Regular separability of

languages of
well-structured transition systems

Roland Mayer
Wojciech Czerwiriski Sebastian Muskalla
K Narayan Kumar Stawomir Lasota Prakash Saivasan
CMI Chennai University of Warsaw TU Braunschweig

Inhimity 2018, Prague

1

Regular separability of

languages of
well-structured transition systems

Roland Mayer
Wojciech Czerwiriski Sebastian Muskalla
K Narayan Kumar Stawomir Lasota Prakash Saivasan
CMI Chennai University of Warsaw TU Braunschweig

[Mukund, Kumar, Radhakrishnan, Sohoni 98]

Inhimity 2018, Prague

1

languages of finite words

Regular separability

Fix a class of languages C

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?

L.e., 1s there a regular language R with L& R and RN K = &?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

Symmetric in L, K

Question: are these two languages separated by a regular language?

L.e., 1s there a regular language R with L& R and RN K = &?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

Symmetric in L, K

Parametric in C

Question: are these two languages separated by a regular language?

L.e., 1s there a regular language R with L& R and RN K = &?

[s regular separability useful?

[s regular separability useful?

separator as a classifier:

classify a word from L. U K
into L or K

[s regular separability useful?

separator as a classifier: language-theoretlc verification:

classify a word from L. U K separator proves absence of

into L or K undesirable behavior

[s regular separability useful?

separator as a classifier: language-theoretlc verification:

classify a word from L. U K separator proves absence of

into L or K undesirable behavior

separator as a recognizer:

recognize L inside K

4

[s regular separability useful?

separator as a classifier: language-theoretlc verification:

classify a word from L. U K separator proves absence of

into L or K undesirable behavior

separator as a recognizer:

recognize L inside K

4

Regular separability

Regular separability

Regular separability

* decision problem: are given I, K regular-separable?

Regular separability

* decision problem: are given I, K regular-separable?

* computation problem: compute a regular separator of given L, K

Regular separability

* decision problem: are given I, K regular-separable?
* computation problem: compute a regular separator of given L, K

* qualitative characterization: sufficient (and necessary) condition

for regular-separability

Regular separability

* decision problem: are given I, K regular-separable?
* computation problem: compute a regular separator of given L, K

* qualitative characterization: sufficient (and necessary) condition

for regular-separability

* quantitative characterization: bound on the size of a separator

5

Regular separability

* decision problem: are given I, K regular-separable?
* computation problem: compute a regular separator of given L, K

* qualitative characterization: sufficient (and necessary) condition

for regular-separability

* quantitative characterization: bound on the size of a separator

5

Regular separability of WSTS languages

Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,

Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,

under some mild assumptions.

