

Regular separability of languages of well-structured transition systems

K Narayan Kumar

CMI Chennai

Wojciech Czerwiński
Sławomir Lasota

University of Warsaw

Roland Mayer
Sebastian Muskalla
Prakash Saivasan

TU Braunschweig

Infinity 2018, Prague

Regular separability of languages of well-structured transition systems

K Narayan Kumar

CMI Chennai

[Mukund, Kumar, Radhakrishnan, Sohoni '98]

Wojciech Czerwiński
Sławomir Lasota

University of Warsaw

Roland Mayer
Sebastian Muskalla
Prakash Saivasan

TU Braunschweig

Infinity 2018, Prague

languages of finite words

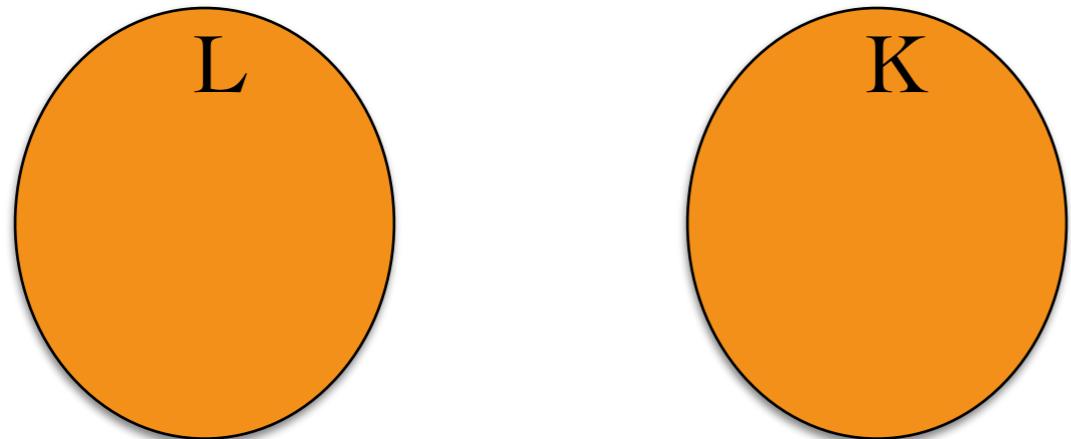
Regular separability

Fix a class of languages C

Regular separability

Fix a class of languages C

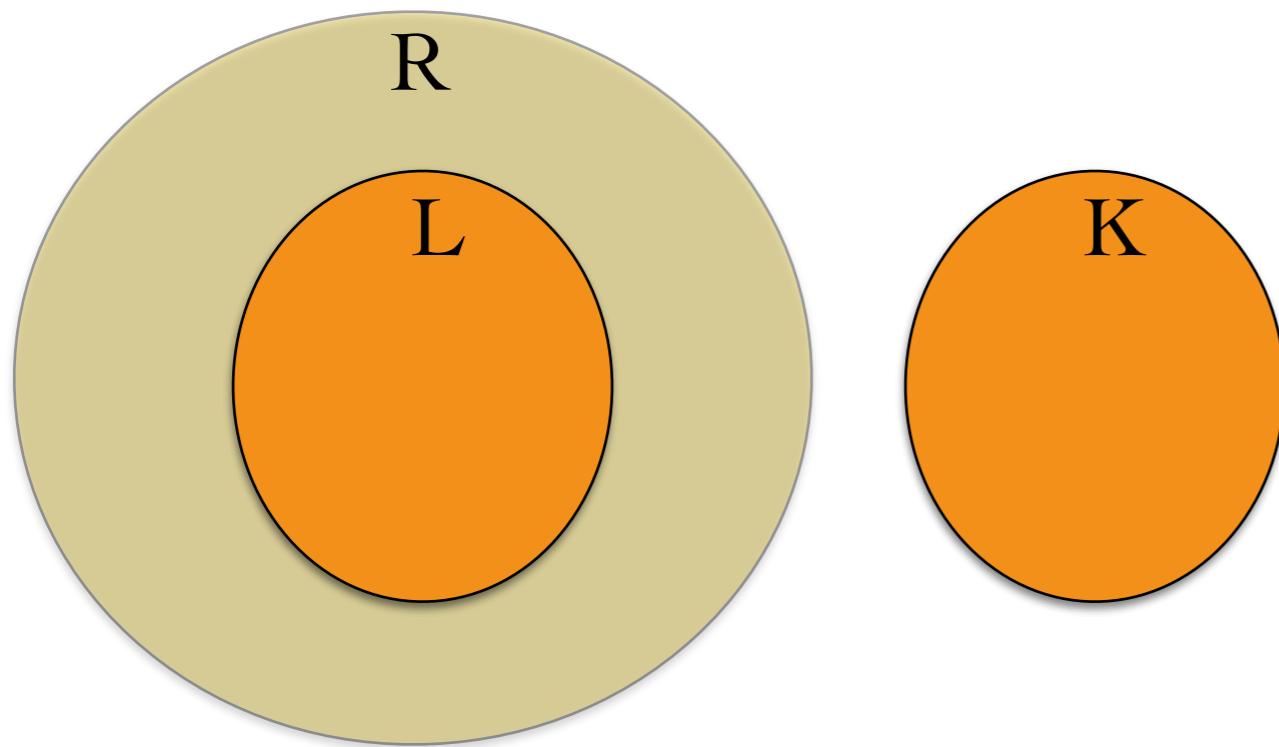
Input: two (disjoint) languages L, K from C



Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

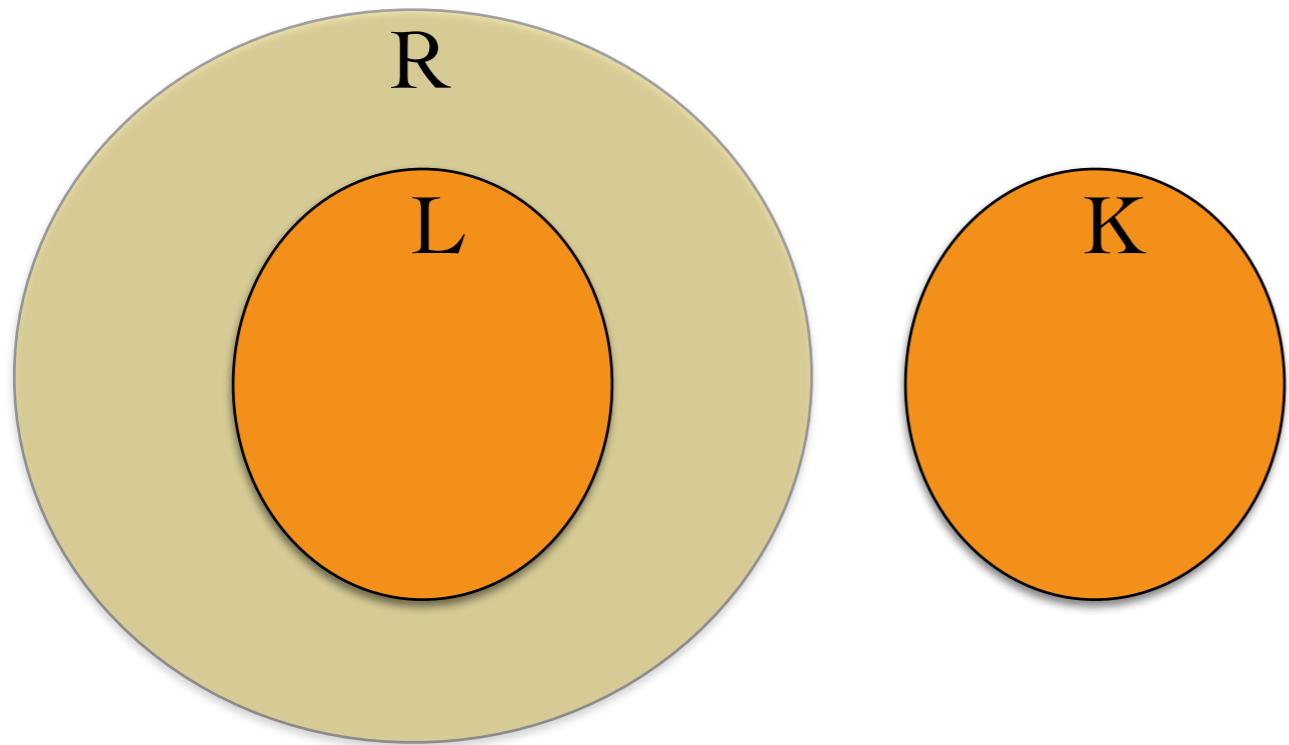


Question: are these two languages **separated** by a regular language?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

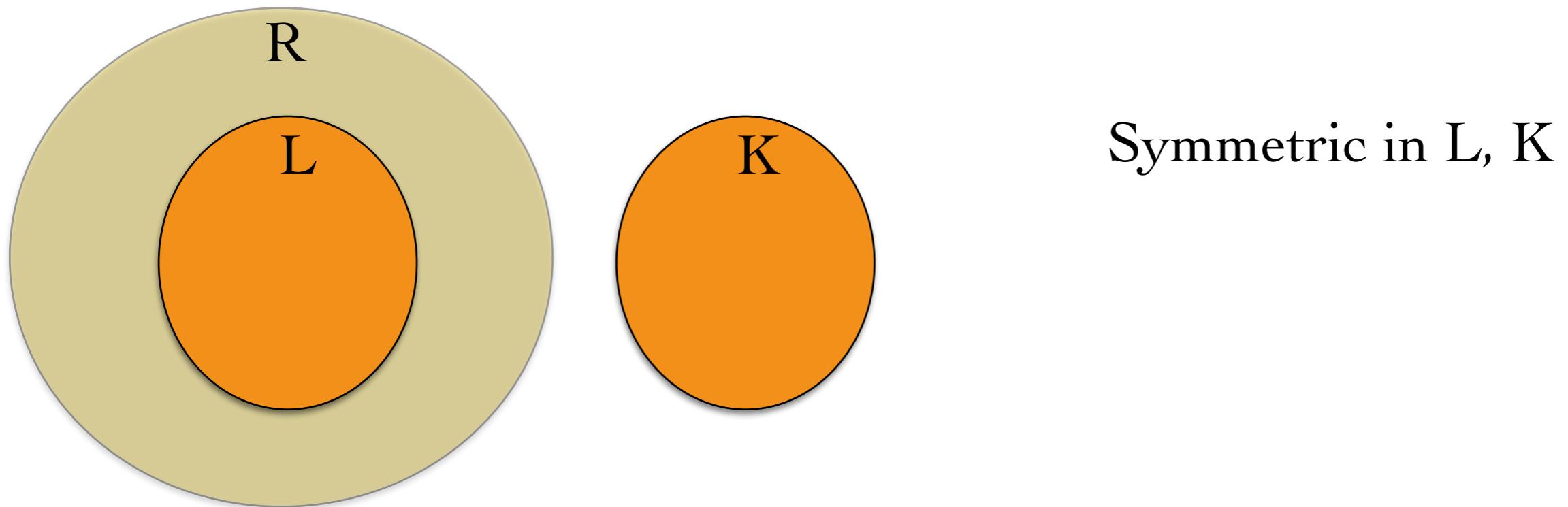


Question: are these two languages **separated** by a regular language?
I.e., is there a regular language R with $L \subseteq R$ and $R \cap K = \emptyset$?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C

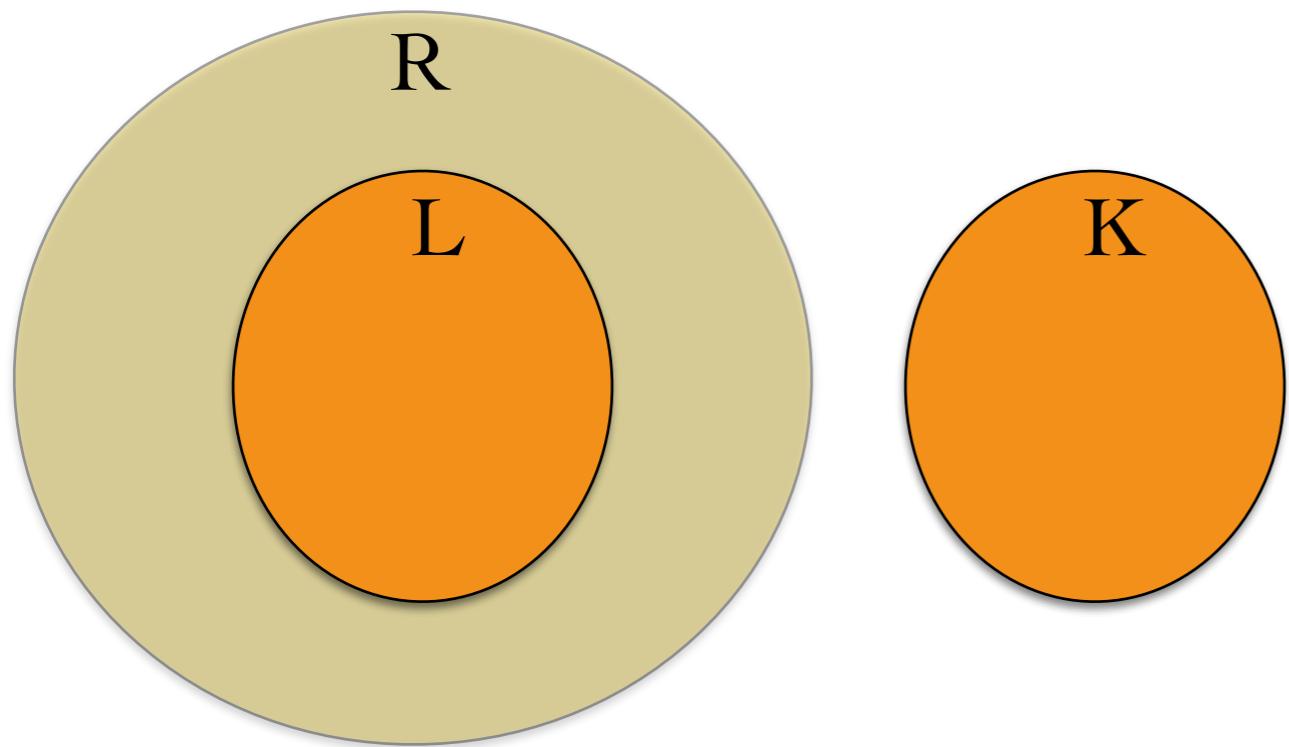


Question: are these two languages **separated** by a regular language?
I.e., is there a regular language R with $L \subseteq R$ and $R \cap K = \emptyset$?

Regular separability

Fix a class of languages C

Input: two (disjoint) languages L, K from C



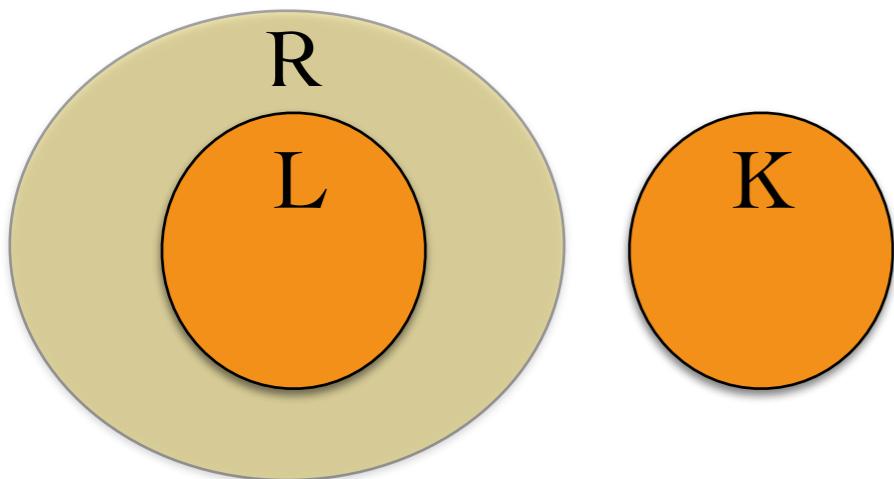
Symmetric in L, K
Parametric in C

Question: are these two languages **separated** by a regular language?
I.e., is there a regular language R with $L \subseteq R$ and $R \cap K = \emptyset$?

Is regular separability useful?

Is regular separability useful?

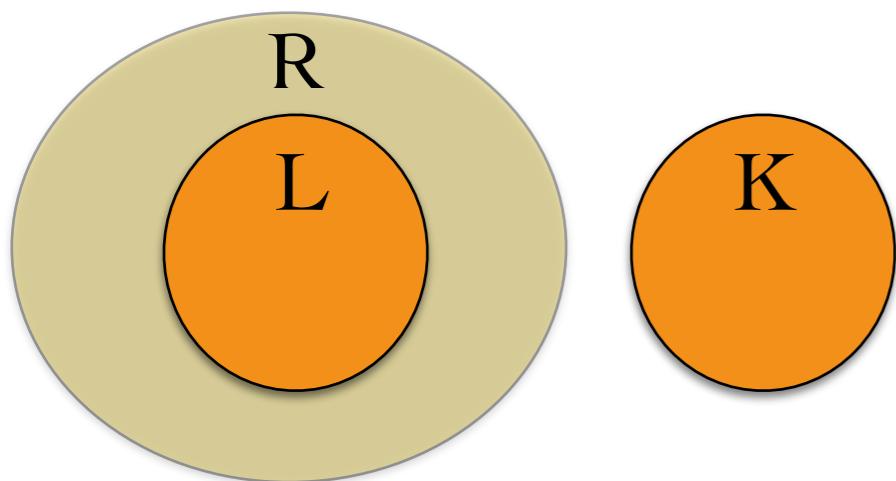
separator as a classifier:



classify a word from $L \cup K$
into L or K

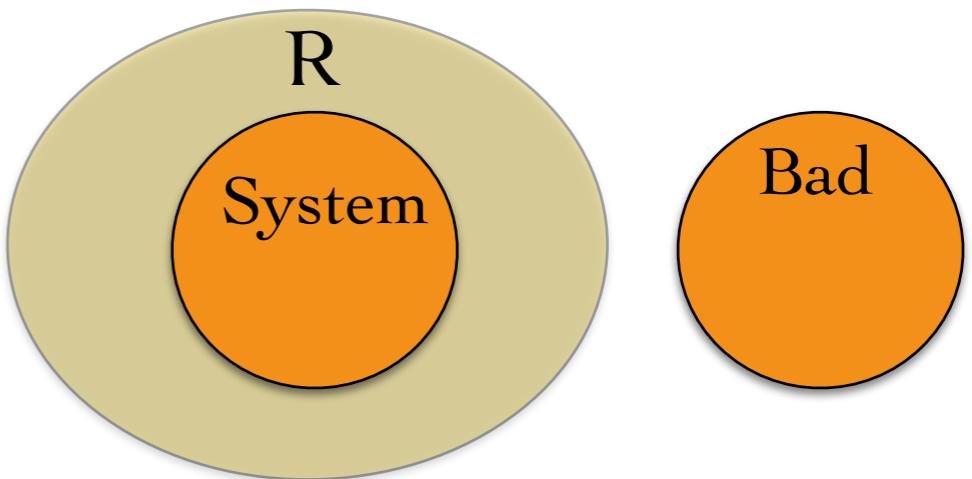
Is regular separability useful?

