

Decidability of Timed Communicating Automata

L. Clemente, University of Warsaw

Praha, July 2018

Summary

1. The model: Timed communicating automata (TCA).
2. The problem: control-state reachability.
3. Solution technique: quantifier elimination, cyclic order atoms.

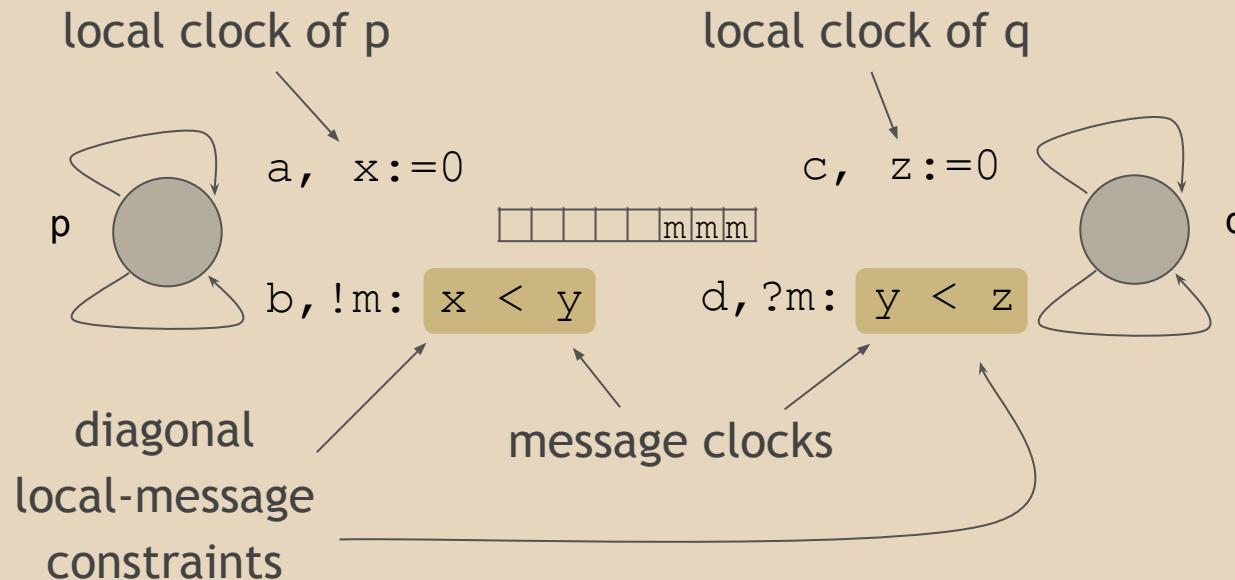
Timed communicating automata (TCA)

Networks of timed automata communicating by the asynchronous exchange of messages over FIFO queues.

- The time domain is *dense*.
- Each timed automaton controls its set of *local* clocks.
- Messages are equipped with dense *message* clocks ***NEW***.
- Diagonal constraints: local-local, *local-message* ***NEW***, message-message.
- All clocks evolve at the same rate.

Control state reachability: Given a network of TCA, and for each automaton its initial and final state, decide whether there is a run starting and ending with empty channels.

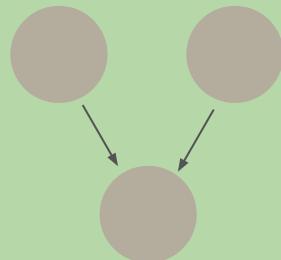
TCA example



Communication topology

Polytree: no undirected cycles.

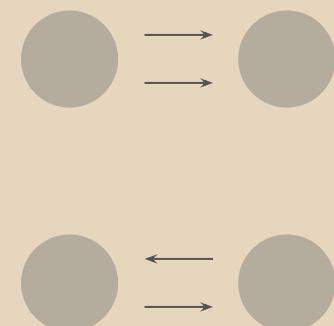
Polyforest: disjoint union of polytrees.



polytree

polytree

polyforest



not
polytree

Main result

Characterisation of communication topologies with decidable reachability.

