
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

A Logical Viewpoint on Process-Algebraic
Quotients

by

Antonín Kučera
Javier Esparza

FI MU Report Series FIMU-RS-2000-01

Copyright c© 2000, FI MU January 2000

A Logical Viewpoint on Process-Algebraic
Quotients

Antonı́n Kučera�
Faculty of Informatics
Masaryk University

Botanická 68a, 60200 Brno
Czech Republic
tony@fi.muni.cz

Javier Esparzay
Institut for Informatics

Technical University Munich
Arcisstr. 21, D-80290 Munich

Germany
esparza@in.tum.de

Abstract

We study the following problem: Given a transition system T and
its quotient T=� under an equivalence �, which are the sets L, L0 of
Hennessy-Milner formulae such that: if ' 2 L and T satisfies ', then
T=� satisfies '; if ' 2 L0 and T=� satisfies ', then T satisfies '.

Keywords: Verification, modal logics, transition systems, process equiva-
lences.

1 Introduction

In the equivalence approach to formal verification, the specification and the
implementation of a system are typically formalized as transition systems
S and I, and the informal statement ‘the implementation satisfies the speci-
fication’ is formalized as ‘S is equivalent to I’. In the modal logic approach,
the specification is a modal formula ', and the statement is formalized as
‘I is a model of '’.

In a seminal paper [7], Hennessy and Milner proved that bisimulation
equivalence admits a modal characterization: Two (finitely branching) pro-
cesses are bisimilar if and only if they satisfy exactly the same formulae

�Supported by a Research Fellowship granted by the Alexander von Humboldt Foun-
dation and by a Post-Doc grant GA ČR No. 201/98/P046.

yPartially supported by the Teilprojekt A3 of the Sonderforschungsbereich 342.

1

of Hennessy-Milner logic. This result was later extended to the modal �-
calculus, a much more powerful logic strictly containing many other log-
ics, like CTL, CTL�, and LTL. This showed that it was possible to link the
two different approaches to formal verification, based on equivalences and
modal logics, respectively.

Modal characterizations play an important rôle in practice: Given a
very large, or even infinite, transition system T , we would like to obtain
a smaller, or at least simpler, transition system T 0 which satisfies the speci-
fication if and only if T does. If the specification belongs to a set of formulae
H characterizing an equivalence �, then we can safely take any T 0 satisfy-
ing T � T 0.

An interesting possibility is to take T 0 as the quotient T=� of T under �,
whose states are the equivalence classes of the states of T , and whose tran-
sitions are given by [s]

a
! [t] only if s

a
! t. This works for all equivalences

in van Glabbeek’s spectrum [19] because they satisfy T � T=� (as proved
in [14]). Quotients are particularly interesting for bisimulation equivalence
for practical reasons, of which we give just two. First, in this case T=� can
be very efficiently computed for finite transition systems, as shown in [17].
Second, for some classes of real-time and hybrid systems [2, 8], the quo-
tient under bisimulation of an infinite transition system can be proved to
be finite; this makes automatic verification possible, at least in principle.

T=� is guaranteed to satisfy a property of H if and only if T does, but
maybe this holds for other properties as well? We study this question (in
a slightly refined form) within the framework of Hennessy-Milner logic,
for arbitrary equivalences. Given a set of formulae characterizing �, our
results determine the sets L;L0 � H such that T=� satisfies ' 2 L if T does,
and T satisfies ' 2 L0 if T=� does. As we shall see, L\L0 = H; the additional
formulae of L;L0 which do not belong to H can be used by efficient verifi-
cation semi-algorithms (which produce yes/no/don’t know answers) – if we
want to find out whether T satisfies some ' 2 L [L0, we can first check if
T=� satisfies '; if it is the case and ' 2 L0, we can conclude that T satisfies
'. If T=� does not satisfy ' and ' 2 L, we conclude that T does not satisfy
'. In the other cases we ‘don’t know’.

The paper is organized as follows. Section 2 contains preliminary def-
initions. In Section 3.1, as a warm-up, we determine the set of Hennessy-
Milner formulae preserved by any transition system T 0 satisfying T � T 0.
In Section 3.2, the core of the paper, we determine the sets L;L0 of formulae
which are preserved/reflected by the quotient T=�. In Section 4 we apply

2

our results to the equivalences in van Glabbeek’s hierarchy. Section 5 con-
tains conclusions and comments on related and future work.

2 Definitions

Let Act = fa; b; c; : : :g be a countably infinite set of atomic actions (which is
fixed for the rest of this paper).

Definition 2.1. A transition system (T.S.) is a triple T = (S;A;!) where S is
a set of states, A � Act , and !� S � A � S is a transition relation. We say
that T is finitely-branching iff for every s 2 S, a 2 A the set ft j s

a
! tg is finite.

Processes are understood as (being associated with) states in transition systems.

In the rest of this paper we only consider finitely-branching T.S. (this re-
striction is harmless from the ‘practical’ point of view, but it has important
‘theoretical’ consequences as it, e.g., allows to prevent the use of infinite
conjunctions in our future constructions).

As usual, we write s
a
! t instead of (s; a; t) 2! and we extend this nota-

tion to elements ofA� in the standard way. A state t is reachable from a state s

iff s
w
! t for some w 2 A�. The set of actions which is used in the underlying

transition system of a process p is denoted by Act(p) (sometimes we work
with processes whose associated transition system has not been explicitly
defined). Properties which have been originally defined for transition sys-
tems are often also used for processes; in that case we always mean that the
underlying transition system has the property (for example, we can speak
about the set of states and actions of a given process).

Definition 2.2. Let T1 = (S1;A1;!1), T2 = (S2;A2;!2) be transition systems.
A (total) function f : S1 ! S2 is a homomorphism from T1 to T2 iff for all s; t 2 S1

and a 2 Act we have that s
a
!1 t =) f (s)

a
!2 f (t).

Definition 2.3. A renaming is an (arbitrary) injective function r : Act ! Act .
For every transition system T = (S;A;!) we define the r-renamed transition

systems r(T) = (S; r(A); ,!) where s
r(a)
,! t iff s

a
! t.

2.1 Process descriptions

In this section we briefly introduce and motivate the problem which is con-
sidered in this paper.

