Now let us consider what transitions can be performed from the final state

pn—an—la of Y.

e Obviously, transitions which decrease the stack cannot be performed, because
Pn—1Xn—1ca would not be a minimum then (i.ey would not belong taR).

e If a transition of the fornp,,_1 X,,_1a« — rZa is performed, themZa must be
the n-th minimum, because the stack cannot be decreased &l@therwise,
Pn—1Xn_1c Would not be a minimum). So, ib € R, we must have thatZ =
PnXn.

e If a transition of the fornp,_1X,_1a = rPQa is performed, then the stack
cannot be decreased bel@)v Now there are two possibilities:

— If the stack is never decreased bel&wthen the configurationPQa is the
n-th minimum. Hence, ifv € R, we must have thatP = p, X,,.

— If the stack is decreased belaw i.e., if a sequence of transitions of the form
rPQa —* tQa, whererP —* te, is performed, thenQ« is then-th mini-
mum. Hence, itv € R, we must have that) = p, X,,.

24



From the above discussion, it follows thatcan be partitioned as follows:

R = H’J {y} O {pn_1Xn_1a prnXna} ® [IRun(p,X,)] "
pnlenflgann

H’J {y} O] {pn—an—la annYa} ® [IRun(ann)]+Ya

pnlenflgannY
Yel

+ y} © [FPath(qY,C(A)U {pne *©® [IRun(p,X,)| ™
I+ {yr ol ( YU {pne )T © [TRun( )]F

pnlenflquXn
qeQ,Yer

Using Lemma 5.6, Lemma 5.7, and the above equation, we obtain that
P(Vp(;):vn A Sat,—1(y)) = P(Run(y)) - P(IRun(p, X)) - S
where

S = Zx+ Z r +

pn—an—liann pn—an—lgannY
Yel
> a P(Run(qY,C(A)U {pnc})) (5)
Pr—1Xn_1-2qY Xn,
qeQ,Yel

Equation (4) can now be rewritten to

P(IRun(p,Xn))
P(IRun(pn-1Xn-1))

PV, =vn | Satn-1()) = ¥ (6)
where the meaning d§ is given by equation (5). Sd?(V];(;):vn | Satn,—1(y))

Is indeed independent of, and hence equation (6) also defines the probability
P(Vp(;):vn | Sat,—1).

We still have to consider the case in which ths are pairs of the form
(piXi, fi). For this we can use the same construction as above with a minor mod-
ification in equation (5). Let us first consider the case whenr= (p,X,,0).

If p, is accepting, theﬂ?(V;)(;)z(ann,O) | Sat,_1) is zero. Otherwise,

P(Vp(;):(ann, 0) | Sat,—1) is given by the right-hand side of equation (6) where
the following sumS’ is used instead of":

S = Z r + Z r +

pn—an—lgann pn—an—lgannY
Yel

> z - P(Run(qY, (@~ Acca)xT U {pye}))

pn—an—lquXn
qeQ,Yel
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Finally, let us consider the case when= (p,X,,1). If p, is accepting, then

P(V;Q):(ann,l) | Sat,—1) = 1. Otherwise, we use the right-hand side of
equation (6) wheré is replaced withS” given by

S’ = Z x-D

pn—an—lquXn
qeqQ,Yel

where
D = P(Run(qY,C(A)U {pne})) — P(Run(qY, (Q~Acca)xT'T U {pre}))
(]

The following lemma proves the Markov property. In fact, it follows immediatelly
from equation (6) used in the proof of Lemma 5.8.

Lemma 5.9. The conditional probability of/;j(;) = v, On the hypothesiia;()l() =
VIA A V;)(;_l) = v,,_1 IS equal to the probability of/;f;) = v,, conditioned on
Vp(;}_l) = v,_1, @ssuming that the probability bﬁ}() S /\Vp(;_l) = Vp_1

IS non-zero.

For each control state € @Q we define a flagf,, which is equal either ta or
0 depending on whether € Acca or not, respectively. Another consequence of
Lemma 5.8 is the following:

Lemma 5.10. The conditional probability oi/;;):(q’Y’, f’) on the hypothesis
V;)(;_l):(qY, 1)) is equal to the conditional probability 61;(32,):(q’Y’, f’) onthe
hypothesi%(ll):(qY, f7), assuming thaP(X/;f;_l):(qY, f)) #0.
Now we can define the finite Markov chaiix .
Definition 5.11. Let Ma be a finite-state Markov chain where the set of states is
{(@V,0) | g & Acea,Y € T, P(V)=(qY,0)) > 0}
U {(a¥,1) | Y € H(A), PVY =(aY, f)) > 0}
U HA)U{L}

and transition probabilities are defined as follows:
e Prob(L — 1) =1,
o Prob(pX — (qY, f)) = P(V;=(aY, /),
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e Prob(pX — 1) = P(V;)()l():_]_),
o Prob((qY, f) = (¢, ) = PV =(¢Y", f) | V) =(aY, f,).

