
Wojciech Czerwiński
Sławomir Lasota

Regular separability of
languages of

well-structured transition systems

University of Warsaw

Infinity 2018, Prague
�1

TU Braunschweig

Roland Mayer
Sebastian Muskalla
Prakash Saivasan

CMI Chennai

K Narayan Kumar

Wojciech Czerwiński
Sławomir Lasota

Regular separability of
languages of

well-structured transition systems

University of Warsaw

Infinity 2018, Prague
�1

TU Braunschweig

Roland Mayer
Sebastian Muskalla
Prakash Saivasan

CMI Chennai

K Narayan Kumar

[Mukund, Kumar, Radhakrishnan, Sohoni ’98]

�2

languages of finite words

�3

Fix a class of languages C

Regular separability

�3

Input: two (disjoint) languages L, K from C

Fix a class of languages C

L K

Regular separability

R

�3

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?

Fix a class of languages C

L K

Regular separability

R

�3

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?
I.e., is there a regular language R with L ⊆ R and R ∩ K = ∅?

Fix a class of languages C

L K

Regular separability

R

�3

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?
I.e., is there a regular language R with L ⊆ R and R ∩ K = ∅?

Fix a class of languages C

L K Symmetric in L, K

Regular separability

R

�3

Input: two (disjoint) languages L, K from C

Question: are these two languages separated by a regular language?
I.e., is there a regular language R with L ⊆ R and R ∩ K = ∅?

Fix a class of languages C

L K Symmetric in L, K

Regular separability

Parametric in C

�4

Is regular separability useful?

�4

K
R
L

classify a word from L ∪ K
into L or K

separator as a classifier:

Is regular separability useful?

�4

K
R
L

classify a word from L ∪ K
into L or K

separator as a classifier:

Is regular separability useful?

Bad
R

System

separator proves absence of
undesirable behavior

language-theoretic verification:

�4

K
R
L

classify a word from L ∪ K
into L or K

separator as a classifier:

Is regular separability useful?

Bad
R

System

separator proves absence of
undesirable behavior

language-theoretic verification:

K
L

separator as a recognizer:

recognize L inside K

�4

K
R
L

classify a word from L ∪ K
into L or K

separator as a classifier:

Is regular separability useful?

Bad
R

System

separator proves absence of
undesirable behavior

language-theoretic verification:

K
L

separator as a recognizer:

R

recognize L inside K

�5

Regular separability

R

�5

L K

Regular separability

R

�5

• decision problem: are given L, K regular-separable?

L K

Regular separability

R

�5

• decision problem: are given L, K regular-separable?

• computation problem: compute a regular separator of given L, K

L K

Regular separability

R

�5

• decision problem: are given L, K regular-separable?

• computation problem: compute a regular separator of given L, K

• qualitative characterization: sufficient (and necessary) condition
for regular-separability

L K

Regular separability

R

�5

• decision problem: are given L, K regular-separable?

• computation problem: compute a regular separator of given L, K

• qualitative characterization: sufficient (and necessary) condition
for regular-separability

• quantitative characterization: bound on the size of a separator

L K

Regular separability

R

�5

• decision problem: are given L, K regular-separable?

• computation problem: compute a regular separator of given L, K

• qualitative characterization: sufficient (and necessary) condition
for regular-separability

• quantitative characterization: bound on the size of a separator

L K

Regular separability

R

�6

WSTS
language

WSTS
language

Regular separability of WSTS languages

R

�6

WSTS
language

WSTS
language

Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,

R

�6

WSTS
language

WSTS
language

Regular separability of WSTS languages

Theorem: Every two disjoint WSTS languages are regular-separable,
 under some mild assumptions.

