

Doubly Exponential Runs in Fixed Dimensional VASSes

Wojciech Czerwiński

Jérôme Leroux

Filip Mazowiecki

Reachability in VASSes

Reachability in VASSes

- EXPSPACE-hard (Lipton '76, non-fixed dim.)

Reachability in VASSes

- EXPSPACE-hard (Lipton '76, non-fixed dim.)
- decidable (Mayr '81)

Reachability in VASSes

- EXPSPACE-hard (Lipton '76, non-fixed dim.)
- decidable (Mayr '81)
- cubic Ackermann (Leroux, Schmitz '15)

Reachability in VASSes

- EXPSPACE-hard (Lipton '76, non-fixed dim.)
- decidable (Mayr '81)
- cubic Ackermann (Leroux, Schmitz '15)
- 2-VASS in PSPACE (Blondin et al. '14)

Reachability in VASSes

- EXPSPACE-hard (Lipton '76, non-fixed dim.)
- decidable (Mayr '81)
- cubic Ackermann (Leroux, Schmitz '15)
- 2-VASS in PSPACE (Blondin et al. '14)
- unary 2-VASS in NL (Englert et al. '16)

Conjectures

Conjectures

- d-VASS admits doubly-exponential runs

Conjectures

- d -VASS admits **doubly-exponential** runs
- d -VASS admits **exponential** runs for every fixed d

Conjectures

- d-VASS admits **doubly-exponential** runs
- d-VASS admits **exponential** runs for every fixed d
- d-VASS admits **pseudo-polynomial** runs for every fixed d

Main result

Main result

There is a family of 4-dimensional VASSes V_k
and its configurations s, t such that:

Main result

There is a family of 4-dimensional VASSes V_k
and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states

Main result

There is a family of 4-dimensional VASSes V_k and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states
- transitions in V_k contain numbers of $\text{poly}(k)$ bits

Main result

There is a family of 4-dimensional VASSes V_k and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states
- transitions in V_k contain numbers of $\text{poly}(k)$ bits
- s and t has size $\text{poly}(k)$

Main result

There is a family of 4-dimensional VASSes V_k
and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states
- transitions in V_k contain numbers of $\text{poly}(k)$ bits
- s and t has size $\text{poly}(k)$
- shortest run from s to t is $\text{doubly-exp}(k)$ long

Main result

There is a family of 4-dimensional VASSes V_k and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states
- transitions in V_k contain numbers of $\text{poly}(k)$ bits
- s and t has size $\text{poly}(k)$
- shortest run from s to t is $\text{doubly-exp}(k)$ long
- 4-th coordinate is always bounded by $\text{exp}(k)$

Main result

There is a family of 4-dimensional VASSes V_k and its configurations s, t such that:

- V_k has at most $\text{poly}(k)$ states
- transitions in V_k contain numbers of $\text{poly}(k)$ bits
- s and t has size $\text{poly}(k)$
- shortest run from s to t is $\text{doubly-exp}(k)$ long
- 4-th coordinate is always bounded by $\text{exp}(k)$

Brakes Conjecture II in $d=4$ and
Conjecture III in $d=3$

Plan

Plan

- Lipton's idea

Plan

- Lipton's idea
- number theory Lemma

Plan

- Lipton's idea
- number theory Lemma
- use Lemma for construction

Plan

- Lipton's idea
- number theory Lemma
- use Lemma for construction
- Lemma proof sketch

Lipton's idea

Lipton's idea

two new dimensions - length of run squares

Lipton's idea

two new dimensions - length of run squares

needs $2d$ dimensions to reach 2^{2^d}

Lemma

Lemma

There is a polynomial P such that for every $k \in \mathbb{N}$ there exist positive integers $a_1, b_1, \dots, a_k, b_k, a, b \leq 2^{P(k)}$ with $a_i > b_i$ for all i , such that

