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Abstract

We study the problem of strong/weak bisimilarity between processes
of one-counter automata and finite-state processes. We show that
the problem of weak bisimilarity between processes of one-counter
nets (which are ‘weak’ one-counter automata) and finite-state pro-
cesses is DP-hard (in particular, it means that the problem is both NP
and co-NP hard). The same technique is used to demonstrate co-NP-
hardness of strong bisimilarity between processes of one-counter nets.
Then we design an algorithm which decides weak bisimilarity be-
tween processes of one-counter automata and finite-state processes in
time which is polynomial for most ‘practical’ instances, giving a char-
acterization of all hard instances as a byproduct. Moreover, we show
how to efficiently compute a rather tight bound for the time which is
needed to solve a given instance. Finally, we prove that the problem
of strong bisimilarity between processes of one-counter automata and
finite-state processes is in P.

�Supported by the Grant Agency of the Czech Republic, grants No. 201/98/P046 and
No. 201/00/0400.
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1 Introduction

In concurrency theory, processes are typically understood as (being associ-

ated with) states in transition systems, a fundamental and widely accepted

model of discrete systems. Formally, a transition system is a triple T =

(S;Σ;!) where S is a set of states, Σ is a finite set of actions (or labels), and

!� S � Σ � S is a transition relation. We write s
a
! t instead of (s; a; t) 2!

and we extend this notation to elements of Σ� in the natural way. A state t

is reachable from a state s iff there is w 2 Σ� such that s
w
! t. A system T is

finite-state iff the set of states of T is finite.

The equivalence approach to formal verification of concurrent systems

is based on the following scheme: One describes the specification (the in-

tended behaviour) S and the implementation I of a given system in some

‘higher’ formalism whose semantics is given in terms of transition systems,

and then it is shown that S and I are equivalent. Actually, there are many

ways how to capture the notion of process equivalence (see, e.g., [vG90]).

It seems, however, that bisimulation equivalence [Par81, Mil89] is of special

importance, as its accompanying theory has been developed very inten-

sively. Let T = (S;Σ;!) be a transition system. A binary relation R � S � S

is a bisimulation iff whenever (s; t) 2 R, then for each s
a
! s0 there is some

t
a
! t0 such that (s0; t0) 2 R, and for each t

a
! t0 there is some s

a
! s0 such

that (s0; t0) 2 R. States s; t are bisimulation equivalent (or bisimilar), written

s � t, iff there is a bisimulation relating them. Bisimulations can also be

used to relate states of different transition systems; formally, two systems

can be considered as a single one by taking their disjoint union. An im-

portant variant of bisimilarity is weak bisimilarity introduced by Milner in

his work on CCS [Mil89]. This relation distinguishes between ‘external’

and ‘internal’ computational steps, and allows to ‘ignore’ the internal steps

(which are usually denoted by a distinguished action �) to a certain extent.

Formally, we define the extended transition relation )� S�Σ� S as follows:

s
�
) t iff t is reachable from s via a finite (and possibly empty) sequence of

transitions labelled by � (note that s
�
) s for each s), and s

a
) t where a 6= �
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iff there are states u; v such that s
�
) u

a
! v

�
) t. The relation of weak bisim-

ulation is defined in the same way as bisimulation, but ‘)’ is used instead

of ‘!’. Processes s; t are weakly bisimilar, written s � t, iff there is a weak

bisimulation relating them. To prevent a confusion about bisimilarity and

weak bisimilarity, we refer to bisimilarity as strong bisimilarity in the rest of

this paper.

In this paper we study the complexity of checking strong and weak

bisimilarity between processes of transition systems generated by (certain

subclasses of) pushdown automata and processes of finite-state systems. A

pushdown automaton is a tupleP = (Q;Γ;Σ; �) where Q is a finite set of control

states, Γ is a finite stack alphabet, Σ is a finite input alphabet, and � : (Q�Γ) !

2Σ�(Q�Γ�) is a transition function with finite image. We can assume (w.l.o.g.)

that each transition increases the height (or length) of the stack at most by

one (each PDA can be efficiently transformed to this kind of normal form).

To P we associate the transition system TP where Q�Σ� is the set of states,

Σ is the set of actions, and the transition relation is determined by

(p;A�)
a
! (q; ��) iff (a; (q; �)) 2 �(p;A):

As usual, we write p instead of (p; ) and we use " to denote the empty

word. The size of P is the length of a string which is obtained by writing

all elements of the tuple linearly in binary. The size of a process p� of is

the length of its corresponding binary encoding. Pushdown processes (i.e.,

processes of pushdown automata) have their origin in theory of formal lan-

guages [HU79], but recently (i.e., in the last decade) they have been found

appropriate also in the context of concurrency theory because they provide

a natural and important model of sequential systems. In this paper we

mainly concentrate on a subclass of pushdown automata where the stack

behaves like a counter. Such a restriction is reasonable because in practice

we often meet systems which can be abstracted to finite-state programs

operating on a single unbounded variable. For example, network proto-

cols can maintain the count on how many unacknowledged messages have

been sent, printer spool should know how many processes are waiting in
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the input queue, etc. Formally, a one-counter automaton A is a pushdown

automaton with just two stack symbols I and Z; the transition function � of

A is a union of functions �Z and �I where �Z : (Q � fZg) ! 2Σ�(Q�(fIg�fZg))