�7

U/DWSTS: well-structured transition system

�7

U/DWSTS: well-structured transition system

TS
transition system

�7

U/DWSTS: well-structured transition system

- a finite alphabet

TS
transition system

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S

TS
transition system

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states

TS
transition system

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states

TS
transition system

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation

TS
transition system

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

- quasi-order is a WQO

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

- F is upward closed

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

- F is upward closed
- I is downward closed

}the language
of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

- F is upward closed
- I is downward closed
- upward-compatibility: }the language

of a TSa

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

- F is upward closed
- I is downward closed
- upward-compatibility: }the language

of a TS

• •

•

a

≼

a

∀

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

- quasi-order is a WQO

- F is upward closed
- I is downward closed
- upward-compatibility: }the language

of a TS

• •

•

a

≼

a

≼

•
a

∀

∃

�7

U/DWSTS: well-structured transition system

- a finite alphabet
- set of states S
- a subset I of initial states
- a subset F of final states
- transition relation
- quasi-order ≼ on states

TS
transition system

WS
well-str

uctured

U
upward-compatible

Ddownward-co
mpatib

le

- quasi-order is a WQO

- F is upward closed
- I is downward closed
- upward-compatibility: }the language

of a TS

• •

•

a

≼

a

≼

•
a

∀

∃

�8

WQO: well quasi order

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:
- Dickson: Nk ordered pointwise (2, 3, 0) ≼ (4, 3, 5)

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:
- Dickson: Nk ordered pointwise (2, 3, 0) ≼ (4, 3, 5)

- Higman: A* ordered by word embedding age ≼ prague

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:
- Dickson: Nk ordered pointwise (2, 3, 0) ≼ (4, 3, 5)

- Higman: A* ordered by word embedding age ≼ prague
- Kruskal tree embedding

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:
- Dickson: Nk ordered pointwise (2, 3, 0) ≼ (4, 3, 5)

- Higman: A* ordered by word embedding age ≼ prague
- Kruskal tree embedding
- Graph minor ordering

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

�8

WQO: well quasi order

Examples:
- Dickson: Nk ordered pointwise (2, 3, 0) ≼ (4, 3, 5)

- Higman: A* ordered by word embedding age ≼ prague
- Kruskal tree embedding
- Graph minor ordering

- no infinite descending chain
- no infinite antichain

Def: a quasi order is a WQO if it has:

Def: a quasi order is an 𝜔2 -WQO if
 its downward closed subsets (ordered by inclusion) are a WQO

�9

UWSTS examples:

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

- I = initial vector↓

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

- I = initial vector↓
- F = final vector↑

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

- I = initial vector↓
- F = final vector↑
- transition relation by addition

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

- I = initial vector↓
- F = final vector↑
- transition relation by addition
- Dickson order ≼

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

- states = Nk

- I = initial vector↓
- F = final vector↑
- transition relation by addition
- Dickson order ≼• •

•

a

≼

a
≼

•

∀

∃
upward compatibility:

�9

UWSTS examples:
- Petri nets, vector addition systems, and extensions thereof
- lossy FIFO or counter automata

DWSTS examples:
- gainy FIFO or counter automata

- states = Nk

- I = initial vector↓
- F = final vector↑
- transition relation by addition
- Dickson order ≼• •

•

a

≼

a
≼

•

∀

∃
upward compatibility:

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

UWSTS
language

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

UWSTS
language

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

UWSTS
language

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

every state has
finitely many a-successors

UWSTS
language

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

every state has
finitely many a-successors

every state has
exactly one a-successor

UWSTS
language

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

every state has
finitely many a-successors

every state has
exactly one a-successor

UWSTS
language

deterministic.

R

�10

UWSTS
language

Regular separability of U/DWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

every state has
finitely many a-successors

every state has
exactly one a-successor

UWSTS
language

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

deterministic.

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- …

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- …

are regular-separable. Alike for gainy FIFO/counter automata.

Further consequences

�11

Corollary: Every two disjoint 𝜔2-UWSTS or 𝜔2-DWSTS languages
 are regular-separable.

Corollary: Every two disjoint languages of

- plain/reset/transfer VASS (with coverability acceptance),
- lossy FIFO/counter automata,
- …

are regular-separable. Alike for gainy FIFO/counter automata.

Corollary: No subclass of U/DWSTS languages closed under complement
 beyond regular languages.

Further consequences

�12

Proof: Main ingredients

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

R

UWSTS
language

UWSTS
language

�12

Proof: Main ingredients
- inductive invariant in the synchronized product of U/DWSTS

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

R

UWSTS
language

UWSTS
language

�12

Proof: Main ingredients
- inductive invariant in the synchronized product of U/DWSTS
- ideal completion of a UWSTS

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

R

UWSTS
language

UWSTS
language

�13

we could stop here…

�14

Inductive invariant

�14

Inductive invariant

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

�14

Inductive invariant

- X is downward closed
Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

�14

Inductive invariant

- X is downward closed
- I ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

- the downward closure of the reachability set
- the complement of the backward reachability set

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

- the downward closure of the reachability set
- the complement of the backward reachability set

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

In particular, the synchronized product of two disjoint UTS admits one.

