
Deciding Probabilistic Bisimilarity over Infinite-State
Probabilistic Systems?

Tomáš Brázdil, Antonı́n Kučera, and Oldřich Stražovský

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic,
{brazdil,tony,strazovsky}@fi.muni.cz

Abstract. We prove that probabilistic bisimilarity is decidable over probabilis-
tic extensions of BPA and BPP processes. For normed subclasses of probabilis-
tic BPA and BPP processes we obtain polynomial-time algorithms. Further, we
show that probabilistic bisimilarity between probabilistic pushdown automata and
finite-state systems is decidable in exponential time. If the number of control
states in PDA is bounded by a fixed constant, then the algorithm needs only poly-
nomial time.

1 Introduction

Theory of probabilistic systems is a formal basis for modeling and verification of sys-
tems that exhibit some kind of uncertainty [20, 18]. For example, this uncertainty can
be caused by unpredictable errors (such as message loss in unreliable channels), ran-
domization (as in randomized algorithms), or simply underspecification in some of the
system components. The semantics of probabilistic systems is usually defined in terms
of homogeneous Markov chains or Markov decision processes. The former model al-
lows to specify just probabilistic behavioural aspects, while the latter one combines the
paradigms of nondeterministic and probabilistic choice. In this paper we consider a gen-
eralized model of [23] which subsumes both of the aforementioned formalisms and also
“ordinary” non-probabilistic systems. As we shall see, this means that the majority of
our results generalize the ones which were previously established for non-probabilistic
infinite-state systems.

Methods for formal verification of probabilistic systems follow the two standard
approaches of model-checking and equivalence-checking. In the model-checking ap-
proach, desired properties of the system are specified as a formula of a suitable prob-
abilistic temporal logic (such as PCTL or PCTL∗ [7]), and then it is shown that the
system satisfies the formula. In the equivalence-checking approach, one proves that the
verified system is semantically equivalent to its specification, which is another prob-
abilistic system. Here the notion of semantic equivalence can be formally captured in
many ways. Most of the existing equivalences are probabilistic extensions of their non-
probabilistic counterparts. One consequence of this is that various variants of proba-
bilistic bisimilarity [21] play a very important role in this setting.
? The work has been supported by the Grant Agency of the Czech Republic, grant No.

201/03/1161.

The state of the art: Algorithmic support for formal verification of probabilistic
systems has so far been limited to finite-state systems [11, 15, 3, 12, 16, 6, 20, 13, 10].
Only recently, model-checking algorithms for infinite-state models of fully probabilistic
lossy channel systems [17, 5, 1, 2, 22] and fully probabilistic pushdown automata [14]
appeared. However, the authors are not aware of any results about equivalence-checking
with probabilistic infinite-state systems.

Our Contribution: In the first part of our work we consider probabilistic extensions
of the well-known families of BPA and BPP processes, which are denoted pBPA and
pBPP, respectively. We have chosen a general extension based on the idea that process
constants have finitely many basic transitions of the form X −→ µ where µ is a proba-
bility distribution over pairs of the form (a, α), where a is an action and α a sequence
of BPA/BPP constants (in the case of BPP, sequences of constants are considered mod-
ulo commutativity and thus the concatenation operator models a simple form of paral-
lel composition without synchronization). Basic transitions then define transitions per-
formable from sequences of constants by adjusting the target distributions accordingly.
Hence, our model subsumes the original (non-probabilistic) BPA and BPP, which can be
understood as those subclasses of pBPA and pBPP where all distributions used in basic
transitions are Dirac. Moreover, pBPA also subsumes a fully probabilistic extension of
BPA. We prove that probabilistic bisimilarity (both in its combined and non-combined
variant) is decidable for pBPA and pBPP processes. Moreover, for normed subclasses of
pBPA and pBPP we have polynomial-time algorithms. Our results generalize the ones
for non-probabilistic BPA and BPP by extending and adapting the original notions and
proofs. Intuitively, such an extension is possible because probabilistic bisimilarity has
similar algebraic and transfer properties as “ordinary” non-probabilistic bisimilarity.
These properties can be reformulated and reproved in the probabilistic setting by incor-
porating some ideas for finite-state systems (e.g., the use of geometrical algorithms for
finitely-generated convex spaces in the style of [10]), and there are also new techniques
for handling problems which are specific to infinite-state probabilistic systems. After
reestablishing these crucial properties, we can basically follow the original proofs be-
cause they mostly rely just on algebraic arguments. This can be seen as a nice evidence
of the robustness of the original ideas.

In Section 4 we concentrate on checking probabilistic bisimilarity between pro-
cesses of probabilistic pushdown automata (pPDA) and probabilistic finite-state au-
tomata. Our results are based on a generic method for checking semantic equivalences
between PDA and finite-state processes proposed in [19]. This method clearly sepa-
rates generic arguments (applicable to every behavioral equivalence which is a right
PDA congruence in the sense of Definition 31) from the equivalence-specific parts that
must be supplied for each behavioral equivalence individually. This method works also
in the probabilistic setting, but the application part would be unnecessarily long and
complicated if we used the original scheme of [19]. Therefore, the generic part of the
method is first adjusted into a more “algebraic” form which simplifies some of the cru-
cial steps. The method is then used to prove that probabilistic bisimilarity is decidable
between pPDA and finite-state processes in exponential time. Actually, this algorithm
is polynomial if the number of pPDA control states is bounded by a fixed constant (in
particular, this holds for pBPA).