3

Transition systems are widely accepted as a convenient model of con-
current and distributed systems. A lot of verification problems (safety, live-
ness, etc.) can be thus reduced to certain properties of processes (states). A
major difficulty is that in practice we often meet systems which have a very
large or even infinite state-space. A natural idea how to decrease compu-
tational costs of formal verification is to replace a given process with some
‘equivalent’ and smaller one (which can be then seen as its ‘description’).

In this paper we consider two types of process descriptions (�-represen-
tations and �-characterizations) which are determined by a chosen process
equivalence �. By a ‘process equivalence’ we mean an arbitrary equivalence
on the class of all processes, i.e., states in finitely-branching T.S.

Definition 2.4. Let � be a process equivalence. A process t is a�-representation
of a process s iff s � t.

Definition 2.5. Let � be a process equivalence. The �-characterization of a pro-
cess s of a transition system T = (S;A;!) is the process [s] of T=� = (S=�;A; 7!)
where S=� is the set of all �-classes of S (the class containing s is denoted by [s])
and 7! is the least relation satisfying s

a
! t =) [s]

a
7! [t].

Observe that the �-characterization of s is essentially the quotient of s un-
der �. We use the word ‘characterization’ because for every ‘reasonable’
process equivalence � (see Lemma 3.9) we have that s � [s] for each pro-
cess s; hence, the �-characterization of s describes not only the behavior of
s (as �-representations of s do), but also the behavior of all reachable states
of s, i.e., it characterizes the whole state-space of s. More precisely, for ev-
ery state t of the process s there is an equivalent state [t] of the process [s].
Therefore, we intuitively expect that �-characterizations should be more
robust than �-representations. This intuition is confirmed by main theo-
rems of Section 3. Also note that the same process can have many different
�-representations, but its �-characterization is unique.

Definition 2.6. Let P be a property of processes, � a process equivalence. We say
that P is

• preserved by �-representations (or �-characterizations) iff whenever t is
a �-representation (or the �-characterization) of s and s satisfies P, then t
satisfies P;

• reflected by �-representations (or �-characterizations) iff whenever t is a
�-representation (or the �-characterization) of s and t satisfies P, then s
satisfies P.

4

An immediate consequence of the previous definition is the following:

Lemma 2.7. Let � a process equivalence. A property P is preserved by �-rep-
resentations (or �-characterizations) iff :P is reflected by �-representations (or
�-characterizations).

The question considered in this paper is what properties expressible in
Hennessy-Milner logic (see the next section) are preserved and reflected by
�-representations and �-characterizations for a given process equivalence
�, i.e., to what extent are the two kinds of process descriptions ‘robust’ for
a given �. As we shall see, we can give a complete classification of those
properties if the equivalence � satisfies certain (abstractly formulated) con-
ditions. Intuitively, we put more and more restrictions on � which allow
us to prove more and more things; as we shall see in Section 4, all those
restrictions are ‘reasonable’ in the sense that (almost) all existing (i.e., stud-
ied) process equivalences satisfy them. See Section 4 for details.

2.2 Hennessy-Milner Logic

Formulae of Hennessy-Milner (H.M.) logic have the following syntax (a
ranges over Act):

' ::= tt j ' ^ ' j :' j hai'

The denotation [[']] of a formula ' on a transition system T = (S;A;!) is
defined as follows:

[[tt]] = S

[[' ^]] = [[']] \ [[]]

[[:']] = S� [[']]

[[hai']] = fs 2 S j 9t 2 S : s
a
! t ^ t 2 [[']]g

Instead of s 2 [[']] we usually write s j= '. The other Boolean connectives are
introduced in a standard way; we also define ff � :tt and [a]' � :hai:'.
The depth of a formula ', denoted depth('), is defined inductively by

• depth(tt) = 0,

• depth(' ^) = maxfdepth('); depth()g,

• depth(:') = depth('),

• depth(hai') = 1 + depth(').

5

The set of actions which are used in a formula ' is denoted by Act(') (note
that Act(') is always finite).

Definition 2.8. Let A � Act . A Tree over A is any directed binary tree with
root r whose edges are labelled by elements of A satisfying the following condition:
if p; q are a-successors of a node s, where a 2 A, then the subtrees rooted by p; q
are not isomorphic. Tree-processes are associated with roots of Trees (we do not
distinguish between Trees and Tree-processes in the rest of this paper). Note that
for every k 2 N0 and every finite A � Act there are only finitely many Trees
over A whose depth is at most k (up to isomorphism). We denote this finite set of
representatives by Tree(A)k.

It is a standard result that for every process s there is a Tree Ts over Act(s)
(possibly of infinite depth) such that s and Ts satisfy exactly the same H.M.
formulae (cf. [16]). One can also easily prove the following:

Lemma 2.9. Formulae '; of H.M. logic are equivalent iff they agree on every
T 2 Tree(A)k where A = Act(') [Act() and k = maxfdepth('); depth()g.

For every renaming r and every H.M. formula ' we define the formula r(')
which is obtained from ' by substituting each hai with hr(a)i.

Lemma 2.10. For every process s, renaming r, and H.M. formula ' we have that
s j= ' iff r(s) j= r(').

In the next section we also need the following tools:

Definition 2.11. Let ' be a H.M. formula, s a process. For a given occurrence of a
subformula in ' we define its diamond-depth, denoted d(), to be the number
of hbi-modalities which have the occurrence of in their scope. The set of all actions
which are used in those modalities is denoted by Ad(). Finally, we use Rs() to
denote the set of all states which are reachable from s via a sequence of (exactly)
d() transitions whose actions are contained in Ad().

Lemma 2.12. Let ' be a H.M. formula. Let '0 be the formula obtained from ' by
substituting (given occurrences of) its subformulae 1; : : : ; n by H.M. formulae
�1; : : : ; �n, respectively. Let s be a process such that s j= ' and for all i 2 f1; : : : ; ng,
s0 2 Rs(i) one of the following conditions holds:

1. s0 j= i () s0 j= �i

2. s0 j= �i and the occurrence of i in ' is not within the scope of any negation.

Then s j= '0.

Proof. Immediate from Definition 2.11.