and �I : (Q � fIg) ! 2Σ�(Q�fIg�). Hence, Z works like a bottom symbol

(which cannot be removed), and the number of I’s which are stored in the

stack represents the counter value. Processes of A (i.e., states of TA) are of

the form pIiZ. In the rest of this paper we adopt a more intuitive notation,

writing p(i) instead of pIiZ. It is worth to note that the size of p(i) is O(i)

and not O(log i), because p(i) is just a symbolic abbreviation for p�Z where

� is a string of i symbols I. Again, we assume (w.l.o.g) that each transi-

tion increases the counter at most by one. A proper subclass of one-counter

automata of its own interest are one-counter nets. Intuitively, OC-nets are

‘weak’ OC-automata which cannot test for zero explicitly. They are com-

putationally equivalent to a subclass of Petri nets [Rei85] with (at most)

one unbounded place. Formally, a one-counter net N is a one-counter au-

tomaton such that whenever (a; qIiZ) 2 �Z(p;Z), then (a; qIi+1) 2 �Z(p; I). In

other words, each transition which is enabled at zero-level is also enabled at

(each) non-zero-level. Hence, there are no ‘zero-specific’ transitions which

could be used to ‘test for zero’.

As a simple example, we might take A = (fpg; fI;Zg; fag; �), where

�(pZ) = f(b; pZ)g; �(pI) = f(a; pII); (a; p")g

Note that A is not a one-counter net; however, A becomes a OC-net as soon

as we delete the (only) b-transition. The associated infinite-state transition

system TA looks as follows:

a a a a

a a a a

b

p(0) p(1) p(2) p(3)

Observe that the out-going transitions of a OC process q(i) where i > 0 do

not depend on the actual value of i. Hence, the structure of transition sys-

tems which are associated with OC-automata (and, in particular, with OC-
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nets) is rather regular—they consist of a ‘zero pattern’ and a ‘non-zero pat-

tern’ which is repeated infinitely often. Despite this regularity, some prob-

lems for OC-automata (and even for OC-nets) are computationally hard, as

we shall see in the next section.

Now we give a short summary of relevant results for PDA and OC

automata. The decidability of strong bisimilarity for processes of state-

less PDA (which are also known as BPA processes) is due to [CHS95].

Another (incomparable) positive result is [Jan97] where it is shown that

strong bisimilarity is decidable for processes of OC-automata. These re-

sults have been recently extended to general PDA in [Sén98]. The problem

of weak bisimilarity is still open for all of the mentioned (sub)classes. The

decidability of strong/weak bisimilarity between processes of a (general)

class C and finite-state ones has been studied in [JKM98]. It is shown that

the problem can be reduced to the model-checking problem for a tempo-

ral logic EF and processes of C. Since EF is decidable for PDA processes,

it suffices for showing the decidability, but the obtained algorithm is not

very efficient—we only obtain EXPTIME upper-bound in this way for both

strong and weak bisimilarity. Recently, PSPACE lower-bound for the prob-

lem of strong (and hence also weak) bisimilarity between PDA and FS pro-

cesses has been given in [May99]. A somewhat surprising result is [KM99]

which says that strong and weak bisimilarity between BPA processes and

finite-state ones is in P. OC-nets are studied, e.g., in [AČ98, JMS99] where it

is shown that simulation equivalence (which is coarser than strong bisimi-

larity) is decidable for processes of OC-nets, and in [JKM00] where a close

relationship between simulation problems for OC-nets and the correspond-

ing bisimulation problems for OC-automata is established.

In this paper we concentrate on the complexity of checking strong and

weak bisimilarity between processes of OC-automata and FS processes.

Our motivation is that the specification or the implementation of a system

which is to be verified (see above) can often be specified as a finite-state

process. Moreover, a number of ‘classical’ verification problems (e.g., live-

ness, safety) can be easily reduced to the problem of weak bisimilarity with
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a finite-state system. For example, if we want to check that the action a is

live for a process g (i.e., each state which is reachable from g can reach a

state which can emit a), we can rename all actions of g except a to � and

then check weak bisimilarity between g and f where f is a one-state process

with the only transition f
a
! f .

In Section 2, it is shown that the problem of weak bisimilarity between

processes of OC-nets and FS processes is DP-hard, even for a fixed finite-

state process (intuitively, the class DP [Pap94] is expected to be somewhat

larger than the union of NP and co-NP; however, it is still contained in

the ∆2 = PNP level of the polynomial hierarchy). Here we have to devise

a special technique for encoding, guessing, and checking assignments of

Boolean variables in the structure of OC-nets. As transition systems which

are associated with OC-nets are rather regular, the method is not straight-

forward (observe that assignments are easy to handle with a stack; it is not

so easy if there is only (one) counter at our disposal). Using the same tech-

nique we also show that strong bisimilarity between processes of OC-nets

is co-NP-hard (strong bisimilarity between processes of OC-automata and

finite-state processes is already polynomial—see below). Assuming the ex-

pected relationship among complexity classes, the DP-hardness result for

weak bisimilarity actually says that any deterministic algorithm which de-

cides the problem requires exponential time in the worst case. Rather than

trying to establish DP-completeness, we turn our attention to a more ‘prac-

tical’ direction—in Section 3 we design an algorithm which decides weak

bisimilarity between a process p(i) of a OC-automaton A and a process f of

a finite-state system F in time O(n3 m5 z3 (i + 1)) where n is the size of A, m

is the size of F, and z is a special constant which depends on A. So, if there

was no z, or if z was always ‘small’, the problem would be in P. However,

z can be much (exponentially) larger than n in general. However, it follows

from the way how z is defined that the automaton must be very perverse to

make its associated z large (a good example is the automaton constructed

in the DP-hardness proof of Section 2). Hence, we conclude that our algo-

rithm is actually efficient for many (if not all) practical instances, giving a
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sort of ‘characterization’ of all hard instances as a byproduct. Another ad-