separator as a classifier:



classify a word from $L \cup K$
into L or K

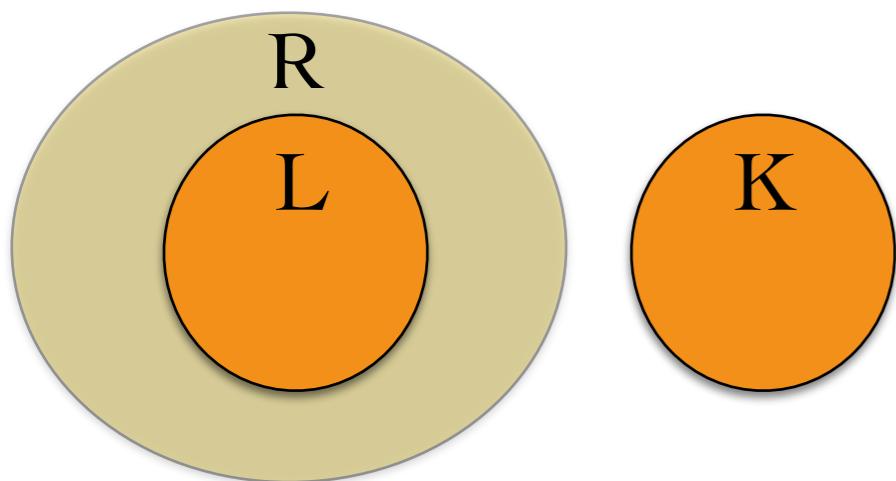
language-theoretic verification:



separator proves absence of
undesirable behavior

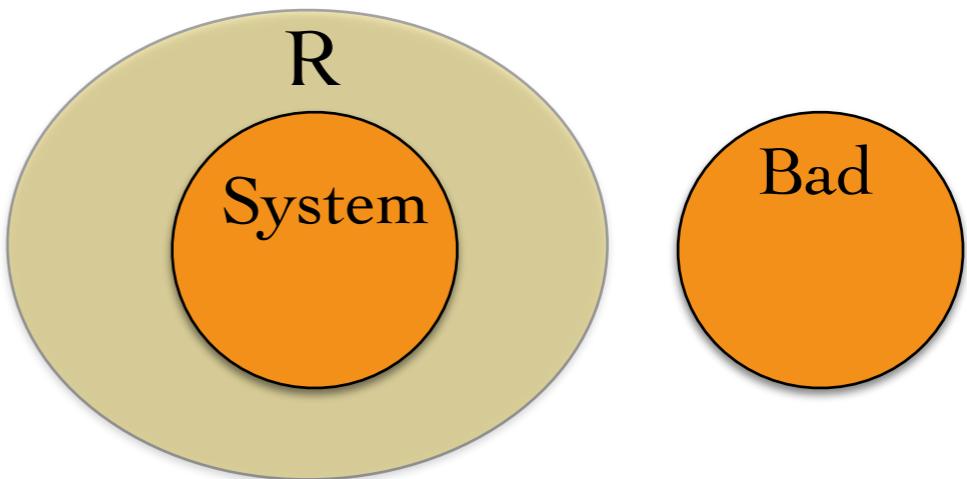
Is regular separability useful?

separator as a classifier:



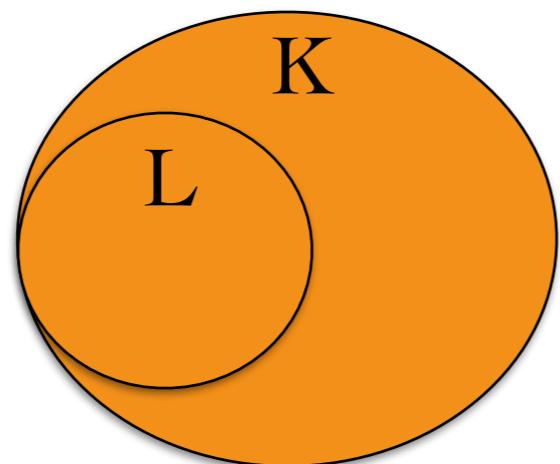
classify a word from $L \cup K$
into L or K

language-theoretic verification:



separator proves absence of
undesirable behavior

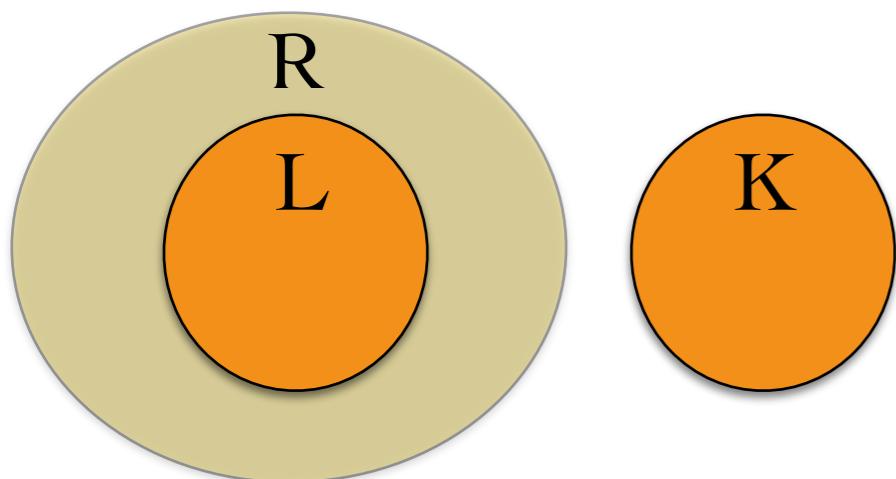
separator as a recognizer:



recognize L inside K

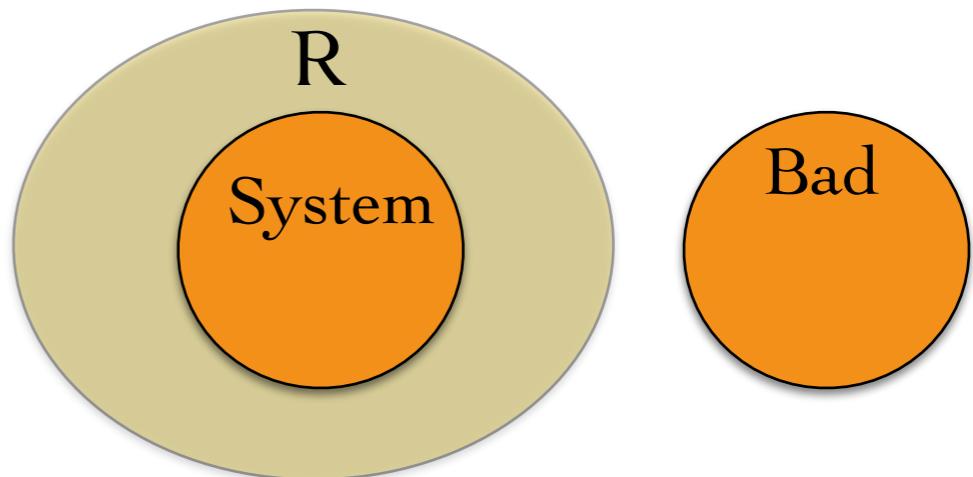
Is regular separability useful?

separator as a classifier:



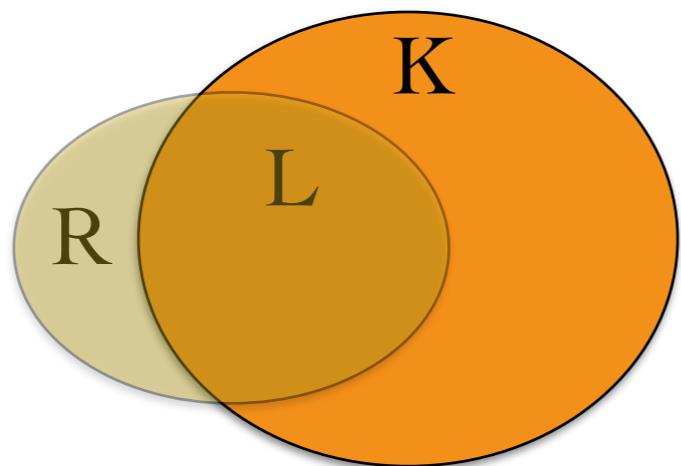
classify a word from $L \cup K$
into L or K

language-theoretic verification:



separator proves absence of
undesirable behavior

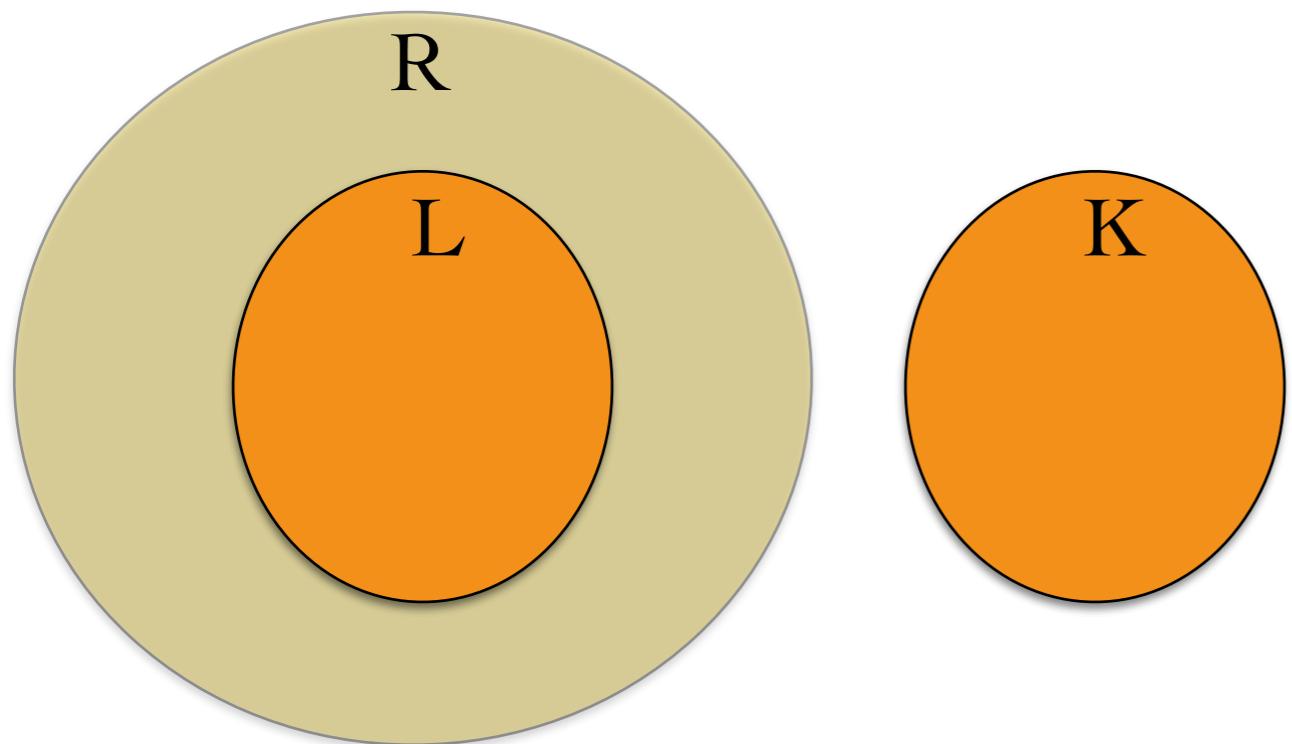
separator as a recognizer:



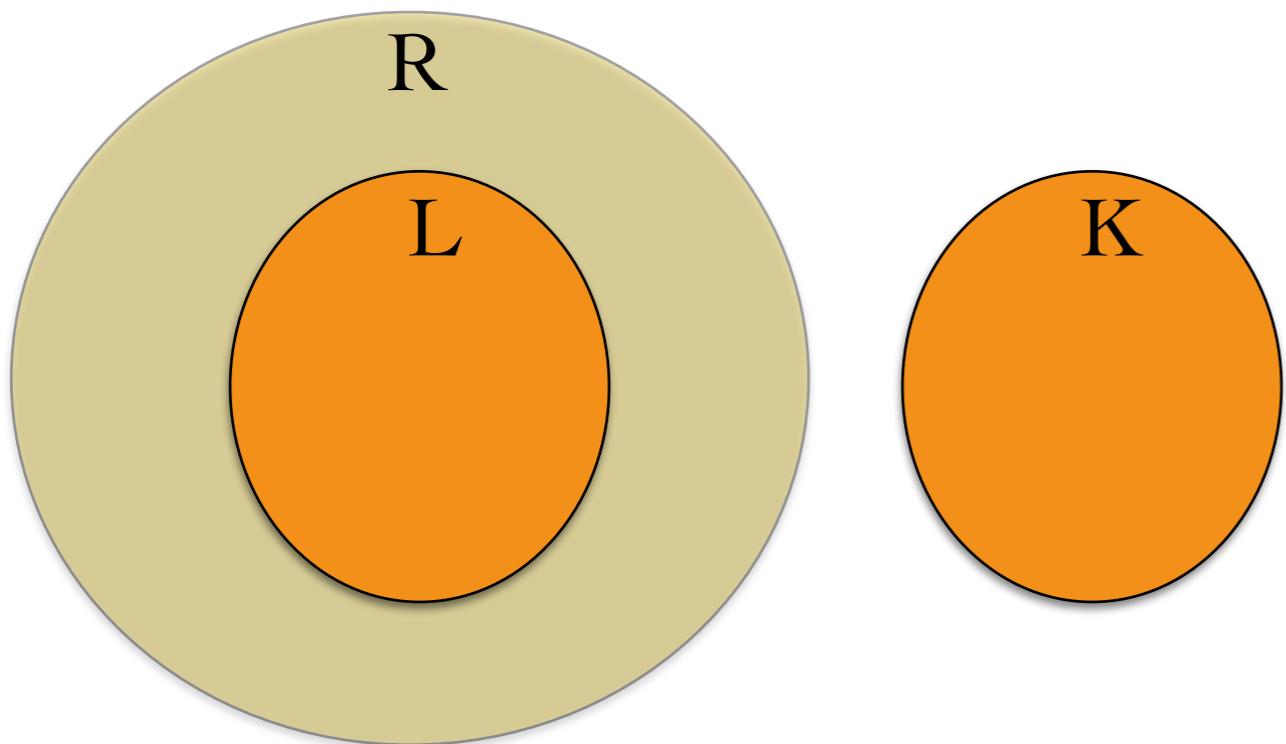
recognize L inside K

Regular separability

Regular separability

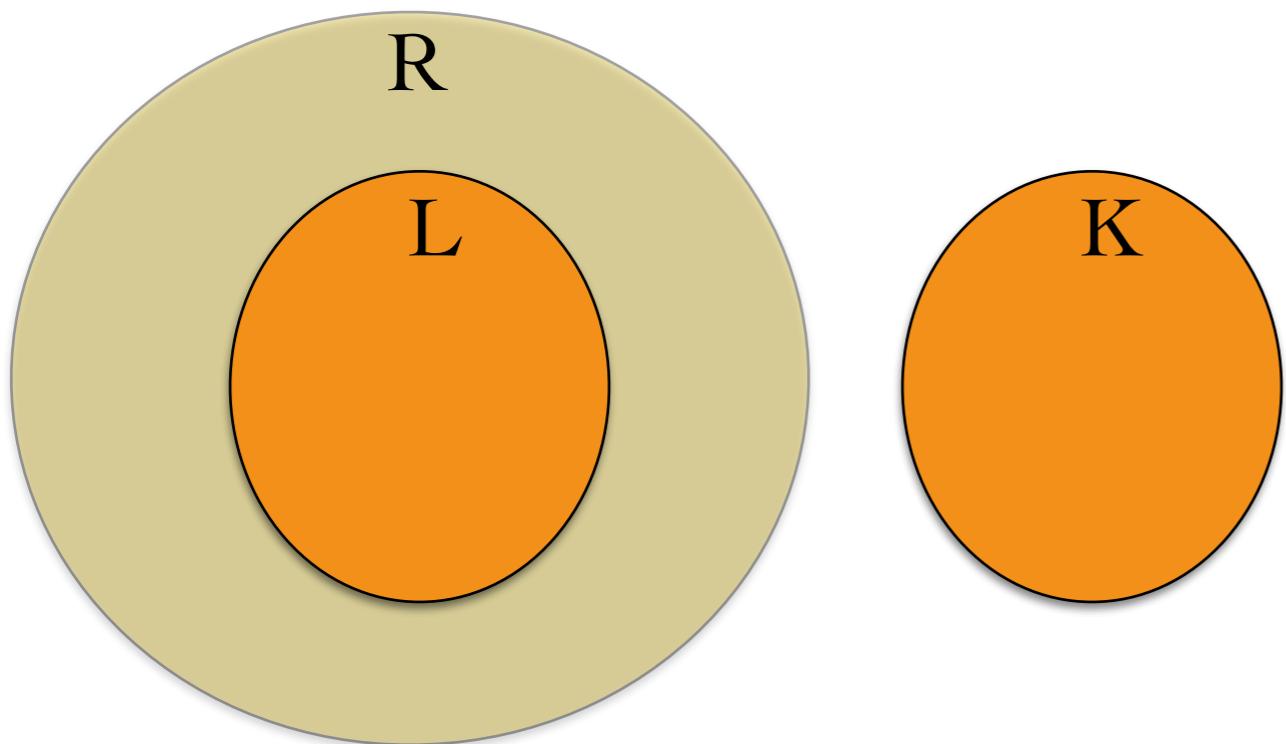


Regular separability



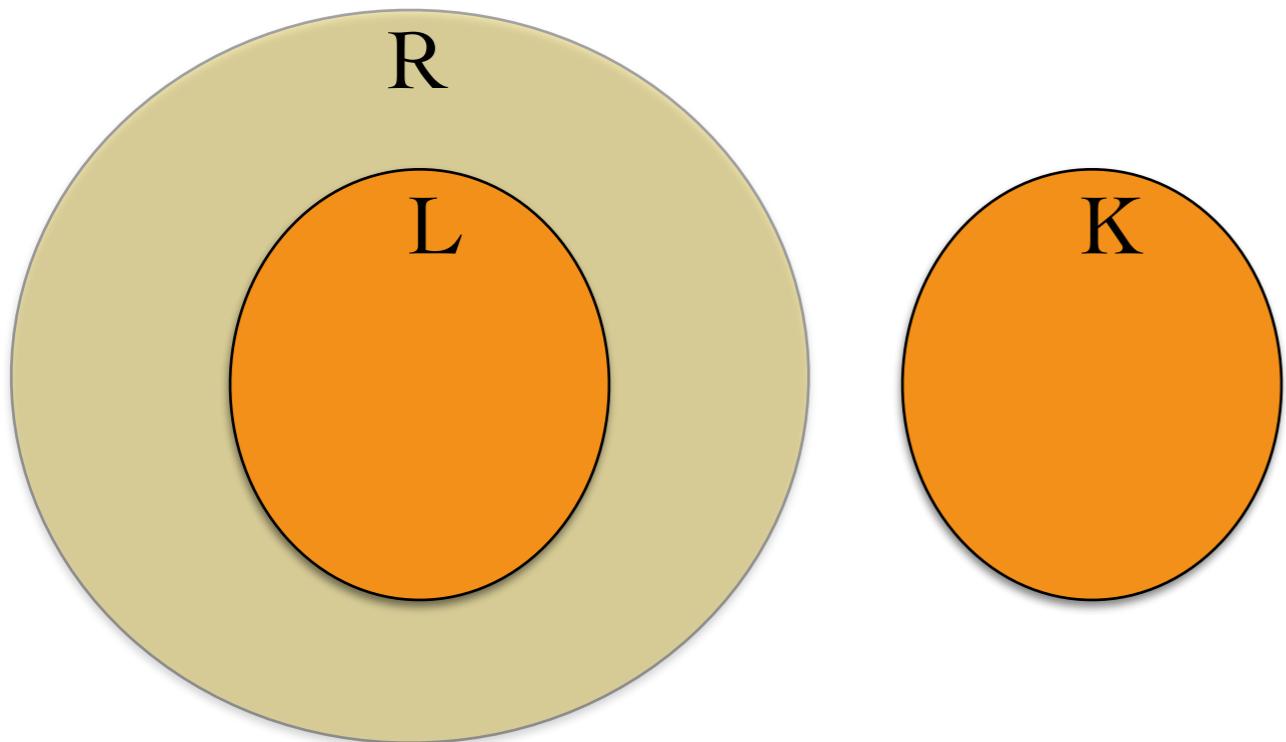
- **decision problem:** are given L , K regular-separable?