6

3 The classification

In this section we give a complete classification of H.M. properties which
are preserved/reflected by �-representations and �-characterizations for
certain classes of process equivalences which satisfy some (abstractly for-
mulated) conditions. From the very beginning, we restrict ourselves to
those equivalences which have a modal characterization.

Definition 3.1. Let � be a process equivalence. We say that � has a modal char-
acterization iff there is a set H of H.M. formulae such that for all processes s; t we
have that s � t iff s and t satisfy exactly the same formulae of H.

Observe that the same equivalence can have many different modal char-
acterizations. Sometimes we also use the following notation (where s is a
process):

• HA := f' j ' 2 H ^Act(') � Ag,

• Hk
A

:= f' j ' 2 HA ^ depth(') � kg,

• H(s) := f' j ' 2 H ^ s j= 'g,

• HA(s) := f' j ' 2 HA ^ s j= 'g.

Note that if A is finite, then Hk
A

contains only finitely many pairwise non-
equivalent formulae. In that case we can thus consider Hk

A
to be a finite

set.

3.1 H.M. properties preserved by �-representations

Theorem 3.2. LetH be a modal characterization of a process equivalence �. Then
every formula # which is a Boolean combination of formulae from H is preserved
by �-representations.

The previous theorem is in fact a trivial consequence of Definition 3.1. Now
we would like to prove a kind of ‘completeness’ result saying that nothing
else (except for formulae which are equivalent to Boolean combinations of
formulae from H) is preserved by �-representations. However, this prop-
erty does not hold for an arbitrary modal characterization H; it is demon-
strated by the following counterexample:

Example 3.3. Let� be defined as follows: s � t iff a 2 Act(s)\Act(t), or Act(s) =
Act(t). Let

M = f(A1;A2) j A1;A2 are finite, nonempty, and disjoint subsets of Actg:

7

The equivalence � has a modal characterization

H = fhaitt _ (
^

b2A1

hbitt ^
^

c2A2

:hcitt) j (A1;A2) 2 Mg

Now observe that the formula haitt is preserved by �-representations, but it is not
equivalent to any Boolean combination of formulae from H.

However, a simple assumption about H which is formulated in the next
definition makes a completeness proof possible.

Definition 3.4. We say that a modal characterization H of a process equivalence
� is well-formed iff whenever ' 2 H and hai is an occurrence of a subformula
in ', then also '0 2 H where '0 is obtained from ' by substituting the occurrence
of hai with ff.

As we shall see in Section 4, all ‘real’ process equivalences which have a
modal characterization also have a well-formed modal characterization.
An important (and naturally-looking) property of those process equiva-
lences which have a well-formed modal characterization is presented in
the following lemma:

Lemma 3.5. Let � be a process equivalence having a well-formed modal charac-
terization �. Let A � Act , k 2 N0. For all T;T0 2 Tree(A)k we have that T � T0

iff T and T0 satisfy exactly the same formulae of Hk
A

.

Proof. The ‘)’ direction is obvious. Now if suffices to realize that if T and
T0 are distinguished by some ' 2 H, then they are also distinguished by the
formula '0 2 Hk

A
which is obtained form ' by substituting every occurrence

of a subformula hai , which is within the scope of k other hbi-modalities or
where a 62 A, with ff. The formulae ' and '0 agree on every element of
Tree(A)k, because the occurrences of subformulae in ' which have been
substituted by ff during the construction of '0 are evaluated to false any-
way.

Theorem 3.6. Let � be a process equivalence having a well-formed modal char-
acterization H. Then every formula ' of H.M. logic which is preserved by �-
representations is equivalent to a Boolean combination of formulae from H.

Proof. Let ' be a formula preserved by �-representations, k = depth('),
A = Act(') (note that A is finite). For every T 2 Tree(A)k we construct the
formula

 T �
^

%2Hk
A

Tj=%

% ^
^

%2Hk
A

T 6j=%

:%

8

Now let

 �
_

T2Tree(A)k
Tj='

 T

We show that ' and are equivalent. To do that, it suffices to show that '
and agree on every T1 2 Tree(A)k (see Lemma 2.9).

• Let T1 2 Tree(A)k such that T1 j= '. As T1 j= T1 , we also have T1 j= .

• Let T1 2 Tree(A)k such that T1 j= . Then there is T2 2 Tree(A)k such
that T2 j= ' and T1 j= T2 . As T1 j= T2 , the Trees T1;T2 satisfy exactly
the same formulae of Hk

A
. Hence, T1 � T2 due to Lemma 3.5. As '

is preserved by �-representations, T1 is a �-representation of T2, and
T2 j= ', we also have T1 j= '.

Theorem 3.2 and 3.6 give a complete classification of those H.M. properties
which are preserved and reflected (see Lemma 2.7) by�-representations for
a process equivalence � which has a well-formed modal characterization
H.

3.2 H.M. properties preserved by �-characterizations

Now we establish analogous results for �-characterizations. As we shall
see, this problem is more complicated.

The first difficulty has been indicated already in Section 2.1 – it does
not have too much sense to speak about �-characterizations if we are not
guaranteed that s � [s] for every process s. Unfortunately, there are process
equivalences (even with a well-formed modal characterization) which do
not satisfy this basic requirement.

Example 3.7. Let � be defined as follows: s � t iff for each w 2 Act� such that
length(w) = 2 we have that s

w
! s0 for some s0 iff t

w
! t0 for some t0. The equivalence

� has a well-formed modal characterization

H = fhaihbitt j a; b 2 Actg [fhaiff j a 2 Actg [fffg

Now let s be a process where s
a
! t; s

b
! u; u

c
! v, and t; u; v do not have any other

transitions. Then t � u � v, hence [s]
ac
! [v], and therefore s 6� [s].

However, there is a simple (and reasonable) condition which guarantees
what we need.

9

Definition 3.8. Let � be a process equivalence. We say that � has a closed modal
characterization iff it has a modal characterization H which is closed under subfor-
mula (i.e., whenever ' 2 H and is a subformula of ', then 2 H).

A closed modal characterization is a particular case of a filtration. The
next lemma is a well-known result of modal logic, stating that a model and
its quotient through a filtration agree on every formula of the filtration [4].
We include a proof for the sake of completeness.

Lemma 3.9. Let � be a process equivalence having a closed modal characteriza-
tion. Then s � [s] for every process s.