Lemma

There is a polynomial P such that for every $k \in \mathbb{N}$ there exist positive integers $a_1, b_1, \dots, a_k, b_k, a, b \leq 2^{P(k)}$ with $a_i > b_i$ for all i , such that

$$(a_1 / b_1)^{n_1} \cdot \dots \cdot (a_k / b_k)^{n_k} = a / b$$

Lemma

There is a polynomial P such that for every $k \in \mathbb{N}$ there exist positive integers $a_1, b_1, \dots, a_k, b_k, a, b \leq 2^{P(k)}$ with $a_i > b_i$ for all i , such that

$$(a_1 / b_1)^{n_1} \cdot \dots \cdot (a_k / b_k)^{n_k} = a / b$$

for $n_i = 2^{i-1}$ for $i \in \{1, \dots, k\}$

VASS construction

VASS construction

Prefix of a run

VASS construction

Prefix of a run

$$p(0, 0, 0, 0) \implies p(K, Kb, 0, 0) \longrightarrow p_1(K, Kb, 0, n_1)$$

VASS construction

Prefix of a run

$$p(0, 0, 0, 0) \implies p(K, Kb, 0, 0) \longrightarrow p_1(K, Kb, 0, n_1)$$

Suffix of a run

VASS construction

Prefix of a run

$$p(0, 0, 0, 0) \implies p(K, Kb, 0, 0) \rightarrow p_1(K, Kb, 0, n_1)$$

Suffix of a run

$$q_k(K, Ka, 0, 0) \rightarrow q(K, Ka, 0, 0) \implies q(0, 0, 0, 0)$$

VASS construction

Prefix of a run

$$p(0, 0, 0, 0) \implies p(K, Kb, 0, 0) \rightarrow p_1(K, Kb, 0, n_1)$$

Suffix of a run

$$q_k(K, Ka, 0, 0) \rightarrow q(K, Ka, 0, 0) \implies q(0, 0, 0, 0)$$

Infix of a run

VASS construction

Prefix of a run

