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Games Theory and Analyses of Randomized Algorithms

CLASSICAL GAMES THEORY - BASIC CONCEPTS

CLASSICAL GAMES THEORY
BRIEFLY
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BASIC CONCEPTS of CLASSICAL GAME THEORY

We will consider games with two players, Alice and Bob. X and Y will be
nonempty sets of their game (pure) strategies -X of Alice, Y of Bob. Mappings
pX : X × Y → R and pY : X × Y → R will be called payoff functions of Alice
and Bob. The quadruple (X ,Y , pX , pY ) will be called a (mathematical) game.

A mixed strategy will be a probability distribution on pure strategies.

An element (x , y) ∈ X × Y is said to be a Nash equilibrium of the game
(X ,Y , pX , pY ) iff pX (x ′, y) ≤ pX (x , y) for any x ′ ∈ X , and pY (x , y ′) ≤ pY (x , y)
for all y ′ ∈ Y .

Informally, Nash equilibrium is such a pair of strategies that none of the players
gains by changing his/her strategy.

A game is called zero-sum game if pX (x , y) + pY (x , y) = 0 for all x ∈ X and
y ∈ Y .
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ONE of THE BASIC RESULTS

One of the basic result of the classical game theory is that
not every two-players zero-sum game has a Nash
equilibrium in the set of pure strategies, but there is always
a Nash equilibrium if players follow mixed strategies.
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POWER Of QUANTUM PHENOMENA

It has been shown, for several zero-sum games, that if one of the
players can use quantum tools and thereby quantum strategies, then
he/she can increase his/her chance to win the game.

This way, from a fair game, in which both players have the same
chance to win if only classical computation and communication tools
are used, an unfair game can arise, or from an unfair game a fair one.
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EXAMPLE - PENNY FLIP GAME

Alice and Bob play with a box and a penny as follows:

Alice places a penny head up in a box.

Bob flips or does not flip the coin

Alice flips or does not flip the coin

Bob flips or does not flip the coin

After the “game” is over, they open the box and Bob wins if the penny is head up.

It is easy to check that using pure strategies chances to win are 1
2

for each player and
there is no (Nash) equilibrium in the case of pure classical strategies.

However, there is equilibrium if Alice chooses its strategy with probability 1
2

and Bob
chooses each of the four possible strategies with probability 1

4
.
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VERSION of PRISONERS’ DILEMMA from 1992

Two members of a gang are imprisoned, each in a separate cell, without possibility to
communicate. However, police has not enough evidence to convict them on the principal
charge and therefore police intends to put both of them for one year to jail on a lesser
charge.

Simultaneously police offer both of them so called Faustian bargain. Each prisoner gets a
chance either to betray the other one by testifying that he committed the crime, or to
cooperate with the other one by remaining silent. Here are payoffs they are offered:

If both betray, they will get into jail for 2 years.

If one betrays and second decides to cooperate, then first will get free and second
will go to jail for 3 years.

If both cooperate they will go to jail for 1 year.

What is the best way for them to behave? This game is a model for a variety of real-life
situations involving cooperative behaviour. Game was originally framed in 1950 by M.
Flood and M. Dresher
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PRISONERS’ DILEMMA - I.

Two prisoners, Alice and Bob, can use, independently, any of the following
two strategies: to cooperate or to defect (not to cooperate).

The problem is that the payoff function (pA, pB), in millions, is a very
special one (first (second) value is payoff of Alice (of Bob):

Alice
Bob CA DA

CB (3, 3) (5, 0)
DB (0, 5) (1, 1)

What is the best way for Alice and Bob to proceed in order to maximize
their payoffs?
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PRISONERS’ DILEMMA - II.

A strategy sA is called dominant for Alice if for any other strategy s ′A of
Alice and sB of Bob, it holds

PA(sA, sB) ≥ PA(s ′A, sB).

Clearly, defection is the dominant strategy of Alice (and also of Bob) in the
case of Prisoners Dilemma game.

Prisoners Dilemma game has therefore dominant-strategy equilibrium

Alice
Bob CA DA

CB (3, 3) (5, 0)
DB (0, 5) (1, 1)
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BATTLE of SEX GAME

Alice and Bob have to decide, independently of each other, where to spent the evening.

Alice prefers to go to opera (O), Bob wants to watch TV (T) - tennis.

However, at the same time both of them prefer to be together than to be apart.

Pay-off function is given by the matrix (columns are for Alice) (columns are for Bob)

O T
O (α, β) (γ, γ)
T (γ, γ) (β, α)

where α > β > γ.

What kind of strategy they should choose?

The two Nash equilibria are (O,O) and (T ,T ), but players are faced with tactics
dilemma, because these equilibria bring them different payoffs.
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COIN GAME

There are three coins: one fair, with both sides different, and two unfair, one with two
heads and one with two tails.

The game proceeds as follows.

Alice puts coins into a black box and shakes the box.

Bob picks up one coin.

Alice wins if coin is unfair, otherwise Bob wins

Clearly, in the classical case, the probability that Alice wins is 2
3
.
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FROM GAMES to LOWER BOUNDS for RANDOMIZED
ALGORITHMS

Next goal is to present, using zero-sum games theory, a method how
to prove lower bounds for the average running time of randomized
algorithms.