In all sections we tried to avoid repeating of the known things as much as possible;
unfortunately, this inevitably means that the material is not completely self-contained.
We did our best to provide enough information and intuition so that our presentation
is understandable even for a reader who is not familiar with “classical” results on BPA
and BPP presented in [9], and who does not know anything about the recent results of
[19]. We always clearly mark the results which are not to be considered as a part of this
work.

The results presented in this paper generate many questions. Some of them are sum-
marized in Section 5. Due to space constraints, most proofs had to be omitted. These
can be found in a full version of this paper [8].

2 Basic Definitions

We start by recalling basic notions of probability theory. A discrete probability measure
(or distribution) over a set X is a function µ : 2X → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint subsets of X , µ(

⋃
i∈I Xi) =

∑
i∈I µ(Xi), and

moreover µ(X) = 1. The set of all distributions over a set X is denoted Disc(X). A
Dirac distribution is a distribution which assigns 1 to exactly one object. A rational
distribution is a distribution which assigns a rational number to each object. For every
µ ∈ Disc(X) we define its support, denoted supp(µ), as the set {x ∈ X | µ(x) > 0}.
A discrete probability space is a pair (X,µ) where X is a set called sample space and
µ a distribution over X .

The underlying semantics of probabilistic systems is usually defined in terms of
labelled Markov chains or labelled Markov decision processes, depending mainly on
whether the considered system is sequential or parallel. Since some of our results are
applicable to both sequential and parallel probabilistic systems, we use a more general
formalism of [23] which subsumes the aforementioned models.

Definition 1. An action-labelled probabilistic transition system (or just transition sys-
tem) is a triple S = (S,Act , D) where S is a finite or countably infinite set of states,
Act 6= ∅ is a set of actions, and D ⊆ S × Disc(Act×S) is a finite or countably in-
finite transition relation. An element (s, µ) ∈ D is called a transition and alternatively
denoted by s→ µ. A (probabilistic) process is a state of some transition system.

For the rest of this section, let us fix a probabilistic transition system S = (S,Act , D).
We say that t ∈ S is reachable from s ∈ S under a word w = a1 · · · ak ∈ Act∗,

written s w−→ t (or simply s −→∗ t if w is irrelevant), if there is a finite sequence s =
s0, s1, . . . , sk = t of states such that (si, µi) ∈ D and µi(ai+1, si+1) > 0 for each
0 ≤ i < k. For each transition s −→ µ we define the set of µ-successors of s by
succ(s, µ) = {t ∈ S | µ(a, t) > 0 for some a ∈ Act}. For each state s we define the
set of successors by succ(s) =

⋃
s−→µ succ(s, µ).

For every s ∈ S, letD(s) = {(s, µ) ∈ D} be the set of transitions that leave from s.
Every distribution σ ∈ Disc(D(s)) determines a unique distribution µσ ∈ Disc(Act ×
S) defined for each (a, t) ∈ Act × S as µσ(a, t) =

∑
(s,µ)∈D(s) σ(s, µ)µ(a, t). Note

that the sum
∑

(s,µ)∈D(s) σ(s, µ)µ(a, t) exists because the set D(s) is finite or count-
ably infinite. A combined transition relation DC ⊆ S × Disc(Act×S) is defined by

DC = {(s, µσ) | s ∈ S, σ ∈ Disc(D(s))}. We write s −→C µ instead of (s, µ) ∈ DC .
Obviously, introducing combined transitions does not influence the reachability rela-
tion. However, a single state can have uncountably many outgoing combined transi-
tions. Therefore, the triple (S,Act , DC) cannot be generally seen as a transition system
in the sense of Definition 1.

Semantic equivalence of probabilistic processes can be formally captured in many
ways. Existing approaches extend the ideas originally developed for non-probabilistic
processes, and the resulting notions have similar properties as their non-probabilistic
counterparts. One consequence of this is that probabilistic extensions of bisimulation-
like equivalences play a very important role in this setting. First we introduce some
useful notions and notation. For the rest of this section, let us fix a transition system
S = (S,Act , D). Let E ⊆ S × S be an equivalence relation. We say that two dis-
tributions µ, ν ∈ Disc(Act×S) are equivalent according to E, denoted µEν, iff for
each a ∈ Act and each equivalence class C ∈ S/E we have that µ(a,C) = ν(a,C),
where µ(a,C) =

∑
s∈C µ(a, s). In other words, the equivalence E (defined on states)

determines a unique equivalence on distributions that is also denoted by E.

Definition 2. Let E be an equivalence on S, and let (s, t) ∈ S × S. We say that (s, t)
expands in E iff

– for each s→ µ there is t→ ν such that µEν;
– for each t→ µ there is s→ ν such that µEν.

A relation R ⊆ S × S expands in E iff each (s, t) ∈ R expands in E. An equivalence
E on S is a probabilistic bisimulation iff E expands in E. We say that s, t ∈ S are
bisimilar, written s ∼ t, iff they are related by some probabilistic bisimulation.

The notions of combined expansion, combined bisimulation, and combined bisim-
ilarity (denoted ∼C), are defined in the same way as above, using −→C instead of −→.