Proof. Let H be a closed modal characterization of �. We prove that for
every ' 2 H and every process s we have s j= ' () [s] j= ' (i.e., s � [s]). By
induction on the structure of '.

• ' � tt. Immediate.

• ' � : . Then 2 H and s j= () [s] j= by induction hypotheses.
Hence also s j= : () [s] j= : as required.

• ' � ^ �. Then ; � 2 H. If ^ � distinguishes between s and [s], then
 or � distinguishes between the two processes as well; we obtain a
contradiction with induction hypotheses.

• ' � hai .

– ()) Let s j= hai . Then there is some t such that s
a
! t and t j= .

Therefore, [s]
a
7! [t] and as 2 H, we can use induction hypothe-

sis to conclude [t] j= . Hence, [s] j= hai .

– (() Let [s] j= hai . Then [s]
a
7! [t] for some [t] such that [t] j= '.

By Definition 2.5 there are s0; t0 such that s � s0, t � t0, and s0
a
! t0.

As [t] = [t0], we have [t0] j= and hence t0 j= by induction
hypotheses. Therefore, s0 j= hai . As s � s0 and hai 2 H, we also
have s j= hai as needed (remember that formulae of H cannot
distinguish between equivalent processes by Definition 3.1).

According to our intuition presented in Section 2.1, �-characterizations
should be more robust then �-representations, i.e., they should preserve
more properties. The following definition gives a ‘syntactical template’
which allows to construct such properties.

10

Definition 3.10. Let S be a set of H.M. formulae. The set of diamond formulae
over S, denoted D(S), is defined by the following abstract syntax equation:

' ::= # j ' ^ ' j ' _ ' j hai'

Here a ranges over Act , and # ranges over Boolean combinations of formulae from
S. The set B(S) of box formulae over S is defined in the same way, but we use
[a]-modality instead of hai.

Theorem 3.11. Let � be a process equivalence having a closed modal characteri-
zation H. Then every formula of D(H) is preserved by �-characterizations.

Proof. Let ' 2 D(H). By induction on the structure of ':

• ' � #. It suffices to realize that # is preserved by �-representations
(Theorem 3.6) and every �-characterization is also a �-representation
(Lemma 3.9).

• ' � '1 ^ '2, or ' � '1 _ '2 where '1; '2 are preserved. Immediate.

• ' � hai'1 where '1 is preserved. Let p be an arbitrary process such
that p j= hai'1. Then there is p

a
! p0 such that p0 j= '1. By definition

of �-characterization we have [p]
a
7! [p0]. Moreover, [p0] j= '1 as '1 is

preserved. Hence, [p] j= hai'1 as needed.

In order to prove the corresponding completeness result, we need some
additional assumptions about � and H.

Definition 3.12. Let � be a process equivalence. We say that � has a good modal
characterization iff it has a closed modal characterization H which satisfies the
following conditions:

• if ' 2 H, then also hai' 2 H for every a 2 Act ;

• if ' 2 H, then also r(') 2 H for every renaming r;

• if hai is an occurrence of a subformula in ', then also '0; '00 2 H where '0

and '00 are the formulae obtained from ' by substituting the occurrence of
hai with tt and ff, respectively;

• if ' 2 H and : is a subformula of ', then also :� 2 H for every subformula
� of ;

• there are processes s; t such that Act(s) [Act(t) is finite and H(s) � H(t).

11

The requirements of Definition 3.12 look strange at first glance. In fact, the
first four of them only eliminate a lot of ‘unnatural’ process equivalences
from our considerations. The last requirement is also no problem, because
the majority of ‘real’ process equivalences are defined as kernels of certain
preorders, and one can always find processes s; t such that s is ‘strictly less’
than t in the preorder.

Now we present a sequence of technical lemmas which are then used
to prove the last main theorem of our paper.

Lemma 3.13. Let H be a good modal characterization of a process equivalence �.
For every n 2 N and every finite A � Act there are processes p1; � � � ; pn such that
Act(pi) is finite, Act(pi) \ A = ;, and H(pi) � H(pi+1) for each 1 � i < n.

Proof. Let s and t be processes such that H(s) � H(t). We can safely assume
that (Act(s)[Act(t)) \A = ;, because otherwise we can consider processes
r(s); r(t) for an appropriate renaming r (observe thatH(r(s)) � H(r(t)) due to
Lemma 2.10 and Definition 3.12). Let � 2 H be a formula such that t j= � and
s 6j= �. Let a1; � � � ; an be fresh (unused) actions. The process pi has (exactly)

the following transitions: pi
aj
! s for every 1 � j < i � n, and pi

aj
! t for every

1 � i � j � n. We prove that H(pi) � H(pi+1) for each 1 � i < n. First, note
that haii� 2 H, pi j= haii�, and pi+1 6j= haii�. It remains to prove that for every
' 2 H such that pi+1 j= ' we also have pi j= '. The formula ' can be viewed
as a Boolean combination of formulae of the form hai . We show that for
each such hai we have that pi+1 j= hai () pi j= hai , or pi j= hai and hai
is not within the scope of any negation in '. It clearly suffices to conclude
pi j= '. We distinguish two possibilities:

• pi+1 j= hai . As 2 H and H(s) � H(t), we also have pi j= hai (see the
construction of pi above).

• pi+1 6j= hai . If pi 6j= hai , we are done immediately. If pi j= hai , then
necessarily a = ai; we obtain that t j= and s 6j= . If the formula
hai is within the scope of some negation in ', we obtain : 2 H. As
s j= : and t 6j= : , we have a contradiction with H(s) � H(t).

Lemma 3.14. Let � be a process equivalence having a closed modal characteriza-
tion H. Let s; t be processes such that for every a 2 Act we have

S
s

a
!s0

H(s0) =S
t

a
!t0

H(t0). Then s � t.

Proof. We show that for every ' 2 H we have s j= ' iff t j= '. By induction
on the structure of '.

• ' � tt. Immediate.

12

• ' � ^ �. Suppose that ^ � distinguishes between s and t. Then
 ; � 2 H and at least one of those formulae must distinguish between
s and t; we obtain a contradiction with induction hypotheses.

• ' � : . The same as above.

• ' � hai . Suppose, e.g., s j= hai and t 6j= hai . Then 2 H, 2S
s

a
!s0

H(s0), and 62
S

t
a
!t0

H(t0), a contradiction.

