	Two very important inequalities
	For any random variable X, any real $\lambda > 0$ and any integer $k \geq 1$ it holds:
	$Pr[X > \lambda] \leq rac{E(X ^k)}{\lambda^k}$
Part I	Case 1 $k \to 1$ $\lambda \to \lambda E(X)$
	$Pr[X \geq \lambda {\sf E}(X)] \leq rac{1}{\lambda}$ Markov's inequality
Basic Techniques II: Concentration Bounds	Case 2 $k \to 2$ $X \to X - \mathbf{E}(X), \lambda \to \lambda \sqrt{V(X)}$
	$Pr\left[X - \mathbf{E}(X) \ge \lambda \sqrt{V(X)} ight] \le rac{\mathbf{E}((X - \mathbf{E}(X))^2)}{\lambda^2 V(X)} =$
	$=rac{V(X)}{\lambda^2 V(X)}=rac{1}{\lambda^2}$ Chebyshev's inequality
	Another variant of Chebyshev's inequality:
	$Pr[X-{f E}(X) \geq \lambda]\leq rac{V(X)}{\lambda^2}$
	and this is one of the main reasons why variance is used.
	IV054 1. Basic Techniques II: Concentration Bounds 2/70
Chapter 6. BASIC TECHNIQUES II: CONCENTRATION BOUNDS	BASIC PROBLEM and METHODS - II.
Many so called probability concentration bounds have been already developed and broadly applied. In this chapter we derive and apply some of them - so called tail probability bounds - bounds on the probability that values of some random variables differ much - by some bound - from their means.	
At first we determine bounds on probabilities that the random variables	The above approach is often used to show that X lies close to $\mathbf{E}[X]$ with reasonably
$X = \sum_{i=1}^{n} X_i,$	high probability. ■ Of the large importance is the case X is the sum of random variables. For the case
$X = \sum_{i=1}^{n} X_i,$ differ by a fixed margin from the average, where all X_i are binary random variables with Bernoulli distribution. That is, X_i can be seen as a coin tossing with $Pr[X_i = 1] = p_i$ and $Pr[X_i = 0] = 1 - p_i.$	high probability.
differ by a fixed margin from the average, where all X_i are binary random variables with Bernoulli distribution. That is, X_i can be seen as a coin tossing with $Pr[X_i = 1] = p_i$ and	 high probability. Of the large importance is the case X is the sum of random variables. For the case that these random variables are independent we derive so called Chernoff bound. For the case that random variables of the sum are dependent, but form so called

IV054 1. Basic Techniques II: Concentration Bounds

Basic problem of the analysis of randomized algorithms

What is the probability of the deviation of $X = \sum_{i=1}^{n} X_i$ from its mean

$$\mathsf{E} X = \mu = \sum_{i=1}^{n} p_i$$

by a fixed factor?

Namely, let $\delta > 0$. (1) What is the probability that X is larger than $(1 + \delta)\mu$? (2) What is the probability that X is smaller than $(1 - \delta)\mu$?

Notation: For a random variable X, let $\mathbf{E}[e^{tX}]$, t > 0 fixed, be called the **moment generating function** of X. It holds:

 $\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[\sum_{k\geq 0} \frac{t^{k} X^{k}}{k!}\right] = \sum_{k\geq 0} t^{k} \frac{\mathbf{E}\left[X^{k}\right]}{k!}$

IV054 1. Basic Techniques II: Concentration Bounds

Very important Chernoff bounds on the sum of independent Poisson trials are obtained when the moment generating functions of X are considered.

CHERNOFF BOUNDS - I

Theorem: Let $X_1, X_2, ..., X_n$ be independent Poisson trials such that, for $1 \le i \le n$, $Pr[X_i = 1] = p_i$, where $0 < p_i < 1$. Then for $X = \sum_{i=1}^n X_i$, $\mu = E[X] = \sum_{i=1}^n p_i$, and any $\delta > 0$

$$\Pr\left[X > (1+\delta)\,\mu
ight] < \left[rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
ight]^{\mu}$$
 (1)

Proof: For any $t \in R^{>0}$

$$\Pr[X > (1+\delta)\mu] = \Pr\left[e^{tX} > e^{t(1+\delta)\mu}\right]$$

By applying Markov inequality to the right-hand side we get

$$\Pr\left[X > (1+\delta)\,\mu\right] < rac{\mathsf{E}\left[e^{tX}
ight]}{e^{t(1+\delta)\mu}} \qquad ext{(inequality is strict)}.$$

Observe that:

$$\mathbf{E}\left[e^{tX}\right] = \mathbf{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] = \mathbf{E}\left[\prod_{i=1}^{n}e^{tX_{i}}\right] = \prod_{i=1}^{n}\mathbf{E}\left[e^{tX_{i}}\right],$$
$$Pr[X > (1+\delta)\mu] < \frac{\prod_{i=1}^{n}\mathbf{E}\left[e^{tX_{i}}\right]}{e^{t(1+\delta)\mu}}.$$

IV054 1. Basic Techniques II: Concentration Bounds

COROLLARIES

5/70

7/70

From the above Chernoff bound the following corollaries can be derived

Corollary: Let $X_1, X_2, ..., X_n$ be independent Poisson trials such that, for $1 \le i \le n$, $Pr[X_i = 1] = p_i$, where $0 < p_i < 1$. Then for

$$X = \sum_{i=1}^{n} X_i$$
 and $\mu = E[X] = \sum_{i=1}^{n} p_i$,

it holds

1 For $0 < \delta < 1.81$

 $Pr(X > (1 + \delta)\mu) \leq e^{-\mu\delta^2/3}$

 $Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/4}$

2 For $0 \le \delta \le 4.11$

B For $R \ge 6\mu$

 $Pr(X \ge R) \le 2^{-R}$

IV054 1. Basic Techniques II: Concentration Bounds

(3)

8/70

6/70

CHERNOFF BOUNDS - II.