It can be shown that probabilistic bisimilarity is a proper refinement of combined prob-
abilistic bisimilarity (we refer to [23] for a more detailed comparison of the two equiv-
alences). Since most of our results are valid for both of these equivalences, we usu-
ally refer just to “bisimilarity” and use the ³ and ' symbols to indicate that a given
construction works both for −→ and ∼, and for −→C and ∼C , respectively. The word
“expansion” is also overloaded in the rest of this paper.

Bisimilarity can also be used to relate processes of different transition systems by
considering bisimulations on the disjoint union of the two systems.

Given a binary relationR over a setX , the symbol≡R denotes the least equivalence
on X subsuming R. We start with a sequence of basic observations.

Lemma 3. LetR1, R2 be binary relations on S such thatR1 ⊆ R2. Then for all µ, ν ∈
Disc(Act × S) we have that if µ ≡R1 ν, then also µ ≡R2 ν.

Lemma 4. Let R be a relation on S and E be an equivalence on S. If R expands in E,
then ≡R expands in E.

An immediate corollary to the previous lemmas is the following:

Corollary 5. ' is a bisimulation.

Proof. ' expands in ≡' by Lemma 3, hence ≡' expands in ≡' by Lemma 4. There-
fore, ≡' is a bisimulation and ≡' ⊆ '. ut

Lemma 6. Suppose that (s, t) ∈ E where E is a bisimulation on S. If s w−→ s′ for some
w ∈ Act∗, then there is t w−→ t′ such that (s′, t′) ∈ E.

2.1 Approximating bisimilarity

Bisimilarity can be approximated by a family of equivalences 'i, i ∈ N0, defined
inductively as follows:

– '0 = S × S;
– 'i+1 consists of those (s, t) ∈ 'i which expand in 'i.

Clearly ' ⊆ ⋂∞
i=0 'i, and the other inclusion holds if each process s ∈ S is finitely

branching, i.e., the set {µ | s −→ µ} is finite. It is worth mentioning that this observation
can be further generalized.

Lemma 7. Let s, t ∈ S, and let us assume that each state t′ reachable from t is finitely
branching (i.e., s can still be infinitely-branching). Then s ' t iff s 'i t for each
i ∈ N0.

Lemma 7 can be seen as a generalization of a similar result for non-probabilistic pro-
cesses and strong bisimilarity presented in [4]. Also note that Lemma 7 does not impose
any restrictions on distributions which can have an infinite support.

Definition 8. We say that a process s ∈ S is well-defined if s is finitely branching and
for each transition s −→ µ we have that µ is a rational distribution with a finite support.

For example, pBPA, pBPP, and pPDA processes which are introduced in next sections
are well-defined.

Lemma 9. Let us assume that Act is finite, and let s, t ∈ S be well-defined states. Let
E be an equivalence over succ(s)∪ succ(t) (represented as a finite set of its elements).
The problem if (s, t) expands in E1 is decidable in time polynomial in |D(s)|+ |D(t)|.
Here

|D(s)| =
∑

s−→µ

∑

(a,t)∈Act×S
µ(a,t)>0

|(µ(a, t), a, t)|

where |(µ(a, t), a, t)| is the length of the corresponding binary encoding of the triple
(µ(a, t), a, t) (note that µ(a, t) is a rational number).

A direct corollary to Lemma 7 and Lemma 9 is the following:

Corollary 10. Let us assume that Act is finite and each s ∈ S is well-defined. Then 6'
over S × S is semidecidable.

1 Strictly speaking, we consider expansion in E ∪ {(s, s) | s ∈ S} because E is not an equiva-
lence over S (which is required by Definition 2).

3 Deciding Bisimilarity over pBPA and pBPP Processes

In this section we show that bisimilarity is decidable over pBPA and pBPP processes,
which are probabilistic extensions of the well-known process classes BPA and BPP [9].
Moreover, we also show that bisimilarity over normed subclasses of pBPA and pBPP is
decidable in polynomial time.

Let S = (S,Act , D) be a transition system, and let “·” be a binary operator on

S. For every R ⊆ S × S, the symbol
R≡ denotes the least congruence over S wrt. “·”

subsuming R.

Lemma 11. Let R ⊆ S × S, and let Pre(R) be the least set such that R ⊆ Pre(R),
and if (s, t) ∈ Pre(R) then also (su, tu), (us, ut) ∈ Pre(R) for every u ∈ S. Then

≡Pre(R) =
R≡.

Now we formulate three abstract conditions which guarantee the semidecidability of '
over S × S. As we shall see, pBPA and pBPP classes satisfy these conditions.

1. For every finite relation R ⊆ S × S we have that if R expands in
R≡, then

R≡ ⊆ '.

2. There is a finite relation B ⊆ S × S such that
B≡ = ' over S × S (B is called a

bisimulation base).
3. The definition of S is effective in the following sense: the set of states S is recur-

sively enumerable, each state s ∈ S is well-defined, and the problem if s = t · u
for given s, t, u ∈ S is semidecidable.

Lemma 12. If the three conditions above are satisfied, then ' over S × S is semide-
cidable (and thus decidable by applying Corollary 10).

Now we formally introduce pBPA and pBPP processes. Let N = {X,Y, . . .} be
a countably infinite set of constants and Act = {a, b, . . .} a countably infinite set of
actions. The elements of N∗ are denoted α, β, . . ., and the empty word by ε.

Let µ ∈ Disc(Act × N∗) be a distribution. For each α ∈ N∗, the symbol µα
denotes the distribution such that (µα)(a, βα) = µ(a, β), and (µα)(a, γ) = 0 if α is
not a suffix of γ.