Theorem. Reachability is decidable iff the communication topology is a polyforest and for each polytree therein there is at most one channel with integer inequality tests.

Undecidability follows from [C, Herbreteau, Stainer, Sutre'13].
In the following, we focus on decidability for *timed channels*.

Related works

- Communicating automata (untimed) [Pachl'82; Brand, Zafiropulo'83].
 - Decidable for polyforest topologies.
- Communicating timed automata [Krčal, Yi'06].
 - Undecidable with two *urgent* channels, decidable with one.
- Communicating timed processes [C, Herbreteau, Stainer, Sutre'13].
 - Decidable for polyforest topologies with at most one urgent channel per comp.
- Timed lossy channel systems [Abdulla, Atig, Cederberg'12].
 - Non-diagonal constraints. Decidable.
- Communicating timed processes [Abdulla, Atig, Krishna'17].
 - Non-diagonal constraints. *Discrete time*.
 - Undecidable with two timed channels (with inequality constraints).
 - Decidable with one timed channel.
 - Undecidable with global clocks.

Decidability of TCA

1. *NEW* Reduce to the more constrained *simple TCA*:

- a. The initial value of message clock(s) is 0.
- b. Reception constraints are either
 - i. Integral non-diagonal: $x \sim k$, or
 - ii. Fractional equality: $\{y\} = \{z\}$.

Achieved via the method of *quantifier elimination*.

2. Desynchronised semantics (receivers ahead of senders) [Pachl'82].
3. Rendezvous semantics (handshaking communication \rightarrow no channels) [ib.].
4. *NEW* Simulate 2,3 with register automata with counters (RAC).
 - a. Counters keep track of the integral desynchronisation.
 - b. Registers keep track of fractional values with *cyclic order atoms*.

Reduction to *simple* TCA

Simple TCA: The initial value of message clock(s) is 0.

Reception constraints are either

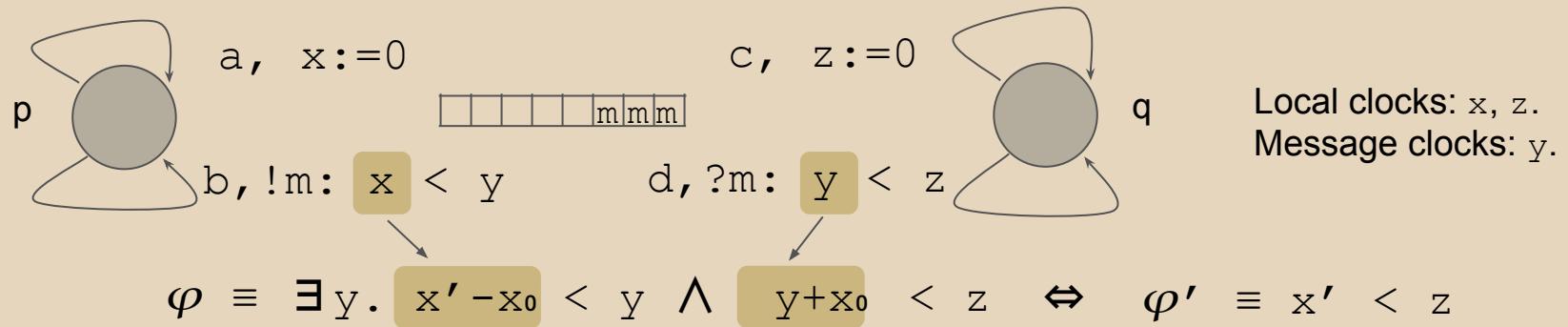
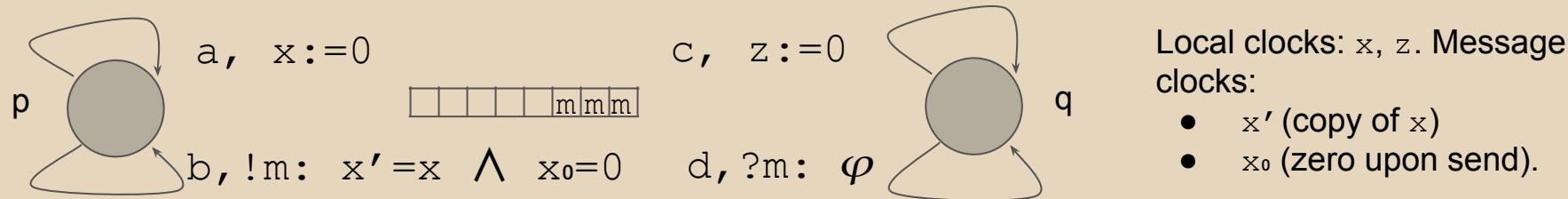
- Integral non-diagonal: $x \sim k$, or
- Fractional equality: $\{y\} = \{z\}$.