Since $E\left[e^{tX_i}\right] = p_i e^t + (1 - p_i)$, we have:

$$\Pr\left[X > (1+\delta)\,\mu\right] < \frac{\prod_{i=1}^{n} \left[p_{i}e^{t} + 1 - p_{i}\right]}{e^{t(1+\delta)\mu}} = \frac{\prod_{i=1}^{n} \left[1 + p_{i}\left(e^{t} - 1\right)\right]}{e^{t(1+\delta)\mu}}$$

By taking the inequality $1 + x < e^x$, with $x = p_i (e^t - 1)$,

$$\Pr[X > (1+\delta)\mu] < \frac{\prod_{i=1}^{n} e^{p_i(e^t-1)}}{e^{t(1+\delta)\mu}} = \frac{e^{\sum_{i=1}^{n} p_i(e^t-1)}}{e^{t(1+\delta)\mu}} = \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}$$

Taking $t = \ln(1 + \delta)$ we get our Theorem (and basic Chernoff bound), that is:

$$\Pr\left[X > (1+\delta)\,\mu\right] < \left[\frac{e^{\delta}}{\left(1+\delta\right)^{(1+\delta)}}\right]^{\mu} \tag{2}$$

Observe three tricks that have been used in the above proof!

IV054 1. Basic Techniques II: Concentration Bounds

EXAMPLE I - SOCCER GAMES OUTCOMES	SECOND TYPE of CHERNOFF BOUNDS
Notation: $F^+(\mu, \delta) = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$ - the right-hand side of inequality (1) from the previous slide. Example: A soccer team STARS wins each game with probability $\frac{1}{3}$. Assuming that outcomes of different games are independent we derive an upper bound on the probability that STARS win more than half out of <i>n</i> games. Let $X_i = \begin{cases} 1, & \text{if STARS win } i-\text{th game} \\ 0, & \text{otherwise.} \end{cases}$ Let $Y_n = \sum_{i=1}^n X_i$ By applying the last theorem $(\Pr(X > (1 + \delta)\mu) > F(\mu, \delta))$, we get for $\mu = \frac{n}{3}$ and $\delta = \frac{1}{2}$, $\Pr\left[Y_n > \frac{n}{2}\right] < F^+\left(\frac{n}{3}, \frac{1}{2}\right) < (0.915)^n$ —exponentially small in <i>n</i>	Previous theorem puts an upper bound on deviations of $X = \sum X_i$ above its expectations μ , i.e. for $Pr[X > (1 + \delta) \mu]$. Next theorem puts a lower bound on deviations of $X = \sum X_i$ below its expectations μ , i.e. for $Pr[X < (1 - \delta) \mu]$.
IV054 1. Basic Techniques II: Concentration Bounds 9/70	IV054 1. Basic Techniques II: Concentration Bounds 10/70
IV054 1. Basic Techniques II: Concentration Bounds 9/70 Theorem: Let $X_1, X_2,, X_n$ be independent Poisson trials such that, for $1 \le i \le n$, $Pr[X_i = 1] = p_i$, where $0 < p_i < 1$. Then for $X = \sum_{i=1}^n X_i$, $\mu = \mathbf{E}[X] = \sum_{i=1}^n p_i$, and for $0 < \delta \le 1$ $Pr[X < (1 - \delta) \mu] < e^{-\mu \frac{\delta^2}{2}}$	By applying the inequality $1 + x < e^x$ we get $Pr[X < (1 - \delta)\mu] < \frac{e^{\sum_{i=1}^n p_i (e^{-t} - 1)}}{e^{-t(1 - \delta)\mu}} = \frac{e^{(e^{-t} - 1)\mu}}{e^{-t(1 - \delta)\mu}}$ and if we take $t = \ln \frac{1}{1 - \delta}$, then $Pr[X < (1 - \delta)\mu] < \left[\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right]^\mu$ (4)

IV054 1. Basic Techniques II: Concentration Bounds

IV054 1. Basic Techniques II: Concentration Bounds

EXAMPLE - COIN TOSSING	CHEBYSHEV versus CHERNOFF
Let X be a number of heads in a sequence of n independent fair coin flips. An application of the bound (5) gives, for $\mu = n/2$ and $\delta = \sqrt{\frac{6 \ln n}{n}}$ $Pr\left(\left X - \frac{n}{2}\right \ge \frac{1}{2}\sqrt{6n \ln n}\right) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{6 \ln n}{n}} = \frac{2}{n}$ This implies that concentration of the number of heads around the mean $\frac{n}{2}$ is very tight. Indeed, the deviations from the mean are on the order of $\mathcal{O}(\sqrt{n \ln n})$.	Let X be again the number of heads in a sequence of n independent fair coin flips. Let us consider probability of having either more than $3n/4$ or fewer than $n/4$ heads in a sequence of n independent fair coin-flips. Chebyshev's inequality gives us $Pr\left(\left X - \frac{n}{2}\right \ge \frac{n}{4}\right) \le \frac{4}{n}$ On the other side, using Chernoff bound we have $Pr\left(\left X - \frac{n}{2}\right \ge \frac{n}{4}\right) \le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}} \le 2e^{-n/24}.$ Chernoff's method therefore gives an exponentially smaller upper bound than the upper bound obtained using Chebyshev's inequality.
IV054 1. Basic Techniques II: Concentration Bounds 13/70 SOCCER GAMES REVISITED	IV054 1. Basic Techniques II: Concentration Bounds 14/70 TWO SIDED BOUNDS
Notation: [For the lower tail bound function] $F^{-}(\mu, \delta) = e^{-\frac{\mu\delta^{2}}{2}}.$ Example: Assume that the probability that STAR team wins the game is $\frac{3}{4}$. What is the probability that in <i>n</i> games STAR lose more than $\frac{n}{2}$ games? In such a case $\mu = 0.75n, \delta = \frac{1}{3}$ and for $Y_{n} = \sum_{i=1}^{n} X_{i}$ we have $Pr[Y_{n} < \frac{n}{2}] < F^{-}(0.75n, \frac{1}{3}) < (0.9592)^{n}$ and therefore the probability decreases exponentially fast in <i>n</i> .	By inequality (5), for $\delta < 1$, $Pr[X - \mu \ge \delta\mu] \le 2e^{-\mu\delta^2/3}$ and if we want that this bound is less than an ε , then we get $Pr[X - \mu \ge \sqrt{3\mu \ln(2/\varepsilon)}] \le \varepsilon$ provided $\varepsilon \ge 2e^{-\mu\delta^2/3}$.