vantage of our algorithm is that we can efficiently estimate the time which

is needed to solve a given instance—although the computation of z for a

given automatonAmay take exponential time in general, we can efficiently

(i.e., in polynomial time) compute a quite reliable bound for z. All hard in-

stances are efficiently recognized in this way; it can also happen that some

‘easy’ instance is incorrectly declared as hard, but we argue that such situ-

ations are quite rare. The algorithm also works for strong bisimilarity, but

in this case it only needs polynomial time—we obtain (as a simple conse-

quence) that the problem of strong bisimilarity between OC processes and

finite-state ones is in P.

In the next sections we use N and N0 to denote the sets of positive and

non-negative integers, respectively.

2 Lower Bounds

In this section we show that the problem of weak bisimilarity between pro-

cesses of OC-nets and finite-state processes is DP-hard (even for a fixed

finite-state process), and that the problem of strong bisimilarity between

processes of OC-nets is co-NP-hard.

C

a b

ba

τ

ba

1a

a2

C1

2

A

A

τ

P

P

P

τ

D

c

c

τ

Figure 1: The finite-state system F used the proof of Theorem 2.1

Theorem 2.1. The problem of weak bisimilarity between processes of one-counter

nets and finite-state processes is DP-hard.
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Proof. For purposes of this proof, we first fix the finite-state system F of

Figure 1. We show DP-hardness by reduction of the DP-complete problem

SAT-UNSAT. An instance of the SAT-UNSAT problem is a pair ('1; '2) of

Boolean formulae in CNF. The question is whether '1 is satisfiable and '2

unsatisfiable. First, we describe a polynomial algorithm which for a given

formula ' in CNF constructs a one-counter netN' and its process s'(0) such

that ' is satisfiable iff s'(0) � P1, and ' is unsatisfiable iff s'(0) � P2, where

P1;P2 are the (fixed) FS processes of the system F. It clearly suffices for our

purposes, because then we can also construct a one-counter netN by taking

the disjoint union of N'1 , N'2 and adding a new control state s together

with transitions sZ
a1
! s'1Z; sI

a1
! s'1I and sZ

a2
! s'2Z; sI

a2
! s'2 I (the non-zero

transitions are added just to fulfil the constraints of the definition of OC

nets). Clearly ('1; '2) is a positive instance of the SAT-UNSAT problem iff

s(0) � P where P is the fixed FS process of the system F (see Figure 1).

In our proof we use the following theorem of number theory (see, e.g.,

[BS96]): Let �i be the ith prime number, and let f : N ! N be a function

which assigns to each n the sum
Pn

i=1 �i. Then f is O(n3). (In our case, it

suffices to know that the sum is asymptotically bounded by a polynomial

in n.) With the help of this fact we can readily confirm that the below de-

scribed construction is indeed polynomial.

Let ' � C1 ^ � � � ^ Cm be a formula in CNF where Ci are clauses over

propositional variables x1; � � � ; xn. We assume (w.l.o.g.) that for every as-

signment � : fx1; � � � ; xng ! ftrue;falseg there is at least one clause Ci such

that �(Ci) = true (this can be achieved, e.g., by adding the clause (x1 _:x1)

to '). Furthermore, we also assume that ' is not a tautology, i.e., there is at

least one assignment � such that �(') = false (it actually means that there

is a clause where no variable appears both positively and negatively). The

construction of N' = (Q; fI;Zg; fa; b; c; �g; �) will be described in a stepwise

manner. The sets Q and � are initially empty. For each clause Ci, 1 � i � m,

we do the following:
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• We add new control states ci and qi to Q. Moreover, for each variable

xj and each k such that 0 � k < �j we add to Q a control state hCi; xj; ki

(observe that for each Ci we add O(n4) states in this way).

• We add to � the transition qiI
c
! qiI.

• For each 1 � j � n we add to � the transitions ciI
�
! hCi;Xj; 0iI and

ciI
�
! qI.

• For all j; k such that 1 � j � n and 0 � k < �j we add to � the transition

hCi; xj; kiI
�
! hCi; xj; (k + 1) mod �ji".

• For all j; k such that 1 � j � n and 0 � k < �j we add to � the ‘loop’

hCi; xj; kiI
c
! hCi; xj; kiI.

• If a variable xj does not appear positively in a clause Ci, then we add

to � the loop hCi; xj; 0iZ
c
! hCi; xj; 0iZ.

• If a variable xj does not appear negatively in a clause Ci, then we add

to � the loops hCi; xj; kiZ
c
! hCi; xj; kiZ for every 1 � k < �j.

