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Summary

1. The model: Timed communicating automata (TCA).

2. The problem: control-state reachability.

3. Solution technique: quantifier elimination, cyclic order atoms.



Timed communicating automata (TCA)

Networks of timed automata communicating by the asynchronous exchange of 
messages over FIFO queues.

● The time domain is dense.
● Each timed automaton controls its set of local clocks.
● Messages are equipped with dense message clocks *NEW*.
● Diagonal constraints: local-local, local-message *NEW*, message-message.
● All clocks evolve at the same rate.

Control state reachability: Given a network of TCA, and for each automaton 
its initial and final state, decide whether there is a run starting and ending 
with empty channels.
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polyforest

Polyforest: disjoint union of polytrees.

Communication topology
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Polytree: no undirected cycles.
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Main result

Characterisation of communication topologies with decidable reachability.

Theorem. Reachability is decidable iff the communication topology is a 
polyforest and for each polytree therein there is at most one channel with 
integer inequality tests.

Undecidability follows from [C, Herbreteau, Stainer, Sutre’13].
In the following, we focus on decidability for timed channels.



Related works
● Communicating automata (untimed) [Pachl’82; Brand, Zafiropulo’83].

○ Decidable for polyforest topologies.

● Communicating timed automata [Krčal, Yi’06].
○ Undecidable with two urgent channels, decidable with one.

● Communicating timed processes [C, Herbreteau, Stainer, Sutre’13].
○ Decidable for polyforest topologies with at most one urgent channel per comp.

● Timed lossy channel systems [Abdulla, Atig, Cederberg’12].
○ Non-diagonal constraints. Decidable.

● Communicating timed processes [Abdulla, Atig, Krishna’17].
○ Non-diagonal constraints. Discrete time.
○ Undecidable with two timed channels (with inequality constraints).
○ Decidable with one timed channel.
○ Undecidable with global clocks.



Decidability of TCA

1. *NEW* Reduce to the more constrained simple TCA:
a. The initial value of message clock(s) is 0.
b. Reception constraints are either

i. Integral non-diagonal: x ~ k, or
ii. Fractional equality: {y} = {z}.

Achieved via the method of quantifier elimination.
2. Desynchronised semantics (receivers ahead of senders) [Pachl’82].
3. Rendezvous semantics (handshaking communication → no channels) [ib.].
4. *NEW* Simulate 2,3 with register automata with counters (RAC).

a. Counters keep track of the integral desynchronisation.
b. Registers keep track of fractional values with cyclic order atoms.



Reduction to simple TCA

Simple TCA: The initial value of message clock(s) is 0.
Reception constraints are either
● Integral non-diagonal: x ~ k, or
● Fractional equality: {y} = {z}.

This is achieved in a number of steps.
1. Restricting transmission to copy-send (send copies of local clocks).

○ Quantifier elimination.
2. Send and receive constraints are atomic (i.e., only one conjunct).
3. Send y = 0 and receive x = y.
4. Send y = 0 and receive y ~ k (classical) and {x} = {y} (fractional).



Quantifier elimination for TCA

Objective: The sender always sends copies of local clocks.
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Quantifier elimination for TCA

More generally: !m:ψp and ?m:ψq. Before:



Quantifier elimination for TCA

More generally: !m:ψp and ?m:ψq. After:

Important point: Quantifier elimination is done by hand, since we need an 
equivalent constraint (not an arbitrary quantifier-free formula).



Desynchronised semantics

Useful technique for the analysis of TCA [Pachl’82; Krčál,Yi’06].
Main idea:
● Allow processes to elapse time locally:  Δ(p,q) ≥ 0 if p ⇒ q.

-  Receivers are allowed to be ahead of senders, but not vice versa.
-  This preserve causality of message receptions.

● Messages p ⇒ q  have their age increased by Δ(p,q).
● Weaker semantics (more runs).

What do we gain?
● By scheduling senders far enough in the future,

we can keep the channels empty → Rendezvous semantics.



Rendezvous semantics

Useful technique for the analysis of TCA [Pachl’82; Krčál,Yi’06].
Main idea:
● Execute simultaneously !m with its matching ?m.
● Stronger semantics (less runs).

Lemma. Over polyforest topologies, the standard semantics is equivalent to 
the desynchronised+rendezvous semantics.

How to measure the desynchronisation?
● Integral part: Add a ℕ-counter for each receiver.
● Fractional part: Cyclic order atoms.



Suppose we advance the time of process q.
● It is not sufficient to keep track of a global region for clocks of p and q.
● We need to keep track also of the total order of differences xi - yj.
● Two ways to solve this:

○ Clock difference relations x - y ~ z - t, x - y ~ 1 - (z - t).
○ Cyclic order atoms (only reference points move).

The issue with fractional values
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From clocks to registers

● A special register now stores the current time.
● For each clock x there is a register x’ storing the value of now at the 

time of the last reset of x.
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From clocks to registers: time elapse
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From clocks to registers: time elapse
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From clocks to registers: time elapse
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Consider the structure ([0, 1), K), where K ⊆ ℝ x ℝ x ℝ is defined as

K(a, b, c)  ↔�  a<b<c ∨ b<c<a ∨ c<a<b

Important properties of cyclic order atoms:
● Satisfiability is decidable.
● Effective elimination of quantifiers.

○ Register constraints.
● Homogeneous (finitely many regions).

Cyclic order atoms

a

b

c



Register automata with counters (RAC)

Simulate the desynchronised+rendezvous semantics of a simple TCA with a 
register automaton with ℕ-counters:
● For every channel p⇒q there is a counter c measuring the integral 

desynchronisation between p and q.
○ Counters are 0 at the beginning and at the end of the simulation.
○ Counters can be incremented and decremented by 1.
○ Simple send x=0 and matching receive x~k are simulated by c~k. 

■ Test for zero only if p⇒q has inequality tests.
● For each local clock x there is a register over cyclic order atoms storing 

the fractional part now of the last time x was reset.
○ Fractional clock constraint → register constraints.



Summary

1. Reduce to the more constrained simple TCA:
a. The initial value of message clock(s) is 0.
b. Reception constraints are either

i. Integral non-diagonal: x ~ k, or
ii. Fractional equality: {y} = {z}.

Achieved via the method of quantifier elimination.
2. Desynchronised semantics (receivers ahead of senders).
3. Rendezvous semantics (handshaking communication → no channels).
4. Simulate 2,3 with register automata with counters (RAC).

a. Counters keep track of the integral desynchronisation.
b. Registers keep track of fractional values.



Further directions

● Are channel languages of polyforest topologies timed regular?

● Finer notions of communication topologies.
○ Take into account the local control structure.

● Application to multiparty session types?

● More general data:
○ What are the conditions on data preserving decidability?

● Decidable subclasses of integer inequality constraints
○ Upward closed constraints z ≥ k.