Lemma 3.15. Let � be a process equivalence having a good modal characteriza-
tion H. Let A be a finite subset of Act , k 2 N0. Let T1;T2 2 Tree(A)k such that
there is a homomorphism f from T2 to T1 which preserves �. Then the Trees T1;T2

can be extended (by adding some new states and transitions) in such a way that
the obtained transition systems T0

1
;T0

2
satisfy the following:

• the homomorphism f can be extended to a homomorphism f0 from T0
2

to T0
1

which also preserves �,

• for every H.M. formula ' such that Act(') � A we have T02 j= ' iff T2 j= '

and T0
1
j= ' iff T1 j= ',

• the ‘old’ states of T01 (i.e., the ones which have not been added to T1 during
the extension procedure) are pairwise nonequivalent w.r.t. �.

Proof. First we describe the extension of T1 which yields the system T0
1
. This

extension is then ‘propagated’ back to T2 via the homomorphism f—each
state s of T2 is extended in the same way as the state f (s) of T1. Finally, we
show that the three requirements of our lemma are satisfied.

Let n be the number of states of T1, and let m be the number of those
states t of T1 for which there is a state s of T2 such that f (s) = t. Let p1; : : : ; pn

be processes over a finite A0 � Act such that H(p1) � H(p2) � � � � � H(pn)
and A \ A0 = ;. Such processes must exist by Lemma 3.13. Now we take
an arbitrary bijection b from the set of states of T1 to f1; : : : ; ng satisfying the
following conditions:

• if t = f (s) for some state s of T2, then b(t) � m,

• if there is a (nonempty) path from t to t0 in T2, then b(t) > b(t0).

Now we add to T1 all states of p1; : : : ; pn, and for each state t of T1 and each
transition pb(s)

a
! q we add the transition t

a
! q (i.e., the state t has the

same set of a-successors as pb(s) for every a 2 A0 after the modification). The
described extension of T1 is now ‘propagated’ to T2 in the above indicated
way, yielding the system T02.

13

As A \ A0 = ;, the new transitions which have been added to T1 and T2

cannot influence the (in)validity of any H.M. formula ' such that Act(') �
A. Hence, the second requirement of our lemma is satisfied. Moreover,
it is easy to see that the third requirement is satisfied as well, because the
‘old’ states of T0

1
now satisfy pairwise different subsets of HA0 . It remains

to show that the first requirement is also valid.
The homomorphism f 0 is defined as a ‘natural’ extension of f – it agrees

with f on the ‘old’ states of T0
1
, and behaves like an identity function on the

‘new’ ones. Observe that if s is a ‘new’ state of T0
2
, then the transition sys-

tems T0
2
(s) and T0

1
(f 0(s)) are the same (isomorphic). Hence, f0 trivially pre-

serves � on all ‘new’ states of T0
2
. To prove that s � f 0(s) for every ‘old’ state

s of T0
2
, we first need to show the following auxiliary lemma: let s1; : : : ; sj be

‘old’ states of T0
2
, t an ‘old’ state of T0

1
such that

• there is no state s of T0
2

such that f 0(s) = t,

• HA(t) �
Sj

i=1
HA(si).

Then H(t) �
Sj

i=1
H(si).

A proof of the auxiliary lemma: Let ' 2 H such that t j= '. We show that
si j= ' for some 1 � i � j. First we construct a formula '0 2 HA from ' in
the following way (recall the notions introduced in Definition 2.11): every
occurrence of a subformula hai in ', a 2 A0, which is not within the scope
of any hbi-modality, where b 2 A0, is substituted by

• tt if t j= hai or there is some t0 2 Rt(hai) such that t0 j= hai ,

• ff otherwise.

Clearly '0 2 HA (see Definition 3.12). We prove that t j= '0, (i.e., '0 2 HA(t))
by showing that the assumptions of Lemma 2.12 are satisfied for ' and the
above defined substitution. Let hai be a formula whose occurrence has
been substituted in ' to obtain '0. First, let us realize that every state of
Rt(hai) is an ‘old’ one, because Ad(hai) � A (see above). We can distin-
guish two possibilities:

• the occurrence of hai has been substituted by tt. Then there are two
subcases:

– t j= hai . Remember that each ‘old’ state q of T01 has the same set
of a-successors as pb(q) for every a 2 A0. Hence, pb(t) j= hai be-
cause t j= hai . Furthermore, for every t0 2 Rt(hai) we have

14

H(pb(t)) � H(pb(t0)) (see the definition of b above). Therefore,
pb(t0) j= hai and thus we get t0 j= hai . In other words, for every
t0 2 Rt(hai) we obtain t0 j= tt() t0 j= hai .

– there is t0 2 Rt(hai) such that t0 j= hai . First, if hai is satisfied
by every state of Rt(hai), we are done immediately. Otherwise,
there is t00 2 Rt(hai) such that t00 6j= hai . Now it suffices to show
that the occurrence of hai in ' cannot be within the scope of any
negation (see the second condition of Lemma 2.12). Suppose the
converse. As ' 2 H and H is a good modal characterization,
we know that both hai and :hai 2 H. As the processes t0 and
t00 have the same a-successors as the processes pb(t0) and pb(t00),
respectively, we obtain pb(t0) j= hai and pb(t00) 6j= hai , hence also
pb(t0) 6j= :hai and pb(t00) j= :hai . Therefore, it cannot be that
H(pb(t0)) � H(pb(t00)) or H(pb(t00)) � H(pb(t0)), a contradiction.

• the occurrence of hai has been substituted by ff. Then t0 6j= hai for
each t0 2 Rt(hai), and we are done immediately.

Now we know that '0 2 HA(t), hence there must be some si such that si j=
'0. We prove that si j= ', again by applying Lemma 2.12 (observe that ' can
be obtained from '0 by a substitution which is ‘inverse’ to the previously
considered one). We show that the assumptions of Lemma 2.12 are satisfied
also for '0 and the ‘inverse’ substitution, distinguishing two possibilities:

• a given occurrence of tt is substituted ‘back’ to hai . It means that
we previously had t j= hai or t0 j= hai for some t0 2 Rt(hai). As
H(pb(f 0(s))) � H(pb(v)) for every ‘old’ state s of T0

2
and every ‘old’ state

v of T0
1

which is reachable from t (see the definition of b and the con-
struction of T0

2
), we can conclude that hai is satisfied by each ‘old’

state of T0
2

(in particular, by all states of Rsi(tt)).