�14

Inductive invariant

- X is downward closed
- I ⊆ X
- X ∩ F = ∅
- successors(X) ⊆ X

Def: An inductive invariant in a UTS is a subset X ⊆ S of states s.t.

- the downward closure of the reachability set
- the complement of the backward reachability set

Fact: Every empty-language UTS admits an inductive invariant, e.g.,

In particular, the synchronized product of two disjoint UTS admits one.

We will need finitary inductive invariants Q↓, namely Q finite.

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

Proof: We define automaton A to overapproximate W×V wrt ≼.

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.
Thus L(W) ⊆ L(A).

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.
Thus L(W) ⊆ L(A).

Using determinacy of V,
the V-component of every state reached by A along some word

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.
Thus L(W) ⊆ L(A).

Using determinacy of V,
the V-component of every state reached by A along some word
≼-dominates the unique state reached by V along this word.

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.
Thus L(W) ⊆ L(A).

Using determinacy of V,
the V-component of every state reached by A along some word
≼-dominates the unique state reached by V along this word.
Thus L(A) ∩ L(V) = ∅. ☐

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

I ⊆ Q↓

• •

•

≼ ≼

•

Proof: We define automaton A to overapproximate W×V wrt ≼.
Final states of A: the W-component is final in W.
Thus L(W) ⊆ L(A).

Using determinacy of V,
the V-component of every state reached by A along some word
≼-dominates the unique state reached by V along this word.
Thus L(A) ∩ L(V) = ∅. ☐

�15

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

From inductive invariant to separator

It remains to demonstrate existence of a finite Q.

I ⊆ Q↓

• •

•

≼ ≼

•

�16

Regular separability of DWSTS languages

Theorem: Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

⇒

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

�16

Regular separability of DWSTS languages

Theorem: Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to inverses of DWSTS which are UTS.

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

�16

Regular separability of DWSTS languages

Theorem: Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to inverses of DWSTS which are UTS.

Finite min of upward closed set inverses to
finite max of downward closed sets. ☐

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

�17

Ideal completion of a UWSTS

Recall: We need a finitary inductive invariant Q↓, for Q finite.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.
 Finite ideal decomposition: Every downward closed subset of a
 WQO is a finite union of ideals.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.
 Finite ideal decomposition: Every downward closed subset of a
 WQO is a finite union of ideals.
 Ideal completion: extend quasi-order by all its ideals.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.
 Finite ideal decomposition: Every downward closed subset of a
 WQO is a finite union of ideals.
 Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.
 Finite ideal decomposition: Every downward closed subset of a
 WQO is a finite union of ideals.
 Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

Fact 2: Ideal completion commutes with synchronized product.

�17

Ideal completion of a UWSTS

Def: An ideal in a quasi-order is any downward closed (3, 𝜔, 4)
 directed subset thereof.
 Finite ideal decomposition: Every downward closed subset of a
 WQO is a finite union of ideals.
 Ideal completion: extend quasi-order by all its ideals.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

Recall: We need a finitary inductive invariant Q↓, for Q finite.

Fact 3: For every inductive invariant in a UWSTS,
 its finite ideal decomposition is a finitary inductive invariant
 in the ideal completion of this UWSTS.

Fact 2: Ideal completion commutes with synchronized product.

�18

Regular separability of UWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

⇒

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

�18

Regular separability of UWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to the ideal completions of the UWSTS.

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

�18

Regular separability of UWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to the ideal completions of the UWSTS.

 Synchronized product of idea completions, isomorphic to

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

�18

Regular separability of UWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to the ideal completions of the UWSTS.

 Synchronized product of idea completions, isomorphic to
ideal completion of synchronized product,

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

Fact 2: Ideal completion commutes
with synchronized product.

�18

Regular separability of UWSTS languages

Theorem: Every two disjoint UWSTS are regular-separable,
 whenever one of them is deterministic.