This techniques can be applied to algorithms that terminate for all
inputs and all random choices.
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TWO–PERSON ZERO–SUM GAMES – EXAMPLE

A two players zero–sum game is represented by an n ×m payoff–matrix M with all rows
and columns summing up to 0.
Payoffs for n possible strategies of Alice are given in rows of M.
Payoffs for m possible strategies of Bob are given in columns of M.

Mi,j

is the amount paid by Bob to Alice if Alice chooses strategy i and Bob’s choice is
strategy j .
The goal of Alice (Bob) is to maximize (minimize) her payoff.
Example - stone-scissors-paper game

PAYOFF–MATRIX

Alice

Bob
Scissors Paper Stone

Scissors 0 1 -1
Paper -1 0 1
Stone 1 -1 0

→ Table shows how
much Bob has to pay
to Alice

Rules: Stone looses to paper and wins sissors.Paper looses to sissors and wins to
stone.Sissors looses to stone and wins to paper.
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STRATEGIES for ZERO-INFORMATION and ZERO-SUM GAMES

(Games with players having no information about their opponents’ strategies.)

Observe that if Alice chooses a strategy i , then she is guaranteed a payoff of minj Mij

regardless of Bob’s strategy.

An optimal strategy OA for Alice is such an i that maximises minj Mij .

OA = max
i

min
j

Mij

denotes therefore the lower bound on the value of the payoff Alice gains (from Bob)
when she uses an optimal strategy.

An optimal strategy OB for Bob is such a j that minimizes maxi Mij . Bob’s optimal
strategy ensures therefore that his payoff is at least

OB = min
j

max
i

Mij
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Theorem
OA = max

i
min

j
Mij ≤ min

j
max

i
Mij = OB

Often OA < OB . In our last (scissors-...) example, −1 = OA < OB = +1.

If OB = OA we say that the game has a solution – a specific choice of strategies that
leads to this solution.

% and γ are so called optional strategies for Alice and Bob if

OA = OB = M%γ
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Example of the game which has a so-
lution (OA = OB = 0)

0 1 2
-1 0 1
-2 -1 0

What happens if a game has no solution ?
There is no clear–cut strategy for any player.
Way out: to use randomized strategies.

Alice chooses strategies according to a probability vector p = (p1, . . . , pn); pi is
probability that Alice chooses strategy sA,i

Bob chooses strategies according to a probability vector q = (q1, . . . , qn); qj is a
probability that Bob chooses strategy sB,j .

Payoff is now a random variable – if p, q are taken as column vectors then

E [payoff] = pTMq =
n∑

i=1

m∑

j=1

piMijqj
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Let OA (OB) denote the best possible (optimal) lower
(upper) bound on the expected payoff of Alice (Bob).
Then it holds:

OA = max
p

min
q

pTMq OB = min
q

max
p

pTMq
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Theorem (von Neumann Minimax theorem) For any
two–person zero–sum game specified by a payoff matrix M it holds

max
p

min
q

pTMq = min
q

max
p

pTMq

Observe that once p is fixed, maxp minq pTMq = minq maxp pTMq is a linear function and
is minimized by setting to 1 the qj with the smallest coefficient in this linear function.

This has interesting/important implications:

If Bob knows the distribution p used by Alice, then his optimal strategy is a pure
strategy.

A similar comment applies in the opposite direction. This leads to a simplified version of
the minimax theorem, where ek denotes a unit vector with 1 at the k-th position and 0
elsewhere.

Theorem (Loomis’ Theorem) For any two–persons zero–sum game

max
p

min
j

pTMej = min
q

max
i

eT
i Mq
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YAO’S TECHNIQUE 1/3

Yao’s technique provides an application of the game-theoretic results to the
establishment of lower bounds for randomized algorithms.
For a given algorithmic problem P let us consider the following payoff matrix.

I
N
P
U
T
S

c1
c2
c3
c4

deterministic algorithms
A1 A2 A3∣∣∣∣∣∣∣∣∣∣∣∣

entries
=

resources
(i.e. used computation time)

∣∣∣∣∣∣∣∣∣∣∣∣

Bob – a designer
choosing good algorithms

Alice – an adversary
choosing bad inputs

Pure strategy for Bob corresponds to the choice of a deterministic algorithm.
Optimal pure strategy for Bob corresponds to a choice of an optimal deterministic
algorithm.
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YAO’S TECHNIQUE 2/3

Let VB be the worst-case running time of any deterministic algorithm of Bob

Problem: How to interpret mixed strategies ?

A mixed strategy for Bob is a probability distribution over (always correct) deterministic
algorithms—so it is a Las Vegas randomized algorithm.

An optimal mixed strategy for Bob is an optimal Las Vegas algorithm. Distributional
complexity of a problem is an expected running time of the best deterministic algorithm
for the worst distribution on the inputs.