• a given occurrence of ff is substituted ‘back’ to hai . If hai is not
satisfied by any state of Rsi(ff), we done immediately. We show that
if there is some s0 2 Rsi(ff) such that s0 j= hai , then the occurrence
of ff in '0 cannot be within the scope of any negation. Suppose the
converse. Then there is an occurrence of hai in ' which is within the
scope of some negation, hence :hai belong to H. As t j= :hai and
H(pb(t)) � H(pb(f 0(s0))) (see above), we have s0 j= :hai , a contradiction.

Now we can continue with the main proof. We show that for each ‘old’
state s of T0

2
we have that s � f 0(s). We proceed by induction on the depth of

the subtree which is rooted by s in T2 (denoted by d).

15

• d = 0: Then s is a leaf in T2, hence the transition systems T0
2
(s) and

T0
1
(f 0(s)) are isomorphic. Hence, we trivially have s � f 0(s).

• Induction step: We prove that
S

s
a
!s0

H(s0) =
S

f 0(s)
a
!t
H(t) for each

a 2 Act (hence s � f 0(s0) by Lemma 3.14). If a 2 A0, the equality holds
trivially because s and f 0(s) have the same set of a-successors. Now
let a 2 A. By induction hypotheses we know that H(s0) = H(f 0(s0))
for each a-successor s0 of s. To finish the proof, we need to show that
for each a-successor t of f 0(s) for which there is no state q of T02 with
f 0(q) = t we have that H(t) �

S
s

a
!s0

H(s0). However, it can be easily
achieved with a help of the auxiliary lemma which has been proved
above; all we need is to show that HA(t) �

S
s

a
!s0

HA(s0). Suppose it is
not the case, i.e., there is some # 2 HA such that t j= # and s0 6j= # for
each a-successor s0 of s. Hence hai# 2 HA, s 6j= hai#, and f (s) j= hai#; it
contradicts the fact that the homomorphism f preserves �.

Theorem 3.16. Let � be a process equivalence having a good modal characteriza-
tionH. Then every formula which is preserved by�-characterizations is equivalent
to some formula of D(H).

Proof. Let ' be a formula preserved by �-characterizations, k = depth('),
A = Act('). For every T 2 Tree(A)k we define the formula T by induction
on the depth of T:

• if the depth of T is 0, then T � tt,

• if the depth of T is j + 1, r is the root of T, and r
a1
! s1; � � � ; r

an
! sn are the

outgoing arcs of r, then

 T �
^

%2H
j+1

A
Tj=%

% ^
^

%2H
j+1

A
T 6j=%

:% ^

n̂

i=1

haii T(si)

where T(si) is the sub-Tree of T rooted by si.

Let

 �
_

T2Tree(A)k
Tj='

 T

We prove that '; are equivalent by showing that they agree on every T1 2

Tree(A)k.

16

• Let T1 2 Tree(A)k such that T1 j= '. As T1 j= T1 , we immediately
have T1 j= .

• Let T1 2 Tree(A)k such that T1 j= . Then there is T2 2 Tree(A)k with
T2 j= ' and T1 j= T2 . We need to prove that T1 j= '. Suppose the
converse, i.e., T1 j= :'. Let r1; r2 be the roots of T1;T2, respectively.
First we show that there is a homomorphism f from T2 to T1 such that
for every node s of T2 we have f (s) j= T(s). The homomorphism f is
defined by induction on the distance of s from r2.

– s = r2. Then f (r2) = r1 (remember T1 j= T2).

– s is the jth successor of t where t
a1
! s1; � � � ; t

an
! sn are the outgoing

arcs of t. The formula T(t) looks as follows:

 T(t) �
^

%2Hk�d
A

T(t)j=%

% ^
^

%2Hk�d
A

T(t)6j=%

:% ^

n̂

i=1

haii T(si)

where d is the distance of t from r2. Let f (t) = q. As q j= T(t) (by

induction hypotheses), there is some q
aj
! q0 such that q0 j= T(sj).

We put f (s) = q0.

Observe that f also preserves� because for every node s of T2 we have
that s and f (s) satisfy exactly the same formulae of Hk�d

A
(d is the dis-

tance of s from r2). Now we can apply Lemma 3.15—the Trees T1;T2

can be extended to transition systems T01;T
0
2 in such a way that the

‘old’ states of T0
1

are pairwise nonequivalent, ' is still valid (invalid)
in r2 (r1), and the homomorphism f can be extended to a homomor-
phism f 0 which still preserves �. Let us define a transition system
T = (S;A [A0 [fbg;!) where

– S is a disjoint union of the sets of states of T0
1

and T0
2
,

– A0 is the set of ‘new’ actions of T0
1
;T0

2
(cf. the proof of Lemma 3.15),

b 62 A [A0 is a fresh action,

– ! contains all transitions of T0
1

and T0
2
; moreover, we also have

r2
b
! r2, r1

b
! r1, and r2

b
! r1.

The new b-transitions have been added just to make r1 reachable from
r2. Observe that we still have r1 � r2, r1 j= :', and r2 j= '. As T0

2
can

be ‘embedded’ into T01 by f 0, the �-characterization of the process r2

17

of T is the same (up to isomorphism) as the �-characterization of the

process r1 of T0
1

with one additional arc r1
b
! r1. As the ‘old’ states of

T01 (see Lemma 3.15) are pairwise non-equivalent w.r.t. �, and possi-
ble identification of the ‘new’ states of T0

1
in the �-characterization of

r1 cannot influence (in)validity of any H.M. formula whose set of ac-
tions is contained in A, we can conclude that ' is not satisfied by the
process [r1] of T01=�. Hence, ' is not satisfied by the process [r1] = [r2]
of T=� either. As ' is satisfied by the process r2 of T , we can con-
clude that ' is not preserved by �-characterizations, and we have a
contradiction.

Theorem 3.11 and 3.16 together say that a H.M. property P is preserved
(reflected) by �-characterizations, where � is a process equivalence hav-
ing a good modal characterization H, iff P is equivalent to some diamond
formula (or box formula – see Lemma 2.7) over H.