Proof	NEW QUESTION
If $\varepsilon = 2e^{-\mu\delta^2/3}$, then $\sqrt{3\mu \ln(2/\varepsilon)} = \sqrt{3\mu \ln(e^{\mu\delta^2/3})}$ $= \sqrt{3\mu \cdot \mu\delta^2/3}$ $= \sqrt{\mu^2\delta^2}$ $= \mu\delta$	New question: Given ε , how large has δ be in order $Pr[X > (1 + \delta)\mu] < \varepsilon$? In order to deal with such and related questions, the following definitions/notations are introduced. Df.: $\Delta^+(\mu, \varepsilon)$ is a number such that $F^+(\mu, \Delta^+(\mu, \varepsilon)) = \varepsilon$. $\Delta^-(\mu, \varepsilon)$ is a number such that $F^-(\mu, \Delta^-(\mu, \varepsilon)) = \varepsilon$. In other words, a deviation of $\delta = \Delta^+(\mu, \varepsilon)$ suffices to keep $Pr[X > (1 + \delta)\mu]$ bellow ε (irrespective of the values of <i>n</i> and p_i 's).
IV054 1. Basic Techniques II: Concentration Bounds 17/70	IV054 1. Basic Techniques II: Concentration Bounds 18/70
EXAMPLE and ESTIMATIONS	SOME OTHER USEFUL ESTIMATIONS
There is a way to derive $\Delta^{-}(\mu, \varepsilon)$ explicitly. Indeed, by taking the inequality $Pr\left[X < (1 - \delta)\mu\right] < e^{-\frac{\mu\delta^{2}}{2}}$ and setting $e^{-\frac{\mu\delta^{2}}{2}} = \varepsilon$ we get $\Delta^{-}(\mu, \varepsilon) = \sqrt{\frac{2\ln\frac{1}{\varepsilon}}{\mu}}.$ (6) because $\Delta^{-}(\mu, \varepsilon)$ is a number such that $F^{-}(\mu, \Delta^{-}(\mu, \varepsilon)) = \varepsilon$. Example: Let $p_{i} = 0.75$. How large must δ be so that $Pr\left[X < (1 - \delta)\mu\right] < n^{-5}$? From (2) it follows: $\delta = \Delta^{-}\left(0.75n, n^{-5}\right) = \sqrt{\frac{10\ln n}{0.75n}} = \sqrt{\frac{13.3\ln n}{n}}$	$ F^{+}(\mu, \delta) < [e/(1+\delta)]^{(1+\delta)\mu}. $ $ If \delta > 2e - 1, \text{ then } F^{+}(\mu, \delta) < 2^{-(1+\delta)\mu}, $ $ \Delta^{+}(\mu, \varepsilon) < \frac{\lg \frac{1}{\varepsilon}}{\mu} - 1. $ $ If \delta \leq 2e - 1, \text{ then } F^{+}(\mu, \delta) < e^{-\frac{\mu\delta^{2}}{4}} \text{ and } $ $ \Delta^{+}(\mu, \varepsilon) < \sqrt{\frac{4\ln \frac{1}{\varepsilon}}{\mu}}. $

EXAMPLE 2 - MONTE CARLO METHOD - I

Let us summarize basic relations concerning values:

$${\mathcal F}^+(\mu,\delta)=\left[rac{e^\delta}{(1+\delta)^{(1+\delta)}}
ight]^\mu$$
 and ${\mathcal F}^-(\mu,\delta)=e^{rac{-\mu\delta^2}{2}}$

as well as

$$\Delta^+(\mu,arepsilon)$$
 and $\Delta^-(\mu,arepsilon).$

It holds

$$\Pr[X > (1+\delta)\mu] < {\it F}^+(\mu,\delta) ext{ and } \Pr[X < (1-\delta)\mu] < {\it F}^-(\mu,\delta)$$

and

 $\mathsf{Pr}(X > (1 + \Delta^+(\mu, \varepsilon)\mu) < F^+(\mu, \Delta^+(\mu, \varepsilon)) = \varepsilon$

$$\Pr(X < (1 - \Delta^{-}(\mu, \varepsilon)\mu) < F^{-}(\mu, \Delta^{-}(\mu, \varepsilon)) = \varepsilon$$

In this example we illustrate how Chernoff bound help us to show that a simple Monte Carlo algorithm can be used to approximate number π through sampling.

The term Monte Carlo method refers to a broad collection of tools for estimating various values through sampling and simulation.

Monte Carlo methods are used extensively in all areas of physical sciences and technologies.

IV054 1. Basic Techniques II: Concentration Bounds 21/70	IV054 1. Basic Techniques II: Concentration Bounds 22/70
MONTE CARLO ESTIMATION OF π - I.	MONTE CARLO ESTIMATION OF π - II.
 Let Z = (X, Y) be a point chosen randomly in a 2 × 2 square centered in (0,0). This is equivalent to choosing X and Y randomly from interval [-1,1]. Let Z be considered as a random variable that has value 1 (0) if the point (X, Y) lies in the circle of radius 1 centered in the point (0,0). 	How good is this estimation? An application of second Chernoff bound gives $Pr(W' - \pi \ge \varepsilon \pi) = Pr\left(\left W - \frac{m\pi}{4}\right \ge \frac{\varepsilon m\pi}{4}\right)$ $= Pr([W - \mathbf{E}[W]) > \varepsilon \mathbf{E}[W])$

Clearly

$$Pr(Z=1)=rac{\pi}{4}$$

If we perform such an experiment m times and Z_i be the value of Z at the *i*th run, and $W = \sum_{i=1}^{m} Z_i$, then

$$\mathbf{E}[W] = \mathbf{E}\left[\sum_{i=1}^{m} Z_i\right] = \sum_{i=1}^{m} \mathbf{E}[Z_i] = \frac{m\pi}{4}$$

and therefore W' = (4/m)W is a natural estimation for π .