Regular separability



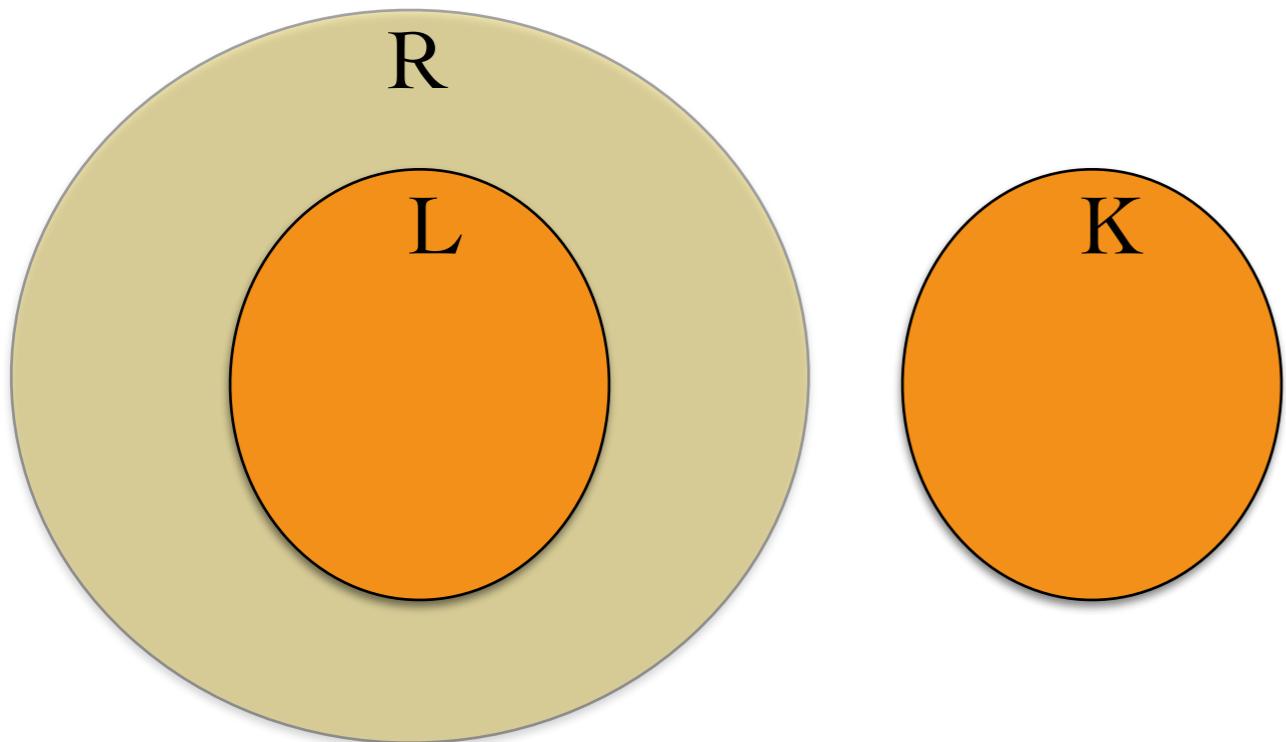
- **decision problem:** are given L , K regular-separable?
- **computation problem:** compute a regular separator of given L , K

Regular separability



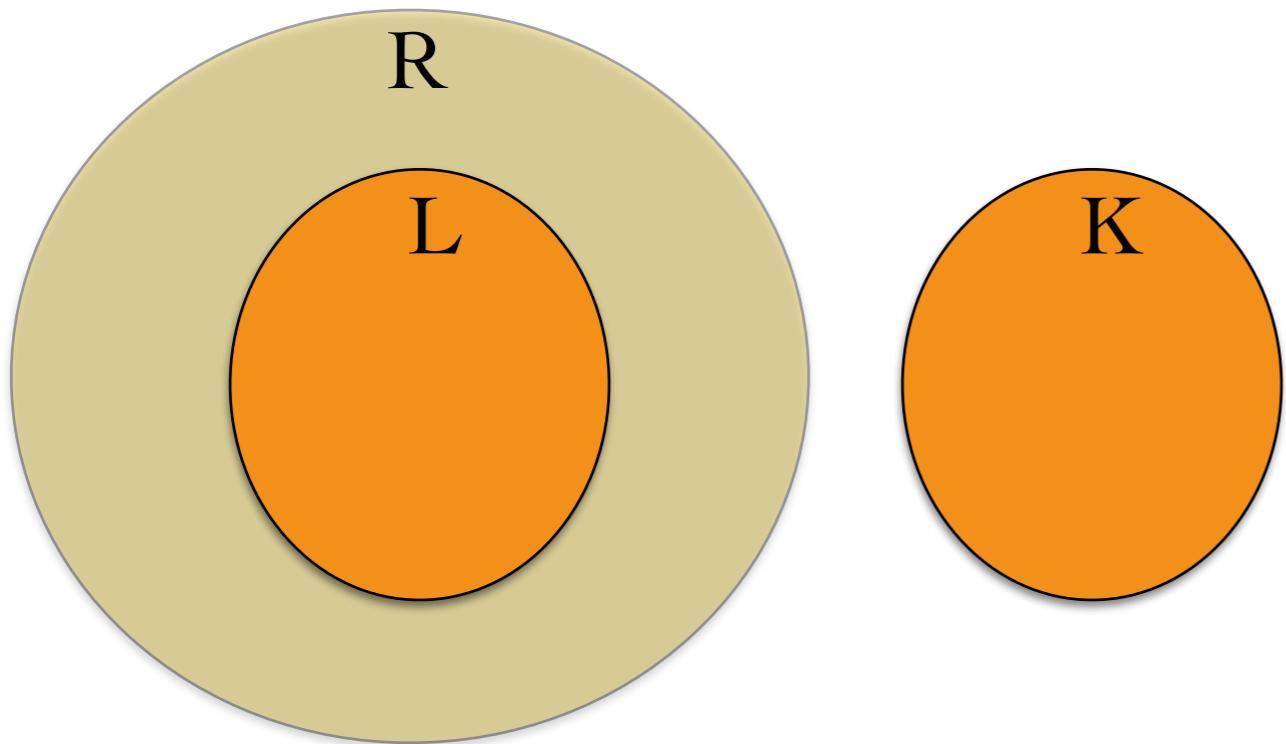
- **decision problem:** are given L, K regular-separable?
- **computation problem:** compute a regular separator of given L, K
- **qualitative characterization:** sufficient (and necessary) condition for regular-separability

Regular separability



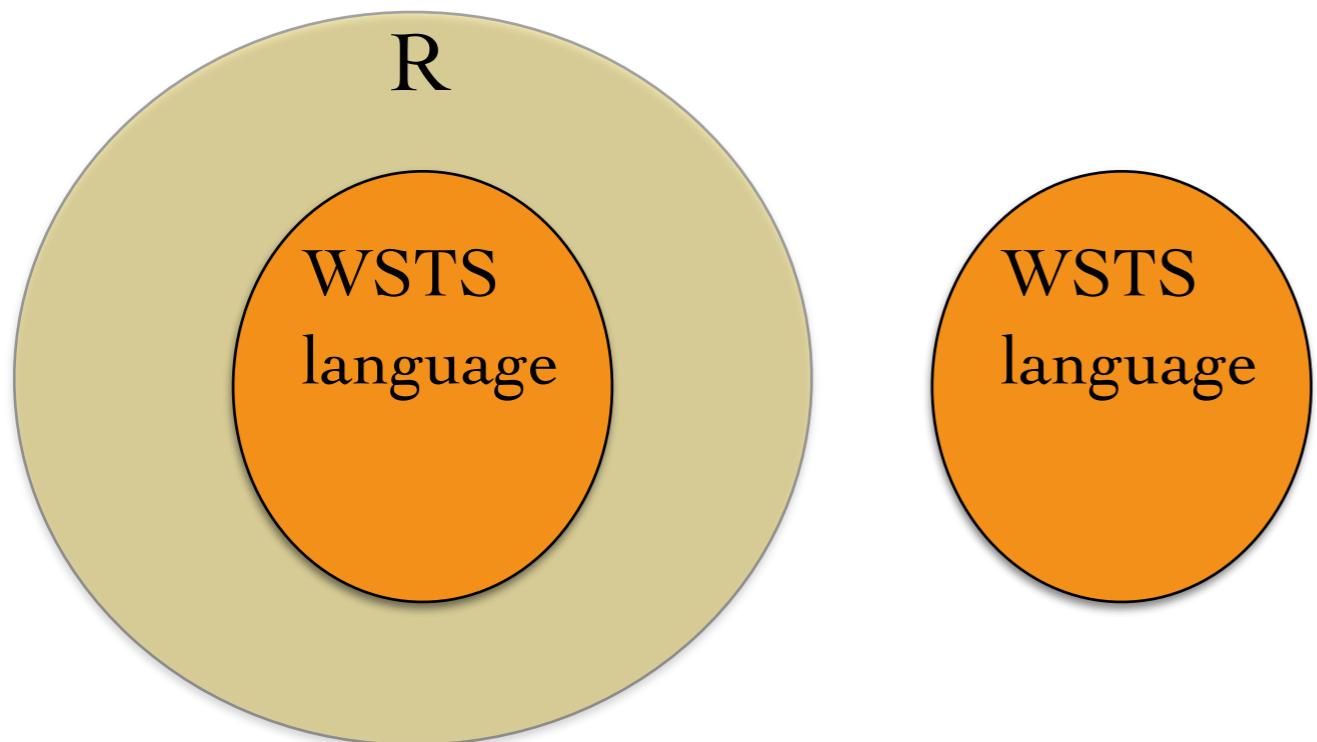
- **decision problem:** are given L, K regular-separable?
- **computation problem:** compute a regular separator of given L, K
- **qualitative characterization:** sufficient (and necessary) condition for regular-separability
- **quantitative characterization:** bound on the size of a separator

Regular separability

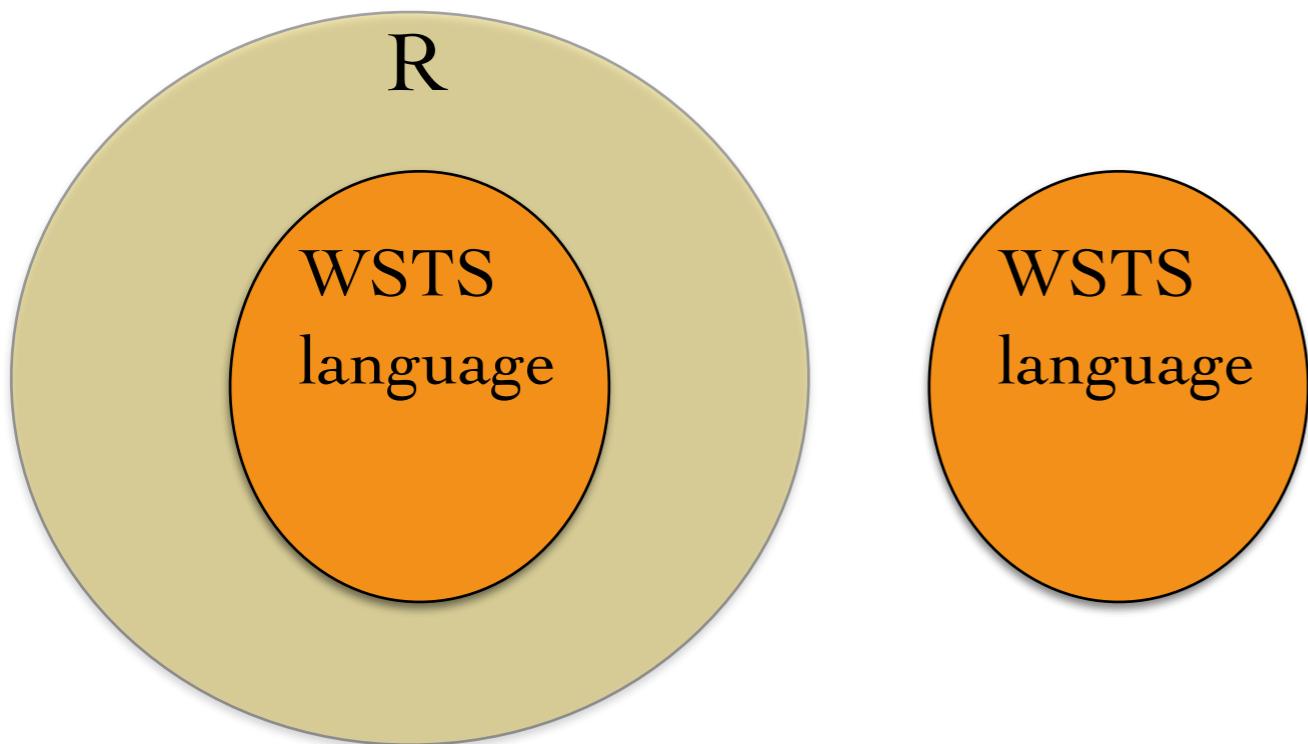


- **decision problem:** are given L, K regular-separable?
- **computation problem:** compute a regular separator of given L, K
- **qualitative characterization:** sufficient (and necessary) condition for regular-separability
- **quantitative characterization:** bound on the size of a separator

Regular separability of WSTS languages

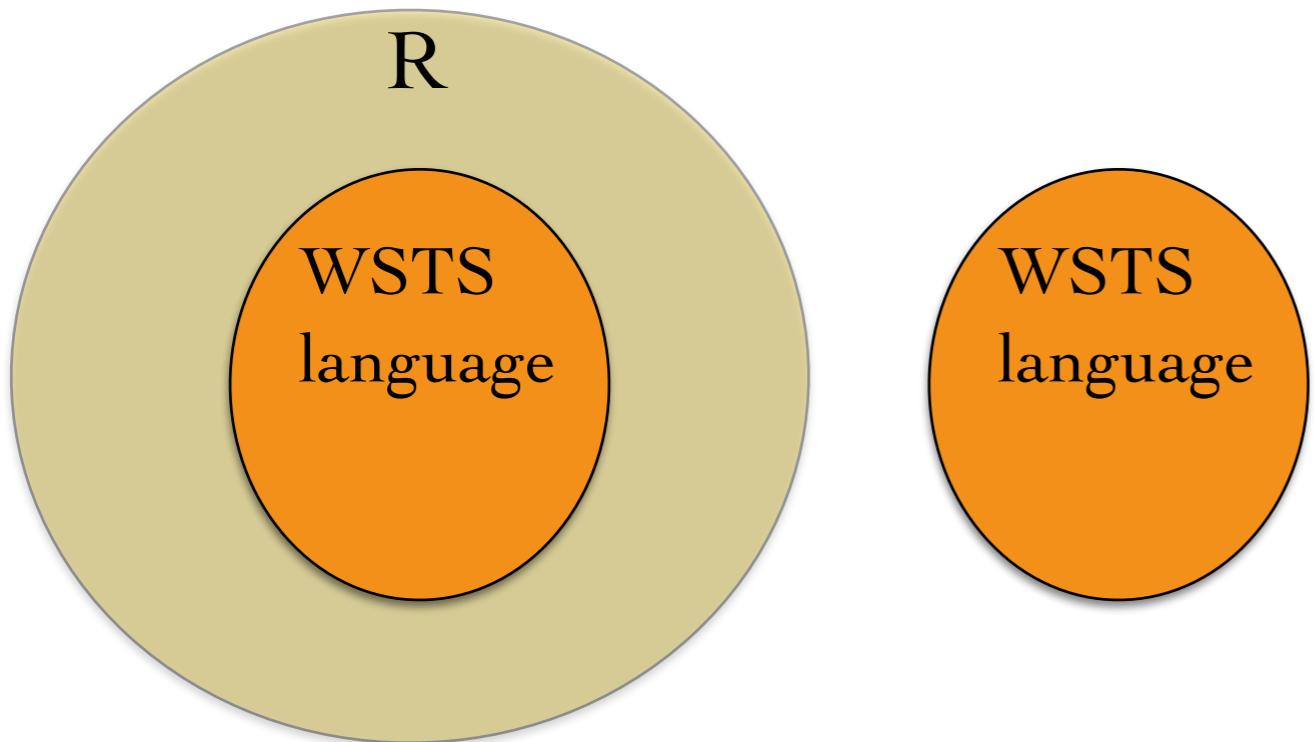


Regular separability of WSTS languages



Theorem: Every two disjoint WSTS languages are regular-separable,

Regular separability of WSTS languages



Theorem: Every two disjoint WSTS languages are regular-separable,
under some mild assumptions.

${}^U_D WSTS$: well-structured transition system

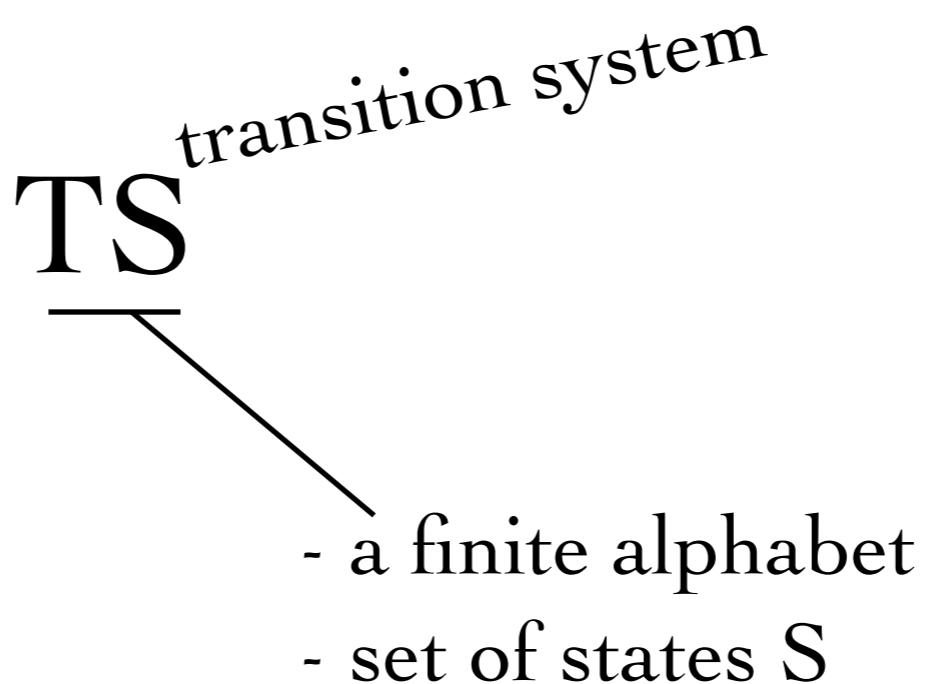
${}^U_D WSTS$: well-structured transition system

TS^{transition system}

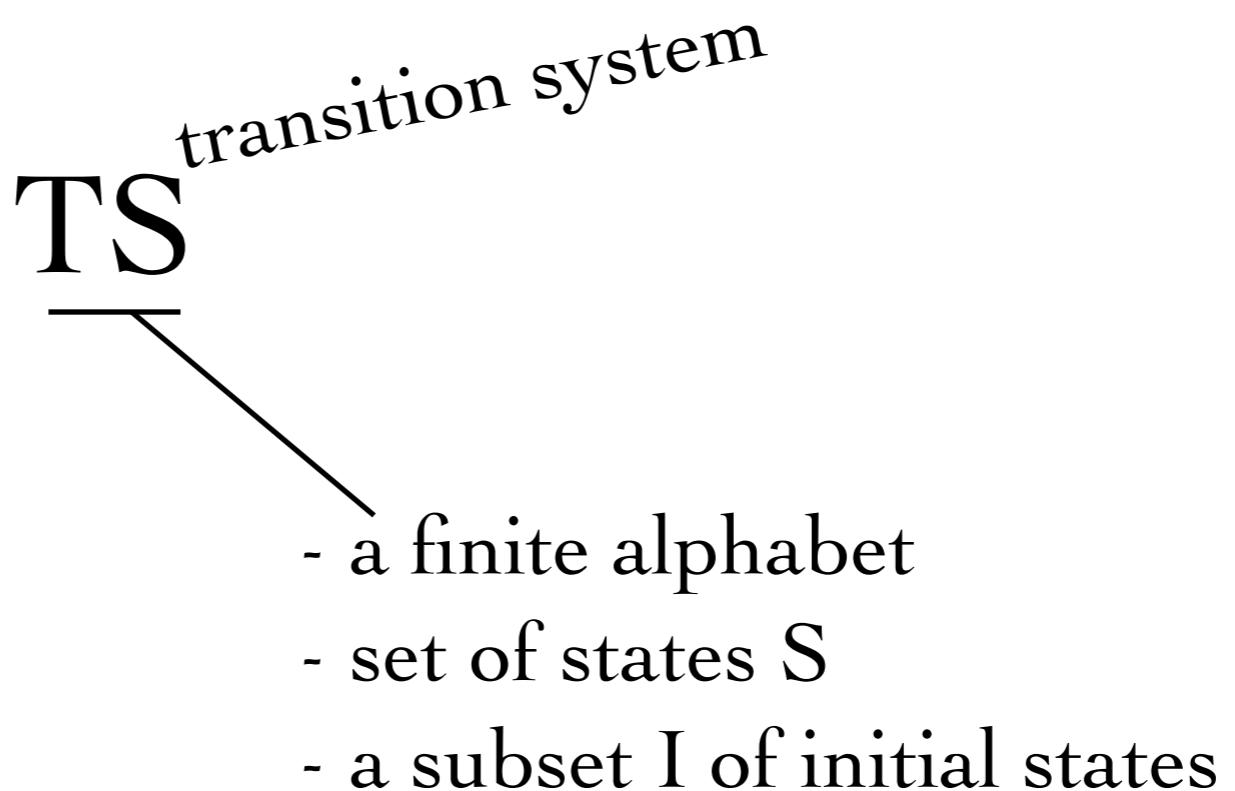
${}^U_D WSTS$: well-structured transition system