4 Applications

In concurrency theory, many process equivalences expressing different ‘lev-
els’ of semantical sameness of two processes have been designed and stud-
ied. A nice overview and comparison of possible approaches has been pre-
sented in [19]; in this paper, existing equivalences are ordered w.r.t. their
coarseness (see Figure 1) and a kind of modal characterization is given for
each of them (unfortunately, not a good one in the sense of Definition 3.12).

To demonstrate practical applicability of our abstract results, we present
a good modal characterization for each equivalence of Figure 1 (except for
completed trace equivalence and bisimilarity—see below). Formally, we
should also prove that each of the given modal characterizations is good
and that it is indeed a modal characterization of the associated equiva-
lences, but all these proofs are routine and therefore omitted.

The last requirement of Definition 3.12 says that there should be two
processes s; t such that H(s) � H(t). Examples of such processes for all
equivalences of Figure 1 between ready simulation equivalence and trace
equivalence are the processes p; q of Figure 2; in the case of 2-nested sim-
ulation equivalence and possible-futures equivalence we can use the pro-
cessess r; u of the same figure.

In the subsequent paragraphs we employ the following notation:

• P(M) denotes the set of all subsets of M.

18

bisimilarity

2-nested simulation equivalence

ready trace equivalence

failure equivalence

completed trace equivalence

trace equivalence

ready simulation equivalence

simulation equivalence

failure trace equivalencereadiness equivalence

possible-futures equivalence

Figure 1: The linear time/branching time spectrum of [19]

a

a

a a

ba

a

a b

a

a b b

a

p q r u

Figure 2: Processes satisfying H(s) � H(t).

19

• In all definitions we assume a fixed transition system T = (S;Act ;!).
If s 2 S, then

I(s) = fa 2 Act j 9t 2 S such that s
a
! tg

• � ranges over the set of formulae defined by

� ::= tt j ff j :haitt j � ^ �

where a 2 Act .

• � ranges over the set of formulae defined by

� ::= tt j ff j haitt j � ^ �

where a 2 Act .

Trace equivalence. The set of traces of a process s, denoted Tr(s), is defined
by

Tr(s) = fw 2 Act� j 9t such that s
w
! tg

We say that s; t are trace equivalent, written s =t t, iff Tr(s) = Tr(t). A good
modal characterization H for trace equivalence is given by

' ::= tt j ff j hai'

where a ranges over Act .

Before we continue with the other equivalences, let us have a look at
a small example which shows that (and how) our abstract results work.
Consider the process p of Fig. 3. The process q is a =t-representation of p,
and the process r is the =t-characterization of p. According to our results,
the formula hai:haitt which is satisfied by p is not generally preserved by
=t-representations, but it is preserved by =t-characterizations. Indeed, we
have q 6j= hai:haitt, while r j= hai:haitt.

Failure equivalence. A pair (w;Φ) 2 Act� � P(Act) is a failure pair of a
process s 2 S, if there is a state t 2 S such that s

w
! t and I(s) \ Φ = ;. Let

F(s) denote the set of all failure pairs of s. Processes s; t are failure equivalent,

20

a
a

a

a

a

a

a a

a

a
p q r

Figure 3: An infinite-state process having finite =t-representation and =t-
characterization

written s =f t, iff F(s) = F(t). A good modal characterization for =f is given
by

' ::= tt j ff j � j hai'

Readiness equivalence. A pair (w;Φ) 2 Act� � P(Act) is a ready pair of a
process s 2 S, if there is a state t 2 S such that s

w
! t and I(t) = Φ. Let R(s)

denote the set of all ready pairs of s. Processes s; t are readiness equivalent,
written s =r t, iff R(s) = R(t). A good modal characterization for =r is given
by

' ::= tt j ff j � ^ � j hai'

Failure trace equivalence. The refusal relations Φ
! for Φ 2 P(Act) are defined

by:

s
Φ
! t iff s = t and I(s) \Φ = ;

The failure trace relations �
! for � 2 (Act[P(Act))� are defined as the reflexive

and transitive closure of both the transition and the refusal relations. � 2
(Act [P(Act))� is a failure trace of a process s 2 S, if there is a state t 2 S

such that s
�
! t. Let FT(s) denote the set of failure traces of s. Processes s; t

are failure trace equivalent, written s =ft t, iff FT(s) = FT(t). A good modal
characterization for =ft is given by

' ::= tt j ff j � j hai(� ^ ')

Ready trace equivalence. The ready trace relations �
) for � 2 (Act [P(Act))�

are defined inductively by:

21

1. s
�
) s for any s 2 S.

2. s
a
! t implies s

a
) t.

3. s
Φ
) t with Φ 2 P(Act) whenever s = t and I(s) = Φ.

4. s
�
) t

�
) u implies s

��
) u.

� 2 (Act [P(Act))� is a ready trace of a process s 2 S if there is a state t 2 S

such that s
�
) t. Let RT(s) denote the set of ready traces of s. Processes s; t

are ready trace equivalent, written s =rt t, iff RT(s) = RT(t). A good modal
characterization for =rt is given by

' ::= tt j ff j � ^ � j hai(� ^ � ^ ')

Simulation equivalence. A binary relation R � S�S is a simulation if when-
ever sRt then

8a 2 Act : s
a
! s0) 9t0 : t

a
! t0 ^ s0Rt0

A process s 2 S is simulated by a process t 2 S, written s vs t, iff there is a
simulation R such that (s; t) 2 R. Moreover, we say that s; t are simulation
equivalent, written s =s t, iff s vs t and t vs s. A good modal characterization
for =s is given by

' ::= tt j ff j hai' j ' ^ '

Ready simulation equivalence. A binary relation R � S� S is a ready simu-
lation if whenever sRt then:

• 8a 2 Act : s
a
! s0) 9t0 : t

a
! t0 ^ s0Rt0

• I(s) = I(t)

A process s 2 S is ready simulated by a process t 2 S, written s vrs t, iff there is
a ready simulation R such that (s; t) 2 R. Moreover, we say that s; t are ready
simulation equivalent, written s =rs t, iff s vrs t and t vrs s. A good modal
characterization for =rs is given by