Definition 13. A pBPA (pBPP) system ∆ is a finite set of rules of the form X −→ µ
where µ ∈ Disc(Act ×N∗) is a rational distribution with a finite support.

The sets of all constants and actions occurring in ∆ are denoted N(∆) and Act(∆),
respectively. We require that for each X ∈ N(∆) there is at least one rule of the form
X → µ in ∆.

To ∆ we associate the transition system S∆ = (N(∆)∗,Act(∆), D) where the
transitions of D are determined as follows:

X −→ ν ∈ ∆
Xα −→ να

α ∈ N(∆)∗

The elements of N(∆)∗ are called pBPA processes (of ∆).

pBPP systems and processes are defined in the same way, but the elements of
N(∆)∗ are understood modulo commutativity (intuitively, this corresponds to an un-
synchronized parallel composition of constants).

Observe that “ordinary”, i.e., non-probabilistic BPA and BPP systems can be under-
stood as those pBPA and pBPP where all distributions used in basic transitions are Dirac
(see Section 2). Moreover, to every pBPA/pBPP system ∆ we associate its underlying
non-probabilistic BPA/BPP system ∆u defined as follows: for every rule X −→ µ ∈ ∆
we add to ∆u the rules X a−→ α for each (a, α) ∈ supp(µ). If we consider ' as a rela-
tion on the states of S∆u , we can readily confirm that ' is a (non-probabilistic) strong
bisimulation; this follows immediately from Lemma 6. However, ' is generally finer
than strong bisimilarity over the states of S∆u .

Definition 14. Let ∆ be a pBPA or pBPP system. A given X ∈ N(∆) is normed if
there is some w ∈ Act(∆)∗ such that X w−→ ε. The norm of X , denoted n(X), is the
length of the shortest such w. If X ∈ N(∆) is not normed, we put n(X) = ∞. We say
that ∆ is normed if every X ∈ N(∆) is normed.

Note that n(ε) = 0, and if we adopt the usual conventions for ∞, then n(αβ) =
n(α) + n(β). Also note that bisimilar processes must have the same norm. Transition
systems generated by pBPA and pBPP systems are clearly effective in the sense of
condition 3 above. Now we check that conditions 1 and 2 are also satisfied. This is
where new problems (which are specific to the probabilistic setting) arise.

Lemma 15 (condition 1). Let ∆ be a pBPA or a pBPP system. Let R be a binary
relation over N(∆)∗, and let E be a congruence over N(∆)∗ where R ⊆ E. If R

expands in E, then
R≡ expands in E.

It follows from Lemma 15 that
R≡ ⊆ ' whenever R expands in

R≡.

Corollary 16. ' is a congruence over processes of a given pBPA or pBPP system.

Proof. ' expands in
'≡, hence

'≡ ⊆ ' by Lemma 15. ut

It remains to check that bisimilarity over pBPA and pBPP processes can be represented
by a finite base (condition 2 above).

Lemma 17 (condition 2 for pBPP). Let ∆ be a pBPP system. There is a finite relation

B ⊆ N(∆)∗ ×N(∆)∗ such that
B≡ = ' over N(∆)∗ ×N(∆)∗.

Proof. The proof in [9] for (non-probabilistic) BPP relies just on the fact that (non-
probabilistic) bisimilarity is a congruence. Due to Corollary 16, we can use the same
proof also for pBPP. ut

In the case of pBPA, the situation is more complicated. Let Nn ⊆ N(∆) be the set of
all normed variables, and Nu = N(∆)\Nn the set of all unnormed ones.

Lemma 18. Let X ∈ N(∆) and α ∈ N(∆)∗. If n(X) = ∞, then X ' Xα.

Note that due to Lemma 18 we need only ever consider states α ∈ N∗
n ∪ (N∗

n×Nu), the
others being immediately transformed into such a bisimilar state by erasing all symbols
following the first infinite-norm variable.

A careful inspection of the construction for non-probabilistic BPA (as presented in
[9]) reveals the following:

Proposition 19 (see [9]). Let ∆ be a (non-probabilistic) BPA system. Let $ ⊆
N(∆)∗ ×N(∆)∗ be an equivalence satisfying the following properties:

1. if α $ β and α w−→ α′, then there is β w−→ β′ such that α′ $ β′ (note that it implies
that n(α) = n(β));

2. $ is a congruence;
3. if αγ $ βγ for infinitely many pairwise non-equivalent γ’s, then α $ β;

Then there is a finite base B such that
B≡ = $ over N∗

n ∪ (N∗
n×Nu).

So, it suffices to prove that ' (when considered as an equivalence over the states of
the underlying BPA system ∆u) satisfies the conditions 1–3 of Proposition 19. The first
condition follows immediately from Lemma 6, and the second condition follows from
Corollary 16. Condition 3 is proven below, together with one auxiliary result.

Lemma 20. Let α, β be processes of a pBPA system. If α ' γα and β ' γβ for some
γ 6= ε, then α ' β.

Lemma 21. Let α, β be processes of a pBPA system. If αγ ' βγ for infinitely many
pairwise non-bisimilar γ’s, then α ' β.

An immediate consequence of Proposition 19, Lemma 6, Corollary 16, and Lemma 21,
is the following:

Lemma 22 (condition 2 for pBPA). Let ∆ be a pBPA system. There is a finite relation

B ⊆ N(∆)∗ ×N(∆)∗ such that
B≡ = ' over N∗

n ∪ (N∗
n×Nu).