$$Pr(|W' - \pi| \ge \varepsilon \pi) = Pr\left(\left|W - \frac{m\pi}{4}\right| \ge \frac{\varepsilon m\pi}{4}\right)$$
$$= Pr([W - \mathbf{E}[W]) \ge \varepsilon \mathbf{E}[W])$$
$$\le 2e^{-m\pi\varepsilon^2/12}$$

because ${f E}(W)=rac{m\pi}{4}$ and for $0<\delta<1$

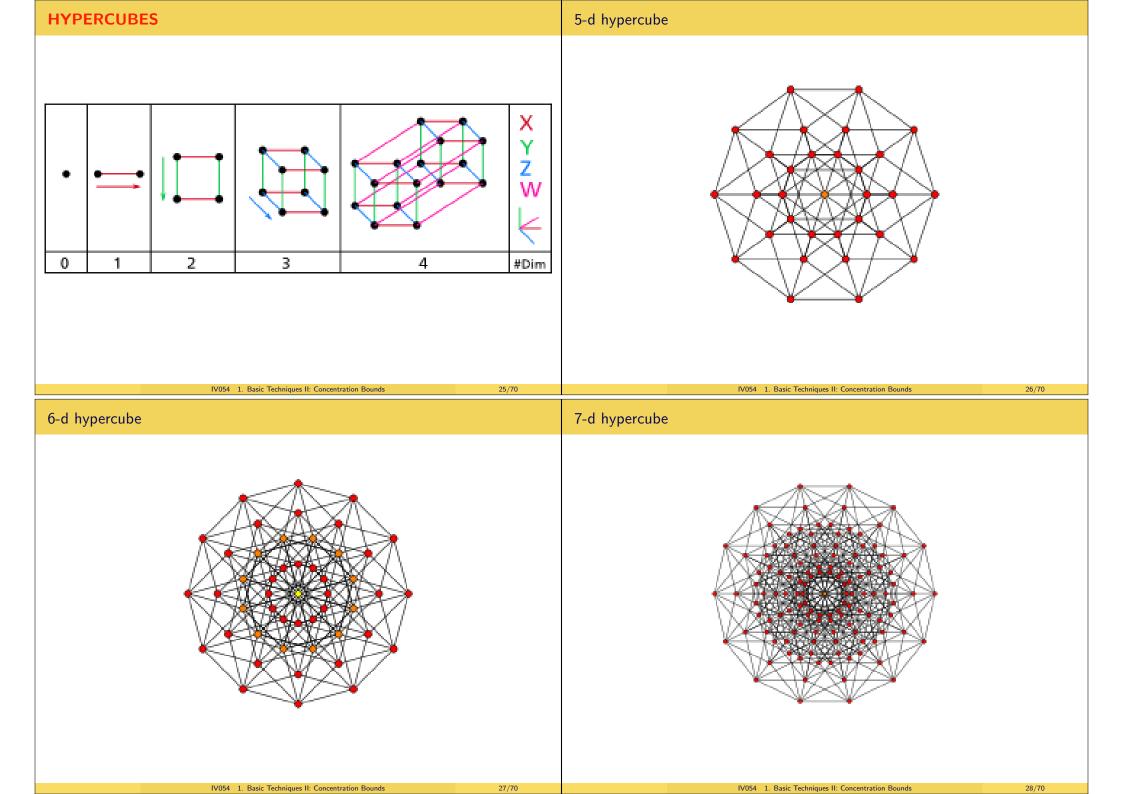
$$\Pr(|X - \mu| \ge \delta\mu) \le 2e^{-\mu\delta^2/3} \tag{7}$$

• Therefore, by taking m sufficiently large we can get an arbitrarily good approximation of π

IV054 1. Basic Techniques II: Concentration Bounds

V054	1.	Basic	Techniques	11:	Concentration	Bounds

23/70



9-d hypercube	A CASE STUDY - routing on hypercubes	
102 1. Bai Technige II: Concentation Book	Networks are modeled by graphs. Processors by nodes and Communication links are represented by edges.Principle of synchronous communication. Links (edges) can carry packets $(i, X, d(i))$ where i is a source node, X are data and $d(i)$ is destination node.Permutation routing with nodes $1, 2,, n$ Each node i wants to send, in parallel, a packet to a node $d(i)$ where $d(1), d(2),, d(n)$ is a permutation of $1, 2,, n$.Problem: How many steps (from a node to a node) are necessary and sufficient to route an arbitrary permutation? A route for a packet is a sequence of edges the packet has to follow from its source to its destination.A routing algorithm for the permutation routing problem has to specify a route (in parallel) for each packet.A packet may occasionally have to wait at a node because the next edge on its route is "busy", transmitting another packet at that moment.We assume each node contains one queue for each edge. A routing algorithm must therefore specify also a queueing discipline.	
OBLIVIOUS ROUTING ALGORITHMS	RANDOMIZED ROUTING	
are such routing algorithms that the route followed by a packet from a source node i to a destination $d(i)$ depends on i and $d(i)$ only (and not on other $d(j)$, for $j \neq i$).		
The following theorem gives a limit on the performance of oblivious algorithms. Theorem: For any deterministic oblivious permutation routing algorithm on a network of n nodes each of the out-degree d , there is an instance of the permutation routing requiring $\Omega\left(\sqrt{\frac{n}{d}}\right)$ steps. Example: Consider any d -dimensional hypercube H_d and the left-to-right routing. Any packet with the destination node $d(i)$ is sent from any current node n_i to the node n_j such that binary representation of n_j differs from the binary representation of n_i in the leftmost bit in which n_i and $d(i)$ differ. Example Consider the permutation routing in H_{10} given by the "reverse" mapping $b_1b_{10} \rightarrow b_{10}b_1$	We show now a randomized (oblivious) routing algorithm with expected number of steps smaller, asymptotically, than $\sqrt{\frac{2^d}{d}}$. Notation : $N = 2^d$ Phase 1: Pick a random intermediate destination $\sigma(i)$ from $\{1,, N\}$. Let the packet v_i is to travel first to the node $\sigma(i)$. Phase 2: Let the packet v_i to travel next from $\sigma(i)$ to its final destination $D(i)$. (In both phases the deterministic left-to-right oblivious routing is used.) Queueing discipline: FIFO for each edge. (Actually any queueing discipline is good provided at each step there is a packet ready to	

IV054 1. Basic Techniques II: Concentration Bounds

Left-to-right routing on hypercube H_d requires sometimes $\Omega\left(\sqrt{\frac{2^d}{d}}\right)$ steps.