' ::= tt j ff j � ^ � j hai(� ^ � ^ ') j ' ^ '

22

Possible futures equivalence. A pair (w;Φ) 2 Act� � P(Act�) is a possible
future of a process s 2 S iff there is a state t 2 S such that s

w
! t and Tr(t) =

Φ. The set of all possible futures of s is denoted PF(s). Processes s; t are
possible-futures equivalent, written s =pf t, iff PF(s) = PF(t). A good modal
characterization for =pf is given by

' ::= tt j ff j

n̂

i=1

 i ^

m̂

i=1

: i j hai'

where m; n 2 N0, and ranges over the set of formulae defined by

 ::= tt j ff j hai

2-nested simulation equivalence. A binary relation R � S � S is a 2-nested
simulation if whenever sRt then

• 8a 2 Act : s
a
! s0) 9t0 : t

a
! t0 ^ s0Rt0

• s =s t

A process s 2 S is 2-nested simulated by a process t 2 S, written s v2 t, iff
there is a 2-nested simulation R such that (s; t) 2 R. Moreover, we say that
s; t are 2-nested simulation equivalent, written s =2 t, iff s v2 t and t v2 s. A
good modal characterization for =2 is given by

' ::= tt j ff j

n̂

i=1

 i ^

m̂

i=1

: i j hai

� n̂

i=1

 i ^

m̂

i=1

: i ^ '

�
j ' ^ '

where m; n 2 N0, and ranges over the set of formulae defined by

 ::= tt j ff j hai j ^

An interesting related problem is whether a given infinite-state state
process has for a given � any finite �-representation, and whether its �-
characterization is finite. It is also known as the regularity and strong regu-
larity problem (see also [14]). Some decidability results for various equiv-
alences and various classes of infinite-state processes have already been

23

established [3, 13, 9, 11, 15, 10], but this area still contains a number of open
problems.

The only equivalences of [19] which do not have a good modal char-
acterization are bisimilarity [18] and completed trace equivalence. Bisimi-
larity is not a ‘real’ problem, in fact (only the last requirement of Defini-
tion 3.12 cannot be satisfied); a modal characterization of bisimilarity is
formed by all H.M. formulae, and therefore each H.M. formula is trivially
preserved and reflected by �-representations and �-characterizations. As
for completed trace equivalence, the problem is that this equivalence re-
quires a simple infinite conjunction, or a generalized h�i modality (which
can be phrased ‘after any action’), which are not at disposal.

5 Related and future work

In the context of process theory, modal characterizations were introduced
by Hennessy and Milner in their seminal paper [7]. The paper provides
characterizations of bisimulation, simulation, and trace equivalence as full,
conjunction-free, and negation-free H.M. logic, respectively. The result
stating that bisimulation equivalence is also characterized by the modal
�-calculus seems to be folklore. In [19], van Glabbeek introduces the equiv-
alences of his hierarchy by means of sets of formulae, in a style close to
modal characterizations.

In [12], Kaivola and Valmari determine weakest equivalences preserv-
ing certain fragments of linear time temporal logic. In [6], Goltz, Kuiper,
and Penczek study the equivalences characterized by various logics in a
partial order setting.

An interesting open problem is whether it is possible to give a similar
classification for some richer (more expressive) logic. Also, we are not suf-
ficiently acquainted with work on modal logic outside of computer science
(or before computer science was born). Work on filtrations [4] or partial
isomorphisms [5] should help us to simplify and streamline our proofs.

References

[1] Proceedings of CONCUR’92, volume 630 of Lecture Notes in Computer
Science. Springer, 1992.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994. Fundamental Study.

24

[3] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the
process taxonomy. In Proceedings of CONCUR’96, volume 1119 of Lec-
ture Notes in Computer Science, pages 247–262. Springer, 1996.

[4] B.F. Chellas. Modal Logic—An Introduction. Cambridge University
Press, 1980.

[5] J. Flum. First-order logic and its extensions. In Proceedings of the Inter-
national Summer Institute and Logic Colloquium, volume 499 of Lecture
Notes in Mathematics, pages 248–310. Springer, 1975.

[6] U. Goltz, R. Kuiper, and W. Penczek. Propositional temporal logics
and equivalences. In Proceedings of CONCUR’92 [1], pages 222–236.

[7] M. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the Association for Computing Machinery,
32(1):137–161, 1985.

[8] T. Henzinger. Hybrid automata with finite bisimulations. In Pro-
ceedings of ICALP’95, volume 944 of Lecture Notes in Computer Science,
pages 324–335. Springer, 1995.

[9] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisi-
milarity. In Proceedings of ICALP’96, volume 1099 of Lecture Notes in
Computer Science, pages 478–489. Springer, 1996.

[10] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over
one-counter processes. In Proceedings of STACS 2000, Lecture Notes in
Computer Science. Springer, 2000. To appear.

[11] P. Jančar and F. Moller. Checking regular properties of Petri nets. In
Proceedings of CONCUR’95, volume 962 of Lecture Notes in Computer
Science, pages 348–362. Springer, 1995.

[12] R. Kaivola and A. Valmari. The weakest compositional semantic
equivalence preserving nexttime-less linear temporal logic. In Proceed-
ings of CONCUR’92 [1], pages 207–221.

[13] A. Kučera. Regularity is decidable for normed PA processes in polyno-
mial time. In Proceedings of FST&TCS’96, volume 1180 of Lecture Notes
in Computer Science, pages 111–122. Springer, 1996.

[14] A. Kučera. On finite representations of infinite-state behaviours. In-
formation Processing Letters, 70(1):23–30, 1999.

25

[15] A. Kučera and R. Mayr. Simulation preorder on simple process al-
gebras. In Proceedings of ICALP’99, volume 1644 of Lecture Notes in
Computer Science, pages 503–512. Springer, 1999.

[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[17] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing, 16(6):973–989, 1987.

[18] D.M.R. Park. Concurrency and automata on infinite sequences. In
Proceedings 5th GI Conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer, 1981.

[19] R.J. van Glabbeek. The linear time—branching time spectrum. In Pro-
ceedings of CONCUR’90, volume 458 of Lecture Notes in Computer Sci-
ence, pages 278–297. Springer, 1990.

26

Copyright c© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