\underline{TS} ^{transition system}
- a finite alphabet

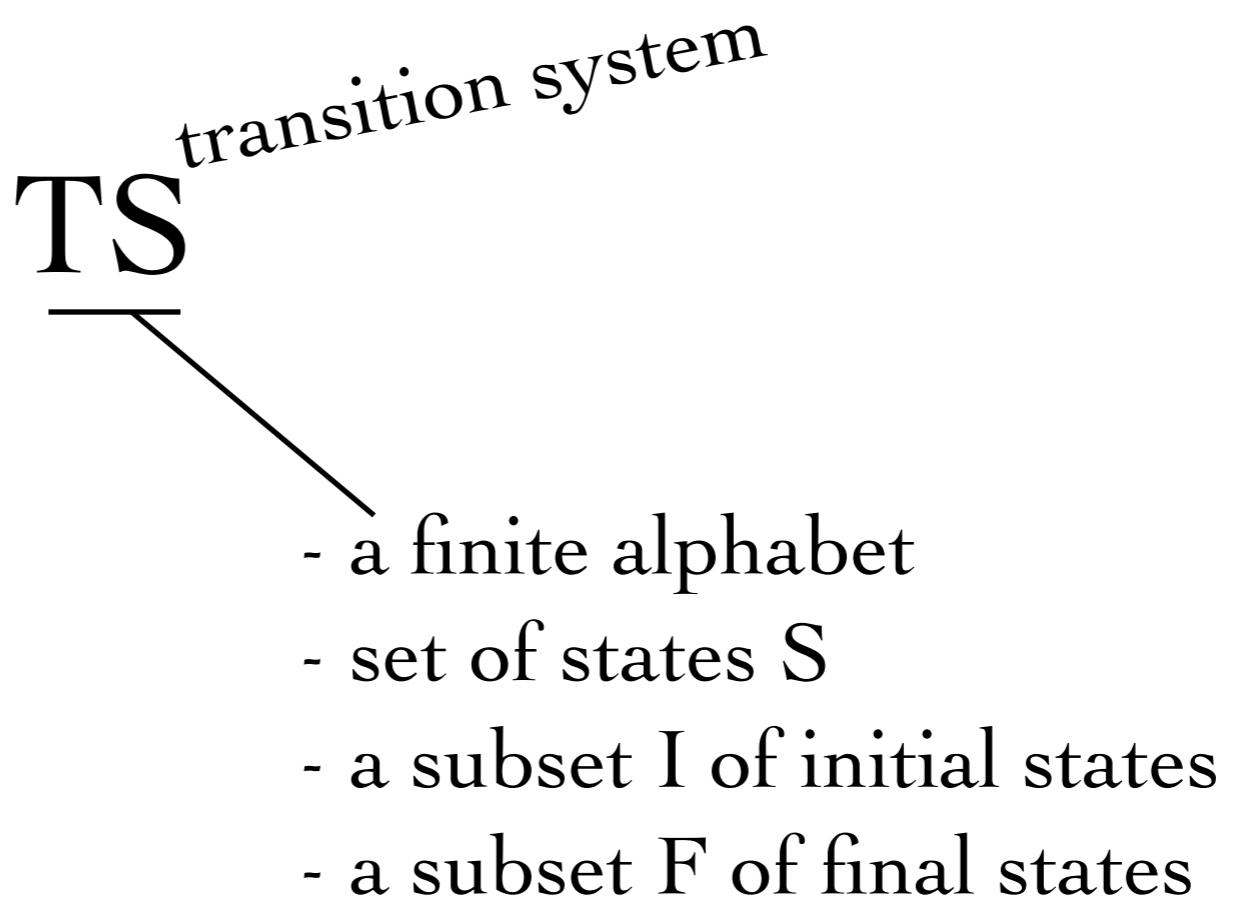
${}^U_D WSTS$: well-structured transition system



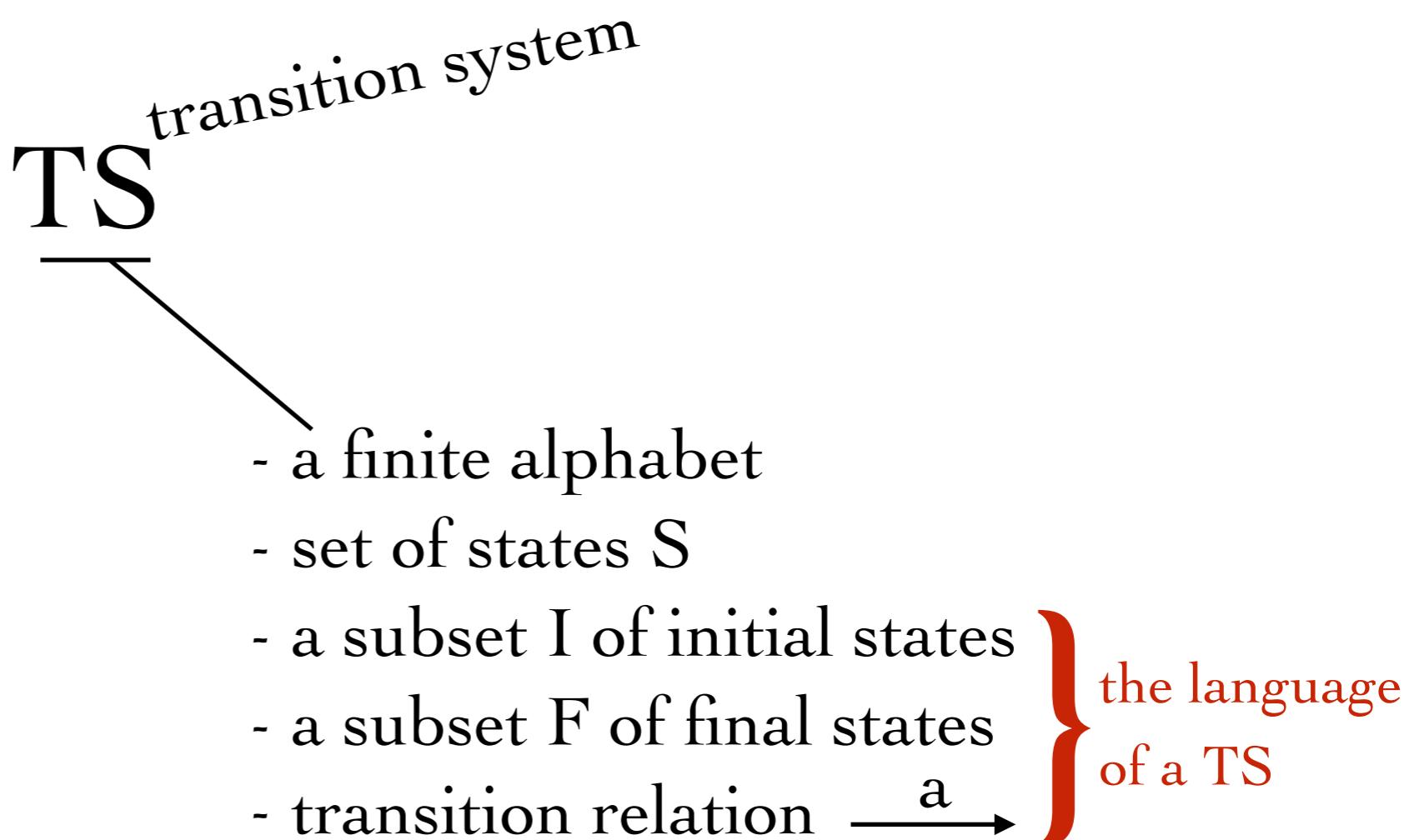
${}^U_D WSTS$: well-structured transition system



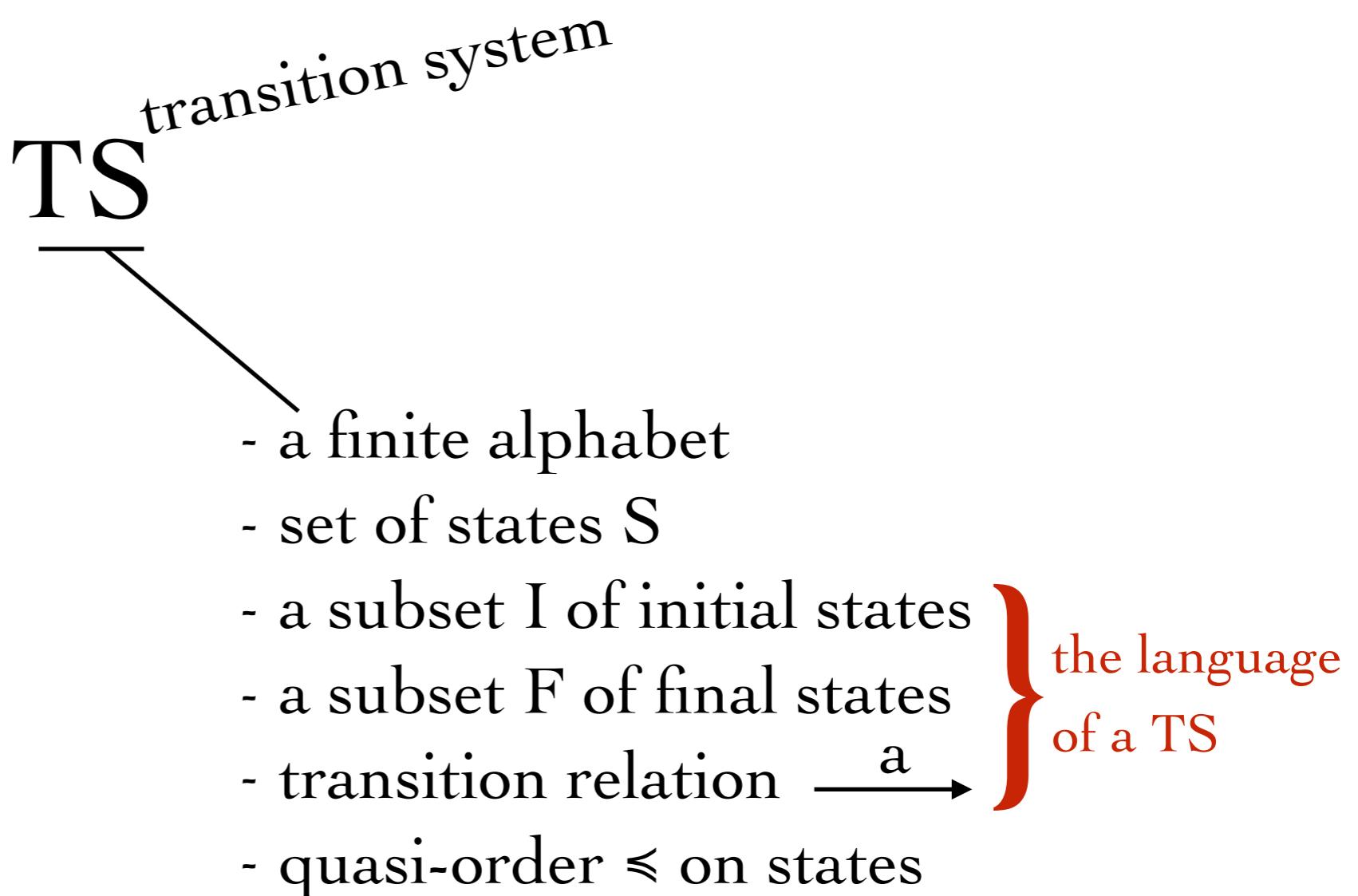
${}^U_D WSTS$: well-structured transition system



${}^U_D WSTS$: well-structured transition system



${}^U_D WSTS$: well-structured transition system



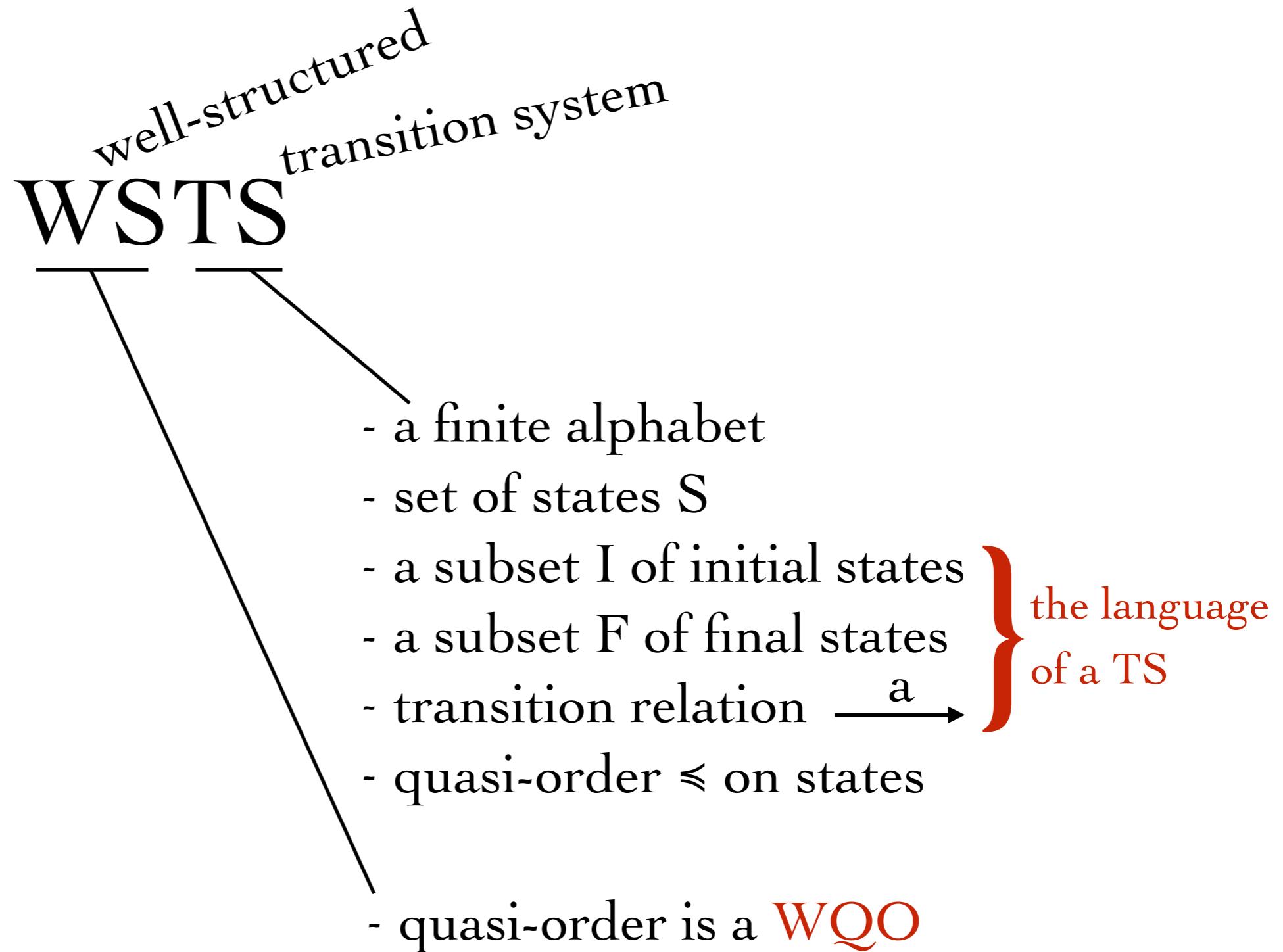
${}^U_D WSTS$: well-structured transition system

well-structured
transition system
WSTS

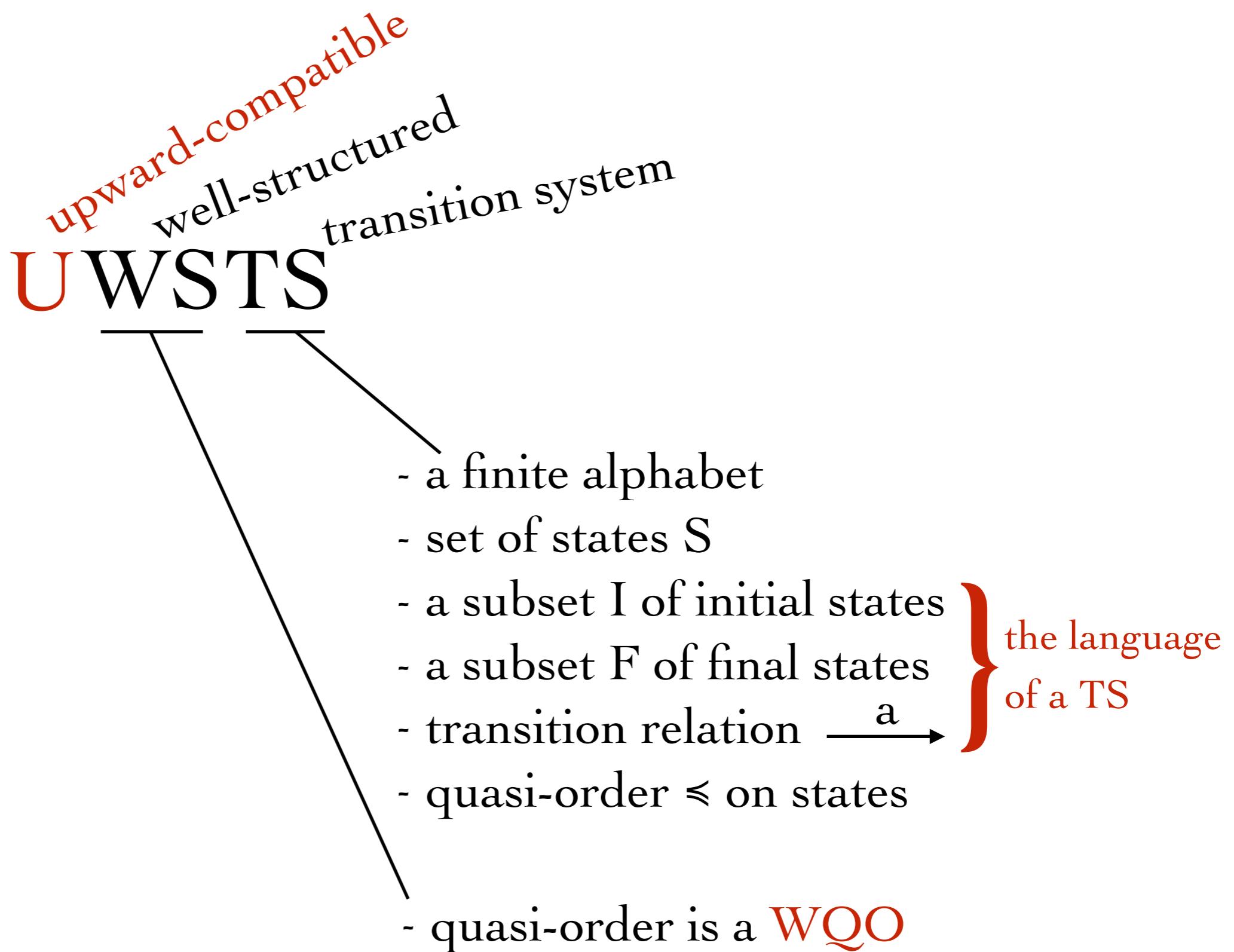
- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation \xrightarrow{a}
- quasi-order \leq on states