Now we can formulate the first theorem of our paper:

Theorem 23. Bisimilarity for pBPA and pBPP processes is decidable.

3.1 Polynomial-time algorithms for normed pBPA and normed pBPP

In this subsection we show that the polynomial-time algorithms deciding (non-
probabilistic) bisimilarity over the normed subclasses of BPA and BPP processes (see
[9]) can also be adapted to the probabilistic case. We concentrate just on crucial obser-
vations which underpin the functionality of these algorithms, and show that they can be
reformulated and reproved in the probabilistic setting. We refer to [9] for the omitted
parts.

In the probabilistic setting, the polynomial-time algorithms deciding non-
probabilistic bisimilarity over normed BPA and normed BPP processes are modified as
follows: Given a normed pBPA or normed pBPP system∆, we run the non-probabilistic

algorithm on the underlying system ∆u, where the only modification is that the expan-
sion is considered in the probabilistic transition system S∆ (instead of S∆u). To see
that the modified algorithm is again polynomial-time, we need to realize that the prob-
lem if a given pair of pBPA or pBPP processes expands in a polynomially computable
equivalence is decidable in polynomial time. However, it is a simple consequence of
Lemma 9.

Lemma 24. Let ∆ be a pBPA or pBPP system, and E a polynomially computable
equivalence over N(∆)∗. Let α, β be processes of ∆. It is decidable in polynomial
time whether (α, β) expands in E.

The authors have carefully verified that bisimilarity has all the properties which imply
the correctness of these (modified) algorithms. Some of the most important observa-
tions are listed below; roughly speaking, the original non-probabilistic algorithms are
based mainly on the unique decomposition property, which must be reestablished in the
probabilistic setting.

A pBPA or pBPP process α is a prime iff whenever α ' βγ, then either β = ε or
γ = ε (note that α ∈ N).

Lemma 25. Let α, β, γ be processes of a normed pBPA system. Then αγ ' βγ implies
α ' β.

Theorem 26. Every normed pBPA process α decomposes uniquely (up to bisimilarity)
into prime components.

Proof. We can use the same proof as in [9]. It relies on Lemma 25, Corollary 16, and
Lemma 6. ut

Theorem 27. Every normed pBPP process decomposes uniquely (up to bisimilarity)
into prime components.

Proof. As in [9]. It relies on Lemma 6. ut

Now we have all the “tools” required for adapting the observations about non-
probabilistic normed BPA/BPP to the probabilistic setting which altogether imply the
following:

Theorem 28. Bisimilarity is decidable for normed pBPA and normed pBPP processes
in polynomial time.

4 Deciding Bisimilarity between pPDA and pFS Processes

Definition 29. A probabilistic pushdown automaton (pPDA) is a tuple ∆ =
(Q,Γ,Act , δ) where Q is a finite set of control states, Γ is a finite stack alphabet, Act
is a finite set of actions, and δ : (Q× Γ) → 2Disc(Act×(Q×Γ∗)) is a transition function
such that the set δ(p,X) is finite and each µ ∈ δ(p,X) is a rational distribution with a
finite support for all p ∈ Q and X ∈ Γ .

We write pα instead of (p, α) and pA −→ µ instead of µ ∈ δ(p,A). Let ν ∈ Disc(Act×
(Q × Γ ∗)) be a distribution. For each β ∈ Γ ∗, the symbol νβ denotes the distribution
such that (νβ)(a, pαβ) = ν(a, pα), and (νβ)(a, pγ) = 0 if β is not a suffix of γ. Each
pPDA ∆ induces a unique transition system S∆ where Q× Γ ∗ is the set of states, Act
is the set of actions, and transitions are given by the following rule:

pX → ν ∈ δ
pXβ → νβ

β ∈ Γ ∗

The states of S∆ are called pPDA processes of ∆, or just pPDA processes if ∆ is not
significant.

Our aim is to show that ' between pPDA processes and finite-state processes is
decidable in exponential time. For this purpose we adapt the results of [19], where
a generic framework for deciding various behavioral equivalences between PDA and
finite-state processes is developed. In this framework, the generic part of the problem
(applicable to every behavioral equivalence which is a right PDA congruence in the
sense of Definition 31) is clearly separated from the equivalence-specific part that must
be supplied for each behavioral equivalence individually. The method works also in
the probabilistic setting, but the application part would be unnecessarily complicated if
we used the original scheme proposed in [19]. Therefore, we first develop the generic
part of the method into a more “algebraic” form, and then apply the new variant to
probabilistic bisimilarity. The introduced modification is generic and works also for
other (non-probabilistic) behavioral equivalences.

For the rest of this section, we fix a pPDA∆ = (Q,Γ,Act , δ) of sizem and a finite-
state system S = (F,Act , D) of size n (the size of a given µ ∈ Disc(Act × (Q×Γ ∗))
is defined similarly as in Lemma 9). In our complexity estimations we also use the
parameter z = |F ||Q|.

We start by recalling some notions and results of [19]. To simplify our notation, we
introduce all notions directly in the probabilistic setting. We denote F⊥ = F ∪ {⊥},
where ⊥ 6∈ F stands for “undefined”.