This is achieved in a number of steps.

1. Restricting transmission to *copy-send* (send copies of local clocks).
 - Quantifier elimination.
2. Send and receive constraints are atomic (i.e., only one conjunct).
3. Send $y = 0$ and receive $x = y$.
4. Send $y = 0$ and receive $y \sim k$ (classical) and $\{x\} = \{y\}$ (fractional).

Quantifier elimination for TCA

Objective: The sender always sends copies of local clocks.



Quantifier elimination for TCA

More generally: $!m : \psi p$ and $?m : \psi q$. Before:

$$\psi^p \equiv \bigwedge_{(i,j) \in I^p} x_i^{pq} - x_j^p \sim_{ij}^p k_{ij}^p \wedge \bigwedge_{(i,j) \in I^{pq}} x_i^{pq} - x_j^{pq} \sim_{ij}^{pq} k_{ij}^{pq} \wedge \quad \text{(inequality)}$$

$$\bigwedge_{(i,j) \in J^p} x_i^{pq} - x_j^p \equiv_M h_{ij}^p \wedge \bigwedge_{(i,j) \in J^{pq}} x_i^{pq} - x_j^{pq} \equiv_M h_{ij}^{pq} \wedge \quad \text{(modular)}$$

$$\bigwedge_{(i,j) \in K^p} y_i^{pq} \approx_{ij}^p y_j^p \wedge \bigwedge_{(i,j) \in K^{pq}} y_i^{pq} \approx_{ij}^{pq} y_j^{pq}, \text{ and} \quad \text{(order)}$$

$$\psi^q \equiv \bigwedge_{(i,j) \in I^q} x_i^{pq} - x_j^q \sim_{ij}^q k_{ij}^q \wedge \bigwedge_{(i,j) \in J^q} x_i^{pq} - x_j^q \equiv_M h_{ij}^q \wedge \bigwedge_{(i,j) \in K^q} y_i^{pq} \approx_{ij}^q y_j^q,$$

Quantifier elimination for TCA

More generally: $!m : \psi p$ and $?m : \psi q$. After:

$$\psi_0^q \equiv (\exists \bar{x}^{pq} \cdot \psi_{\bar{x}^{pq}}^q) \wedge (\exists \bar{y}^{pq} \cdot \psi_{\bar{y}^{pq}}^q), \text{ where}$$

$$\psi_{\bar{x}^{pq}}^q \equiv \bigwedge_{(i,j) \in I^p} x_i^{pq} - (\hat{x}_j^{pq} - \hat{x}_0^{pq}) \sim_{ij}^p k_{ij}^p \wedge \bigwedge_{(i,j) \in I^{pq}} x_i^{pq} - x_j^{pq} \sim_{ij}^{pq} k_{ij}^{pq} \wedge \bigwedge_{(i,j) \in I^q} (x_i^{pq} + \hat{x}_0^{pq}) - x_j^q \sim_{ij}^q k_{ij}^q \wedge$$