IV054 1. Basic Techniques II: Concentration Bounds

<text><text><text><text><text><page-footer></page-footer></text></text></text></text></text>	 Lemma: Let the route of a packet v_i follow the sequence of edges ρ_i = (e₁, e₂,, e_k). Let S be the set of packets (other than v_i), whose routes pass through at least one of the edges {e₁,, e_k}. Then the delay the packet v_i makes is at most S . Proof: A packet in S is said to leave ρ_i at that time step at which it traverses an edge of ρ_i for the last time. If a packet is ready to follow an edge e_i at time t we define its lag at time t to be t - j. Clearly, the lag of a packet v_i is initially 0, and the total delay of v_i is its lag when it traverses the last edge e_k of the route ρ_i. We show now that at each step at which the lag of v_i increases by 1, the lag can be charged to a distinct member of S.
1700 1. basic reaningles in concentration bounds 33,10	PROOF CONTINUATION - I.
If the lag of v_i reaches a number $l + 1$, some packet in S leaves ρ_i with lag l . (When the lag of v_i increases from l to $l + 1$, there must be at least one packet (from S) that wishes to traverse the same edge as v_i at that time step.) Thus, S contains at least one packet whose lag is l . Let t' be the last step any packet in S has the lag l . Thus there is a packet $v \in S$ ready to follow an edge $e_{j'}$, at $t' = l + j'$. We show that some packet of S leaves ρ_i at t' . This establish Lemma by the Fact from the slide before the previous slide. Since v is ready to follow $e_{j'}$ at t' , some packet ω (which may be v itself) in S follow edge $e_{j'}$, at t' . Now ω has to leave ρ_i at t' . We charge to ω the increase in the lag of v_i from l to $l + 1$; since ω leaves ρ_i it will never be charged again. Thus, each member of S whose route intersects ρ_i is charged for at most one delay, what proves the lemma.	Let H_{ij} be the random variable defined as follows $H_{ij} = \begin{cases} 1 & \text{if routes } \rho_i \text{ and } \rho_j \text{ share an edge} \\ 0 & \text{otherwise} \end{cases}$ The total delay a packet v_i makes is at most $\sum_{j=1}^{N} H_{ij}$. Since the routes of different packets are chosen independently and randomly, the H_{ij} 's are independent Poisson trials for $j \neq i$. Thus, to bound the delay of the packet v_i from above, using the Chernoff bound, it suffices to obtain an upper bound on $\sum_{j=1}^{N} H_{ij}$. At first we find a bound for $\mathbf{E}\left[\sum_{j=1}^{N} H_{ij}\right]$. For any edge e of the hypercube let the random variable $T(e)$ denote the number of routes that pass through e . Fix any route $\rho_i = (e_{i,1}, e_{i,2},, e_{i,k}), k \leq d$. Then $\sum_{j=1}^{N} H_{ij} \leq \sum_{j=1}^{k} T(e_{i,j}) \Rightarrow \mathbf{E}\left[\sum_{j=1}^{N} H_{ij}\right] \leq \sum_{j=1}^{k} \mathbf{E}[T(e_{i,j})]$

IV054 1. Basic Techniques II: Concentration Bounds

36/70

IV054 1. Basic Techniques II: Concentration Bounds

PROOF CONTINUATION - II.	PROOF CONTINUATION - III.
It can be shown that $E[\mathcal{T}(e_{i,j})] = E[\mathcal{T}(e_{i,m})]$ for any two edges.	
The expected length of ρ_i is $\frac{d}{2}$. An expectation of the total route length, summed over all packets, is therefore $\frac{Nd}{2}$. The number of edges in the hypercube is Nd and therefore $\Rightarrow \mathbf{E}[T(e_{ij})] \leq \frac{Nd/2}{Nd} = \frac{1}{2}$ for any i, j .) Therefore	By adding the length of the route to the delay we get:
$E\left[\sum_{j=1}^{N}H_{ij} ight]\leqrac{k}{2}\leqrac{d}{2}.$	Theorem: With probability at least $1 - 2^{-5d}$ every packet reaches its intermediate destination in Phase 1 in 7 <i>d</i> or fewer steps.
By the Chernoff bound (for $\delta>2e-1$), see page 7, $\Pr[X>(1+\delta)\mu]<2^{-(1+\delta)\mu}$	The routing scheme for Phase 2 can be seen as the scheme for Phase 1, which "runs backwards". Therefore the probability that any packet fails to reach its target in either phase is less than $2 \cdot 2^{-5d}$. To summarize:
with $X = \sum_{j=1}^{N} H_{ij}$, $\delta = 11$, $\mu = \frac{d}{2}$, we get that probability that $\sum_{j=1}^{N} H_{ij}$ exceeds $6d$ is less than 2^{-6d} .	Theorem: With probability at least $1 - \frac{1}{2^{5d}}$ every packet reaches its destination in 14 <i>d</i> or fewer steps.
The total number of packets is $N = 2^d$.	
The probability that any of the N packets experiences a delay exceeding $6d$ is less than $2^d \times 2^{-6d} = 2^{-5d}$.	
IV054 1. Basic Techniques II: Concentration Bounds 37/70	IV054 1. Basic Techniques II: Concentration Bounds 38/70
WIRING PROBLEM - I.	
	WIRING PROBLEM - II.
Global wiring in gate arrays Gate-array: is $\sqrt{n} \times \sqrt{n}$ array of n gates. Net - is a pair of gates to be connected by a wire. Manhattan wiring - wires can run vertically and horizontally only.Image: Image of the set	WRING PROBLEM - II. We will consider only so called one-bend Manhattan routing at which direction is changed at most once. Problem; how to decide for each net which of the following connections to use: $\Box \neg$ (that is vertical first and horizontal (right or left) next or vice verse) in order to get wiring S with minimal W_S .