Yo WSTS: well-structured transition system

“/5WSTS: well-structured transition system

“/5WSTS: well-structured transition system

-y

- a finite alphabet

“/5WSTS: well-structured transition system

-y

- a finite alphabet
- set of states S

“/5WSTS: well-structured transition system

-y

- a finite alphabet
- set of states S

- a subset I of in1t1al states

“/5WSTS: well-structured transition system

-y

- a finite alphabet
- set of states S
- a subset I of initial states

- a subset F of final states

“/5WSTS: well-structured transition system

-y

- a finite alphabet
- set of states S

- a subset I of in1t1al states
the language

- bset F of final stat
d SUDSE O 1Nnal states OfaTS

- transition relation —&

“/5WSTS: well-structured transition system

-y

- a finite alphabet
set of states S

a subset I of 1nitial states

the language
of a TS

a subset F of final states

- transition relation —&

- quasi-order < on states

“/5WSTS: well-structured transition system

-y

- a finite alphabet
- set of states S

- a subset I of in1t1al states
the language

- bset F of final stat
d SUDSE O 1Nnal states ofaTS

- transition relation —&

- quasi-order < on states

“/5WSTS: well-structured transition system

AN

- a finite alphabet
set of states S

a subset I of 1nitial states

the language
of a TS

a subset F of final states

- transition relation —&

- quasi-order < on states

- quasi-order 1s a WOO

7

“/5WSTS: well-structured transition system

. Y
2o
0%
,CO& &0(6a
> oo stem
o e gransidio” &

AN

- a finite alphabet
- set of states S

- a subset I of in1t1al states

the language

- a subset F of final states
of a TS

- transition relation —&

- quasi-order < on states

- quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

. Y
2o
0%
,C/O{O &0(ea
> oo stem
o e gransidio” &

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed

the language

- a subset F of final states
of a TS

- transition relation —&

- quasi-order < on states

- quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

. <
o
0%
,C/O{Q ’g\)(ea
> 0 stem
o e gransidio” &

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed

- I 1s downward closed

the language

- bset F of final stat
d SUDSE O 1Nnal states ofaTS

- transition relation —&

- quasi-order < on states

- quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

AN\
R
Q‘b«
,C/O{Q)g\)(ea
NNEs \,5"(00 systet™
\)Q ‘\Ne\ kY aﬂSl 1 n

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed
- I 1s downward closed
- upward-compatibility: the language

- bset F of final stat
d SUDSE O 1Nnal states ofaTS

- transition relation —&

- quasi-order < on states

- quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

. Y
2o
0%
,C/O{Q)g\)(ea
> oo stem
o e gransidio” &

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed
- I 1s downward closed

- upward-compatibility: the language

- bset F of final stat
d SUDSE O 1Nnal states ofaTS

- transition relation —&

- quasi-order < on states
v

v ° "¢ - quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

. Y
2o
0%
,C/O{Q)g\)(ea
> oo stem
o e gransidio” &

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed
- I 1s downward closed

- upward-compatibility: the language

- a subset F of final states
of a TS

a = - transition relation —2,
® > o .
- quasi-order < on states
v v
a

v ° "¢ - quasi-order 1s a WQO

7

“/5WSTS: well-structured transition system

NG
O A\S
@Q?’ ‘a@o\
0 e
S N pose
< o5 o o© . stem
50440 o9 eV ransitiot =

- a finite alphabet
- set of states S

- a subset I of in1t1al states

- F 1s upward closed
- I 1s downward closed

- upward-compatibility: the language

- a subset F of final states
of a TS

2 = - transition relation —2,
® > o .
- quasi-order < on states
v v
a

v ° "¢ - quasi-order 1s a WQO

7

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise

2, 3,0) < (4, 3, 5)

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise

- Higman: A™ ordered by word embedding

2, 3,0) < (4, 3, 5)

age < prague

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise

- Higman: A™ ordered by word embedding
- Kruskal tree embedding

2, 3,0) < (4, 3, 5)

age < prague

WQO: well quasi order

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise

- Higman: A™ ordered by word embedding
- Kruskal tree embedding

- Graph minor ordering

2, 3,0) < (4, 3, 5)

age < prague

Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise (2,3,0) <, 3,5)
- Higman: A* ordered by word embedding age < prague
- Kruskal tree embedding

- Graph minor ordering

Def: a quasi order 1s an a)Q-WQO if
its downward closed subsets (ordered by inclusion) are a WQO

UWSTS examples:

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- 1ossy FIFO or counter automata

- states = Nk

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- 1ossy FIFO or counter automata

- states = Nk

- I = imitial vector|

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

- states = Nk
- I = imitial vector|

- F = final vector{

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

- states = K
- I = imitial vector|
- F = final vector{

- transition relation by addition

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

- states = N %

- I = imitial vector|

- F = final vector{

- transition relation by addition

- Dickson order <

UWSTS examples:

- Petr1 nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

upward compatibility: - states = NK

a = - I = in1t1al vector|
® > @

- F = final vector{

4 v - transition relation by addition

o > o - Dickson order <

\

UWSTS examples:

- Petri nets, vector addition systems, and extensions thereof

- lossy FIFO or counter automata

upward compatibility: - states = NK

a = - I = in1t1al vector|
® > o

- F = final vector{

4 v - transition relation by addition

o > o - Dickson order <

\

DWSTS examples:

- gainy FIFO or counter automata

Regular separability of “/;WSTS languages

10

Regular separability of “[;WSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s ﬁnitely-branching.