$$\bigwedge_{(i,j) \in J^p} x_i^{pq} - (\hat{x}_j^{pq} - \hat{x}_0^{pq}) \equiv_M h_{ij}^p \wedge \bigwedge_{(i,j) \in J^{pq}} x_i^{pq} - x_j^{pq} \equiv_M h_{ij}^{pq} \wedge \bigwedge_{(i,j) \in J^q} (x_i^{pq} + \hat{x}_0^{pq}) - x_j^q \equiv_M h_{ij}^q$$

$$\psi_{\bar{y}^{pq}}^q \equiv \bigwedge_{(i,j) \in K^p} y_i^{pq} \approx_{ij}^p \hat{y}_j^{pq} \ominus \hat{y}_0^{pq} \wedge \bigwedge_{(i,j) \in K^{pq}} y_i^{pq} \approx_{ij}^{pq} y_j^{pq} \wedge \bigwedge_{(i,j) \in K^q} y_i^{pq} \oplus \hat{y}_0^{pq} \approx_{ij}^q y_j^q.$$

Important point: Quantifier elimination is done *by hand*, since we need an equivalent *constraint* (not an arbitrary quantifier-free formula).

Desynchronised semantics

Useful technique for the analysis of TCA [Pachl'82; Krčál,Yi'06].

Main idea:

- Allow processes to elapse time *locally*: $\Delta(p, q) \geq 0$ if $p \Rightarrow q$.
 - Receivers are allowed to be ahead of senders, but not vice versa.
 - This preserve causality of message receptions.
- Messages $p \Rightarrow q$ have their age increased by $\Delta(p, q)$.
- Weaker semantics (more runs).

What do we gain?

- By scheduling senders far enough in the future,
we can keep the channels empty \rightarrow Rendezvous semantics.

Rendezvous semantics

Useful technique for the analysis of TCA [Pachl'82; Krčál,Yi'06].

Main idea:

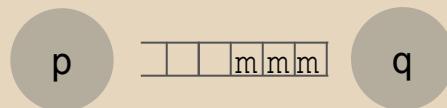
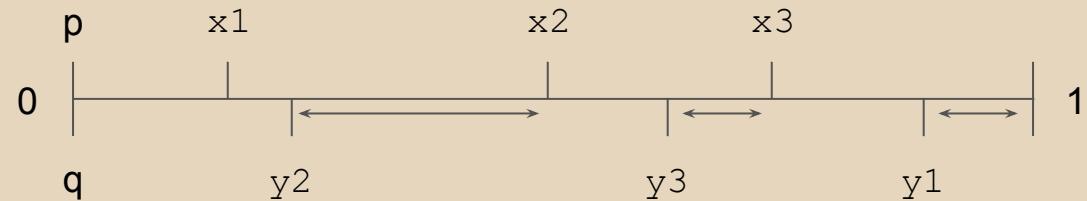
- Execute simultaneously $!_m$ with its matching $?_m$.
- Stronger semantics (less runs).

Lemma. Over *polyforest topologies*, the standard semantics is equivalent to the desynchronised+rendezvous semantics.

How to measure the desynchronisation?

- Integral part: Add a \mathbb{N} -counter for each receiver.
- Fractional part: Cyclic order atoms.

The issue with fractional values



Suppose we advance the time of process q.

- It is not sufficient to keep track of a global region for clocks of p and q.
- We need to keep track also of the total order of *differences* $x_i - y_j$.
- Two ways to solve this:
 - Clock difference relations $x - y \sim z - t$, $x - y \sim 1 - (z - t)$.
 - Cyclic order atoms (only reference points move).

