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Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,
 under some mild assumptions.
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Examples:
- Dickson: Nk ordered pointwise                          (2, 3, 0) ≼ (4, 3, 5)

- Higman: A* ordered by word embedding                   age ≼ prague
- Kruskal tree embedding
- Graph minor ordering

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

Def: a quasi order is an 𝜔2 -WQO if
  its downward closed subsets (ordered by inclusion) are a WQO 
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- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

- the downward closure of the reachability set
- the complement of the backward reachability set

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

In particular, the synchronized product of two disjoint UTS admits one.

We will need finitary inductive invariants Q↓, namely Q finite.
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Key Lemma: If the synchronized product W×V of two UTS,
   V deterministic, admits an inductive invariant Q↓, then 
   W and V are separated by an automaton with state space Q.

From inductive invariant to separator
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Regular separability of DWSTS languages

Theorem: Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof:  Apply Key Lemma to inverses of DWSTS which are UTS.

Finite min of upward closed set inverses to
finite max of downward closed sets.                                   ☐

Key Lemma: If the synchronized product W×V of two UTS,
   V deterministic, admits an inductive invariant Q↓, then 
   W and V are separated by an automaton with state space Q.
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