10

Regular separability of “[;WSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s ﬁnitely-branching.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

10

Regular separability of “[;WSTS languages

every state has

finitely many a-successors

Theorem: |

“very two disjoint UWSTS are regulaf-separable,

whenever one of them 1s ﬁnitely-branching.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

10

Regular separability of “[;WSTS languages

every state has

finitely many a-successors

Theorem: |

“very two disjoint UWSTS are regulaf-separable,

whenever one of them 1s ﬁnitely-branching.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

\ every state has

exactly one a-successor

10

Regular separability of “[;WSTS languages

every state has

finitely many a-successors

Theorem: |

“very two disjoint UWSTS are regulaf-separable,

whenever one of them 1is deterministic.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

\ every state has

exactly one a-successor

10

UWSTS

language

UWSTS

language every state has

ﬁnitely many a-successors

Theorem: Every two disjoint UWSTS are regulaf-separable,

whenever one of them 1is deterministic.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

\ every state has

exactly one a-successor

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

10

Further consequences

Corollary: Every two disjoint ®” -UWSTS or > -DWSTS languages

are reg ular-separ able .

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transter VASS (with coverability acceptance),

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transter VASS (with coverability acceptance),
- lossy FIFO/counter automata,

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transter VASS (with coverability acceptance),
- lossy FIFO/counter automata,

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transter VASS (with coverability acceptance),
- lossy FIFO/counter automata,

are regular-separable. Alike for gainy FIFO/counter automata.

11

Corollary: Every two disjoint o> -UWSTS or @’ -DWSTS languages

are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transter VASS (with coverability acceptance),
- lossy FIFO/counter automata,

are regular-separable. Alike for gainy FIFO/counter automata.

Corollary: No subclass of U/DWSTS languages closed under complement

beyond regular languages.

11

UWSTS

language

UWSTS

language

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

Proof: Main ingredients

12

UWSTS

language

UWSTS

language

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

Proof: Main ingredients

- inductive invariant in the synchronized product of U/DWSTS

12

UWSTS

language

UWSTS

language

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

Proof: Main ingredients

- inductive invariant in the synchronized product of U/DWSTS

- ideal completion of a UWSTS

12

we could stop here...

13

Inductive invariant

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed

-1 X

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed

-1 X
-XNF=0

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed
-1C X

- XNF=0

- successors(X) € X

14

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed
-1C X

- XNF=0

- successors(X) € X

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

14

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed
-1C X

- XNF=0

- successors(X) € X

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

- the downward closure of the reachability set

- the complement of the backward reachability set

14

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed
-1C X

- XNF=0

- successors(X) € X

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

- the downward closure of the reachability set

- the complement of the backward reachability set

In particular, the synchronized product of two disjoint UTS admits one.

14

Inductive invariant

Def: An inductive invariant in a UTS 1s a subset X C S of states s.t.

- X 1s downward closed
-1C X

- XNF=0

- successors(X) € X

Fact: Every empty-language UTS admits an inductive invariant, e.g.,
Iy emp guag g

- the downward closure of the reachability set

- the complement of the backward reachability set

In particular, the synchronized product of two disjoint UTS admits one.

We will need finitary inductive invariants Q |, namely Q finite.

14

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then
W and V are separated by an automaton with state space Q.

[€Ql

Proof: We define automaton A to overapproximate WxV wrt <.
o ——»©

\/ \'i
e ——>eo

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

[€Ql

Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©

Y/, \
o —>o

Final states of A: the W-component 1s final in W,

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then
W and V are separated by an automaton with state space Q.