} the language
of a TS

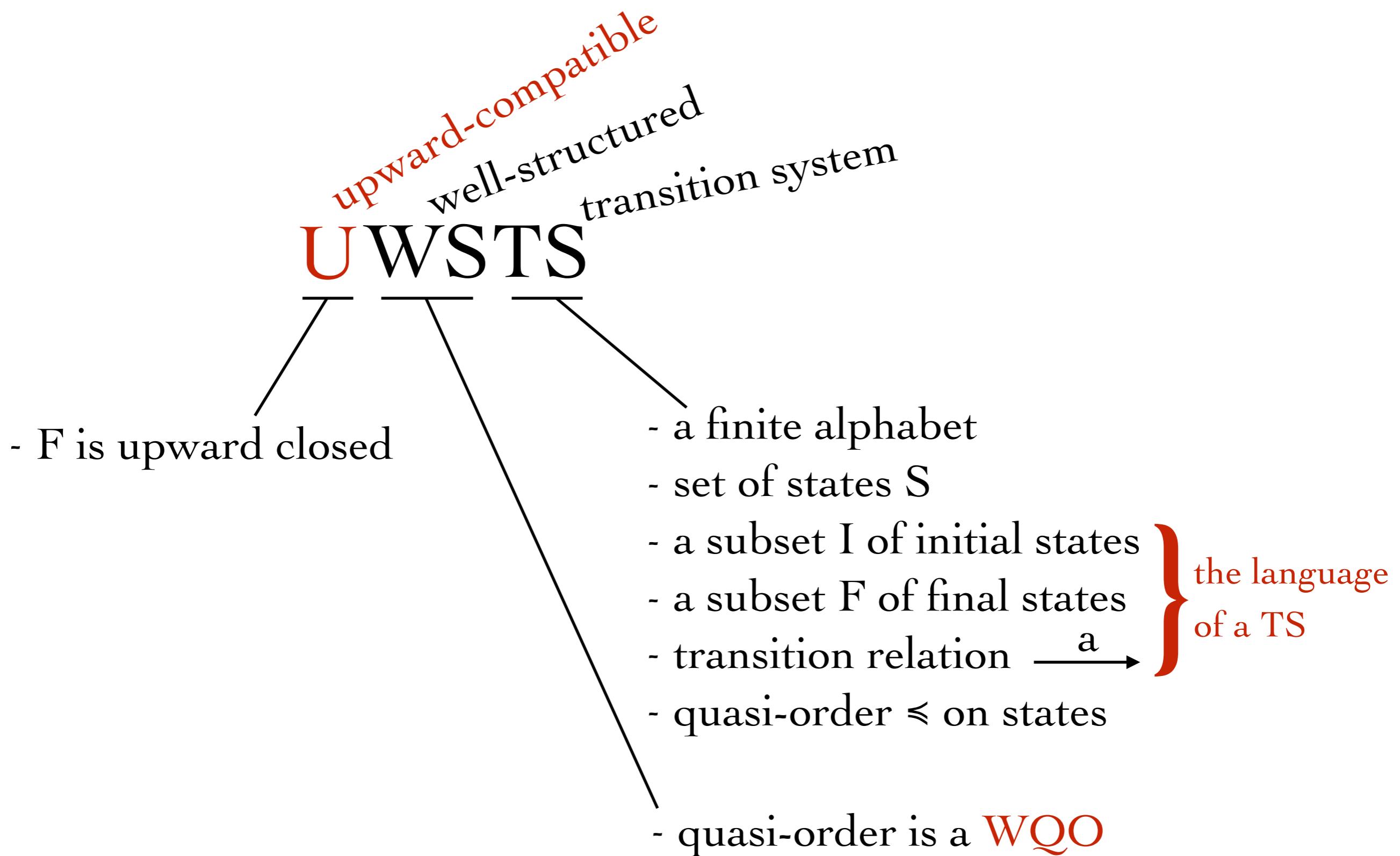
${}^U_D WSTS$: well-structured transition system



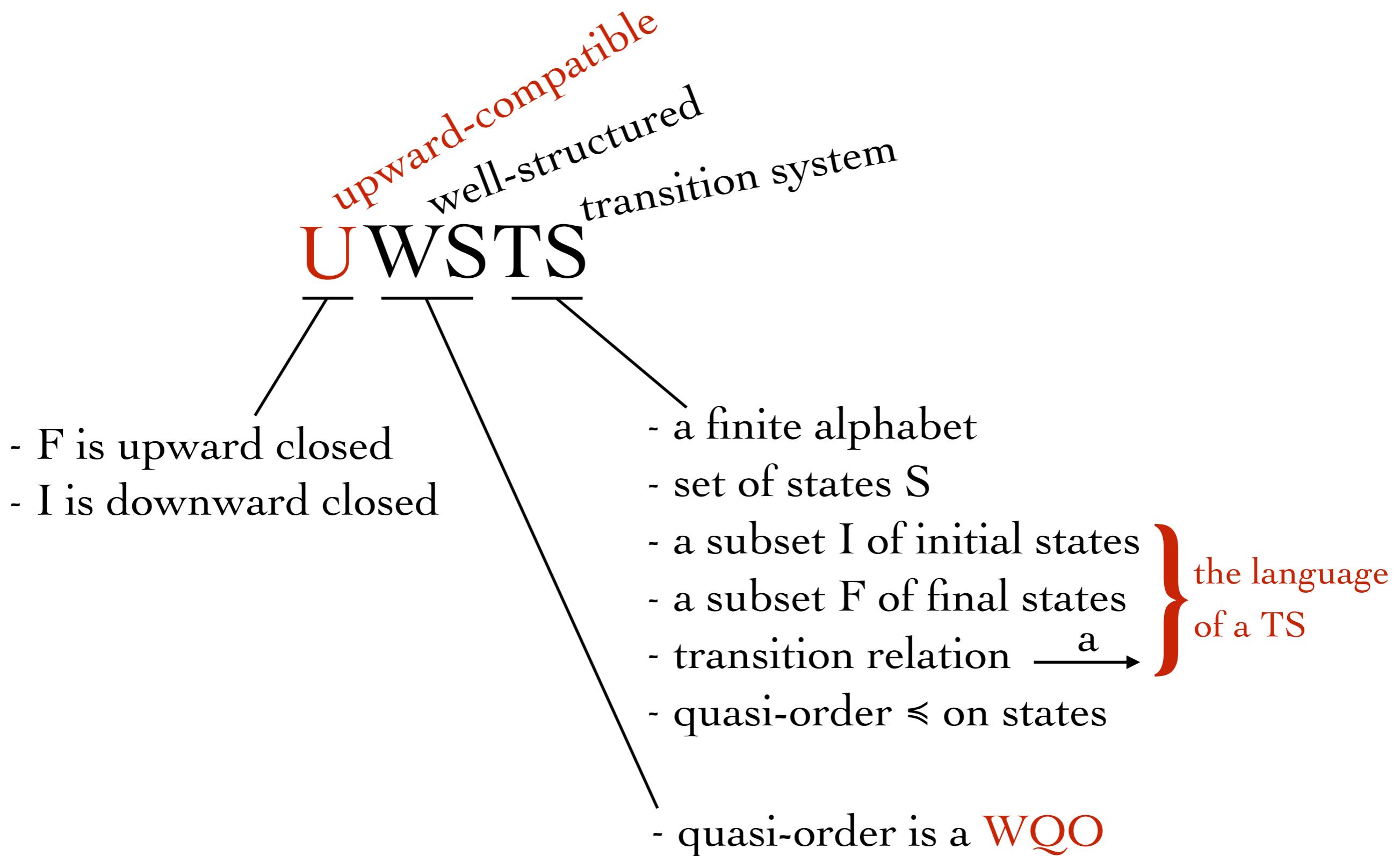
${}^U_D WSTS$: well-structured transition system



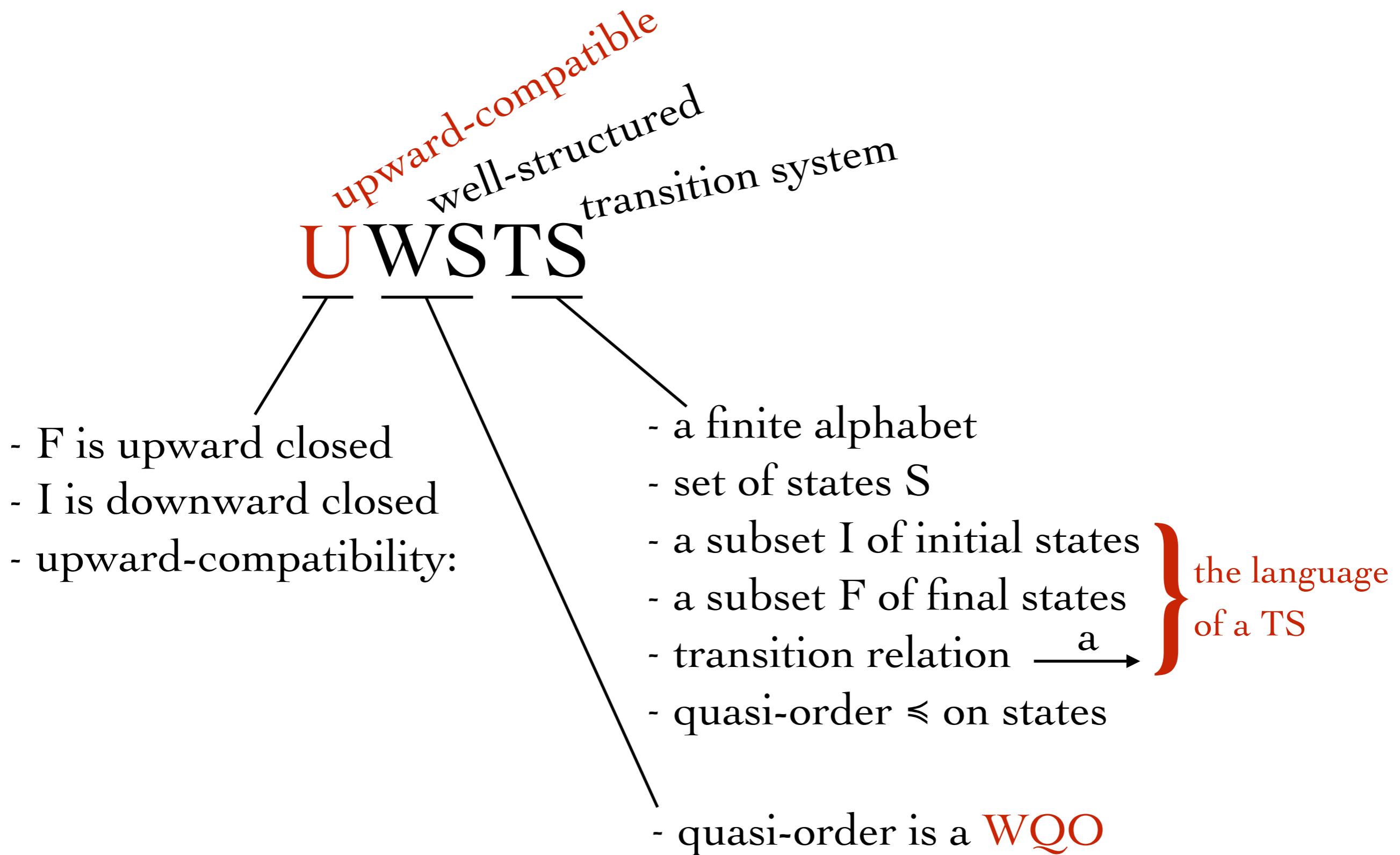
${}^U_D WSTS$: well-structured transition system



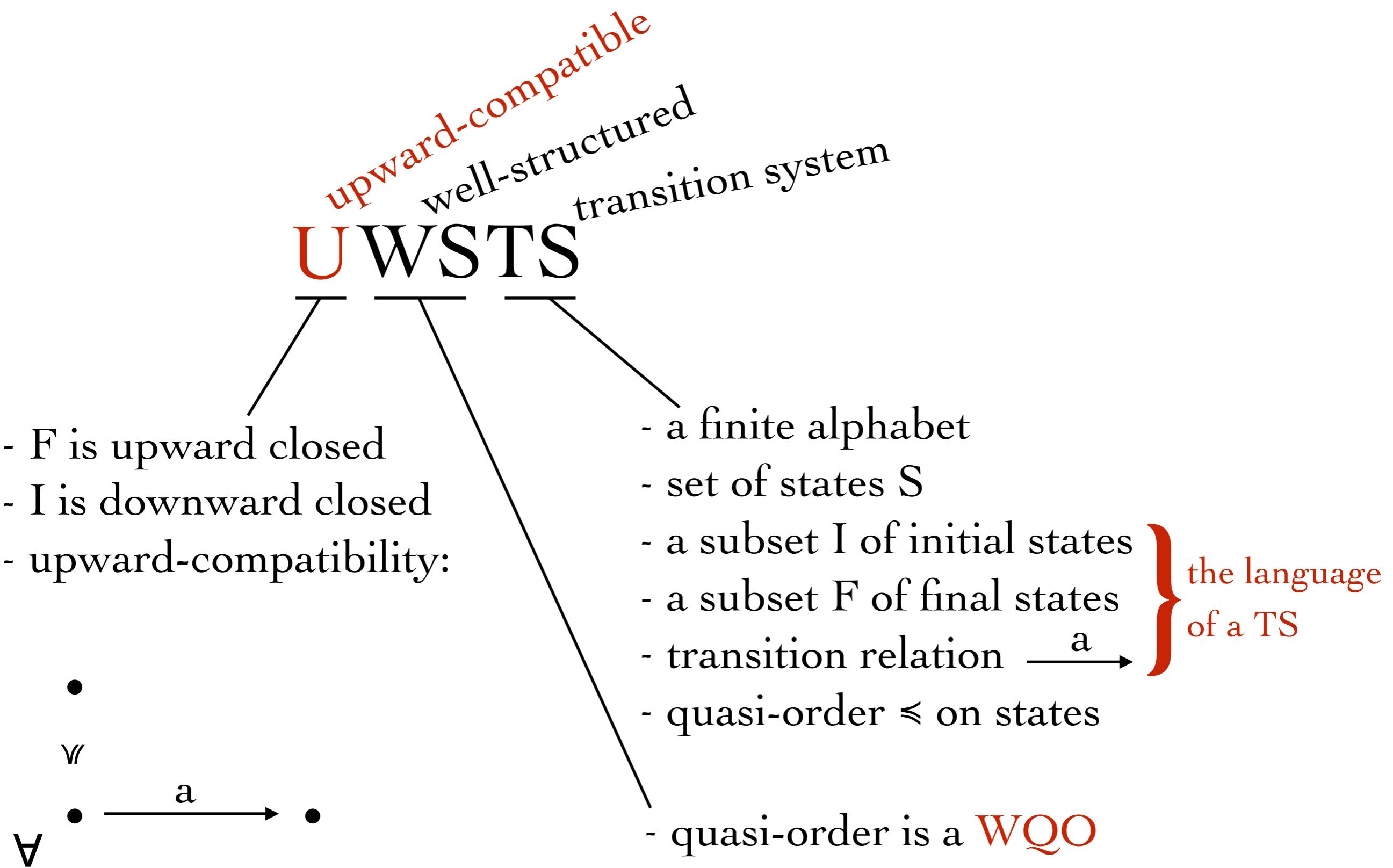
${}^U_D WSTS$: well-structured transition system



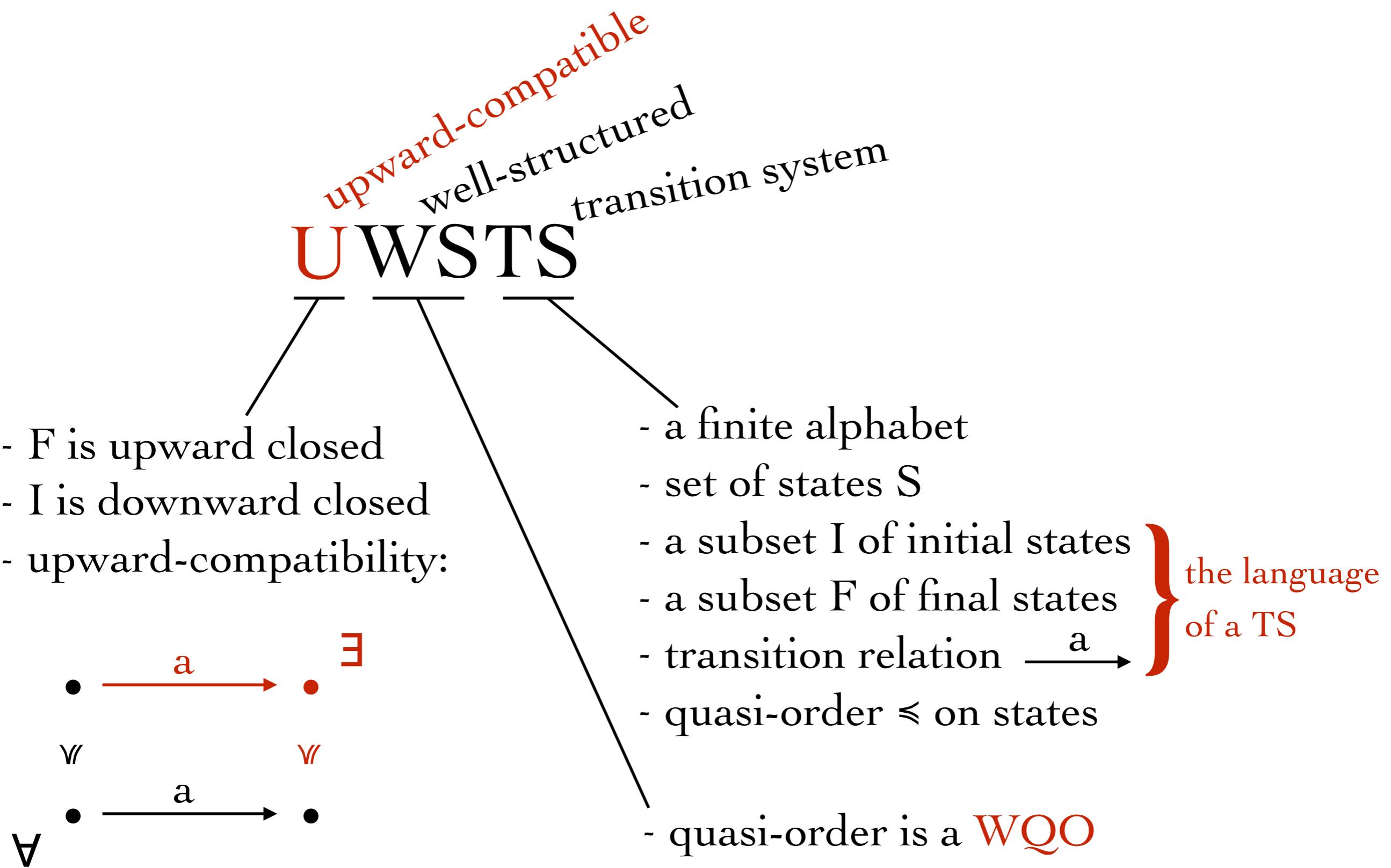
U_D WSTS: well-structured transition system