If we draw the transition system which is generated by the current approx-

imation of N', we obtain a collection of Gi graphs, 1 � i � m; each Gi corre-

sponds to the ‘subgraph’ of TN' which is obtained by restricting Q to the set

of control states which have been added for the clause Ci. The structure of

Gi is shown in Figure 2. (To understand this picture, observe that transition

systems associated to OC-automata can be viewed as two-dimensional ‘ta-

bles’ where column-indexes are control states and row-indexes are counter

values (0; 1; 2; : : : ). As the out-going transitions of a state q(i) where i > 0 do

not depend on the actual value of i, it suffices to depict the out-going tran-

sitions at zero and (some) non-zero level.) Now we give several important

facts about Gi (each fact easily follows from the previous ones):

• For each l > 0 we have that ci(l)
�
) hCi; xj; ki(0) iff l mod �j = k.

• For each l > 0, the state ci(l) ‘encodes’ the (unique) assignment �l

defined by �l(xj) = true iff ci(l)
�
) hCi; xj; 0i(0); conversely, for each

9
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τ

τ

τ

Figure 2: The structure of Gi

assignment � there is l 2 N such that � = �l (for example, we can put

l = Πn
j=0

f (j), where f (j) = �j if �(xj) = true, and f (j) = 1 otherwise).

• For each l > 0 we have the following:

– �l(Ci) = false iff ci(l) � C for the state C of the system F. Indeed,

if �l(Ci) = false, then ci(l) cannot reach any of the ‘zero-states’

where the action c is disabled—it can only emit c’s (possibly with

some intermediate � ’s) without a possibility to terminate.

– �l(Ci) = true (i.e., the clause Ci is true for �l) iff ci(l) � C for the

state C of the system F. This also explains the role of the control

state qi — we need it to make sure that the transition C
�
! D can

always be matched.

We finish the construction of N' by connecting the Gi components together.

To do that, we add two new control states s' and r to Q, and enrich � by

adding the transitions s'Z
�
! s'IZ, s'I

�
! s'I I, s'I

�
! rI, and rI

b
! ciI for every

1 � i � m. The structure of TN' is shown in Figure 3. Now we can observe

the following:

• For each l > 0 we have that
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Figure 3: The structure of TN'

– �l(') = true iff r(l) � A for the state A of the system F. To see

this, realize that �l(') = true iff �l(Ci) = true for each 1 � i � m

iff ci(l) � C for each 1 � i � m due to the previous observations.

– �l(') = false iff r(l) � A for the state A of the system F. A proof

is similar to the previous case; here we also need the assumption

that at least one clause of ' is true for �l (so that we can be sure

that the transition A
b
! C can be matched by r(l)).

• ' is unsatisfiable iff s'(0) � P2 for the state P2 of F. Indeed, s'(0) can

perform its a
) move only by going to some (arbitrary) r(l). If ' is un-

satisfiable, then �l(') = false for each such r(l), hence all a
) succes-

sors of s'(0) are weakly bisimilar to A (see above), hence s'(0) � P2.

If ' is satisfiable, then there is a move s'(0)
a
) r(l) for some l such that

�l(') = true, hence r(l) � A and r(l) 6� A. Therefore, P2 cannot match

the s'(0)
a
) r(l) move and thus s'(0) 6� P2.

• ' is satisfiable iff s'(0) � P1 for the state P1 of F. It is checked in

the same way as above. Here we use the assumption that ' is not a
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tautology, i.e., s'(0) can always choose an assignment which makes '

false (i.e., s'(0) can always match the transition P1
a
! A).

The main reason why we could not extend the hardness result to some

higher complexity class (e.g., PSPACE) is that there is no apparent way

how to implement a ‘stepwise-guessing’ of Boolean variables which would

allow to encode, e.g., the QBF problem; each such attempt resulted in an

exponential blow-up in the number of control states. However, we can still

re-use our technique to prove the following:

Theorem 2.2. The problem of strong bisimilarity between processes of one-counter

nets is co-NP-hard.

Proof. We use a similar construction as in the proof of Theorem 2.1. Given

a formula ' in CNF, we construct two one-counter nets N ;N and their pro-

cesses s(0); s(0) such that ' is unsatisfiable iff s(0) � s(0). The net N is just

a slight modification of the net N' of Theorem 2.1 — we only rename all �-

labels to c. A key observation is that ' is unsatisfiable iff after each sequence

of transitions of the form c�a (i.e., after each choice of an assignment) there

is a b-transition to a state which can only emit an infinite sequence of c ac-

tions without a possibility to terminate (i.e., at least one clause is false for

any assignment). The net N is a ‘copy’ of N but we also add a new control

state q and transitions qI
c
! qI, rI

b
! qI where r is a ‘twin’ of the state r of N'.

We put s and s to be the corresponding twins of the state s' of N'. Now we

can easily check that ' is unsatisfiable iff s(0) � s(0) — the crucial argument

is stated above.

3 Efficient Algorithms

In this section we design an algorithm which decides weak bisimilarity be-

tween processes of OC-automata and finite-state processes. As expected,

the algorithm requires exponential time in the worst case. However, it

works rather efficiently for many (and we believe that almost all) ‘prac-
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tical’ instances. It also works for strong bisimilarity where it needs only

polynomial time.