[€Ql

Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©

Final states of A: the W-component 1s final in W,
Thus L(W) C L(A). Y |

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then
W and V are separated by an automaton with state space Q.
Q)
Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©O

Final states of A: the W-component 1s final in W,
Thus L(W) C L(A). Y |

Using determinacy of V,
the V—component of every state reached by A along some word

15

Key Lemma: It the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then
W and V are separated by an automaton with state space Q.
Q)
Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©O

Final states of A: the W-component 1s final in W,
Thus L(W) C L(A). Y |

Using determinacy of V,
the V—component of every state reached by A along some word

<-dominates the unique state reached by V along this word.

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

[€Ql

Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©

Y/, \
o —>o

Final states of A: the W-component 1s final in W,
Thus L(W) € L(A).

Using determinacy of V,
the V—component of every state reached by A along some word

<-dominates the unique state reached by V along this word.

Thus L(A) N L(V) = &.]

15

From inductive invariant to separator

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

[€Ql

Proof: We define automaton A to overapproximate WxV wrt <.
® ——»©

\/ \'i
e ——>eo

Final states of A: the W-component 1s final in W,
Thus L(W) € L(A).

Using determinacy of V,
the V—component of every state reached by A along some word

<-dominates the unique state reached by V along this word.

Thus L(A) N L(V) = &.]

It remains to demonstrate existence of a finite Q.

15

Regular separability of DWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

16

Key Lemma: It the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

Proof: Apply Key Lemma to inverses of DWSTS which are UTS.

16

Key Lemma: It the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

Proof: Apply Key Lemma to inverses of DWSTS which are UTS.

Finite min of upward closed set inverses to

finite max of downward closed sets. (]

16

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q finite.

17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q finite.

Def: An ideal in a quasi-order 1s any downward closed (3, w, 4)
directed subset thereof.

17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q finite.

Def: An ideal in a quasi-order 1s any downward closed (3, w, 4)
directed subset thereof.

Finite ideal decomposition: Every downward closed subset of a
WQQO is a finite union of 1deals.

17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q finite.

Def: An ideal in a quasi-order 1s any downward closed (3, w, 4)
directed subset thereof.

Finite ideal decomposition: Every downward closed subset of a
WQQO is a finite union of 1deals.

Ideal completion: extend quasi-order by all its 1deals.

17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q hinite.

Def: An ideal in a quasi-order 1s any downward closed (3, w, 4)
directed subset thereof.

Finite ideal decomposition: Every downward closed subset of a
WQOQO is a finite union of 1deals.

Ideal completion: extend quasi-order by all its 1deals.

Fact 1: Ideal completion of a (deterministic) UWSTS 1s

a language-equivalent (deterministic) UTS.

17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q |, for Q hinite.

Def: An ideal in a quasi-order 1s any downward closed (3, m, 4)

directed subset thereof.

Finite ideal decomposition:

EVCI:Y dOWIlW&I’d ClOSGd subset Of a

WQOQO is a finite union of 1deals.

Ideal completion: extend quasi-order by all its 1deals.

Fact 1: Ideal completion of a (deterministic) UWSTS 1s

a language-equivalent (deterministic) UTS.

Fact 2: Ideal completion commutes with synchronized product.

17

Recall: We need a finitary inductive invariant Q |, for Q hinite.

Def: An ideal in a quasi-order 1s any downward closed (3, w, 4)
directed subset thereof.

Finite ideal decomposition: Every downward closed subset of a
WQOQO is a finite union of 1deals.

Ideal completion: extend quasi-order by all its 1deals.

Fact 1: Ideal completion of a (deterministic) UWSTS 1s
a language-equivalent (deterministic) UTS.

Fact 2: Ideal completion commutes with synchronized product.

Fact 3: For every inductive invariant in a UWSTS,
its finite 1deal decomposition 1s a finitary inductive invariant

in the 1deal completion of this UWSTS.

17

Regular separability of UWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

18

Regular separability of UWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.
Fact 1: Ideal completion of a (deterministic) UWSTS is
a language-equivalent (deterministic) UTS.

Proof: Apply Key LLemma to the 1deal completions of the UWSTS.