$$p(0, 0, 0, 0) \implies p(K, Kb, 0, 0) \rightarrow p_I(K, Kb, 0, n_I)$$

Suffix of a run

$$q_k(K, Ka, 0, 0) \rightarrow q(K, Ka, 0, 0) \implies q(0, 0, 0, 0)$$

Infix of a run

$$p_I(K, Kb, 0, n_I) \implies q_k(K, Ka, 0, 0)$$

VASS construction

VASS construction

Assume a_j / b_j are ordered

VASS construction

Assume a_j / b_j are ordered

Infix: $p_l(K, Kb, 0, n_l) \implies q_k(K, Ka, 0, 0)$

VASS construction

Assume a_j / b_j are ordered

Infix: $p_l(K, Kb, 0, n_l) \implies q_k(K, Ka, 0, 0)$

k phases: $p_j(K, x, y, z) \implies q_j(K, x', y', z')$

VASS construction

Assume a_j / b_j are ordered

Infix: $p_l(K, Kb, 0, n_l) \implies q_k(K, Ka, 0, 0)$

k phases: $p_j(K, x, y, z) \implies q_j(K, x', y', z')$

Idea: $x' = x \cdot (a_j / b_j)^{n_j}$

VASS construction

Assume a_j / b_j are ordered

Infix: $p_l(K, Kb, 0, n_l) \implies q_k(K, Ka, 0, 0)$

k phases: $p_j(K, x, y, z) \implies q_j(K, x', y', z')$

Idea: $x' = x \cdot (a_j / b_j)^{n_j}$

After phase j: $Kb \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

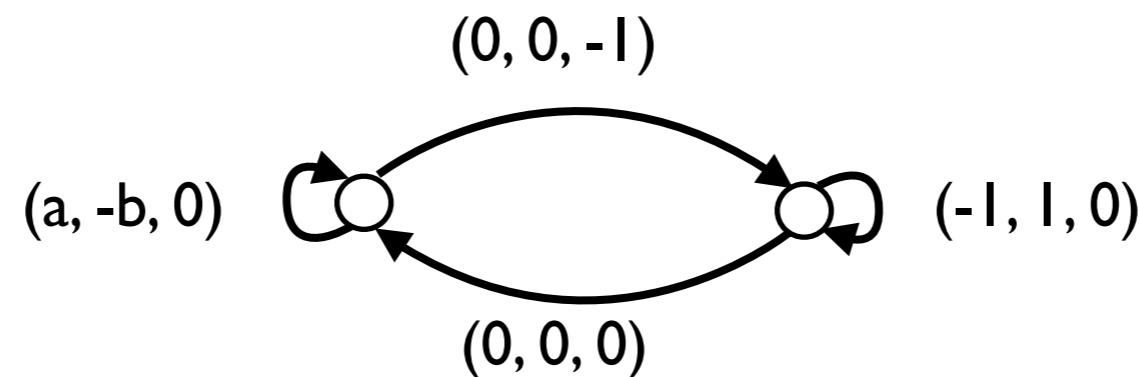
VASS construction

VASS construction

One phase

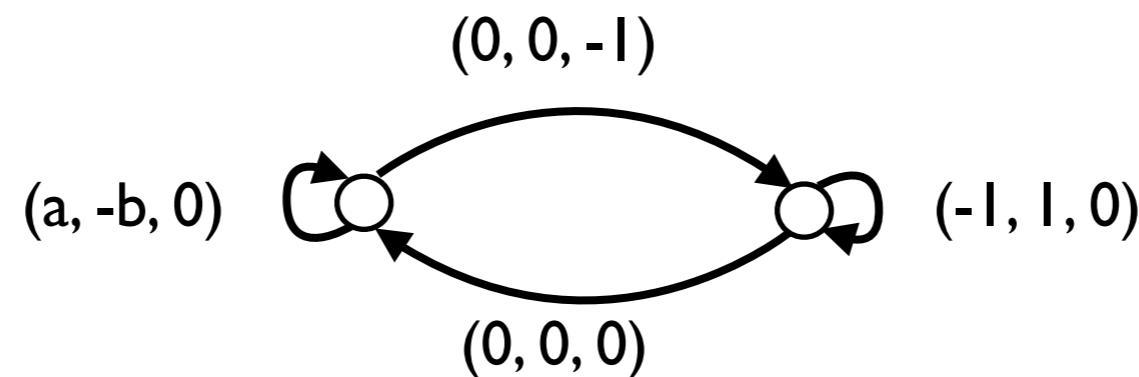
VASS construction

One phase



VASS construction

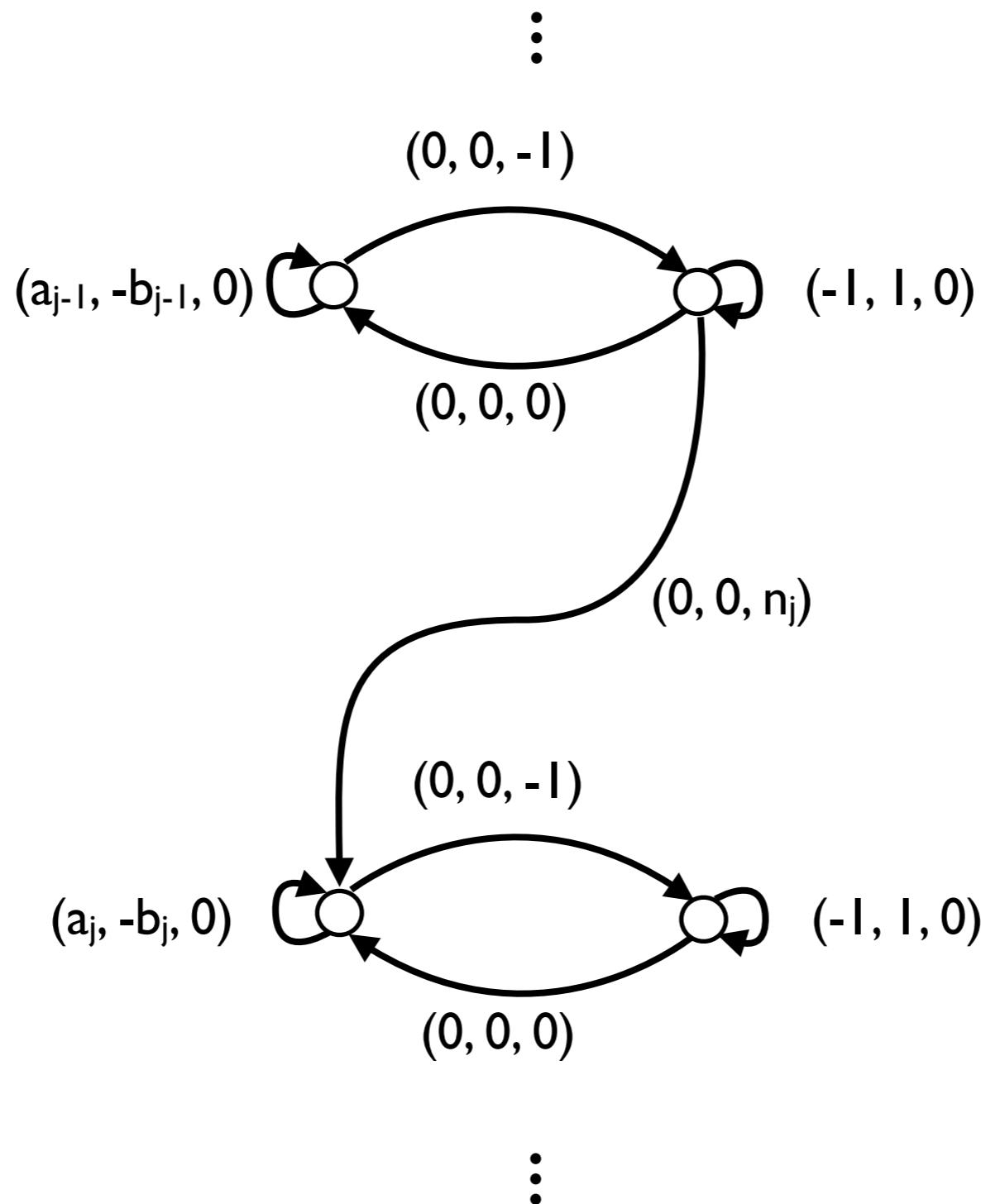
One phase



$(Cb^i, 0, i) \Rightarrow (Cab^{i-1}, 0, i-1) \Rightarrow \dots \Rightarrow (Ca^i, 0, 0)$