REFORMULATION of the WIRING PROBLEM	TRICK - I.	
Global wiring problem can be reformulated as a 0-1 linear programming problem.	1. Solve the corresponding rational linear programming problem with	
For the net i we use two binary variables x_{i0} , x_{i1}	$\textit{x}_{i0},\textit{x}_{i1} \in [0,1]$	
$x_{i0} = 1 \Leftrightarrow i$ -th route step has the form (horiz.=vert.) \Box $x_{i1} = 1 \Leftrightarrow i$ -th route step has the form (vert+hori.) \Box	instead of (3). This trick is called linear relaxation .	
Notation: $T_{b0} = \{ i \mid \text{net } i \text{ passes through } b \text{ and } x_{i0} = 1 \}$ and $T_{b1} = \{ i \mid \text{net } i \text{ passes through } b \text{ and } x_{i1} = 1 \}.$	Denote $\hat{x}_{i0}, \hat{x}_{i1}$ solutions of the above rational linear programming problem, $1 \le i \le n$, and let \widehat{W} be the value of the objective function for this solution. Obviously,	
The corresponding 0-1 linear programming problemminimize W ,where $x_{i0}, x_{i1} \in \{0, 1\}$ for each net i (3) $x_{i0} + x_{i1} = 1$ for each net i (4) $\sum_{i \in T_{b0}} x_{i0} + \sum_{i \in T_{b1}} x_{i1} \leq W$ for all b .(5)Last condition requires that at most W wires cross the boundary b	$W_0 \ge \widehat{W}.$ 2. Apply the technique called randomized rounding. Independently for each <i>i</i> , set \overline{x}_{i0} to 1 with probability \widehat{x}_{i0} to 0 " \widehat{x}_{i1} and set \overline{x}_{i1} to 0 " \widehat{x}_{i0} to 1 " \widehat{x}_{i1}	
Denote W_0 the minimum obtained this way. V054 1. Basic Techniques II: Concentration Bounds 41/70	The idea of randomized rounding is to interpret the fractional solutions provided by the linear program as probabilities for the rounding process.	
TRICK - II.	TRICK - III.	
A nice property of randomized rounding is that if the fractional value of a variable is close to 0 (or to 1), then this variable is likely to be set to 0 (or 1). Theorem: If $0 < \varepsilon < 1$, then with probability $1 - \varepsilon$ the global wiring <i>S</i> produced by randomized rounding satisfies the inequalities: $W_S \leq \widehat{W} \left(1 + \Delta^+ \left(\widehat{W}, \frac{\varepsilon}{2n} \right) \right) \leq W_0 \left(1 + \Delta^+ \left(W_0, \frac{\varepsilon}{2n} \right) \right)$	Let b be a boundary. The solution of the rational linear program satisfy its constrains, therefore we have $\sum_{i \in T_{b0}} \widehat{x}_{i0} + \sum_{i \in T_{b1}} \widehat{x}_{i1} \leq \widehat{W}.$ The number of wires passing through b in the solution S is $W_{S}(b) = \sum_{i \in T_{b0}} \overline{x}_{i0} + \sum_{i \in T_{b1}} \overline{x}_{i1}.$ $\overline{x}_{i0} \text{ and } \overline{x}_{i1} \text{ are Poisson trials with probabilities}$	
Proof: We show that following the rounding process, with probability at least $1 - \varepsilon$, no more than $\widehat{W}\left(1 + \Delta^+\left(\widehat{W}, \frac{\varepsilon}{2n}\right)\right)$ wires pass through any boundary. This will be done by showing, for any boundary <i>b</i> , that the probability that $W_S(b) > \widehat{W}\left(1 + \Delta^+\left(\widehat{W}, \frac{\varepsilon}{2n}\right)\right)$ is at most $\frac{\varepsilon}{2n}$.	$ \begin{aligned} \widehat{x}_{i0} \text{ and } \widehat{x}_{i1} \\ \text{In addition, } \overline{x}_{i0} \text{ and } \overline{x}_{i1} \text{ are each independent of } \overline{x}_{j0} \text{ and } \overline{x}_{j1} \text{ for } i \neq j. \\ \text{Therefore } W_{S}(b) \text{ is the sum of independent Poisson trials.} \\ E[W_{S}(b)] &= \sum_{i \in T_{bo}} E[\overline{x}_{i0}] + \sum_{i \in T_{b1}} E[\overline{x}_{i1}] = \sum_{i \in T_{b0}} \widehat{x}_{i0} + \sum_{i \in T_{b1}} \widehat{x}_{i1} \leq \widehat{W} \end{aligned} $	
	Since $\Delta^+\left(\widehat{W},\frac{\varepsilon}{2\pi}\right)$ is such that	
Since a $\sqrt{n} \times \sqrt{n}$ array has at most 2 <i>n</i> boundaries, one has to sum the above probability of failure over all boundaries <i>b</i> to get an upper bound of ε on the failure probability.	Since $\Delta^+\left(\widehat{W}, \frac{\varepsilon}{2n}\right)$ is such that $Pr\left[W_S(b) > \widehat{W}\left(1 + \Delta^+\left(\widehat{W}, \frac{\varepsilon}{2n}\right)\right)\right] \le \frac{\varepsilon}{2n}$ the theorem follows.	

HOEFFDING INEQUALITY	MARTINGALES
<text><text><equation-block><text><text><text></text></text></text></equation-block></text></text>	MARTINGALES
MARTINGALES	MARTINGALES - MAIN DEFINITION
 Martingales are very special sequences of random variables that arise at numerous applications, such as at gambling or at random walks. These sequences have various interesting properties and for them powerful techniques exist to derive special Chernoff-like tail bounds. Martingales can be very useful in showing that values of a random variable V are sharply concentrated around its expectation E[V]. Martingales originally referred to systems of betting in which a player increases his stake (usually by doubling) each time he lost a bet. For analysis of randomized algorithms of large importance is that, as a general rule of thumb says, most things that work for sums of independent random variables work also for martingales. 	Definition: A sequence of random variables $Z_0, Z_1,$ is a martingale with respect to a sequence of rand. variabl., $X_0, X_1,, if$, for all $n \ge 0$, the following conditions hold: a Z_n is a function of $X_0, X_1,, X_n$ b $\mathbf{E}[Z_n] < \infty;$ b $\mathbf{E}[Z_{n+1} X_0,, X_n] = Z_n;$ A sequence of random variables $Z_0, Z_1,$ is called martingale if it is mrtngl with respect to itself. That is $\mathbf{E}[Z_n] < \infty$ and $\mathbf{E}[Z_{n+1} Z_0,, Z_n] = Z_n$

DOOB MARTINGALES

A **Doob martingale** is a martingale constructed using the following general scheme:

Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be another random variable with $\mathbf{E}[|Y|] < \infty$. The sequence

$$Z_i = \mathbf{E}[Y | X_0, \ldots, X_i], i = 1, \ldots, n$$

for i = 0, 1, 2, ... is a martingale with respect to $X_0, X_1, ..., X_n$. Indeed,

$$\mathbf{E}[Z_{i+1} | X_0, \dots, X_i] = \mathbf{E}[\mathbf{E}[Y | X_0, \dots, X_{i+1}] | X_0, \dots, X_i]$$

= $\mathbf{E}[Y | X_0, \dots, X_i] = Z_i$

Here we have used the fact that $\mathbf{E}[V | W] = \mathbf{E}[\mathbf{E}[V | U, W] | W]$ for any r.v. U, V, W.