One can readily check thats is indeed a Markov chain, i.e., for every state
s of Ma we have that the sum of probabilities of all outgoing transitions isf
equal to one.

A trajectoryin M is an infinite sequencg(0) o(1) - - - of states of\ix where
Prob(c(i) — o(i + 1)) > 0 for everyi € Np.

To every rurw € Run(pX) of A we associate itotprint, denotedr,,, which
Is an infinite sequence of states/dj defined as follows:

®0,(0) =pX

e if w is finite, then for every € N we haver,,(i) = L;

e if w is infinite, then for every € N we haveo,, (i) = (p; X, fi), wherep; X; is
the head ofnin;(w), andf; = 1 iff w flashes atnin;(w).

We say that a givew € Run(pX) is goodif o,, is a trajectory inMa. Our next
lemma reveals that almost all runs are good.

Lemma 5.12. LetpX € H(A), and let Good be the subset of all good runs of
Run(pX). ThenP(Good = 1.

Proof. Let Bad = Run(pX) ~ Good Let Fail be the set of all finite sequences
vo - - - v;4+1 Of states ofMa such that € Ny, vg = pX, vg---v; IS a trajectory
in Ma, and Prob(v; — v;+1) = 0, whereProb is the probability assignment of
Ma. Eachy € Fail determines a séBad, = {w € Bad | o, Starts withy}.
Obviously,Bad = 4, ., Bad,. We prove that?(Bad,) = 0 for eachy € Fail.
Lety = vg - - - v;41. By applying definitions, we obtain

P(Bag,) = PV =viA- AV V=)

P(‘/;j()i(+1):vi+1 | V;j()lg:vz Ao A ‘/;)()12:1)1)
P(‘/p(;():vl ANEREAN V;)()l()zvl)

SinceP(V;j(Q:vi AR V;S():vl) # 0, the last fraction makes sense and it is

equal to
Prob(v; — vi41)

which equals zero. H

It follows directly from the definition of\/x that if both(¢Y,0) and(¢Y, 1)
are states oM, then they have the “same” outgoing arcs (i(gY;, 0) = (rZ, f)
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iff (¢Y,1) = (rZ,f), wherexz > 0). In particular, this means th&yY,0) and
(¢Y, 1) either belong to theamebottom strongly connected component\d, or
do not belong to a bottom strongly connected componend ©of

Definition 5.13. We say that a giveqY € H(A) is recurrentf there is a bottom
strongly connected compone@y of Ma such that(qY, f) € C,y for some
f €40, 1} (here the stateX of Ma is considered as a root df/a).

Each recurrent head is eitheacceptingor rejecting depending on whether
C,y contains a state of the for(mZ, 1) or not, respectively.

We say that a runv € Run(pX) hits a headqY € H(A) if there is some
i € N such that the head eiin;(w) is ¢Y. The next lemma says that an infinite
run eventually hits a recurrent head.

Lemma 5.14. Let us assume th&(/Run(pX)) > 0. Then the conditional prob-
ability thatw € Run(pX) hits a recurrent head on the hypothesis tlads infinite
Is equal to one.

Proof. Let Recdenote the event that a run Biun(pX) hits a recurrent head. Due
to Lemma 5.12, we have that

P(Rec| IRun(pX)) = P(Rec| IRun(pX) N Good (7)

A run belongs tdRun(pX ) N Goodiff its footprint is a trajectory inV/x that does

not hit the statel.. Arunw € IRun(pX)NGoodsatisfieReciff its footprint hits a
state of the forniqY’, f), whereqY is a recurrent head. It follows directly from the
definition of M A that the right-hand side of equation (7) is equal to the probability
that a trajectory fromp X in Ma hits a bottom strongly connected component on
the hypothesis that the stateis not visited. Sinceé\/A) is finite, this happens
with probability one by ergodicity. m

So, an infinite run eventually hits a recurrent head. Now we prove that if this
head is accepting/rejecting, then the run will be accepting/rejecting with probabil-
ity one.

Lemma 5.15. LetqY be an accepting/rejecting head. The conditional probability
thatw € Run(pX) is accepting/rejecting on the hypothesis that the first recurrent
head hit byw is accepting/rejecting is equal to one.

Proof. The argument is similar as in the proof of Lemma 5.14. Cdde a bottom

strongly connected component &fa. By ergodicity, the conditional probability
that an infinite trajectory id/a hits each state af’ infinitely often on the hypoth-
esis that the trajectory hits is equal to one. H
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A simple consequence of Lemma 5.15 is the following:

Lemma 5.16. (cf. Proposition 4.1.5 of [CY95]) LeiX € H(A). P(pX, Acc)

is equal to the probability that a trajectory fromX in Ma hits a state of the
form (¢Y, f) whereqY is an accepting head (this is equivalent to saying that the
trajectory hits a bottom strongly connected component/af which contains a
state of the forngrZ, 1)).