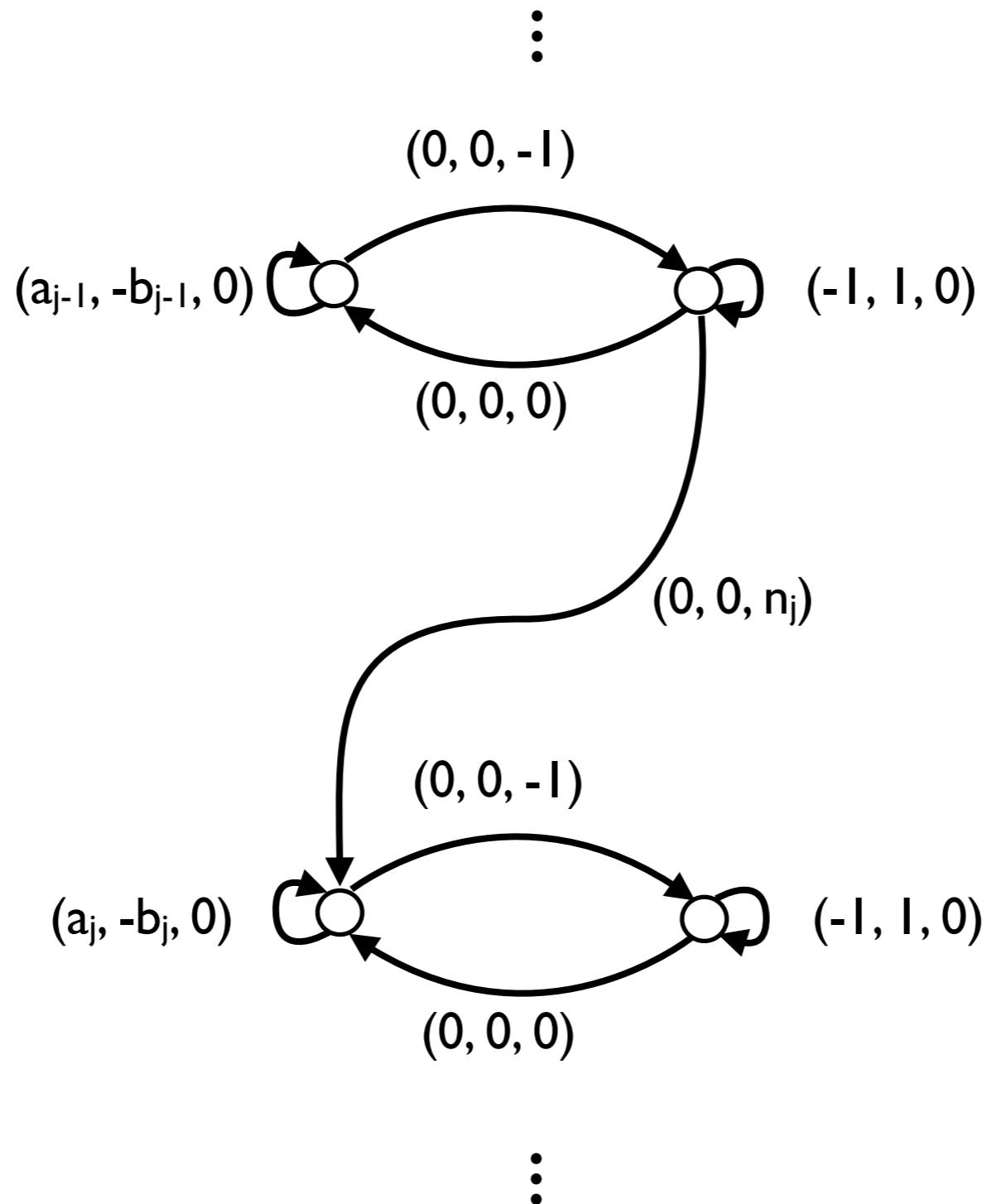
VASS construction

VASS construction

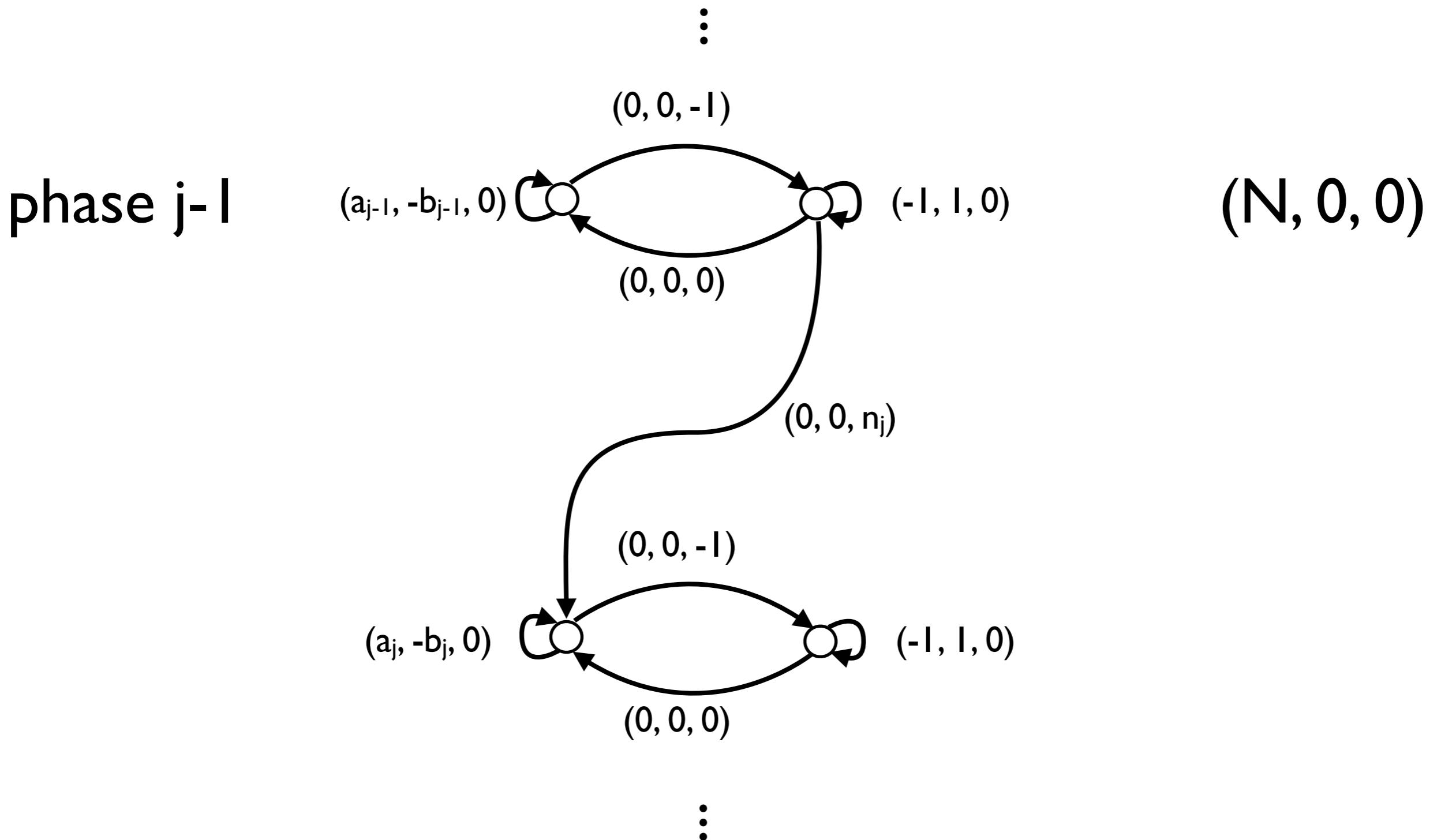


VASS construction

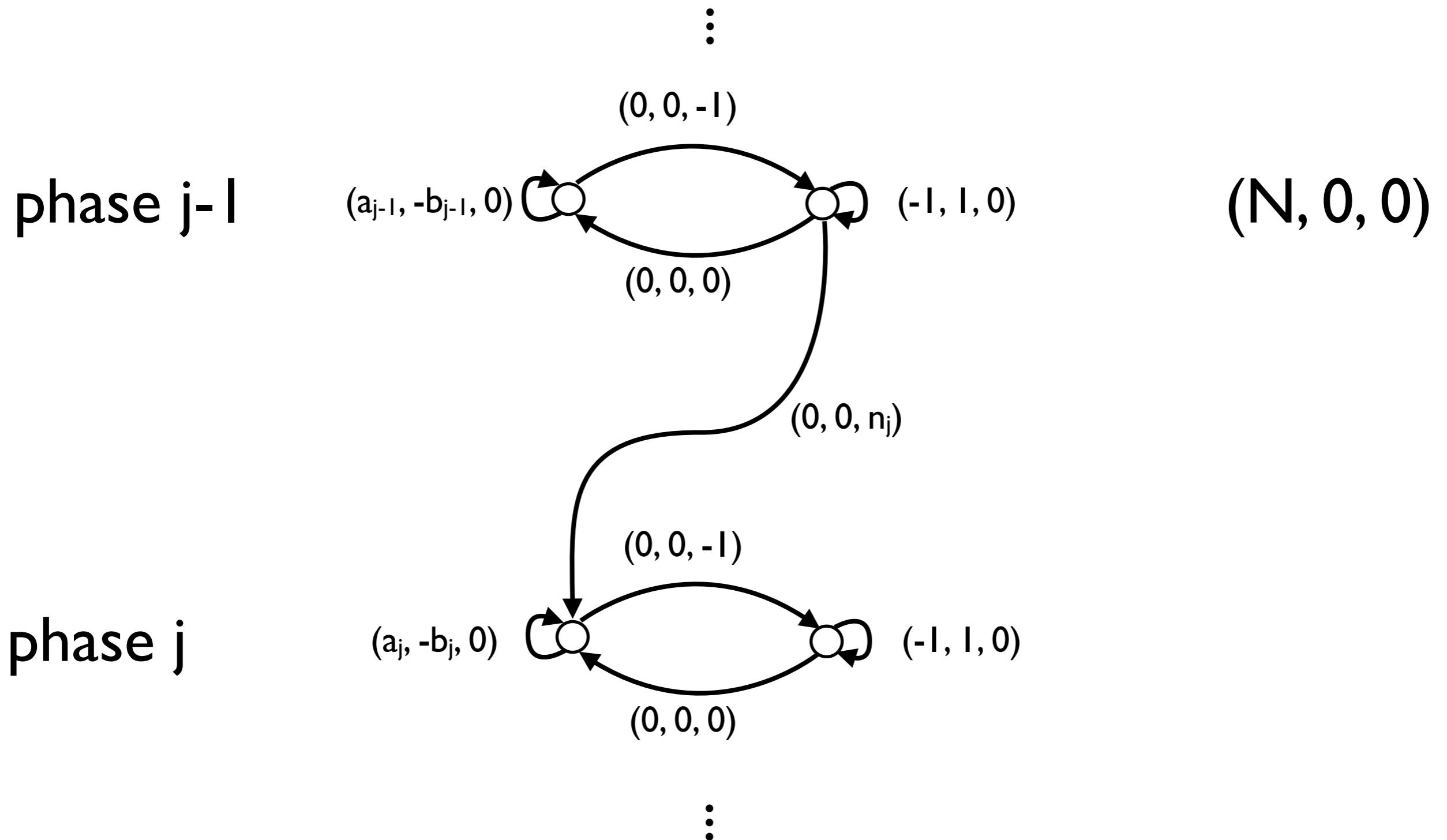
phase $j-1$



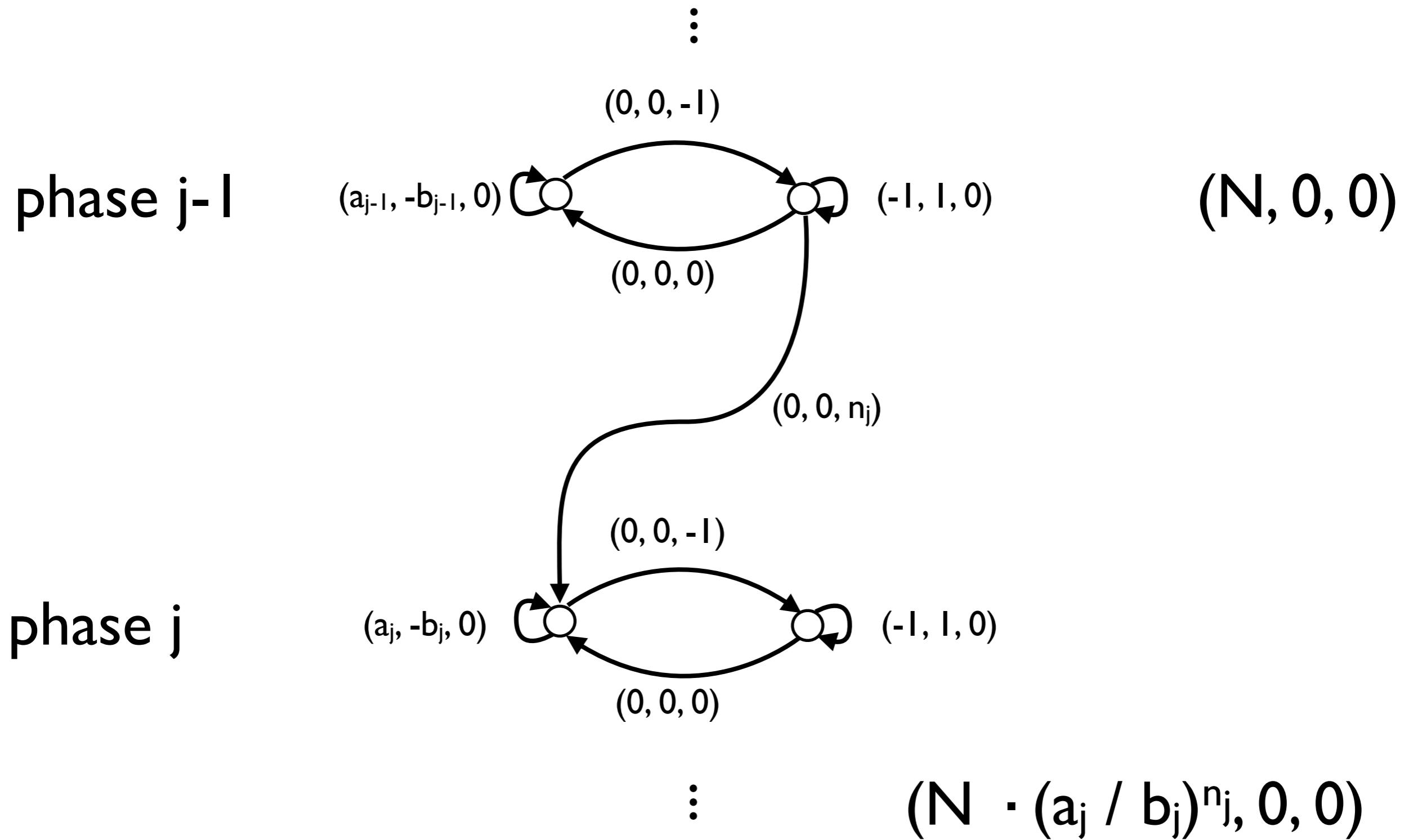
VASS construction



VASS construction



VASS construction



VASS construction

VASS construction

To reach K_a at the end we must move optimally

VASS construction

To reach K_a at the end we must move optimally

After phase j : $K_b \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

VASS construction

To reach K_a at the end we must move optimally

After phase j : $K_b \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

Before k -th phase: C

VASS construction

To reach K_a at the end we must move optimally

After phase j : $K_b \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

Before k -th phase: C

After k -th phase: $C \cdot (a_k / b_k)^{2^{k-1}}$

VASS construction

To reach K_a at the end we must move optimally

After phase j : $K_b \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

Before k -th phase: C

After k -th phase: $C \cdot (a_k / b_k)^{2^{k-1}}$

So C divisible by $b_k^{2^{k-1}}$

VASS construction

To reach K_a at the end we must move optimally

After phase j : $K_b \cdot (a_1 / b_1)^{n_1} \cdot \dots \cdot (a_j / b_j)^{n_j}$