Let T = (S;Σ;!) be a transition system. For each i 2 N0 we define the

relation �i inductively as follows: �0 = S � S; and s �i+1 t iff s �i t and for

each s
a
) s0 there is some t

a
) t0 such that s0 �i t0, and vice versa. (The �i

relations are also used to relate states of different transition systems; for-

mally, we consider two transition systems to be a single one by taking their

disjoint union.) Our algorithm relies on the following theorem established

in [JKM98]:

Theorem 3.1. Let G = (G;Σ;!) be a (general) transition system and F = (F;Σ,

!) a finite-state system. We say that a state g 2 G is good w.r.t. i 2 N0 iff there is

f 2 F such that g �i f ; g is bad w.r.t. i iff g is not good w.r.t. i.

Let g 2 G, f 2 F, and k = jFj. It holds that g � f iff g �k f and each state which

is reachable from g is good w.r.t. k.

For the rest of this section we fix a one-counter automatonA = (Q; fI;Zg;Σ; �)

of size n, and a finite-state system F = (F;Σ;!) of size m.

To decide weak bisimilarity between processes p(i) of A and f of F, it

suffices (by Theorem 3.1) to find out if p(i) �m f and whether p(i) can reach

a state which is bad w.r.t. m. We do that by constructing a constant z such

that for each state q(j) of TA where j � (4m+1)z we have that q(j) �m q(j�z).

In other words, each state of TA is (up to �m) represented by another (and

effectively constructible) state whose counter value is bounded by (4m+1)z.

Then we convert this ‘initial part’ of TA to a finite-state system FA and con-

struct the �m relation between states of FA and F. The question if p(i) �m f

is then easy to answer (we look if the representant of p(i) within FA is re-

lated with f by �m). The question if p(i) can reach a state which is bad w.r.t.

m still requires some development—we observe that states which are bad

w.r.t. m are ‘regularly distributed’ in TA and construct a description of that

distribution (which is ‘read’ from FA) in a form of a finite-state automaton

M which recognizes all bad states. Then we use an algorithm of [ER97]

which constructs from M an automaton M0 recognizing the set of all states
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which can reach a state recognized by M, and look whether M0 accepts

p(i). All procedures we use are polynomial in the size of FA. Hence, it is

only the size of z which can make the problem computationally hard. The

construction of z can require exponential time; however, we give an algo-

rithm which efficiently (i.e., in polynomial time) computes a reliable upper

bound Z for z.

Intuitively, the only difference between processes p(i); p(j), where i 6= j,

is the way how they can access the ‘zero level’. As long as the counter

remains positive, each process can ‘mimic’ moves of the other process by

entering the same control state and performing the same operation on the

counter. Observe that the counter can be generally decremented by an

unbounded value in a single a
) step (due to an unbounded number of

�-transitions). The next definitions and lemmata reveal a crucial period-

icity in the structure of TA which shows that decrementing the counter ‘too

much’ in one a
) step is not the thing which allows to demonstrate a possible

difference between p(i); p(j).

For each l 2 N0 we define a family of binary relations a
)l, a 2 Σ, over the

set of states of TA as follows: p(i)
a
)l q(j) iff there is a sequence of transitions

from p(i) to q(j) which forms one ‘ a
)’ move and the counter value remains

greater or equal l in all states which appear in the sequence (including p(i)

and q(j)).

Definition 3.2. We define a function stepA : Q ! 2Q by stepA(p) = fq 2

Q j p(2)
�
)1 q(1)g.

Since the reachability problem for one-counter automata (and even for push-

down automata) is in P, the function stepA is effectively constructible in

polynomial time. As the out-going transitions of a state p(i) for i > 0 do not

depend on the actual value of i, for each i 2 N we have that q 2 stepA(p) iff

p(i + 1)
�
)i q(i).

We extend stepA to subsets of Q by stepA(M) =
S

p2M stepA(p). For

each p 2 Q we now define the sequence Cp inductively as follows: Cp(1) =
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fpg and Cp(i + 1) = stepA(Cp(i)). The next lemma is easy to prove by a

straightforward induction on i.

Lemma 3.3. For all p 2 Q and i; j 2 N we have that q 2 Cp(j) iff p(i + j)
�
)i q(i).

Another simple observation is that the sequence Cp is (for every p 2 Q) of

the form Cp = �p�!p where �p; �p are finite sequences of pairwise different

subsets of Q (due to the assumption that the elements of �p and �p are pair-

wise different we also have that �p and �p are unique). Note that �p can also

consist of just one element ;. We define the prefix and period of p, denoted

pre(p) and per (p), to be the length of �p and �p, respectively. Now we put

z = maxfpre(p) j p 2 Qg � lcmfper(p) j p 2 Qg

where lcm(M) denotes the least common multiply of elements of M. As we

shall see, maxfpre(p) j p 2 Qg is always O(n2). However, lcmfper(p) j p 2 Qg

can be exponential in n (for example, examine the net N' constructed in the

proof of Theorem 2.1). As we already mentioned, the size of z is the only

thing which can make the considered problem hard. Hence, we obtain a

kind of ‘characterization’ of all hard instances—OC-automata which are

presented in hard instances must contain many ‘decreasing �-cycles’ of an

incomparable length. Also observe that the construction of z can require

exponential time, because per(p) for a given p can be exponential in n (in

the end of this section we show how to compute a reasonable upper bound

Z for z efficiently). The following lemma is immediate:

Lemma 3.4. For all p 2 Q and i � z we have that Cp(i) = Cp(i + z).