Definition 30. For every process pα of ∆ we define the set Mpα = {q ∈ Q | pα −→∗

qε}. A function F : Q → F⊥ is compatible with pα iff F(q) 6= ⊥ for every q ∈ Mpα.
The class of all functions that are compatible with pα is denoted Comp(pα).

For every process pα of ∆ and every F ∈ Comp(pα) we define the process pαF
whose transitions are determined by the following rules:

pα −→ µ

pαF −→ µF F ∈ Comp(pα)
F(p) −→ µ

pF −→ µF
F ∈ Comp(pε)

Here µF is a distribution which returns a non-zero value only for pairs of the form
(a, qβF), where (µF)(a, qβF) = µ(a, qβ), and µF is a distribution which returns a
non-zero value only for pairs of the form (a, pF [s/p]), where µ(a, pF [s/p]) = µ(a, s).
Here F [s/p] : Q → F⊥ is the function which returns the same result as F for every
argument except for p where F [s/p](p) = s. In other words, pαF behaves like pα until
the point when the stack is emptied and a configuration of the form qε is entered; from
that point on, pαF behaves like F(q). Note that if F ∈ Comp(pα) and pα −→∗ qβ,

then F ∈ Comp(qβ). We also put Stack(∆,F) = Γ ∗ ∪ {αF | α ∈ Γ ∗,F ∈ (F⊥)Q},
and P(∆,F) = {pα | p ∈ Q,α ∈ Γ ∗} ∪ {pαF | p ∈ Q,α ∈ Γ ∗,F ∈ Comp(pα)}.

Definition 31. We say that an equivalence E over P(∆,F) ∪ F is a right pPDA con-
gruence (for ∆ and S) iff the following conditions are satisfied:

– For every process pα of ∆ and all ϕ,ψ ∈ Stack(∆,F) we have that if (qϕ, qψ) ∈
E for each q ∈Mpα, then also (pαϕ, pαψ) ∈ E.

– (pF ,F(p)) ∈ E for every pF ∈ P(∆,F).

Let R be a binary relation over P(∆,F) ∪ F . The least right pPDA congruence over

P(∆,F) ∪ F subsuming R is denoted
R≡r. Further, Rpre(R) denotes the least relation

over P(∆,F) ∪ F subsuming R satisfying the following condition: For every process
pα of ∆ and all ϕ,ψ ∈ Stack(∆,F) we have that if (qϕ, qψ) ∈ Rpre(R) for each
q ∈ Mpα, then also (pαϕ, pαψ) ∈ Rpre(R). In general, ≡Rpre(R) is a proper subset

of
R≡r; the relationship between Rpre(R) and

R≡r is revealed in the following lemma:

Lemma 32. Let R be a binary relation over P(∆,F) ∪ F . For every i ∈ N0 we define
a binary relation Ri over P(∆,F) ∪ F inductively as follows: R0 = R, and Ri+1 =

≡Rpre(Ri). Then
R≡r =

⋃
i∈N0

Ri.

For the rest of this section, let us fix a right pPDA congruence $ over P(∆,F) ∪ F
which is decidable for finite-state processes and satisfies the following transfer property:
if s $ t and s −→∗ s′, then there exists t′ such that t −→∗ t′ and s′ $ t′. The following
definitions are also borrowed from [19].

Definition 33. Let ϕ ∈ Stack(∆,F) and F : Q → F⊥. We write ϕ $ F iff for all
p ∈ Q we have that if F(p) 6= ⊥, then pϕ $ F(p).

Further, for every relation K ⊆ Stack(∆,F) × (F⊥)Q we define the set I(K) of
K-instances as follows: I(K) = {(pϕ,F(p)) | (ϕ,F) ∈ K,F(p) 6= ⊥}.

Definition 34. Let K = {(ε,F) | ε $ F} ∪ {(G,F) | G $ F} ∪ K ′ where
K ′ ⊆ Γ×(F⊥)Q ∪ ((Γ×(F⊥)Q)×(F⊥)Q). (That is, K ′ consists of (some) pairs
of the form (X,F) and (XG,F)). We say that K is well-formed iff K satisfies the
following conditions:

– if (XG,F) ∈ K and F(p) 6= ⊥, then G ∈ Comp(pX);
– if (X,F) ∈ K (or (XG,F) ∈ K) and (F ,H) ∈ K, then also (X,H) ∈ K (or

(XG,H) ∈ K, resp.).

It is clear that there are only finitely many well-formed sets, and that there exists the
greatest well-formed setG whose size isO(|Γ | · |F |2·|Q|). Observe thatG is effectively
constructible because $ is decidable for finite-state processes.

Intuitively, well-formed sets are finite representations of certain infinite relations
between processes of P(∆,F) and F , which are “generated” from well-formed sets
using the rules introduced in our next definition:

Definition 35. Let K be a well-formed set. The closure of K, denoted Cl(K), is the
least set L satisfying the following conditions:

(1) K ⊆ L;
(2) if (αG,F) ∈ L, (ε,G) ∈ K, and α 6=ε, then (α,F) ∈ L;
(3) if (αG,F)∈L, (H,G)∈K, and α 6=ε, then (αH,F) ∈ L;
(4) if (αG,F)∈L, (X,G)∈K, and α 6=ε, then (αX,F) ∈ L;
(5) if (αG,F) ∈ L, (XH,G) ∈ K, and α 6=ε, then (αXH,F) ∈ L.

Further, we define Gen(K) = I(Cl(K)).