⇒
Proof: Apply Key Lemma to the ideal completions of the UWSTS.

 Synchronized product of idea completions, isomorphic to
ideal completion of synchronized product,
admits a finitary inductive invariant. ☐

Key Lemma: If the synchronized product W×V of two UTS,
 V deterministic, admits an inductive invariant Q↓, then
 W and V are separated by an automaton with state space Q.

Fact 1: Ideal completion of a (deterministic) UWSTS is
 a language-equivalent (deterministic) UTS.

Fact 2: Ideal completion commutes
with synchronized product.

Fact 3: For every inductive invariant in a UWSTS,
 its finite ideal decomposition is a finitary inductive invariant
 in the ideal completion of this UWSTS.

�19

Language expressibility U/DWSTS

�19

Language expressibility U/DWSTS

Theorem: The following relations between the language classes:

�19

Language expressibility U/DWSTS

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

�19

Language expressibility U/DWSTS

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS
- 𝜔2-UWSTS ⊆ rev det. DWSTS
- 𝜔2-DWSTS ⊆ rev det. UWSTS

�20

Left for future

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS Are the inclusions strict?

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS Are the inclusions strict?

Obvious generalizations:

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS Are the inclusions strict?

Obvious generalizations:
- languages of trees instead of words (BVASS coverability languages)

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS Are the inclusions strict?

Obvious generalizations:
- languages of trees instead of words (BVASS coverability languages)
- orbit-finite alphabets instead of finite ones (data VAS)

�20

Left for future
Theorem: Every two disjoint UWSTS are regular-separable,

 whenever one of them is finitely-branching.

 Every two disjoint DWSTS are regular-separable,
 whenever one of them is deterministic.

Can these assumptions be dropped?

Theorem: The following relations between the language classes:

- 𝜔2-UWSTS ⊆ det. UWSTS = fin-bran. UWSTS ⊆ all UWSTS
- 𝜔2-DWSTS ⊆ det. DWSTS ⊆ fin-bran. DWSTS = all DWSTS

- 𝜔2-UWSTS ⊆ rev det. DWSTS

- 𝜔2-DWSTS ⊆ rev det. UWSTS Are the inclusions strict?

Obvious generalizations:
- languages of trees instead of words (BVASS coverability languages)
- orbit-finite alphabets instead of finite ones (data VAS)
- …

�21

undecidable
decidable

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

undecidable
decidable

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

undecidable
decidable

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

undecidable
decidable

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

undecidable
decidable

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

undecidable
decidable

coverability VASS

Regular separability as a decision problem

 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

undecidable
decidable

coverability VASS

Regular separability as a decision problem

VASS?
 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

regularity

undecidable
decidable

undecidable
decidable

[Valk, Vidal-Naquet ’81]

[Cadilhac, Finkel, McKenzie ’11]

coverability VASS
[Worrell ’17]

Regular separability as a decision problem

VASS?
 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

det. PDA [Kopczyński ’16] nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

det. OCA
[Czerwiński, L. ’17]

regularity

undecidable
decidable

undecidable
decidable

[Valiant ’75]

[Valk, Vidal-Naquet ’81]

[Cadilhac, Finkel, McKenzie ’11]

coverability VASS
[Worrell ’17]

det. Parikh automata
[Cadilhac, Finkel, McKenzie ’11]

Regular separability as a decision problem

VASS?
 regular separability

�21

nondet. PDA [Szymanski, Williams ’76]
[Hunt ’82]

det. PDA [Kopczyński ’16] nondet. OCA [Czerwiński, L. ’17]

nondet. OCN = 1-VASS
[Czerwiński, L. ’17]

commutative closures of VASS
[Clemente, Czerwiński, L., Paperman ’17]

nondet. Parikh automata = integer VASS
[Clemente, Czerwiński, L., Paperman ’17]

det. OCA
[Czerwiński, L. ’17]

regularity

undecidable
decidable

undecidable
decidable

[Valiant ’75]

[Valk, Vidal-Naquet ’81]

[Cadilhac, Finkel, McKenzie ’11]

coverability VASS
[Worrell ’17]

det. Parikh automata
[Cadilhac, Finkel, McKenzie ’11]

Regular separability as a decision problem

VASS?
 regular separability