1005 1. Basic Techniques II: Concentration Bounds49/7010054 1. Basic Techniques II: Concentration Bounds50/70REMAINDER - CONDITIONAL EXPECTATIONDefinition: It is natural and useful to define conditional expectation of a random variable
Y, conditioned on an event E, byA USEFUL FACT $E[Y|E] = \sum yPr(Y = y|E).$ For random variables X, Y it holdsE[E[X|Y]] = E[X]Example: Let we roll independently two perfect dice and let X_i be the number that
shows on the *i*th dice and let X be sum of numbers on both dice.For what you will expect to expect X to be after learning Y is the same as what
you now expect X to be.

51/70

$$\mathbf{E}[X, Y = y] = \sum_{x} x Pr[X = x, Y = y] = \sum_{x} x \frac{Pr[x, y]}{Pr_Y[y]}$$

and therefore

$$\mathbf{E}[\mathbf{E}[X|Y=y]] = \sum_{y} Pr_{Y}[y] \sum_{x} x \frac{Pr[x,y]}{Pr_{Y}[y]} = \sum_{x} \sum_{y} xPr[x,y] = \mathbf{E}[X]$$

Let us have a gambler who plays a sequence of fair games.

Let X_i be the amount the gambler wins in the *i*th game.

Let Z_i be the gambler's total winnings at the end of the *i*th game.

Because each game is fair we have $\mathbf{E}[X_i] = 0$

E
$$[Z_{i+1}|X_1, X_2, \dots, X_i] = Z_i + \mathbf{E}[X_{i+1}] = Z_i$$

Thus Z_1, Z_2, \ldots, Z_n is martingale with respect to the sequence X_1, X_2, \ldots, X_n .

$$\mathbf{E}[X|X_1=3] = \sum_{x} x \Pr(X=x|X_1=3) = \sum_{x=4}^{9} x \frac{1}{6} = \frac{13}{2}$$

$$\mathbf{E}[X_1|X=5] = \sum_{x=1}^{4} x \Pr(X_1=x|X=5) = \sum_{x=1}^{4} x \frac{\Pr(X_1=x \cap X=5)}{\Pr(X=5)} = \frac{5}{2}$$

Definition: For two random variables Y and Z, $\mathbf{E}[Y|Z]$ is defined to be a random variable f(Z) that takes on the value $\mathbf{E}[Y|Z = z]$ when Z = z.

Theorem For any random variables Y, Z it holds

 $\mathbf{E}[Y] = \mathbf{E}[\mathbf{E}[Y|Z]].$

IV054 1. Basic Techniques II: Concentration Bounds

IV054 1. Basic Techniques II: Concentration Bounds

STOPPING TIME

MARTINGALE STOPPING THEOREM

A stopping time corresponds to such a strategy to stop a sequence of steps (say at a gambling), that is based only on the outcomes seen so far.

 $\ensuremath{\mathsf{Examples}}$ of such rules at which the decision to stop gambling is a stopping time:

- First time the gambler wins 5 games in total;
- First time the gambler either wins or looses 1000 dolars;
- First time the gambler wins 4 times in a row.

The rule "Last time the gambler wins 4 times in a row" is not a stopping time.

IV054 1. Basic Techniques II: Concentration Bounds

Theorem: If Z_0, Z_1, \ldots , is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_{T}] = \mathbf{E}[Z_{0}]$$

whenever one of the following conditions holds:

• there is a constant c such that, for all i, $|Z_i| \le c$ - that is all Z_i are bounded;

■ *T* is bounded;

E[T] < ∞ and there is a constant c such that

$$\mathbf{E}[|Z_{i+1}-Z_i||X_1,\ldots,X_i] < c;$$

IV054 1. Basic Techniques II: Concentration Bounds

IV054 1. Basic Techniques II: Concentration Bounds 53/70	IV054 1. Basic Techniques II: Concentration Bounds 54/70
EXAMPLE - GAMBLER's PROBLEM	GAMBLER's PROBLEM - ANSWER
 Consider a sequence of independent fair games, where in each round each player either wins or looses one euro with probability ¹/₂. Let Z₀ = 0, let X_i be the amount won at the <i>i</i>th game and let Z_i be the total amount won after <i>i</i> games. Let us assume that the player quits the game when he either looses l₁ euro or wins l₂ euro (for given l₁, l₂). What is the probability that the player wins l₂ euro before losing l₁ euro? 	 Let T be the time when the gambler for the first time either won l₂ or lost l₁ euro. T is stopping time for the sequence X₁, X₂, Sequence Z₀, Z₁, is martingale. Since values of Z_i are bounded, the martingale stopping theorem can be applied. Therefore, we have: E[Z_T] = 0 Let now p be probability that the gambler quits playing after winning l₂ euro. Then E[Z_T] = l₂p - l₁(1 - p) = 0 and therefore p = l₁/l₁ + l₂

ELECTION PROBLEM

• Suppose candidates A and B run for elections and at the end A gets v_A votes and B gets v_B votes and $v_B < v_A$.

- Let us assume that votes are counted at random. What is the probability that the candidate A will be always ahead during the counting process?
- Let $n = v_A + v_B$ and let S_k be the number of votes by which A is leading after k votes were counted. Clearly $S_n = v_A - v_B$.
- For $0 \le k \le n-1$ we define

$$X_k = \frac{S_{n-k}}{n-k}$$

- It can be shown, after some calculations, that the sequence X_0, X_1, \ldots, X_n forms a martingale.
- Note that the sequence X_0, X_1, \ldots, X_n relates to the counting process in a backward order - X_0 is a function of $S_n,...$

ELECTION PROBLEM - RESULT

- Let T be the minimum k such that $X_k = 0$ if such a k exists, and T = n 1otherwise.
- \bullet T is a bounded stopping time and therefore the martingale stopping theorem gives

$$\mathbf{E}[X_T] = \mathbf{E}[X_0] = \frac{\mathbf{E}[S_n]}{n} = \frac{v_A - v_B}{v_A + v_B}$$

- **Case 1:** Candidate A leads through the count. In such a case all S_{n-k} and therefore all X_k are positive, T = n - 1 and $X_T = X_{n-1} = S_1 = 1$.
- **Case 2:** Candidate A does not lead through the count. For some k < n 1 $X_k = 0$. If candidate B ever leads it has to be a k where $S_k = X_k = 0$. In this case T == k < n-1 and $X_T = 0$..