Theorem 5.17.Let A be a Bichi pPDA. Given a heagX € H(A), ~ €
{<,<,>,>,=}, andp € [0,1], we can decide iP(pX, Acc) ~ o. Further, for
each0 < A < 1 we can compute rationalB’, P* such thatP! < P(pX, Acc) <
P andPt — PL < A,

Proof. Similarly as in Theorem 3.9, we compute a closed formdaof
(R, +, %, <) such thatP(pX, Acc) ~ o iff ® holds. Then, the rationalg’, P*
can be computed by a simple binary search similarly as in Fig. 2.

Due to Lemma 5.16 we know th@(pX, Acc) = P(pX,CUC,), whereCy
is the set of all states ai/a, andC, consists of all states of the fori@Y’, f)
whereqY is an accepting head. This means that there is a system of recursive
equations such th&(p X, Acc) appears in the tuple of values which form the least
solution of the system (we can assume thgi.X, Acc) is, e.g., the first element of
this tuple). Sincéllx is finite, these equations are linear and by using the results
of [HJ94, CY95] we can even assume that there is a unique solution. The only
problem is that numeric coefficients in this system of equations are the probabilities
of transitions inM/A which cannot be precisely computed. This can be overcome as
follows: we construct the mentioned system of linear equations where we replace
each coefficient with a fresh first-order variable debe the tuple of all variables
which correspond to the coefficients. Now we can effectively construct the formula

U = 3Z2:Z=LZ) N Zi~o

whereZ = £(Z) says that the tuple of variablgsis a solution of the constructed
system of linear equations. Note thitis not closed because the variable€of
(which appear in thef = E(Z) subformula) are free. Due to Lemma 5.8, for
each of these coefficients there effectively exists a formul@of-, x, <) which

says that a given coefficient is equal to the probability of the corresponding transi-
tion in Ma (we just “translate” the definition aProb given in Definition 5.11 into

(R, +, %, <), using the formulae provided by Lemma 5.8). et by a conjunc-

tion of all these formulae. The formufais constructed as follows:

d = 3236\1}6 N Zzﬁ(Z) VAN ZlNQ
Obviously,P(pX, Acc) ~ ¢ iff @ holds. n
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We conclude this section by trying to explain why our results cannot be directly
extended to nondeterministidiBhi automata. First of all, notice that we cannot
assign probabilities to the transitions Af3 in a meaningful way, because a tran-
sition pa = ¢B of A should ‘split’ into several transitions @& 3. In the case of
a finite automatord, this problem can be solved by working with the product of
A anddB, wheredB is the result of applying the determinization construction to
B. Let AdB denote this product. In [CY95], a definition of recurrence is provided,
which characterizes the statesb| of .AdB that, loosely speaking, return s, b|
with probability 1 in terms of topological properties of the probabilistic transition
systemAdB. It is then possible to compute the accepting recurrent states.

Unfortunately, this construction does not seem to generalize to the case of push-
down automata. The problem is that thécBi pPDA AdB has infinitely many
states, and so it must be replaced by the chdinyz. However, inMa 45 we can-
not directly ‘observe’ the points at which a run hits an accepting state; we can only
observe the points at which a run hits a minimum. While we can}sgs to com-
pute the recurrent minima, i.e., the heads to which one can return with probability
1 at a minimum, at the moment we do not know how to compute the accepting
recurrent minima, i.e., the recurrent minima that not only return, but also visit an
accepting configuration along the way. More precisely, we know how to decide for
a given heag X if the runs starting at it will almost surely rsbmeheadp X; out
of a setd = {p X1, ...,pnX,} and visit some accepting configuration along the
way. We can also decide sbmeheadp; X; € H(A) will hit pX with probability
one. However, since we do not know whetlet j or not, this information is not
sufficient to decide ipX is an accepting recurrent minimum.

6 Conclusions

We have provided model checking algorithms for pushdown automata against
PCTL specifications, and against linear-time specifications represented as deter-
ministic Buchi automata. Contrary to the case of finite automata, qualitative prop-
erties (i.e., whether a property holds with probability O or 1), depend on the exact
probabilities of the transitions.

There are many possibilities for future work. An obvious question is what is
the complexity of the obtained algorithms. Since the formulae of first order arith-
metic which are constructed in our algorithms have a fixed alternation depth, we
can apply a powerful result of Grigoriev [Gri88] which says that the validity of
such formulae is decidable in single exponential time. From this we can easily
derive the time complexity of some of our algorithms (for example, the qualita-
tive/quantitative random walk problem of Section 3 is decidable in exponential
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time). Since the complexity issues were not the main priority of our work, the
efficiency of our algorithms can be improved even by relatively straightforward
optimizations. Moreover, there is a lot of space for advanced numerical algorithms
which might be used to compute the required probabilities with enough precision.
An obvious question about linear-time specifications is whether our procedure
can be improved to deal with nondeterministiccBi automata. Another possibility
Is to consider LTL specifications and try to generalize the technique of [CY95],
which modifies the probabilistic transition systems step-by-step and at the same
time simplifies the formula, until it becomes a propositional formula.
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