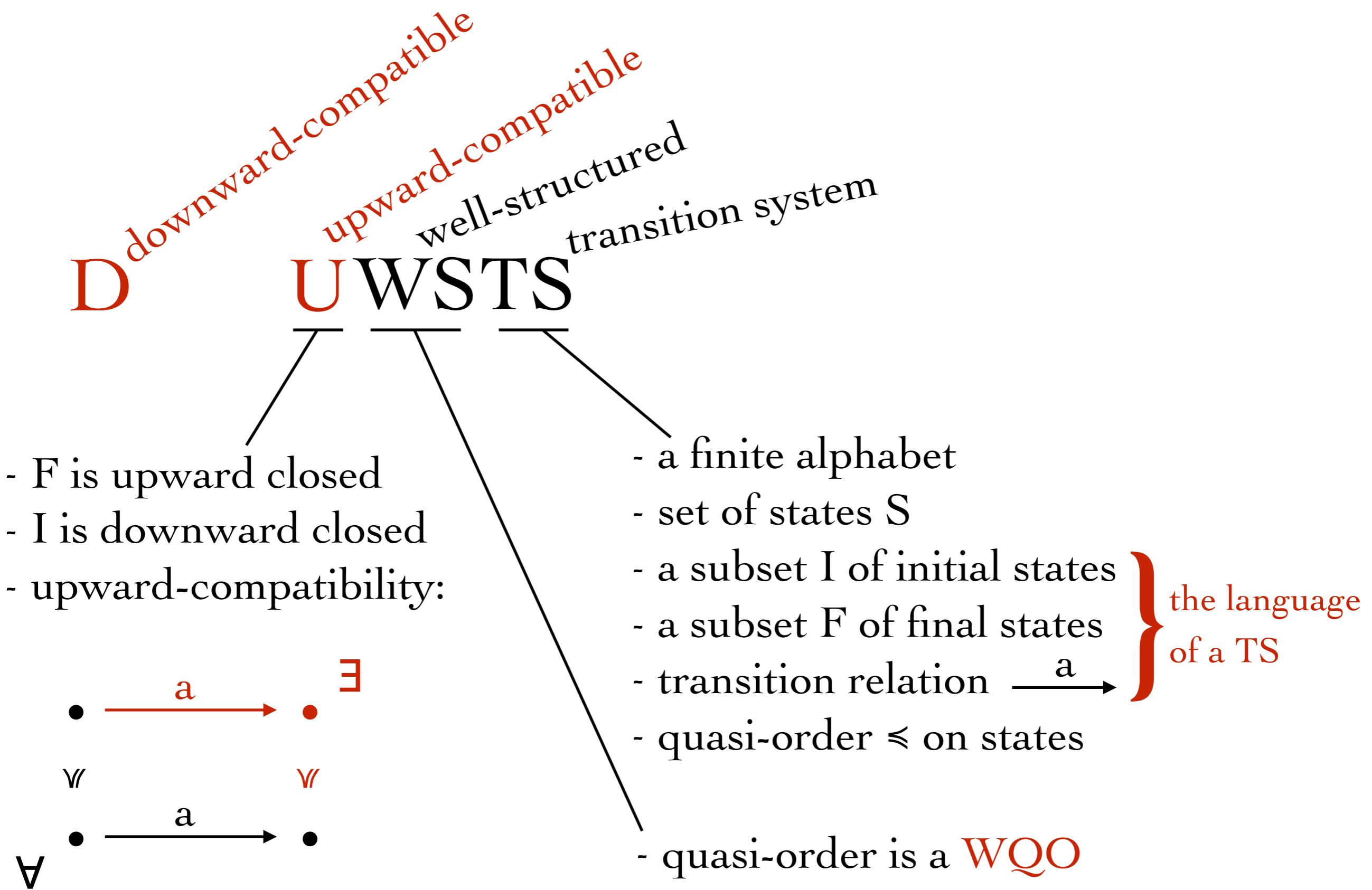
${}^U_D WSTS$: well-structured transition system



$U_D/WSTS$: well-structured transition system



$U_D/WSTS$: well-structured transition system



WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

- Dickson: \mathbb{N}^k ordered pointwise

$$(2, 3, 0) \leq (4, 3, 5)$$

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

- Dickson: \mathbb{N}^k ordered pointwise $(2, 3, 0) \leq (4, 3, 5)$
- Higman: A^* ordered by word embedding $\text{age} \leq \text{prague}$

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

- Dickson: \mathbb{N}^k ordered pointwise $(2, 3, 0) \leq (4, 3, 5)$
- Higman: A^* ordered by word embedding age \leq prague
- Kruskal tree embedding

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

- Dickson: \mathbb{N}^k ordered pointwise $(2, 3, 0) \leq (4, 3, 5)$
- Higman: A^* ordered by word embedding age \leq prague
- Kruskal tree embedding
- Graph minor ordering

WQO: well quasi order

Def: a quasi order is a **WQO** if it has:

- no infinite descending chain
- no infinite antichain

Examples:

- Dickson: \mathbb{N}^k ordered pointwise $(2, 3, 0) \leq (4, 3, 5)$
- Higman: A^* ordered by word embedding age \leq prague
- Kruskal tree embedding
- Graph minor ordering

Def: a quasi order is an ω^2 -**WQO** if
its downward closed subsets (ordered by inclusion) are a WQO

UWSTS examples:

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

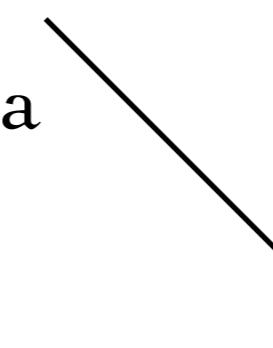
UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

- states = \mathbb{N}^k

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata



- states = \mathbb{N}^k
- I = initial vector \downarrow

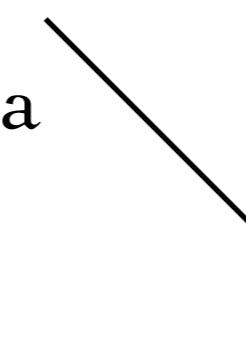
UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

- states = \mathbb{N}^k
- I = initial vector \downarrow
- F = final vector \uparrow

UWSTS examples:

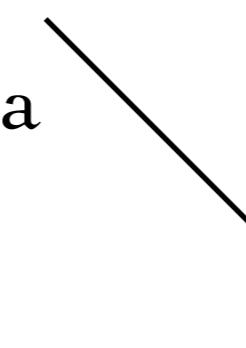
- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata



- states = \mathbb{N}^k
- I = initial vector ↓
- F = final vector ↑
- transition relation by addition

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

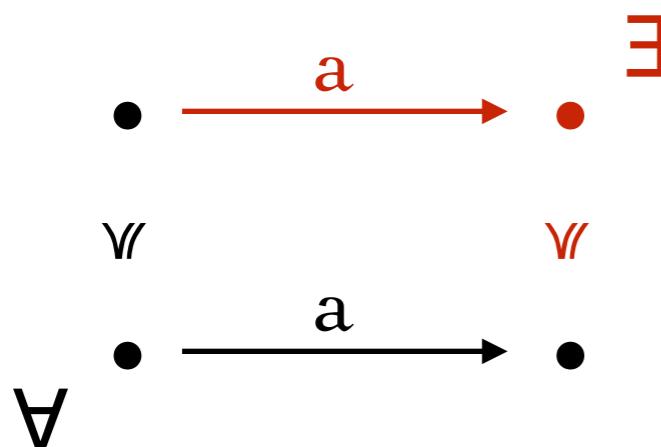


- states = \mathbb{N}^k
- I = initial vector ↓
- F = final vector ↑
- transition relation by addition
- Dickson order \leq

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

upward compatibility:

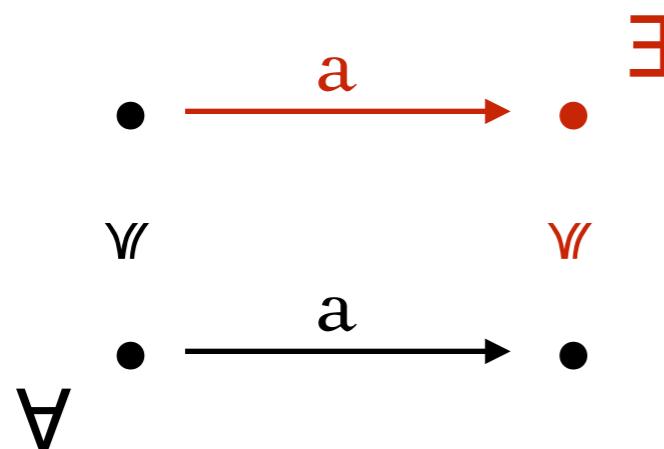


- states = \mathbb{N}^k
- I = initial vector ↓
- F = final vector ↑
- transition relation by addition
- Dickson order \leq

UWSTS examples:

- Petri nets, **vector addition systems**, and extensions thereof
- lossy FIFO or counter automata

upward compatibility:

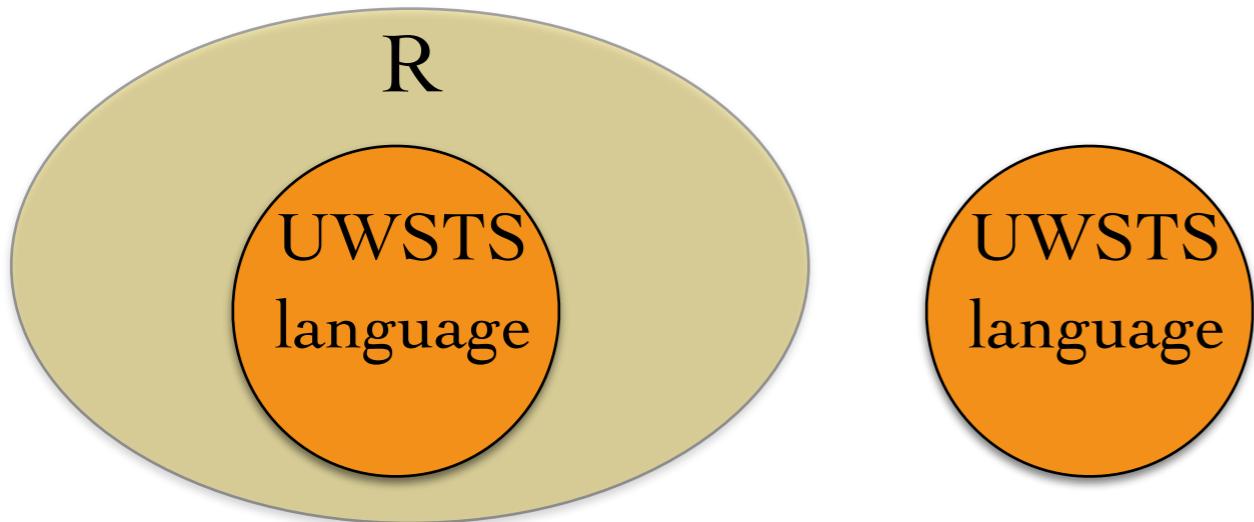


- states = \mathbb{N}^k
- I = initial vector \downarrow
- F = final vector \uparrow
- transition relation by addition
- Dickson order \leq

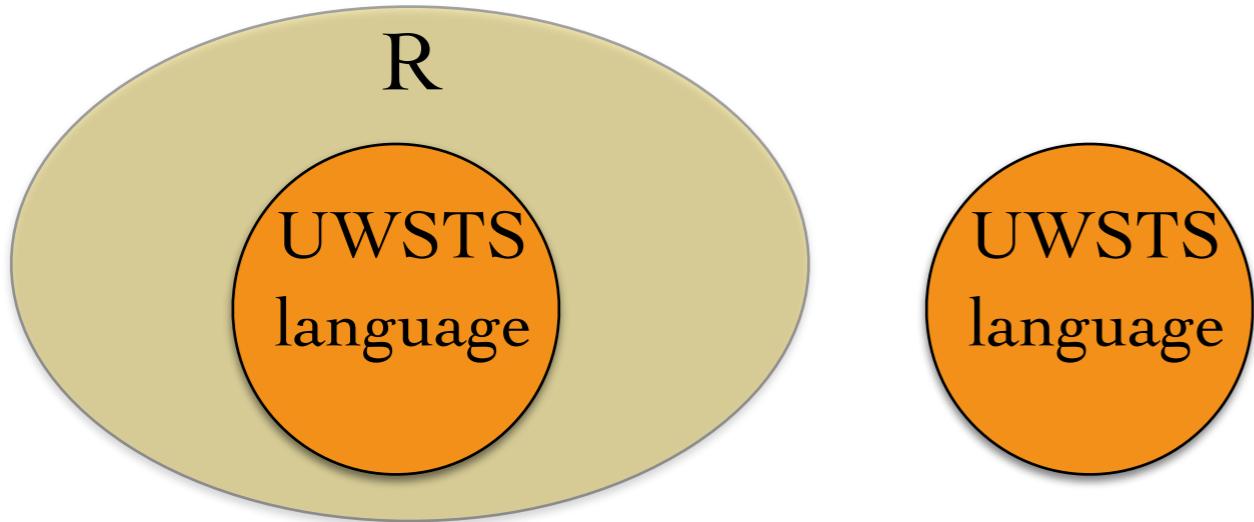
DWSTS examples:

- gainy FIFO or counter automata

Regular separability of ${}^U_D\text{WSTS}$ languages

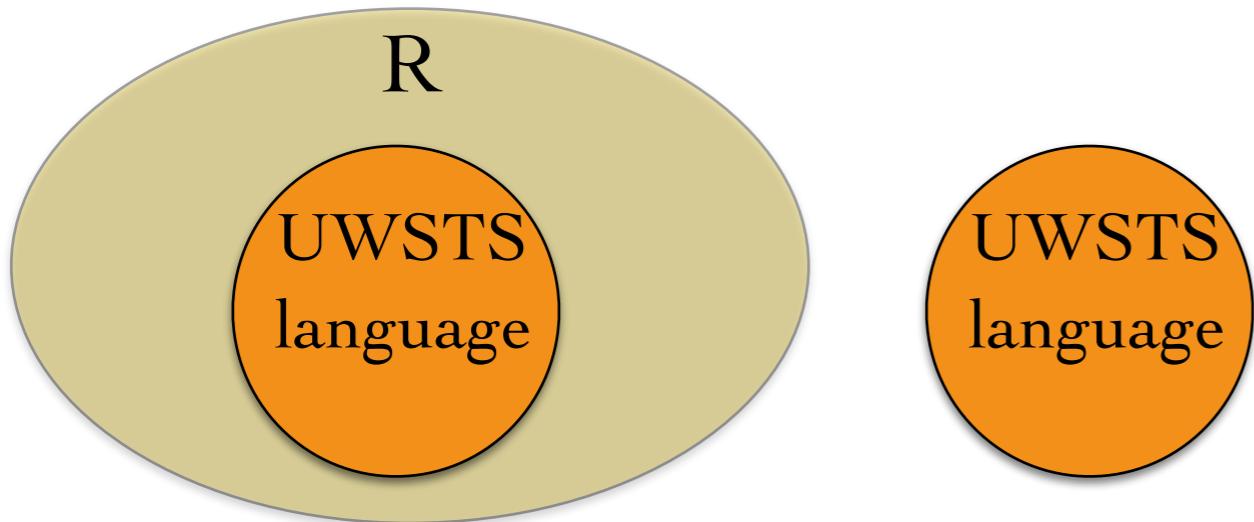


Regular separability of ${}^U_D\text{WSTS}$ languages



Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

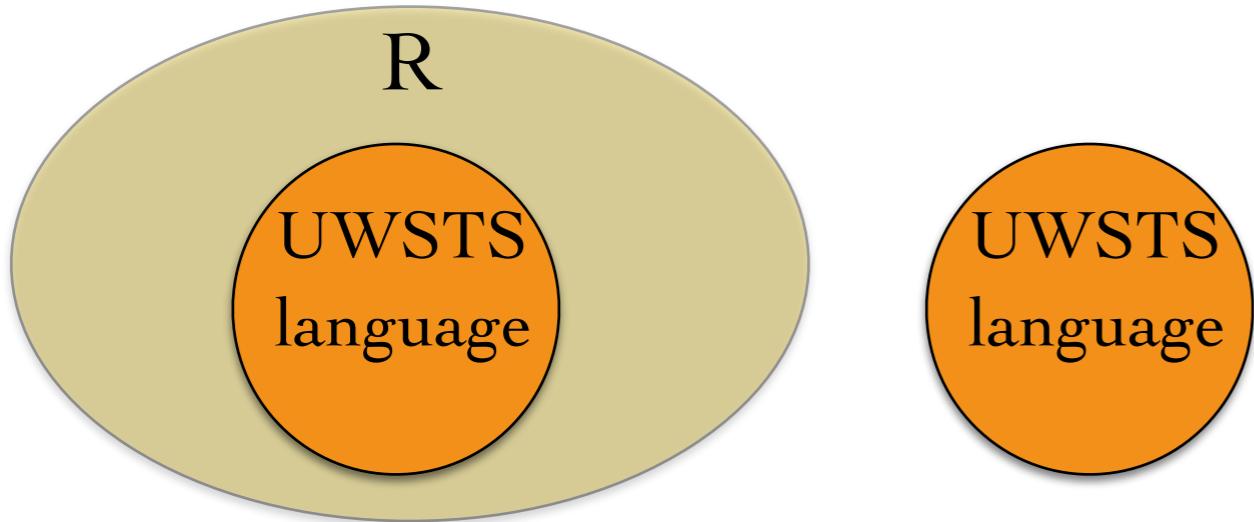
Regular separability of ${}^U_D\text{WSTS}$ languages



Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Regular separability of U_D WSTS languages

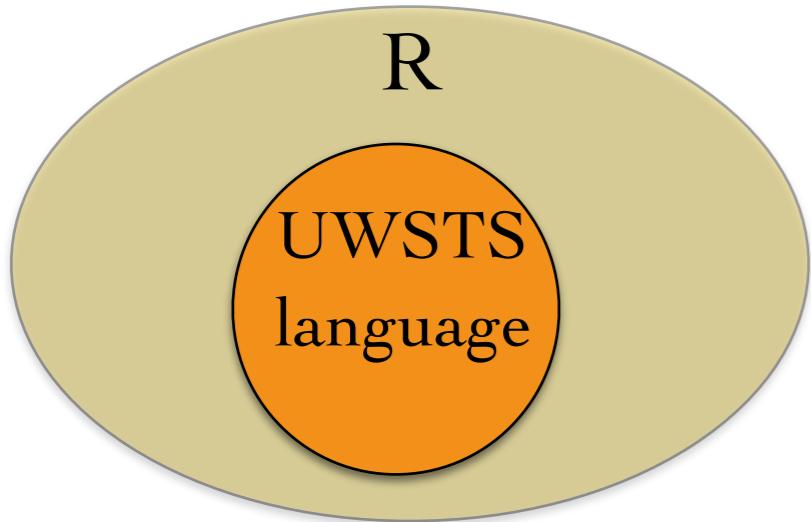


every state has
finitely many a -successors

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable,
whenever one of them is **deterministic**.

Regular separability of U_D WSTS languages



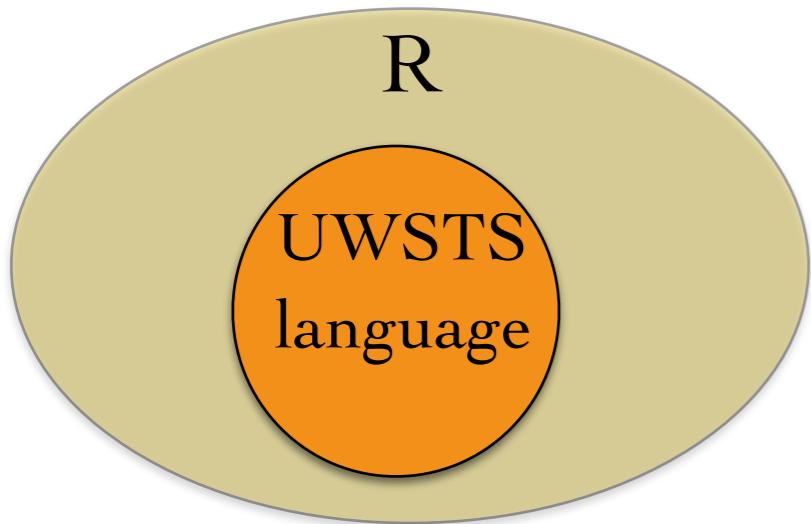
every state has
finitely many a -successors

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable,
whenever one of them is **deterministic**.

every state has
exactly one a -successor

Regular separability of ${}^U_D\text{WSTS}$ languages



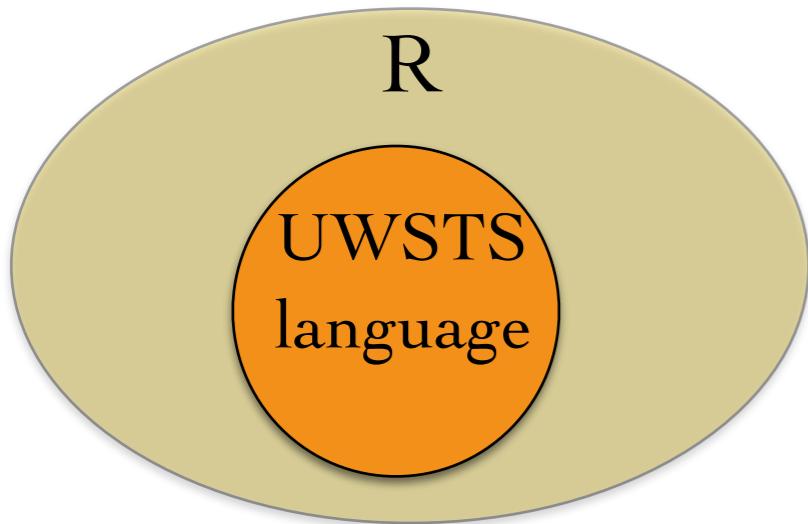
every state has
finitely many a -successors

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **deterministic**.

