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Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,

under some mild assumptions.
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Def: a quasi order 1s a WQQO if 1t has:

- no infinite descending chain

- no infinite antichain

Examples:
- Dickson: N¥ ordered pointwise (2,3,0) <, 3,5)
- Higman: A* ordered by word embedding age < prague
- Kruskal tree embedding

- Graph minor ordering

Def: a quasi order 1s an a)Q-WQO if
its downward closed subsets (ordered by inclusion) are a WQO
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are regular-separable. Alike for gainy FIFO/counter automata.
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- successors(X) € X

Fact: Every empty-language UTS admits an inductive invariant, e.g.,
Iy emp guag g

- the downward closure of the reachability set

- the complement of the backward reachability set

In particular, the synchronized product of two disjoint UTS admits one.

We will need finitary inductive invariants Q |, namely Q finite.
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Using determinacy of V,
the V—component of every state reached by A along some word

<-dominates the unique state reached by V along this word.

Thus L(A) N L(V) = &. ]

It remains to demonstrate existence of a finite Q.
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Finite min of upward closed set inverses to

finite max of downward closed sets. (]
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WQOQO is a finite union of 1deals.

Ideal completion: extend quasi-order by all its 1deals.

Fact 1: Ideal completion of a (deterministic) UWSTS 1s
a language-equivalent (deterministic) UTS.

Fact 2: Ideal completion commutes with synchronized product.

Fact 3: For every inductive invariant in a UWSTS,
its finite 1deal decomposition 1s a finitary inductive invariant

in the 1deal completion of this UWSTS.
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