The next three lemmata provide a crucial observation about the structure

of TA and precisely formulate the intuition that ‘decreasing the counter too

much in one a
) step does not help’.

Lemma 3.5. For all p 2 Q and j 2 N it holds that

• if there is a sequence of �-transitions from p(j + 2z) to (some) q(l) which

decreases the counter to j at some point, then p(j + z)
�
) q(l);

15



• if there is a sequence of �-transitions from p(j + z) to (some) q(l) which

decreases the counter to j at some point, then p(j + 2z)
�
) q(l);

Proof. We show only the first part (the other one is similar). As there is a

sequence of �-transitions from p(j + 2z) to q(l) which decreases the counter

to j, there must be an intermediate state r(j) such that p(j+2z)
�
)j r(j)

�
) q(l).

As p(j + 2z)
�
)j r(j), we obtain that r 2 Cp(2z) due to Lemma 3.3, hence

also r 2 Cp(z) by Lemma 3.4. From this we have (again by Lemma 3.3) that

p(j + z)
�
)j r(j), hence p(j + z)

�
) q(l) as required.

Lemma 3.6. For all p 2 Q and j 2 N it holds that

• if there is a sequence of transitions forming one ‘ a
)’ move from p(j + 4z) to

(some) q(l) which decreases the counter to j at some point, then p(j + 3z)
a
)

q(l);

• if there is a sequence of transitions forming one ‘ a
)’ move from p(j + 3z) to

(some) q(l) which decreases the counter to j at some point, then p(j + 4z)
a
)

q(l);

Proof. Again, we only show the first part. The case when a = � has been

handled in Lemma 3.5. If a 6= � , we can distinguish two cases:

• The counter is decreased to j + 2z at some point in the considered

sequence of transitions before emitting the action a. Then there is a

state r(j + 2z) such that p(j + 4z)
�
) r(j + 2z)

a
) q(l). Now we can apply

Lemma 3.5 and conclude that p(j + 3z)
�
) r(j + 2z) which suffices.

• The action a is emitted before decreasing the counter to j + 2z. Then

there is a state r(j + 2z) such that p(j + 4z)
a
)j+2z and r(j + 2z) can

enter the state q(l) in a sequence of �-transitions which decreases the

counter to j. Hence, by Lemma 3.5 we know that r(j + z)
�
) q(l). Now

it suffices to realize that since p(j + 4z)
a
)j+2z r(j + 2z), we also have

p(j + 3z)
a
)j+z r(j + z). To sum up, p(j + 3z)

a
)j+z r(j + z)

�
) q(l) and we

are done.
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Lemma 3.7. Let p 2 Q and k 2 N0. For each c > (4k + 1)z we have that p(c) �k

p(c� z).

Proof. By induction on k. The base case (k = 0) is immediate. Now let

c > (4(k + 1) + 1)z. We prove that for each ‘ a
)’ move of p(c) there is a ‘ a

)’

move of p(c � z) such that the resulting pair of states is related by �k, and

vice versa. Let p(c)
a
) q(l). We distinguish two cases:

• p(c)
a
)c�4z+1 q(l). It means that l � c � 4z + 1, hence l > 4(k + 1)z.

Furthermore, we have p(c � z)
a
)c�5z+1 q(l � z) (this move is possible

because c > 5z). Now q(l) �k q(l� z) by induction hypotheses.

• The counter is decreased to c� 4z by the considered sequence of tran-

sitions. Then p(c� z)
a
) q(l) by Lemma 3.6. Clearly q(l) �k q(l).

The other direction is shown in a similar way.

Now we are almost in a position to prove the first main theorem of this

section. It remains to extend our equipment with the following tool:

Definition 3.8. Let P = (Q;Γ;Σ; �) be a pushdown automaton, M = (S;Γ; ; F)

a nondeterministic finite-state automaton (note that the input alphabet of M is the

stack alphabet of P), and Init : Q ! S a total function. A process p� of P is

recognized by the pair (M; Init) iff ̂(Init(p); �) \ F 6= ; where ̂ is the natural

extension of  to elements of S� Γ�.

The next theorem is taken from [ER97].

Theorem 3.9. Let P = (Q;Γ;Σ; �) be a pushdown automaton, M = (S;Γ; ; F) a

finite-state automaton, and Init : Q ! S a total function. Let N be the set of pro-

cesses recognized by (M; Init). Then one can effectively construct an automaton

M0 = (S;Γ; 0; F) in time O(j�j � jSj3) such that (M0; Init) recognizes the set

Pre�(N) = fq� j q� !� p� for some p� 2 Ng

of all predecessors of N.
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Theorem 3.10. The problem of weak bisimilarity between processes p(i) of A and

f of F is decidable in O(n3 m5 z3 (i + 1)) time.1

Proof. By Theorem 3.1, we need to find out whether p(i) �m f and whether

p(i) can reach a state which is bad w.r.t. m. Due to Lemma 3.7 we know that

the set of all states of TA up to �m can be represented by the subset of states

of TA where the counter value is at most (4m+1)z. Formally, we first define

the function B : (Q � N0) ! (Q � N0) as follows (where hq; ji is just another

notation for q(j)):