Every two disjoint DWSTS are regular-separable,
whenever one of them is **deterministic**.

every state has
exactly one a -successor

Regular separability of ${}^U_D\text{WSTS}$ languages



every state has
finitely many a -successors

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **deterministic**.

Every two disjoint DWSTS are regular-separable,
whenever one of them is **deterministic**.

every state has
exactly one a -successor

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages
are regular-separable.

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- ...

Further consequences

Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- ...

are regular-separable. Alike for gainy FIFO/counter automata.

Further consequences

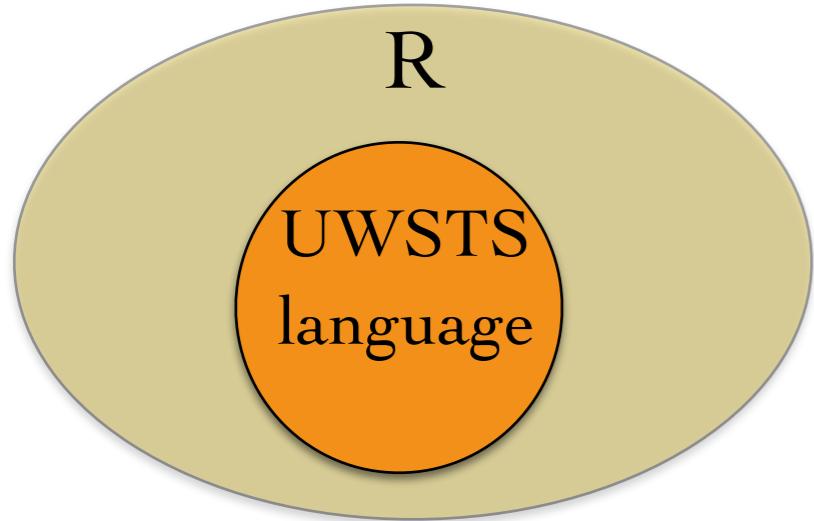
Corollary: Every two disjoint ω^2 -UWSTS or ω^2 -DWSTS languages are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- ...

are regular-separable. Alike for gainy FIFO/counter automata.

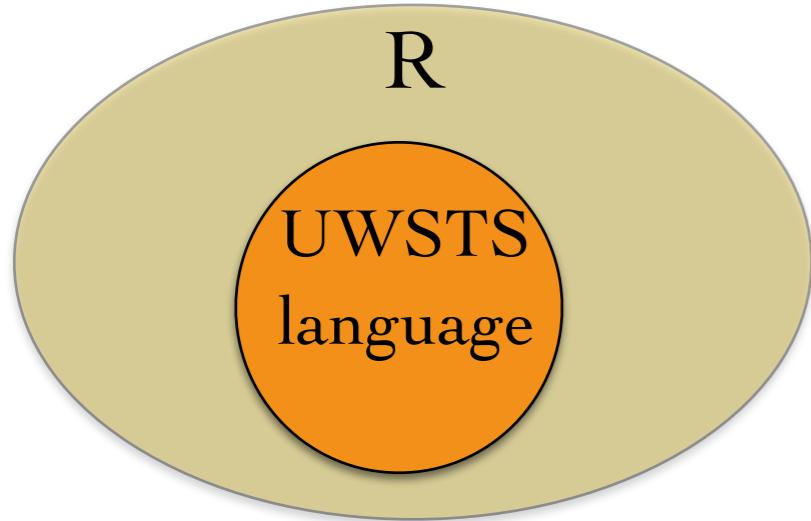
Corollary: No subclass of U_D WSTS languages closed under complement beyond regular languages.



Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Proof: Main ingredients

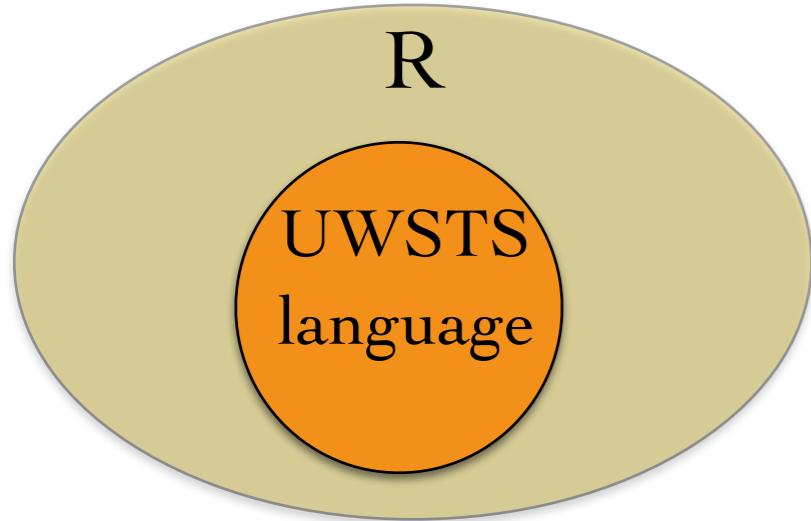


Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Proof: Main ingredients

- **inductive invariant** in the synchronized product of ${}^U_D WSTS$



Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Proof: Main ingredients

- **inductive invariant** in the synchronized product of U_D WSTS
- **ideal completion** of a UWSTS

we could stop here...

Inductive invariant

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$
- $\text{successors}(X) \subseteq X$

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$
- $\text{successors}(X) \subseteq X$

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$
- $\text{successors}(X) \subseteq X$

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

- the downward closure of the reachability set
- the complement of the backward reachability set

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$
- $\text{successors}(X) \subseteq X$

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

- the downward closure of the reachability set
- the complement of the backward reachability set

In particular, the **synchronized product** of two disjoint UTS admits one.

Inductive invariant

Def: An **inductive invariant** in a **UTS** is a subset $X \subseteq S$ of states s.t.

- X is downward closed
- $I \subseteq X$
- $X \cap F = \emptyset$
- $\text{successors}(X) \subseteq X$

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

- the downward closure of the reachability set
- the complement of the backward reachability set

In particular, the **synchronized product** of two disjoint UTS admits one.

We will need **finitary** inductive invariants $Q \downarrow$, namely Q finite.

From inductive invariant to separator

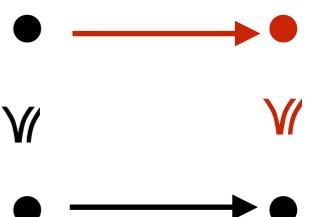
Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

From inductive invariant to separator

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .



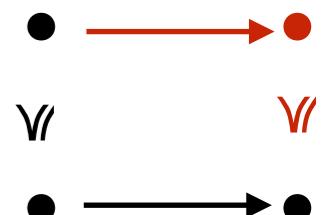
From inductive invariant to separator

Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .



From inductive invariant to separator

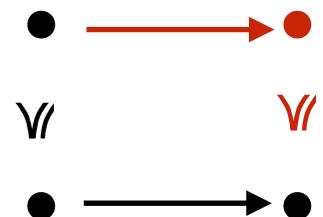
Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .

Thus $L(W) \subseteq L(A)$.



From inductive invariant to separator

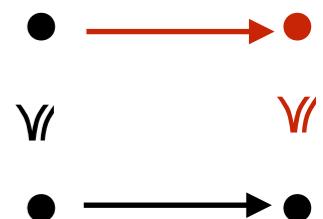
Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .

Thus $L(W) \subseteq L(A)$.



Using determinacy of V ,
the V -component of every state reached by A along some word

From inductive invariant to separator

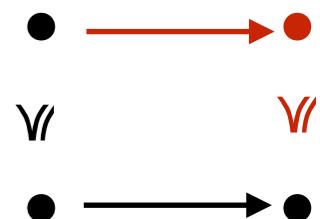
Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .

Thus $L(W) \subseteq L(A)$.



Using determinacy of V ,
the V -component of every state reached by A along some word
 \leq -dominates the unique state reached by V along this word.

From inductive invariant to separator

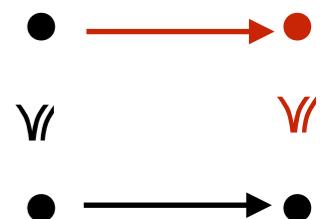
Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .

Thus $L(W) \subseteq L(A)$.



Using determinacy of V , the V -component of every state reached by A along some word \leq -dominates the unique state reached by V along this word.

Thus $L(A) \cap L(V) = \emptyset$. □

From inductive invariant to separator

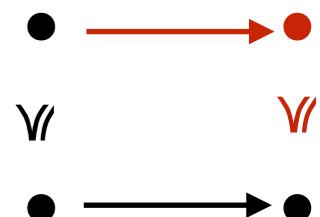
Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

$$I \subseteq Q \downarrow$$

Proof: We define automaton A to overapproximate $W \times V$ wrt \leq .

Final states of A : the W -component is final in W .

Thus $L(W) \subseteq L(A)$.



Using determinacy of V , the V -component of every state reached by A along some word \leq -dominates the unique state reached by V along this word.

Thus $L(A) \cap L(V) = \emptyset$. □

It remains to demonstrate existence of a finite Q .

Regular separability of DWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint DWSTS are regular-separable,
whenever one of them is **deterministic**.

Regular separability of DWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Proof: Apply Key Lemma to **inverses** of DWSTS which are UTS.

Regular separability of DWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Proof: Apply Key Lemma to **inverses** of DWSTS which are UTS. Finite min of upward closed set inverses to finite max of downward closed sets. □

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof.

(3, ω , 4)

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof. $(3, \omega, 4)$

Finite ideal decomposition: Every downward closed subset of a WQO is a finite union of ideals.

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof. $(3, \omega, 4)$

Finite ideal decomposition: Every downward closed subset of a WQO is a finite union of ideals.

Ideal completion: extend quasi-order by all its ideals.

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof. $(3, \omega, 4)$

Finite ideal decomposition: Every downward closed subset of a WQO is a finite union of ideals.

Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) **UTS**.

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof. $(3, \omega, 4)$

Finite ideal decomposition: Every downward closed subset of a WQO is a finite union of ideals.

Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) **UTS**.

Fact 2: Ideal completion commutes with synchronized product.

Ideal completion of a UWSTS

Recall: We need a **finitary** inductive invariant $Q\downarrow$, for Q finite.

Def: An **ideal** in a quasi-order is any downward closed directed subset thereof. $(3, \omega, 4)$

Finite ideal decomposition: Every downward closed subset of a WQO is a finite union of ideals.

Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) **UTS**.

Fact 2: Ideal completion commutes with synchronized product.

Fact 3: For every inductive invariant in a UWSTS, its finite ideal decomposition is a **finitary** inductive invariant in the ideal completion of this UWSTS.

Regular separability of UWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**,
 V deterministic, admits an inductive invariant $Q \downarrow$, then
 W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **deterministic**.

Regular separability of UWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) **UTS**.

Proof: Apply Key Lemma to the ideal completions of the UWSTS.

Regular separability of UWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) **UTS**.

Proof: Apply Key Lemma to the ideal completions of the UWSTS. Synchronized product of idea completions, isomorphic to

Regular separability of UWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) UTS.

Proof: Apply Key Lemma to the ideal completions of the UWSTS. Synchronized product of idea completions, isomorphic to ideal completion of synchronized product,

Fact 2: Ideal completion commutes with synchronized product.

Regular separability of UWSTS languages

Key Lemma: If the synchronized product $W \times V$ of two **UTS**, V deterministic, admits an inductive invariant $Q \downarrow$, then W and V are separated by an automaton with state space Q .

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **deterministic**.

Fact 1: Ideal completion of a (deterministic) UWSTS is a language-equivalent (deterministic) UTS.

Proof: Apply Key Lemma to the ideal completions of the UWSTS. Synchronized product of idea completions, isomorphic to ideal completion of synchronized product, admits a finitary inductive invariant.

Fact 2: Ideal completion commutes with synchronized product. \square

Fact 3: For every inductive invariant in a UWSTS, its finite ideal decomposition is a **finitary** inductive invariant in the ideal completion of this UWSTS.

Language expressibility $\uparrow_D WSTS$

Language expressibility \cup_D^U WSTS

Theorem: The following relations between the language classes:

Language expressibility ${}^U_D\text{WSTS}$

Theorem: The following relations between the language classes:

- $\omega^2\text{-UWSTS} \subseteq \text{det. UWSTS} = \text{fin-bran. UWSTS} \subseteq \text{all UWSTS}$
- $\omega^2\text{-DWSTS} \subseteq \text{det. DWSTS} \subseteq \text{fin-bran. DWSTS} = \text{all DWSTS}$

Language expressibility ${}^U_D WSTS$

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Left for future

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable, whenever one of them is **deterministic**.

Left for future

Theorem: Every two disjoint UWSTS are regular-separable,
whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable
whenever one of them is **deterministic**.

Can these assumptions be dropped?

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Are the inclusions strict?

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Are the inclusions strict?

Obvious generalizations:

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Are the inclusions strict?

Obvious generalizations:

- languages of trees instead of words

(BVASS coverability languages)

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Are the inclusions strict?

Obvious generalizations:

- languages of trees instead of words
- orbit-finite alphabets instead of finite ones

(BVASS coverability languages)

(data VAS)

Left for future

Theorem: Every two disjoint UWSTS are regular-separable, whenever one of them is **finitely-branching**.

Every two disjoint DWSTS are regular-separable whenever one of them is **deterministic**.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

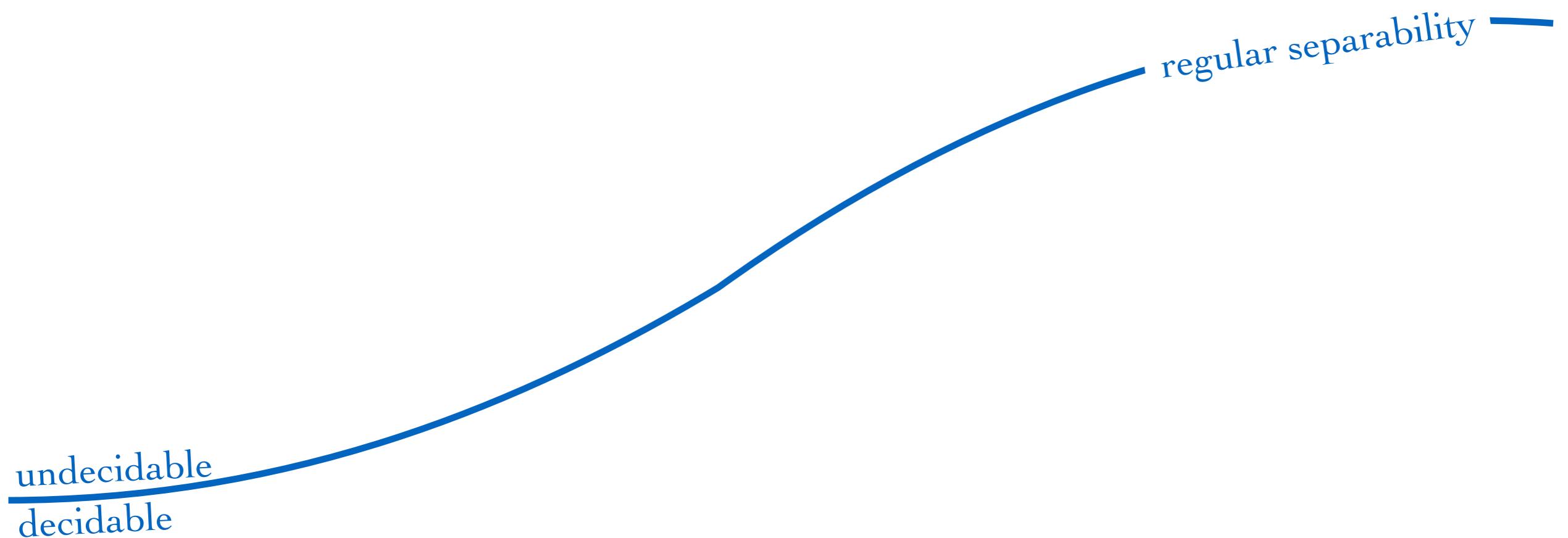
- ω^2 -UWSTS \subseteq det. UWSTS = fin-bran. UWSTS \subseteq all UWSTS
- ω^2 -DWSTS \subseteq det. DWSTS \subseteq fin-bran. DWSTS = all DWSTS
- ω^2 -UWSTS \subseteq_{rev} det. DWSTS
- ω^2 -DWSTS \subseteq_{rev} det. UWSTS

Are the inclusions strict?

Obvious generalizations:

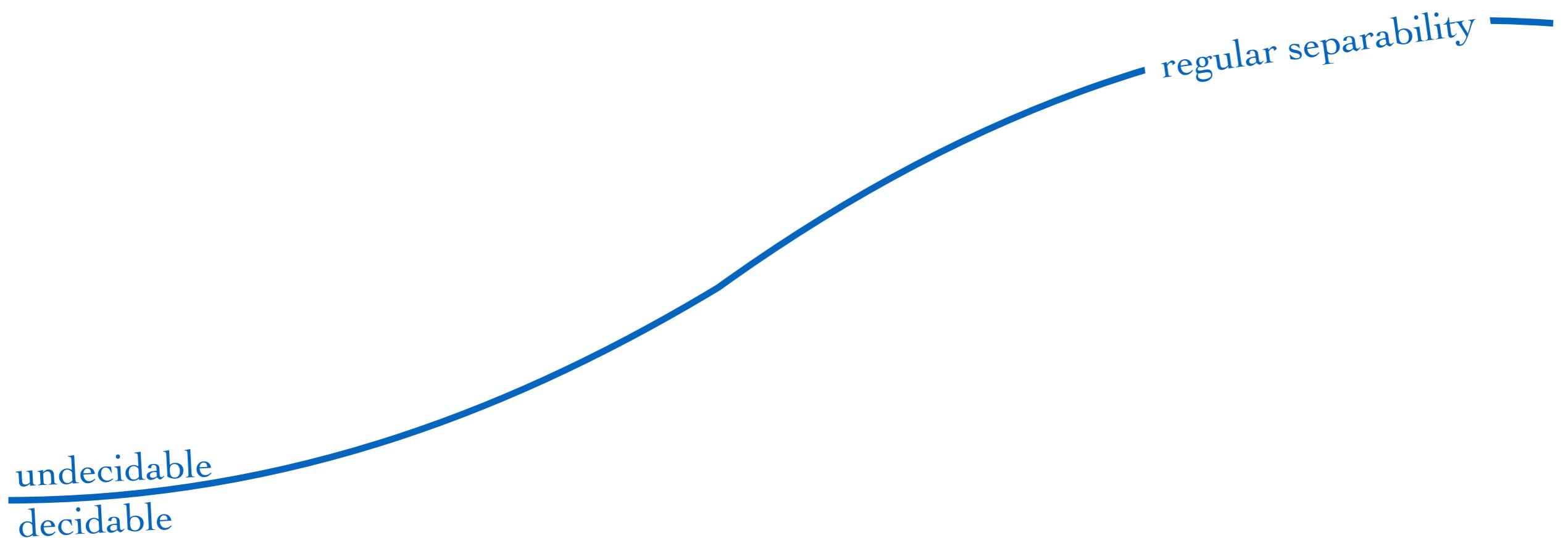
- languages of trees instead of words (BVASS coverability languages)
- orbit-finite alphabets instead of finite ones (data VAS)
- ...