Before k -th phase: C

After k -th phase: $C \cdot (a_k / b_k)^{2^{k-1}}$

So C divisible by $b_k^{2^{k-1}}$

Doubly-exponential run

Lemma proof

Lemma proof

$$(q/l)^{2^k} \cdot (l/q)^{2^{k-1}} \cdot \dots \cdot (l/q)^2 \cdot (l/q^2)^1 = l$$

Lemma proof

$$(q / l)^{2^k} \cdot (l / q)^{2^{k-1}} \cdot \dots \cdot (l / q)^2 \cdot (l / q^2)^1 = l$$

$$(c_j / d_j)^{2^j} \cdot (d_j / c_j)^{2^{j-1}} \cdot \dots \cdot (d_j / c_j)^2 \cdot (d_j^2 / c_j^2)^1 = l$$

Lemma proof

$$(q / l)^{2^k} \cdot (l / q)^{2^{k-1}} \cdot \dots \cdot (l / q)^2 \cdot (l / q^2)^1 = l$$

$$(c_j / d_j)^{2^j} \cdot (d_j / c_j)^{2^{j-1}} \cdot \dots \cdot (d_j / c_j)^2 \cdot (d_j^2 / c_j^2)^1 = l$$

$$(c_3 / d_3)^4 \cdot (d_3 c_2 / c_3 d_2)^2 \cdot (C(d_3 d_2)^2 / (c_3 c_2)^2)^1 = C$$

Lemma proof

$$(q / l)^{2^k} \cdot (l / q)^{2^{k-1}} \cdot \dots \cdot (l / q)^2 \cdot (l / q^2)^1 = l$$

$$(c_j / d_j)^{2^j} \cdot (d_j / c_j)^{2^{j-1}} \cdot \dots \cdot (d_j / c_j)^2 \cdot (d_j^2 / c_j^2)^1 = l$$

$$(c_3 / d_3)^4 \cdot (d_3 c_2 / c_3 d_2)^2 \cdot (C(d_3 d_2)^2 / (c_3 c_2)^2)^1 = C$$

$$c_3 > d_3$$

Lemma proof

$$(q / l)^{2^k} \cdot (l / q)^{2^{k-1}} \cdot \dots \cdot (l / q)^2 \cdot (l / q^2)^1 = l$$

$$(c_j / d_j)^{2^j} \cdot (d_j / c_j)^{2^{j-1}} \cdot \dots \cdot (d_j / c_j)^2 \cdot (d_j^2 / c_j^2)^1 = l$$

$$(c_3 / d_3)^4 \cdot (d_3 c_2 / c_3 d_2)^2 \cdot (C(d_3 d_2)^2 / (c_3 c_2)^2)^1 = C$$

$$c_3 > d_3$$

$$d_3 c_2 > c_3 d_2$$

Lemma proof

$$(q / l)^{2^k} \cdot (l / q)^{2^{k-1}} \cdot \dots \cdot (l / q)^2 \cdot (l / q^2)^1 = l$$

$$(c_j / d_j)^{2^j} \cdot (d_j / c_j)^{2^{j-1}} \cdot \dots \cdot (d_j / c_j)^2 \cdot (d_j^2 / c_j^2)^1 = l$$

$$(c_3 / d_3)^4 \cdot (d_3 c_2 / c_3 d_2)^2 \cdot (C(d_3 d_2)^2 / (c_3 c_2)^2)^1 = C$$

$$c_3 > d_3$$

$$d_3 c_2 > c_3 d_2$$

$$C(d_3 d_2)^2 > (c_3 c_2)^2$$

Lemma proof

$$(q/l)^{2^k} \cdot (l/q)^{2^{k-1}} \cdot \dots \cdot (l/q)^2 \cdot (l/q^2)^1 = l$$

$$(c_j/d_j)^{2^j} \cdot (d_j/c_j)^{2^{j-1}} \cdot \dots \cdot (d_j/c_j)^2 \cdot (d_j^2/c_j^2)^1 = l$$

$$(c_3/d_3)^4 \cdot (d_3 c_2/c_3 d_2)^2 \cdot (C(d_3 d_2)^2/(c_3 c_2)^2)^1 = C$$

$$c_3 > d_3$$

$$d_3 c_2 > c_3 d_2$$

$$C(d_3 d_2)^2 > (c_3 c_2)^2$$

C, c_j, d_j at most exponential in k

Thank you!