B(hq; ji) =

8><
>:

hq; ji if j � (4m + 1)z;

hq; (4m + 1)zi if j > (4m + 1)z and (j mod z) = 0;

hq; 4mz + (j mod z)i if j > (4m + 1)z and (j mod z) 6= 0:

An immediate consequence of Lemma 3.7 is that for all q 2 Q and j 2 N0 we

have q(j) �m B(q(j)). Now we define a finite-state system FA = (FA;Σ; ,!)

where FA is the image of B (i.e., FA = fq(j) j q 2 Q; 0 � j � (4m + 1)zg), Σ is

the set of actions of A, and ,! is the least relation satisfying the following:

if r(k)
a
! s(l) is a transition of TA, then B(r(k))

a
,! B(s(l)). Observe that FA

is actually the ‘initial part’ of TA; the only difference is that all up-going

transitions of states at level (4m + 1)z are ‘bent’ down to the corresponding

�m-equivalent states at level 4mz + 1. Note that for each q(j) we still have

that q(j) �m B(q(j)) (when B(q(j)) is seen as a state of FA). The number of

states of FA is O(n m z); moreover, the number of out-going transitions at

each ‘level’ of TA is O(n), hence the size of ,! is O(n m z), which means that

the total size of FA is also O(n m z).

Now, let us realize that if we have a finite-state system of size t, it takes

O(t3) time to compute the associated ‘ a
)’ relation (for each state s and action

a we need O(t) time to compute the set fr j s
a
) rg). Therefore, we need

O(n3 m3 z3) time to construct the extended transition relations for FA and

F. To compute the �m relation between the states of FA and F, we define

R0 = FA � F, and Ri+1 = Exp(Ri) where the function Exp : (FA � F) !

1Note that we need a non-constant time even in the particular case when i = 0 (the
problem is still DP-hard). That is why we write ‘i + 1’.

18



(FA � F) refines its argument according to the definition of �i — a pair

(r(j); g) belongs to Exp(R) iff it belongs to R and for each ‘ a
)’ move of one

component there is a corresponding ‘ a
)’ move of the other component such

that the resulting pair of states belongs to R. Clearly, for each pair (r(j); g)

of FA � F we have that r(j) �m g iff (r(j); g) 2 Rm. It remains to clarify the

time costs. The function Exp is computed m times. Each time, O(n m2 z)

pairs are examined. For each such pair we have to check the membership

to Exp(R). This takes only O(n m2 z) time, because the extended transition

relations have already been computed. To sum up, we need O(n3 m5 z3)

time in total.

To check if p(i) �m f , we simply look if (B(p(i); f )) 2 Rm. It remains to

find out whether p(i) can reach a state q(j) which is bad w.r.t. m. Observe

that q(j) is bad w.r.t. m iff the state B(q(j)) of FA is bad w.r.t. m. Therefore,

we can easily construct a finite-state automatonM and a function Init such

that the pair (M; Init) recognizes the set of all bad states of TA — we put

M = (S; fI;Zg; ; ffing) where S = ffing [ fp(i) j p 2 Q; 0 � i � (4m + 1)zg and

 is the least transition function satisfying the following:

• p(i + 1) 2 (p(i); I) for all p 2 Q, 0 � i < (4m + 1)z;

• p(4mz + 1) 2 (p((4m + 1)z); I) for each p 2 Q;

• if a state p(i) of FA is bad, then fin 2 (p(i);Z).

The function Init is defined by Init(p) = p(0) for all p 2 Q. Note that M

has O(n m z) states. Now we compute the automaton M0 of Theorem 3.9

(it takes O(n2 m z) time) and check if (M0; Init) recognizes p(i). This can be

done in O(n m z (i + 1)) time because M0 has the same set of states as M.

We see that O(n3 m5 z3 (i + 1)) time suffices for all of the aforementioned

procedures.

Our algorithm also works for strong bisimilarity in the following way: If

we are to decide strong bisimilarity between p(i) and f , we first rename

all �-transitions of A and F with some (fresh) action e (it does not change
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anything from the point of view of strong bisimilarity, because here the �-

transitions are treated as ‘ordinary’ ones). As there are no �-transitions any-

more, there is no difference between strong and weak bisimilarity, hence we

can use the designed algorithm. Also observe that if there are no � ’s then

z = 1, so we can conclude:

Corollary 3.11. The problem of strong bisimilarity between processes p(i) of A

and f of F is in P.

As we already mentioned, the construction of z can take exponential time.

Now we show how to compute a rather tight upper bound Z for z in poly-

nomial time.

Lemma 3.12. Let p 2 Q. Let �; � be finite sequences of subsets of Q such that

Cp = ��!. Then pre(p) � length(�) and per(p) divides length(�).

Proof. Let �p; �p be the unique sequences such that pre(p) = length(�p),

per(p) = length(�p), and Cp = �p�!p . First we show that length(�p) divides

length(�). Suppose the converse. Let � be the first length(�p) � length(�p) �

length(�) � length(�) elements of Cp. We (immediately) have that Cp = ��!p =

��!, hence �!p = �!. Let S be the first element of �p (and �). As the elements

of �p are by definition pairwise different, it holds that the ith element of

�!p = �! is S iff (i mod length(�p)) = 1. Now let i = length(�) + 1. As

the first element of � is S, the ith element of �! = �!p is also S. However,

(i mod length(�p)) 6= 1 because length(�p) does not divide length(�) and we

have a contradiction.