From clocks to registers

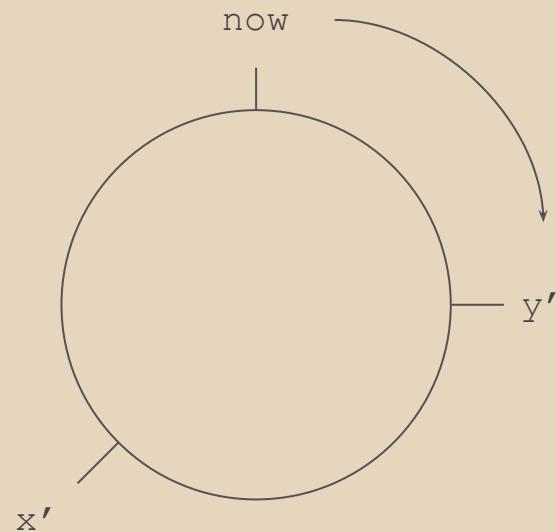
- A special register `now` stores the current time.
- For each clock `x` there is a register `x'` storing the value of `now` at the time of the last reset of `x`.

clocks $x := 0$ x
 | \longleftrightarrow |

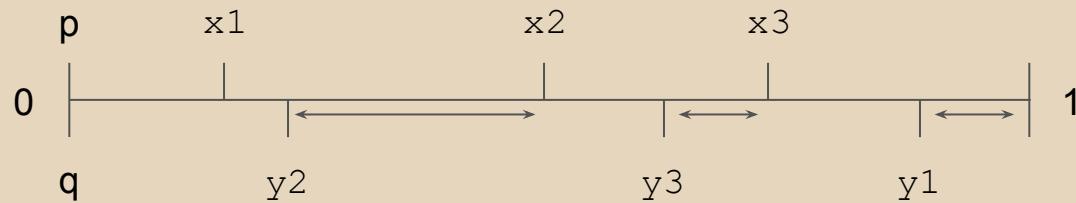
registers $x' := \text{now}$ $x = \text{now}^{\ominus} x'$

clocks $x := 0$ x $y := 0$ y $x \leq y$
 | \longleftrightarrow | \longleftrightarrow | \longleftrightarrow |

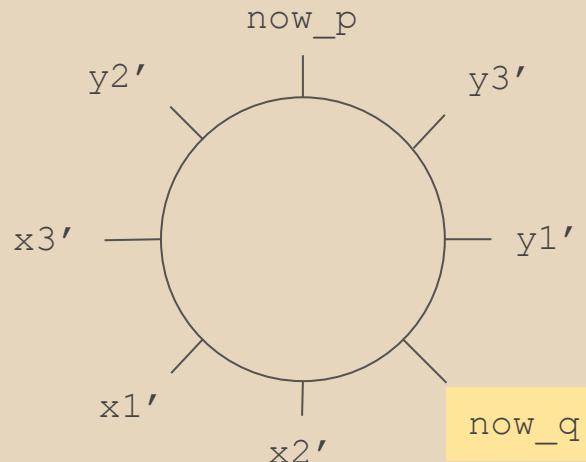
registers $x' := \text{now}$ $y' := \text{now}$ $\begin{array}{c} K(\text{now}, y', x') \\ \vee \text{now} = x' \\ \vee y' = x' \end{array}$