Observe that Cl and Gen are monotonic and that Gen(K) ⊆ P(∆,F) × F for every
well-formed set K.

An important property of Gen is that it generates only “congruent pairs” as stated
in the following lemma.

Lemma 36. Let K be a well-formed set. Then Gen(K) ⊆ I(K)≡r .

The following well-formed set is especially important.

Definition 37. The base B is defined as follows: B = {(ε,F) | ε $ F} ∪ {(G,F) |
G $ F} ∪ {(X,F) | X $ F} ∪ {(XG,F) | XG $ F}.

The importance of B is clarified in the next lemma.

Lemma 38 (see [19]). Gen(B) coincides with $ over P(∆,F)× F .

Let (W,⊆) be the complete lattice of all well-formed sets, and let Exp : W →W be a
function satisfying the four conditions listed below:

1. Exp(B) = B.
2. Exp is monotonic, i.e. K ⊆ L implies Exp(K) ⊆ Exp(L).
3. If K = Exp(K), then Gen(K) ⊆ $.
4. The membership to Exp(K) is decidable.

According to condition 1, the base B is a fixed-point of Exp. We prove that B is the
greatest fixed-point of Exp. Suppose that K = Exp(K) for some well-formed set
K. By definition of Gen(K) and condition 3 we have that I(K) ⊆ I(Cl(K)) =
Gen(K) ⊆ $. Since for each (ϕ,F) ∈ K we have that F(p) 6= ⊥ implies pϕ $ F(p),
we can conclude that (ϕ,F) ∈ B.

Hence, B can be computed by a simple algorithm which iterates Exp on G until a
fixed-point is found. These conditions are formulated in the same way as in [19] except
for condition 3 which is slightly different. As we shall see, with the help of the new
“algebraic” observations presented above, condition 3 can be checked in a relatively
simple way. This is the main difference from the original method presented in [19].

Similarly as in [19], we use finite multi-automata to represent certain infinite subsets
of P(∆,F).

Definition 39. A multi-automaton is a tuple M = (S,Σ, γ,Acc) where

– S is a finite set of states such that Q ⊆ S (i.e, the control states of ∆ are among
the states of M);

– Σ = Γ ∪ {F | F : Q → F⊥} is the input alphabet (the alphabet has a special
symbol for each F : Q→ F⊥);

– γ ⊆ S ×Σ × S is a transition relation;
– Acc ⊆ S is a set of accepting states.

Every multi-automaton M determines a unique set

L(M) = {pw | p ∈ Q,w ∈ Σ∗, γ(p, w) ∩Acc 6= ∅}

The following tool will be useful for deciding the membership to Exp(K).

Lemma 40. Let K be a well-formed set. The relation R = (≡Gen(K) ∩ (F × F)) is
computable in time polynomial in m,n, z. Moreover, for each equivalence class C ∈
F/R there is a multiautomatonMK,C accepting the setC ′ ⊆ P(∆,F) whereC∪C ′ ∈
(P(∆,F) ∪ F)/≡Gen(K). The automaton MK,C is constructible in time polynomial
in m,n, z.

4.1 Deciding ' between pPDA and finite-state processes

We apply the abstract framework presented in the previous section. That is, we show
that ' is a right pPDA congruence and define an appropriate function Exp satisfying
the four conditions given earlier. We start with an auxiliary result.

Lemma 41. Let R be a binary relation over P(∆,F) ∪ F . If R expands in
R≡r then

R≡r ⊆ '.

The next lemma follows immediately from Lemma 41.

Lemma 42. ' is a right pPDA congruence.

Definition 43. Given a well-formed set K, the set Exp(K) consists of all pairs
(ϕ,F) ∈ K such that for each p ∈ Q we have that if F(p) 6= ⊥, then (pϕ,F(p))
expands in ≡Gen(K).

Now we verify the four conditions that must be satisfied by Exp. The first condition
follows easily from the fact that Gen(B) coincides with ' over P(∆,F)×F , because
if (pϕ,F(p)) ∈ I(B), then ' = ≡Gen(B) over succ(pϕ) ∪ succ(F(p)). The second
condition is obvious.

Lemma 44. Exp(K) = K implies ≡Gen(K) ⊆ '.

Proof. Exp(K) = K implies that each pair of I(K) expands in ≡Gen(K). But then

each pair of I(K) expands in
I(K)≡r by Lemma 3 and Lemma 36. Thus, ≡Gen(K) ⊆

I(K)≡r ⊆ ' by Lemma 41. ut
Lemma 45. Exp(K) is computable in time polynomial in m,n, z.

Proof. Let (pα,F(p)) ∈ I(K) and U = succ(pα) ∪ succ(F(p)). It follows immedi-
ately from Lemma 40 that the equivalence relation ≡Gen(K) ∩ (U × U) can be com-
puted in time polynomial in m,n, z. The claim then follows from Lemma 9. ut

Now we can formulate our next theorem.

Theorem 46. Probabilistic bisimilarity between pPDA and finite-state processes is de-
cidable in time which is polynomial in m,n, z. That is, the problem is decidable in
exponential time for general pPDA, and in polynomial time for every subclass of pPDA
where the number of control states is bounded by some constant (in particular, this
applies to pBPA).