18

Regular separability of UWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Fact 1: Ideal completion of a (deterministic) UWSTS is
a language-equivalent (deterministic) UTS.

Proof: Apply Key LLemma to the 1deal completions of the UWSTS.

Synchronized product of idea completions, isomorphic to

18

Regular separability of UWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Fact 1: Ideal completion of a (deterministic) UWSTS is
a language-equivalent (deterministic) UTS.

Proof: Apply Key LLemma to the 1deal completions of the UWSTS.

Synchronized product of idea completions, isomorphic to

Fact 2: Ideal completion commutes

ideal completion of synchronized produet,
with synchronized product.

18

Regular separability of UWSTS languages

Key Lemma: If the synchronized product WxV of two UTS,

V deterministic, admits an inductive invariant Q |, then

W and V are separated by an automaton with state space Q.

J

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them 1s deterministic.

Fact 1: Ideal completion of a (deterministic) UWSTS is
a language-equivalent (deterministic) UTS.

Proof: Apply Key LLemma to the 1deal completions of the UWSTS.

Synchronized product of idea completions, isomorphic to

ideal completion of synchronized produet, :
Fact 2: Ideal completion commutes

[]

admits a ﬁmtary inductive invariant. | ;. synchronized product.

Fact 3: For every inductive invariant in a UWSTS,
its finite 1deal decomposition 1s a ﬁnitary inductive invariant

in the ideal completion of this UWSTS.

18

Language expressibility “/;WSTS

19

Language expressibility “/;WSTS

Theorem: The following relations between the language classes:

19

Language expressibility “y;WSTS

Theorem: The following relations between the language classes:

- @2 -UWSTS C det. UWSTS = fin-bran. UWSTS C all UWSTS

- 0° - DWSTS C det. DWSTS C fin-bran. DWSTS = all DWSTS

19

Language expressibility “;WSTS

Theorem: The following relations between the language classes:

- @2 -UWSTS C det. UWSTS = fin-bran. UWSTS C all UWSTS

- w”-DWSTS C det. DWSTS C fin-bran. DWSTS = all DWSTS
- 0”-UWSTS C... det. DWSTS
- w2 -DWSTS C._ det. UWSTS

19

[eft tor tuture

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Every two disjoint DWSTS are regular-separable,

whenever one of them 1s deterministic.

20

[ett tor future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C all UWSTS

-DWSTS C det. DWSTS C fin-bran. DWSTS = all DWSTS
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

l\Dl\Dl\D

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C

"DWSTS C det. DWSTS C fin-bran. DWSTS =
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

all UWSTS

l\Dl\Dl\D

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C all UWSTS

"DWSTS C det. DWSTS C fin-bran. DWSTS =
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

l\Dl\Dl\D

Obvious generalizations:

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C

"DWSTS C det. DWSTS C fin-bran. DWSTS =
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

all UWSTS

l\Dl\Dl\D

Obvious generalizations:

- languages of trees instead of words (BVASS coverability languages)

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C

"DWSTS C det. DWSTS C fin-bran. DWSTS =
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

all UWSTS

l\Dl\Dl\D

Obvious generalizations:
- languages of trees instead of words (BVASS coverability languages)
- orbit-finite alphabets instead of finite ones (data VAS)

20

[ett for future

Theorem: Every two disjoint UWSTS are regular-separable,

whenever one of them is finitely-branching.

Theorem: The following relationsbetween the language classes:

- a)2 UWSTS C det. UWSTS = fin-bran. UWSTS C

"DWSTS C det. DWSTS C fin-bran. DWSTS =
-UWSTS C,., det. DWSTS

- @ -DWSTS C,., det. UWSTS

all UWSTS

l\Dl\Dl\D

Obvious generalizations:
- languages of trees instead of words (BVASS coverability languages)
- orbit-finite alphabets instead of finite ones (data VAS)