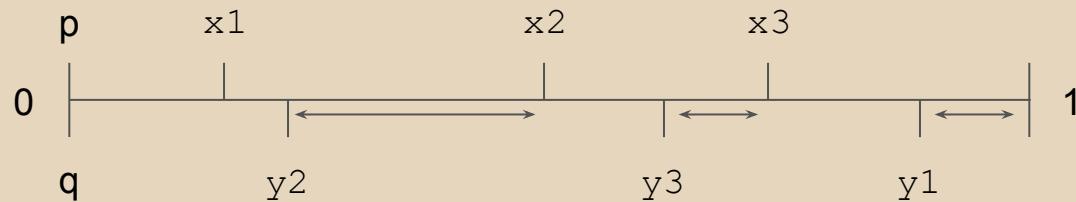
From clocks to registers: time elapse



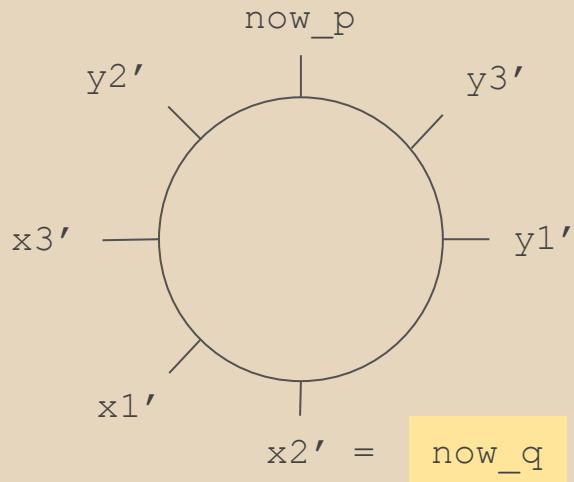
Advance the time q :



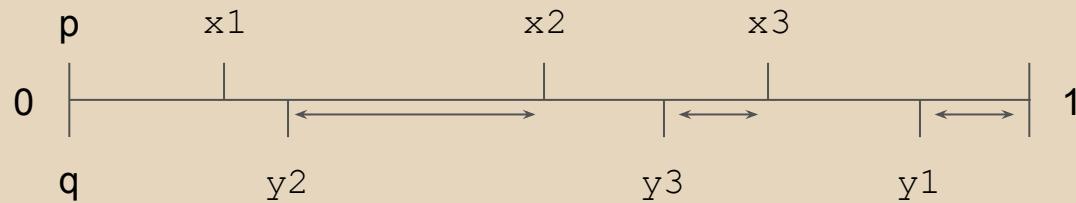
From clocks to registers: time elapse



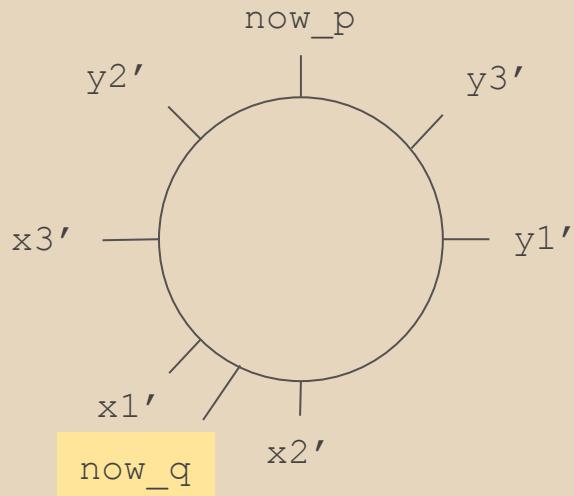
Advance the time q:



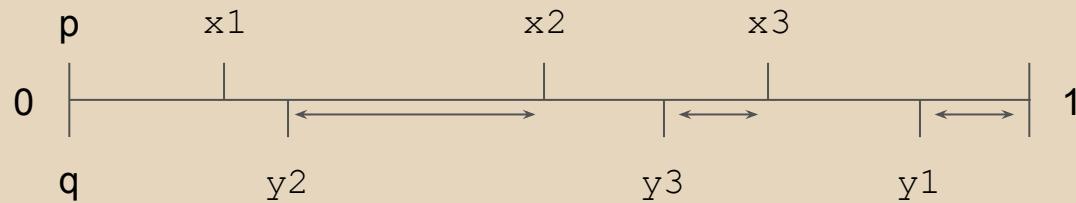
From clocks to registers: time elapse



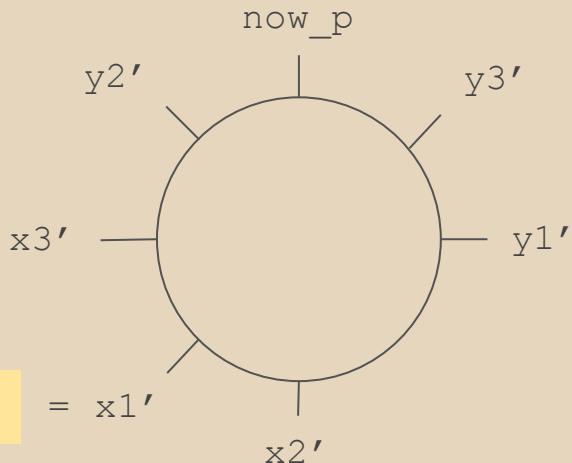
Advance the time q :



From clocks to registers: time elapse



Advance the time q:



$$\text{now_q} = \text{x1}'$$

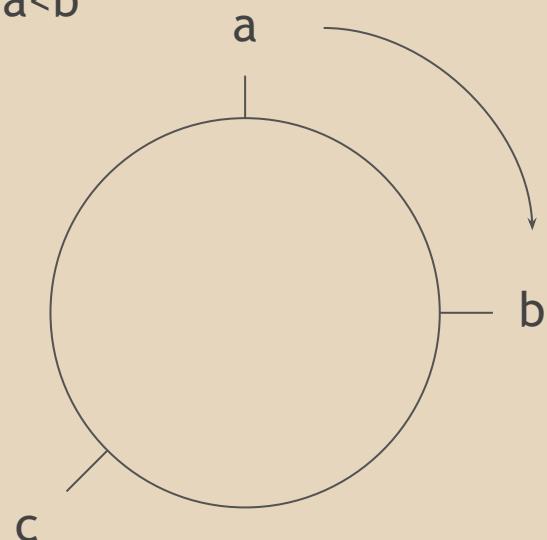
Cyclic order atoms

Consider the structure $([0, 1], K)$, where $K \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is defined as

$$K(a, b, c) \leftrightarrow \exists a < b < c \vee b < c < a \vee c < a < b$$

Important properties of cyclic order atoms:

- Satisfiability is decidable.
- Effective elimination of quantifiers.
 - Register constraints.
- Homogeneous (finitely many regions).



Register automata with counters (RAC)

Simulate the desynchronised+rendezvous semantics of a simple TCA with a *register automaton with \mathbb{N} -counters*:

- For every channel $p \Rightarrow q$ there is a counter c measuring the integral desynchronisation between p and q .
 - Counters are 0 at the beginning and at the end of the simulation.
 - Counters can be incremented and decremented by 1.
 - Simple send $x=0$ and matching receive $x \sim k$ are simulated by $c \sim k$.
 - Test for zero only if $p \Rightarrow q$ has inequality tests.
- For each local clock x there is a register over cyclic order atoms storing the fractional part `now` of the last time x was reset.
 - Fractional clock constraint \rightarrow register constraints.

Summary

1. Reduce to the more constrained *simple TCA*:
 - a. The initial value of message clock(s) is 0.
 - b. Reception constraints are either
 - i. Integral non-diagonal: $x \sim k$, or
 - ii. Fractional equality: $\{y\} = \{z\}$.

Achieved via the method of *quantifier elimination*.

2. Desynchronised semantics (receivers ahead of senders).
3. Rendezvous semantics (handshaking communication \rightarrow no channels).
4. Simulate 2,3 with *register automata with counters* (RAC).
 - a. Counters keep track of the integral desynchronisation.
 - b. Registers keep track of fractional values.

Further directions

- Are channel languages of polyforest topologies timed regular?
- Decidable subclasses of integer inequality constraints
 - Upward closed constraints $z \geq k$.
- Finer notions of communication topologies.
 - Take into account the local control structure.
- Application to multiparty session types?
- More general data:
 - What are the conditions on data preserving decidability?