We have therefore

$$\mathbf{E}[X_T] = \frac{v_A - v_B}{v_A + v_B} = 1 \cdot \Pr(\text{Case 1}) + 0 \cdot \Pr(\text{Case 2})$$

Therefore the probability of Case 1, in which candidate A leads through the account, is

 $V_A - V_B$

	$\frac{v_A - v_B}{v_A + v_B}$		
IV054 1. Basic Techniques II: Concentration Bounds 57/70	IV054 1. Basic Techniques II: Concentration Bounds 58/70		
AZUMA-HOEFFDING INEQUALITY	EXAMPLE - PATTERN MATCHING - I.		
Perhaps the main importance of the martingale concept for the analysis of randomized algorithms is due to various special Chernoff-type inequalities that can be applied even in case random variables are not independent. Theorem Let X_0, X_1, \ldots, X_n be a martingale such that for any k $ X_k - X_{k-1} \leq c_k.$ for some c_k .	 Let S = (s₁,, s_n) be a string of n characters chosen randomly from an s-nary alphabet Σ. Let P = (p₁,, p_k) be a string (pattern) of k characters from Σ. Let F_{P,S} be the number of occurrences of P in S. Clearly E[F_{P,S}] = (n - k + 1) (¹/_s)^k We use now a Doob martingale and Azuma-Hoeffding inequality to show that, if k is relatively small with respect to n, then the number of occurrences of the pattern P in S is highly concentrated around its mean. 		
Then, for all $t \geq 0$ and any $\lambda > 0$	Let $Z_0 = \mathbf{E}[F_{P,S}]$ and, for $1 \le i \le n$ let		
$Pr(X_t - X_0 \geq \lambda) \leq 2e^{-\lambda^2/(2\sum_{i=1}^t c_i^2)}$	$Z_i = E[F_{P,S} \mid s_1, \ldots, s_i].$		
	The sequence Z_0, \ldots, Z_n is a Doob martingale, and $Z_n = F_{P,S}$.		

59/70

IV054 1. Basic Techniques II: Concentration Bounds

EXAMPLE - PATTERN MATCHING - II.	WAITING TIMES for PATTERNS PROBLEM			
<text><equation-block><text><equation-block><text><equation-block><equation-block><equation-block><text></text></equation-block></equation-block></equation-block></text></equation-block></text></equation-block></text>	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>			
1700 1. basic reclimated in concentration bounds	EXAMPLE - OCCUPANCY PROBLEM			
The above facts will now be used to compute $\mathbf{E}[\tau]$. When we stop at time τ we have one gambler who has won $2^k - 1$. Other gamblers may still play. For each <i>i</i> with $x_1 \dots x_k = x_{k-i+1} \dots x_k$ there will be a gambler with net winnings $2^i - 1$. All remaining gamblers will all be at -1 . Let $\chi_i = 1$ if $x_1 \dots x_i = x_{k-i+1} \dots x_k$, and 0 otherwise. Then, using the stopping time theorem, $\mathbf{E}[X_{\tau}] = \mathbf{E}\left[-\tau + \sum_{i=1}^{k} \chi_i 2^i\right] = -\mathbf{E}[\tau] + \sum_{i=1}^{k} \chi_i 2^i = 0$ and therefore $\mathbf{E}[\tau] = \sum_{i=1}^{k} \chi_i 2^i$. Examples: if pattern is HTHH (HHHH) [THHH], then $\mathbf{E}[\tau]$ equals 18 (30) [16].	Suppose that <i>m</i> balls are thrown randomly into <i>n</i> bins and let <i>Z</i> denote the number of bins that remain empty at the end. For $0 \le t \le m$ let Z_t be the expectation at time <i>t</i> of the number of bins that are empty at time <i>m</i> . The sequence of random variables Z_0, Z_1, \ldots, Z_m is a martingale, $Z_0 = \mathbf{E}[Z]$ and $Z_m = Z$.			

OCCUPANCY PROBLEM REVISITED

Kolmogorov-Doob inequality Let X_0, X_1, \ldots be a martingale. Then for any $\lambda > 0$

$$\Pr[\max_{0 \le i \le n} X_i \ge \lambda] \le \frac{\mathbf{E}[|X_n|]}{\lambda}.$$

Azuma inequality Let X_0, X_1, \ldots be a martingale sequence such that for each k

$$|X_k - X_{k-1}| \le c_k,$$

then for all $t \geq 0$ and any $\lambda > 0$

APPENDIX

$$\Pr[|X_t - X_0| \ge \lambda] \le 2 \exp\left(-\frac{\lambda^2}{2\sum_{k=1}^t c_k^2}\right).$$

Corollary Let X_0, X_1, \ldots be a martingale sequence such that for each k

 $|X_k - X_{k-1}| \leq c$

where c is independent of k. Then, for all $t \ge 0$ and any $\lambda > 0$

$$\Pr[|X_t - X_0| \ge \lambda c \sqrt{t}] \le 2e^{-\lambda^2/2},$$

IV054 1. Basic Techniques II: Concentration Bounds

Let us have m balls thrown randomly into n bins and let Z denote the number of bins that remain empty.

Azuma inequality allows to show:

$$\mu = \mathbf{E}[Z] = n(1-rac{1}{n})^m pprox ne^{-m/n}$$

 $\Pr[|Z - \mu| \ge \lambda] \le 2e^{-\frac{\lambda^2(n-1/2)}{n^2 - \mu^2}}.$

IV054 1. Basic Techniques II: Concentration Bounds

and for $\lambda > 0$

EXERCISES

• What is larger, e^{π} or π^{e} , for the basis e of natural logarithms

Hint 1: There exists one-line proof of the correct relation.

APPENDIX

67/70

65/70

FX	ER	CI	S	FS
		<u> </u>	5	

- What is larger, e^{π} or π^{e} , for the basis e of natural logarithms
- Hint 1: There exists one-line proof of correct relation.

Hint 2: Solution: use inequality $e^x > 1 + x$ with $x = \pi/e - 1$.

IV054 1. Basic Techniques II: Concentration Bounds

EXERCISES

- What is larger, e^{π} or π^e , for the basis *e* of natural logarithms
- $\hfill \ensuremath{\boxtimes}$ Hint 1: There exists one-line proof of correct relation.
- If Hint 2: Use the inequality $e^x > 1 + x$ with $x = \pi/e 1$.

Solution:

$$e^{\pi/e-1} > 1 + \pi/e - 1$$

implies:

69/70

$$e^{\pi/e-1} > \pi/e ==> e^{\pi/e} > \pi ==> e^{\pi} > \pi^e$$

IV054 1. Basic Techniques II: Concentration Bounds