20

Regular separability as a decision problem

undecidable
decidable

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Willlams '76]
[Hunt '82]

undecidable
decidable

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Willlams 76
[Hunt '82]

nondet. OCA [Czerwinski, L. "17]

nondet. OCN = 1-VASS
| Czerwiniski, L. '17]

undecidable
decidable

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Willlams 76
[Hunt '82]

nondet. OCA [Czerwinski, L. "17]
epafab.l\ity B

regular s

nondet. OCN = 1-VASS
| Czerwiniski, L. '17]

undecidable nondet. Parikh automata = integer VASS
decidable [Clemente, Czerwiniski, L., Paperman '17]

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Willlams 76
[Hunt '82]

nondet. OCA [Czerwinski, L. "17]

nondet. OCN = 1-VASS
| Czerwiniski, L. '17]

undecidable nondet. Parikh automata = integer VASS
decidable [Clemente, Czerwiniski, L., Paperman '17]

commutative closures of VASS
[Clemente, Czerwiniski, L., Paperman '17]

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

nondet. OCA [Czerwinski, L. '17°

nondet. OCN = 1-VASS
| Czerwiniski, L. '17]

undecidable nondet. Parikh automata = integer VASS
decidable [Clemente, Czerwiniski, L., Paperman '17]
commutative closures of VASS Coverability VASS

[Clemente, Czerwiniski, L., Paperman '17]

21

Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

nondet. OCA [Czerwinski, L. '17°

d

S5
VB nondet. OCN = 1-VASS
| Czerwiniski, L. '17]

undecidable nondet. Parikh automata = integer VASS
decidable [Clemente, Czerwiniski, L., Paperman '17]
commutative closures of VASS Coverability VASS

[Clemente, Czerwiniski, L., Paperman '17]

21

Regular separability as a decision problem

undecidable
decidable nondet. PDA [Szymanski, Williams 76
r [Hunt ‘82
Sul, _
ok €y, nondet. OCA [Czerwinski, L. '17°
regular s Parabihty o
2\ PsSSq'
nondet. OCN = 1-VASS
| Czerwiniski, L. '17]
[Valk, Vidal-Naquet '81]
undecidable nondet. Parikh automata = integer VASS
decidable [Clemente, Czerwiniski, L., Paperman '17]
| Cadilhac, Finkel, McKenzie '11]
commutative closures of VASS COVeI’ability VASS

[Clemente, Czerwiniski, L., Paperman '17] [Worrell "17]

21

Regular separability as a decision problem

Undecidable
decidable nondet. PDA [Szymanski, Williams '76]
r [Hunt ‘82
Suly,, D
det. PDA [Kopczynski '16] PI{} nondet. OCA [Czerwinski, L. '17]
[Valiant '75] LY ETp—
regular s€p arabilty
det. OCA 9,
| Czerwiniski, L. '17] VBSS °
nondet. OCN = 1-VASS
| Czerwiniski, L. '17]
[Valk, Vidal-Naquet '81]
undecidable . nondet. Parikh automata = integer VASS
decidable det. Parikh automata [Clemente, Czerwiniski, L., Paperman '17]
[Cadilhac, Finkel, McKenzie "11] | Cadilhac, Finkel, McKenzie '11]
commutative closures of VASS COVeI’ability VASS

[Clemente, Czerwiniski, L., Paperman '17] [Worrell "17]

21

Regular separability as a decision problem

undecidable
decidable nondet. PDA [Szymanski, Williams 76
ra [Hunt ‘82
. gl[jélp : . . R
det. PDA [Kopczynski '16] Ly, nondet. OCA [Czerwinski, L. '17]

[Valiant '75]

det. OCA 2,

| Czerwiniski, L. '17] VBSS °
nondet. OCN = 1-VASS

| Czerwiniski, L. '17]

[Valk, Vidal-Naquet '81]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiniski, L., Paperman '17]

| Cadilhac, Finkel, McKenzie '11]

coverability VASS
[Worrell '17]

undecidable
decidable

det. Parikh automata
[Cadilhac, Finkel, McKenzie '11]

commutative closures of VASS
[Clemente, Czerwiniski, L., Paperman '17]

21