As �!p = �! and length(�p) divides length(�), we can also conclude that

� = �
j
p where j = length(�)=length(�p). Hence, Cp = ��! = ��!p = �p�!p .

Therefore length(�p) � length(�) because �p is clearly the minimal sequence

 with the property Cp = �!p .

Definition 3.13. In our next proofs we often need to study properties of the se-

quence Cp in detail. To do that, for each p 2 Q we define the tree Tp as follows:

• the root of Tp is (labelled by) p;
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• each node g of Tp labelled by (some) q has jstepA(q)j successors which are

labelled (in one-to-one fashion) by elements of stepA(q).

For each node g of Tp we define its Distance, denoted Dist(g), to be the distance

of g from the root of Tp plus 1. Moreover, for each i 2 N we define the set Nodesi
p

of all nodes with the same Distance i. Observe that for each i 2 N we have that

Cp(i) =
S

g2Nodes i
p

label(g).

Lemma 3.14. Let p 2 Q be a self-embedding control state. Then pre(p) � jQj2

and per(p) � jQj. Moreover, pre(p) and per(p) can be computed in O(jQj4) (and

hence also O(n4)) time.

Proof. As p is self-embedding, there is a node g of Tp with minimal Distance

i such that i > 2 and label(g) = p. First we prove that i � jQj. Suppose

the converse, i.e., i > jQj. Then the path from the root of Tp to g passes

through two different nodes g1; g2 such that Dist(g1) < Dist(g2) � jQj and

label(g1) = label(g2) = q for some q 2 Q. As g is a descendant of g2, we have

that p 2 Cq(j + 1) where j = Dist(g) � Dist(g2). Hence, we also have that

p 2 Cp(Dist(g1) + j). As Dist(g1) + j < Dist(g), we obtain a contradiction—

and therefore we can conclude that i cannot be greater then jQj.

Now realize that if there are (some) j; k 2 N such that Cp(j) � Cp(k),

then also Cp(j0) � Cp(j0 + (k � j)) for any j0 � j. If follows easily from the

definition of Cp. For the same reason we have that if Cp(j) = Cp(k), then

Cp(j0) = Cp(j0 + (k � j)) for any j0 � j. As fpg = Cp(1) � Cp(i), we see (due to

the previous observation) that

Cp(1) � Cp(i) � Cp(2i� 1) � Cp(3i� 2) � � � � � Cp(jQji� jQj+ 1):

As the length of this increasing sequence is jQj + 1, the last two elements

(i.e., the elements Cp((jQj�1)i�jQj+2) and Cp(jQji�jQj+1)) must be equal.

Hence, if we define � to be the first (jQj � 1)i� jQj+ 1 elements of Cp, and �

the next i�1 elements of Cp, we obtain that Cp = ��!. As i is bounded by jQj,

we have that length(�) is bounded by jQj2 and length(�) is bounded by jQj.

Those bounds are also valid for pre(p) and per(p) by Lemma 3.12. Hence,
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per(p) and pre(p) can be computed simply by constructing the first jQj2+jQj

elements of Cp, which can be (comfortably) done in time O(jQj4).

Theorem 3.15. Let us define

Z = (jQj2 + jQj) � lcmfper(p) j p 2 Q is self-embedding g

Then Z can be computed in time which is polynomial in n. Moreover, z � Z.

Proof. The fact that Z can be computed in polynomial time is obvious—

the only potential problem might be the computation of lcmfper(p) j p 2

Q is self-embedding g; however, by Lemma 3.14 we know that we actu-

ally compute the least common multiply of O(n) numbers whose size is

O(n), and it can be comfortably done in time which is polynomial in n.

Now we prove that z � Z. To do that, it suffices to show that for each

p 2 Q we have that pre(p) � jQj2 + jQj and per(p) divides lcmfper(p) j p 2

Q is self-embedding g. If p is self-embedding, both things are obvious. Now

let p 2 Q be a non-self-embedding control state. To demonstrate that pre(p)

and per(p) satisfy the above mentioned conditions, the structure of the tree

Tp must be examined in a greater detail. A simple observation is that (the

label of) each node whose Distance is jQj+ 1 is either self-embedding or it

is a descendant of a self-embedding node; hence, for each g 2 NodesjQj+1
p

we can define its self-embedding ancestor, denoted E(g), to be the label of the

(unique) node with minimal Distance lying on the path from the root to g

whose label is a self-embedding control state. For each j � jQj+ 1 it holds

that

Cp(j) =
[

g2Nodes
jQj+1
p

CE(g)(j�Dist(E(g)) + 1)

We define � to be the first jQj2 + jQj elements of Cp, and � the next

lcmfper(E(g)) j g 2 Nodes jQj+1
p g

elements of Cp; as pre(r) � jQj2 for each self-embedding control state r (due

to Lemma 3.14), we see that Cp = ��!. Now we can apply Lemma 3.12 to
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conclude that pre(p) � length(�) = jQj2 + jQj and per(p) divides length(�)

which divides lcmfper(q) j q 2 Q is self-embedding g.
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