Regular separability as a decision problem



Regular separability as a decision problem

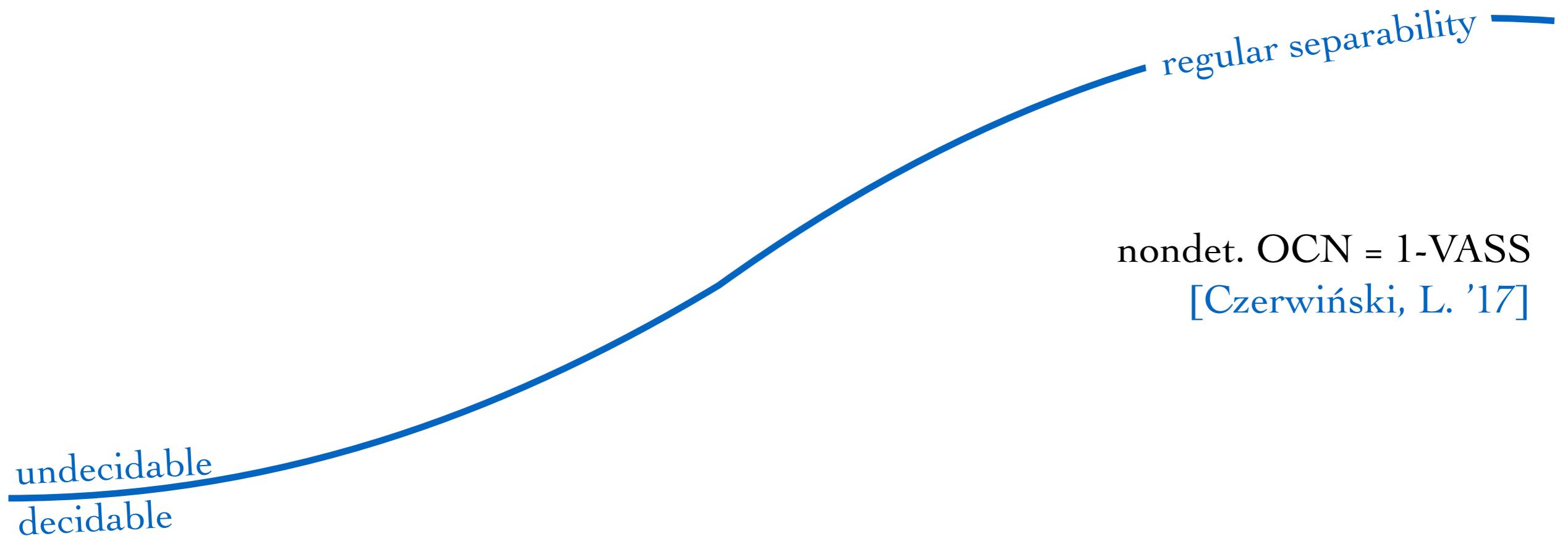
nondet. PDA [Szymanski, Williams '76]
[Hunt '82]



Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

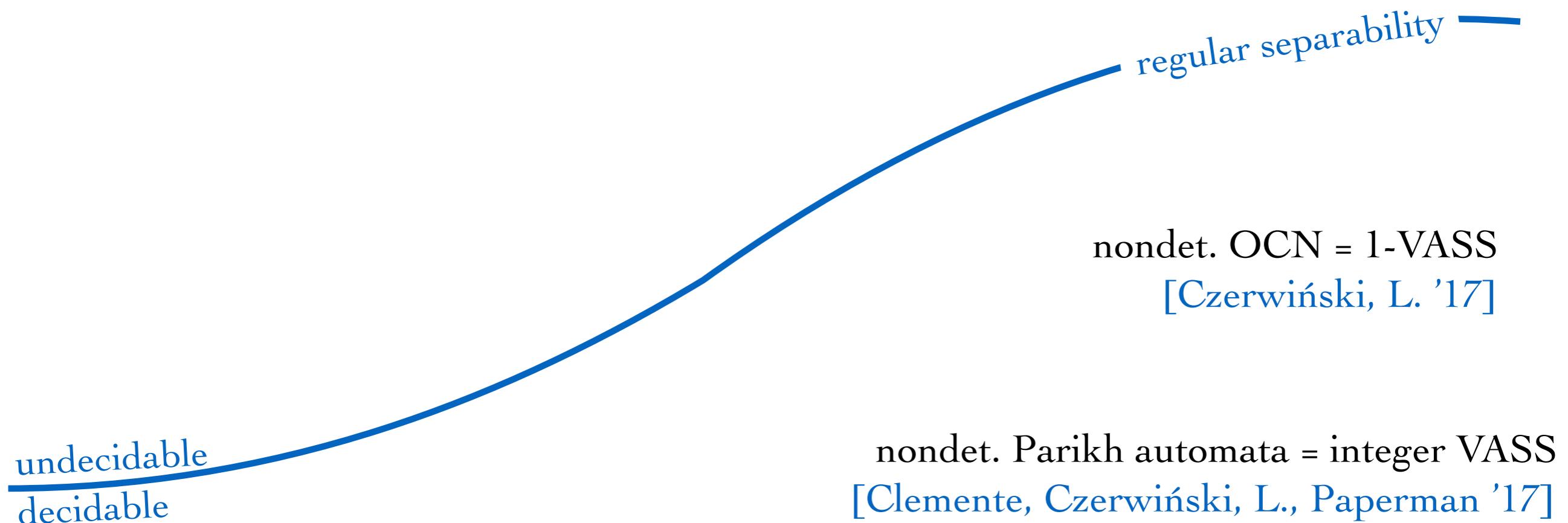
nondet. OCA [Czerwiński, L. '17]



Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

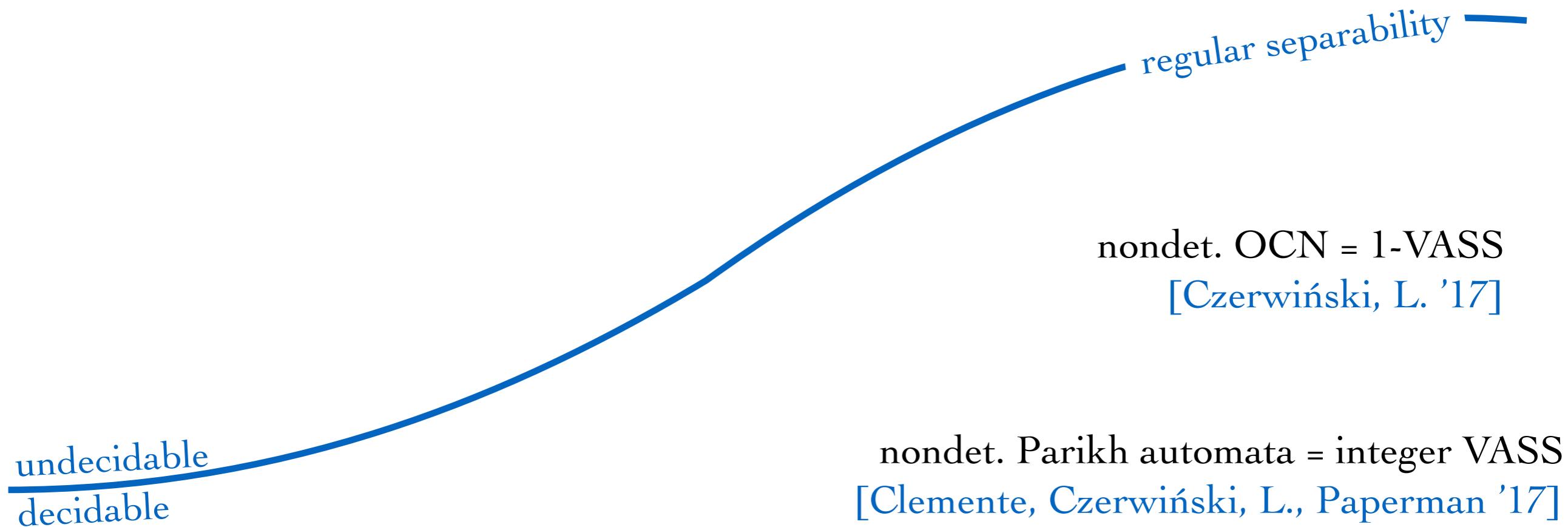
nondet. OCA [Czerwiński, L. '17]



Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

nondet. OCA [Czerwiński, L. '17]

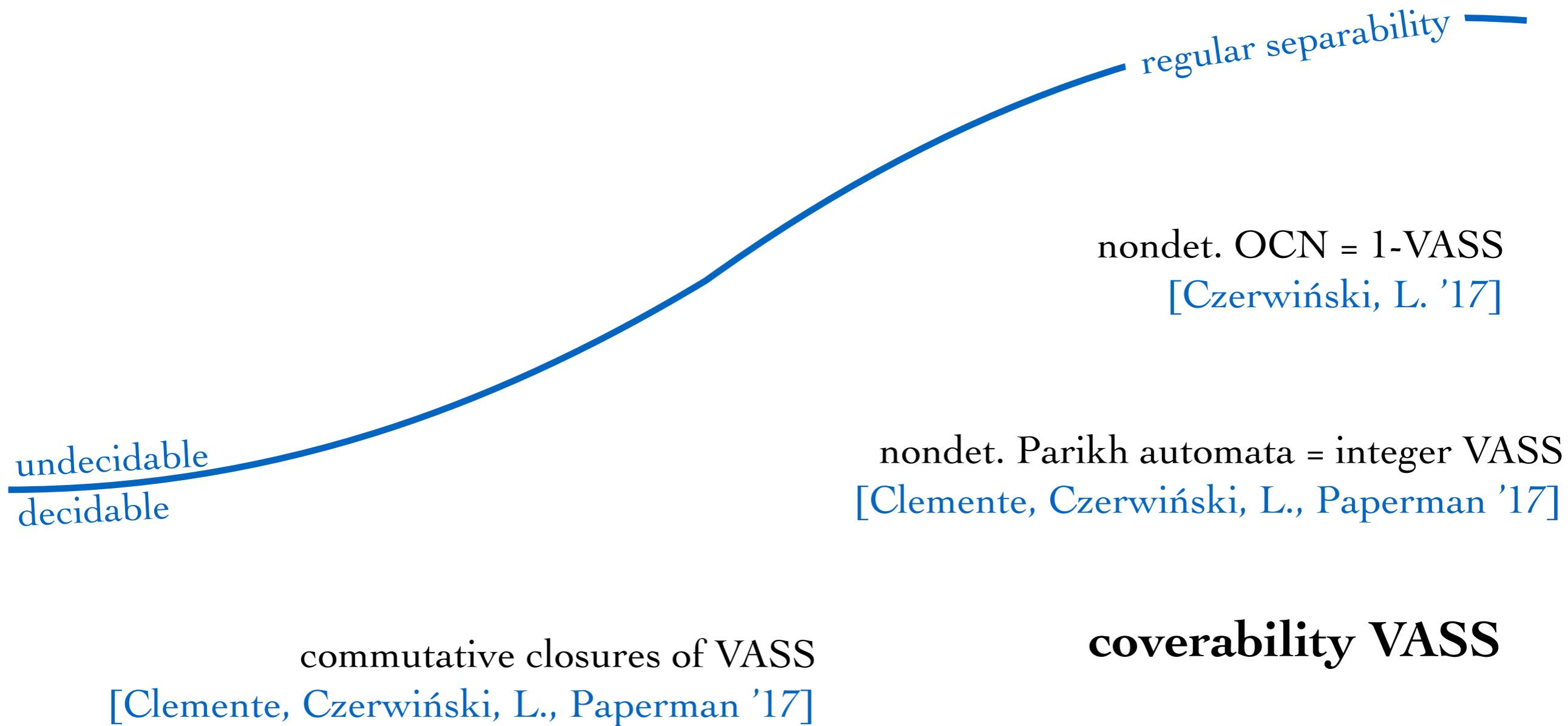


commutative closures of VASS
[Clemente, Czerwiński, L., Paperman '17]

Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

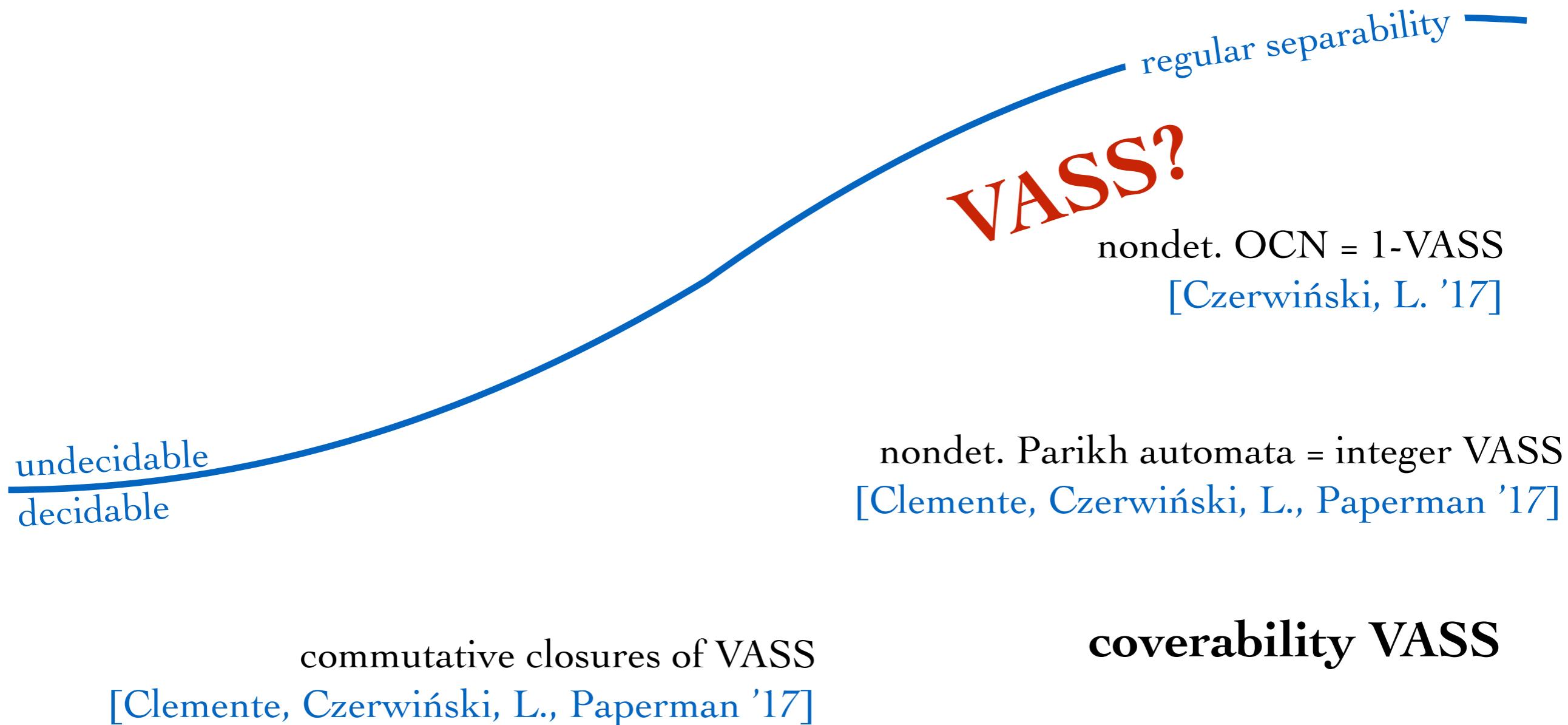
nondet. OCA [Czerwiński, L. '17]



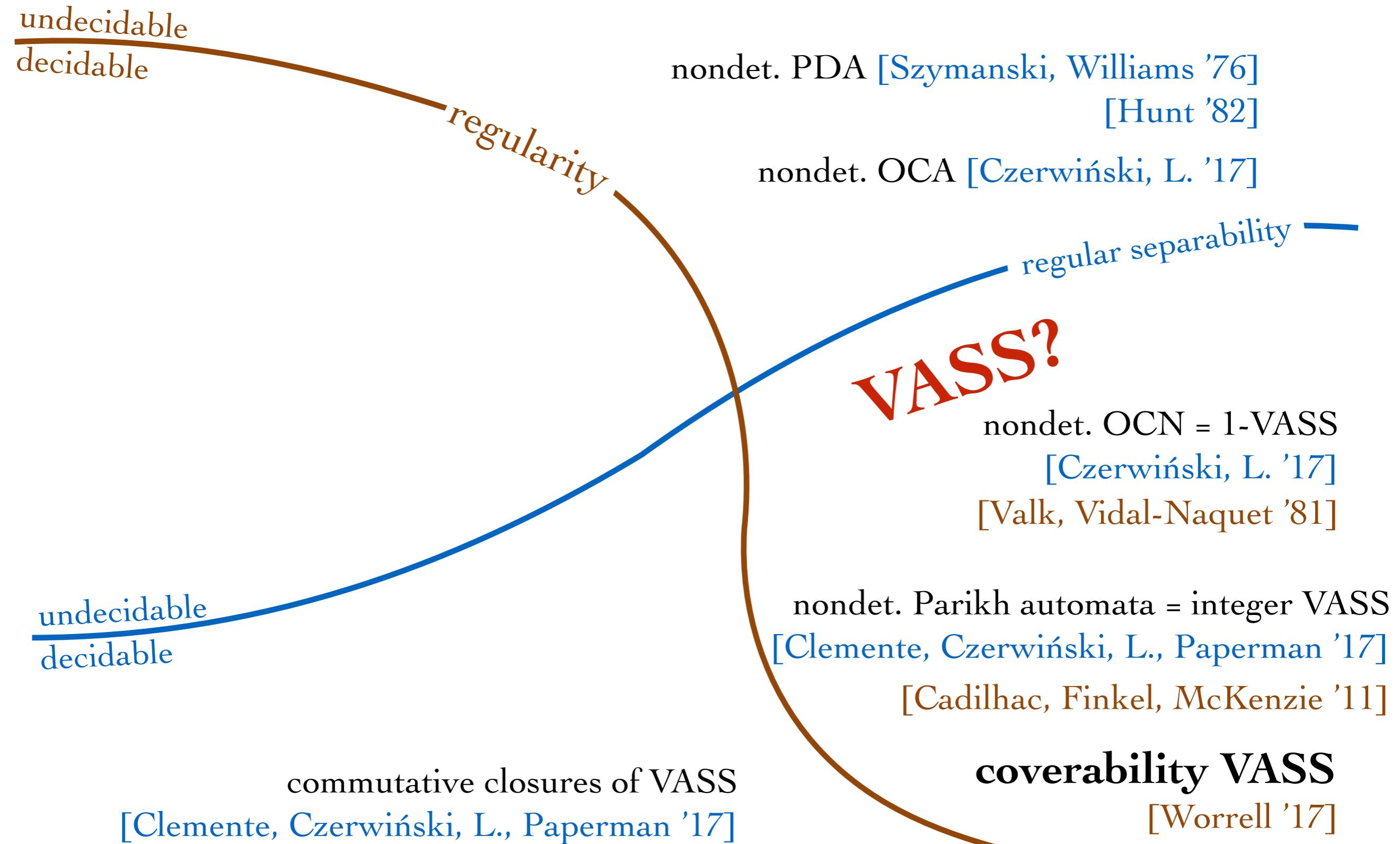
Regular separability as a decision problem

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

nondet. OCA [Czerwiński, L. '17]



Regular separability as a decision problem



Regular separability as a decision problem

undecidable
decidable

det. PDA [Kopczyński '16]
[Valiant '75]

det. OCA
[Czerwiński, L. '17]

undecidable
decidable

det. Parikh automata
[Cadilhac, Finkel, McKenzie '11]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman '17]

regularity

nondet. PDA [Szymanski, Williams '76]
[Hunt '82]

nondet. OCA [Czerwiński, L. '17]

regular separability —
VASS?

nondet. OCN = 1-VASS
[Czerwiński, L. '17]
[Valk, Vidal-Naquet '81]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman '17]
[Cadilhac, Finkel, McKenzie '11]

coverability VASS
[Worrell '17]

Regular separability as a decision problem