Proof. Let pα be a pPDA process and f a finite-state process. We can assume (w.l.o.g.)
that α = X for some X ∈ Γ . The algorithm computes the base B by first computing
the greatest well-formed relation G and then iterating Exp until a fixed-point is found.
Then, it suffices to find out if there is a pair (X,F) ∈ B such that F(p) = f . Note that
this takes time polynomial in m,n, z, because

– G is computable in time polynomial in m,n, z. This is because the size of G is
O(|Γ | · |F |2·|Q|) and ' over finite-state systems is decidable in polynomial time
[10].

– Exp is computable in time polynomial in m,n, z due to Lemma 45.
– The algorithm needs at most |G|, i.e., O(|Γ | · |F |2·|Q|) iterations to reach a fixed-

point. ut

5 Conclusions

The results presented in this paper show that various forms of probabilistic bisimilar-
ity are decidable over certain classes of infinite-state systems. In particular, this pa-
per advocates the use of algebraic methods which were originally developed for non-
probabilistic systems. These methods turn out to be surprisingly robust and can be ap-
plied also in the probabilistic setting.

An obvious question is whether the decidability/tractability results for other non-
probabilistic infinite-state models can be extended to the probabilistic case. We conjec-
ture that the answer is positive in many cases, and we hope that the results presented in
this paper provide some hints and guidelines on how to achieve that. Another interesting
question is whether we could do better than in the non-probabilistic case. In particular,
undecidability results and lower complexity bounds do not carry over to fully prob-
abilistic variants of infinite-state models (fully probabilistic systems are probabilistic
systems where each state s has at most most one out-going transition s −→ µ). It is still
possible that methods specifically tailored to fully probabilistic models might produce
better results than their non-probabilistic counterparts. This also applies to probabilistic
variants of other behavioural equivalences, such as trace or simulation equivalence.

References

[1] P.A. Abdulla, C. Baier, S.P. Iyer, and B. Jonsson. Reasoning about probabilistic chan-
nel systems. In Proceedings of CONCUR 2000, volume 1877 of LNCS, pages 320–330.
Springer, 2000.

[2] P.A. Abdulla and A. Rabinovich. Verification of probabilistic systems with faulty commu-
nication. In Proceedings of FoSSaCS 2003, volume 2620 of LNCS, pages 39–53. Springer,
2003.

[3] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. It usually
works: The temporal logic of stochastic systems. In Proceedings of CAV’95, volume 939
of LNCS, pages 155–165. Springer, 1995.

[4] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s fair abstrac-
tion rule. TCS, 51(1):129–176, 1987.

[5] C. Baier and B. Engelen. Establishing qualitative properties for probabilistic lossy channel
systems: an algorithmic approach. In Proceedings of 5th International AMAST Workshop
on Real-Time and Probabilistic Systems (ARTS’99), volume 1601 of LNCS, pages 34–52.
Springer, 1999.

[6] C. Baier, H. Hermanns, and J. Katoen. Probabilistic weak simulation is decidable in poly-
nomial time. Information Processing Letters, 89(3):123–130, 2004.

[7] A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In Proceedings of FST&TCS’95, volume 1026 of LNCS, pages 499–513. Springer, 1995.

[8] T. Brázdil, A. Kučera, and O. Stražovský. Deciding probabilistic bisimilarity over infinite-
state probabilistic systems. Technical report FIMU-RS-2004-06, Faculty of Informatics,
Masaryk University, 2004.

[9] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. Hand-
book of Process Algebra, pages 545–623, 1999.

[10] S. Cattani and R. Segala. Decision algorithms for probabilistic bisimulation. In Proceedings
of CONCUR 2002, volume 2421 of LNCS, pages 371–385. Springer, 2002.

[11] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state proba-
bilistic programs. In Proceedings of 29th Annual Symposium on Foundations of Computer
Science, pages 338–345. IEEE, 1988.

[12] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. JACM,
42(4):857–907, 1995.

[13] L. de Alfaro, M.Z. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model
checking of probabilistic processes using MTBDDs and the Kronecker representation. In
Proceedings of TACAS 2000, volume 1785 of LNCS, pages 395–410. Springer, 2000.

[14] J. Esparza, A. Kučera, and R. Mayr. Model-checking probabilistic pushdown automata. In
Proceedings of LICS 2004. IEEE, 2004. To appear.

[15] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

[16] M. Huth and M.Z. Kwiatkowska. Quantitative analysis and model checking. In Proceed-
ings of LICS’97, pages 111–122. IEEE, 1997.

[17] S.P. Iyer and M. Narasimha. Probabilistic lossy channel systems. In Proceedings of TAP-
SOFT’97, volume 1214 of LNCS, pages 667–681. Springer, 1997.

[18] B. Jonsson, W. Yi, and K.G. Larsen. Probabilistic extensions of process algebras. Hand-
book of Process Algebra, pages 685–710, 1999.

[19] A. Kučera and R. Mayr. A generic framework for checking semantic equivalences between
pushdown automata and finite-state automata. In Proceedings of IFIP TCS’2004. Kluwer,
2004. To appear.

[20] M.Z. Kwiatkowska. Model checking for probability and time: from theory to practice. In
Proceedings of LICS 2003, pages 351–360. IEEE, 2003.

[21] K. Larsen and A. Skou. Bisimulation through probabilistic testing. I&C, 94(1):1–28, 1991.
[22] A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In Proceedings

of ICALP 2003, volume 2719 of LNCS, pages 1008–1021. Springer, 2003.
[23] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. NJC,

2(2):250–273, 1995.