Loomis theorem implies that distributional complexity equals to the least possible time
achievable by any randomized algorithm
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Reformulation of von Neumann+Loomis’ theorem in the language of algorithms

Corollary Let Π be a problem with a finite set I of input instances and A be a finite set
od deterministic algorithms for Π. For any input i ∈ I and any algorithm A ∈ A, let
T (i ,A) denote computation time of A on input i . For probability distributions p over I
and q over A, let ip denote random input chosen according to p and Aq a random
algorithm chosen according to q. Then

max
p

min
q

E [T (ip,Aq)] = min
q

max
p

E [T (ip,Aq)]

max
p

min
A∈A

E [T (ip,A)] = min
q

max
i∈I

E [T (i ,Aq)]
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YAO’S TECHNIQUE 3/3

Consequence:

Theorem(Yao’s Minimax Principle) For all distributions p over I and q over A.

min
A∈A

E[T (ip,A)] ≤ max
i∈I

E[T (i ,Aq)]

Interpretation: Expected running time of the optimal deterministic algorithm for any
arbitrarily chosen input distribution p for a problem Π is a lower bound on the expected
running time of the optimal (Las Vegas) randomized algorithm for Π.

In other words, to determine a lower bound on the performance of all randomized
algorithms for a problem P, derive instead a lower bound for any deterministic
algorithm for P when its inputs are drawn from a specific probability distribution (of
your choice).
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IMPLICATIONS OF YAO’S MINIMAX PRINCIPLE

Interpretation again Expected running time of the optimal deterministic algorithm for an
arbitrarily chosen input distribution p for a problem Π is a lower bound on the expected
running time of the optimal (Las Vegas) randomized algorithm for Π.

Consequence:
In order to prove a lower bound on the randomized complexity of an algorithmic problem,
it suffices to choose any probability distribution p on the input and prove a lower bound
on the expected running time of deterministic algorithms for that distribution.

The power of this technique lies in

1 the flexibility at the choice of p

2 the reduction of the task to determine lower bounds for randomized algorithms to
the task to determine lower bounds for deterministic algorithms.

(It is important to remember that we can expect that the deterministic algorithm
”knows” the chosen distribution p.)

The above discussion holds for Las Vegas algorithms only!
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GAMES TREES REVISITED

A randomized algorithm for a game-tree T evaluations can be viewed as a probability
distribution over deterministic algorithms for T , because the length of computation and
the number of choices at each step are finite.

Instead of AND–OR trees of depth 2k we can consider NOR–trees of depth 2k.
Indeed, it holds:

(a ∨ b) ∧ (c ∨ d) ≡ (a NOR b)NOR(c NOR d)

NOR NOR

NOR

NOR NOR NOR NOR
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Note: It’s important to distinguish between:

the expected running time of the randomized algorithm with a fixed input
(where probability is considered over all random choices made by the algorithm)

and

the expected running time of the deterministic algorithm when proving the lower
bound (the average time is taken over all random input instances).
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LOWER BOUND FOR GAME TREE EVALUATION - I

Assume now that each leaf of a NOR-tree is set up to have value 1 with probability

p = 3−
√
5

2
(observe that (1− p)2 = p for such a p).

Observe that if inputs of a NOR-gate have value 1 with probability p then its output
value is also 1 with probability (1− p)(1− p) = p.

Consider now only depth–first pruning algorithms for tree evaluation.
(They are such depth–first algorithms that make use of the knowledge that subtrees that
provide no additional useful information can be ”pruned away”.)

Of importance for the overall analysis is the following technical lemma:

Lemma Let T be a NOR–tree each leaf of which is set to 1 with a fixed probability. Let
W (T ) denote the minimum, over all deterministic algorithms, of the expected number of
steps to evaluate T . Then there is a depth–first pruning algorithm whose expected
number of steps to evaluate T is W (T ).

The last lemma tells us that for the purposes of our lower bound, we may restrict our
attention to the depth–first pruning algorithms.
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LOWER BOUND FOR GAME TREE EVALUATION - II

For a depth–first pruning algorithm evaluating a NOR–tree, let W (h) be the expected
number of leaves the algorithm inspects in determining the value of a node at distance h
from the leaves.

It holds
W (h) = pW (h − 1) + (1− p)2W (h − 1) = (2− p)W (h − 1)

because with the probability 1− p the first subtree produces 0 and therefore also the
second tree has to be evaluated. If h = lg2 n, then the above recursion has a solution

W (h) ≥ n0.694.

This implies:

Theorem The expected running time of any randomized algorithm that always evaluates
an instance of Tk correctly is at least n0.694, where n = 22k is the number of leaves.

IV054 1. Games Theory and Analyses of Randomized Algorithms 27/29

The upper bound for randomized game tree evaluation algorithms already shown, at the
beginning of this chapter was n0.79, what is more than the lower bound n694 just shown.

It was therefore natural to ask what does the previous theorem really says?

For example, is our lower bound technique weak? ?

No, the above result just says that in order to get a better lower bound another
probability distribution on inputs may be needed.
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RECENT RESULTS

Two recent results put more light on the Game tree evaluation
problem.

It has been shown that for our game tree evaluation problem the
upper bound presented at the beginning is the best possible and
therefore that θ(n0.79) is indeed the classical (query) complexity of
the problem.

It has also been shown, by Farhi et al. (2009), that the upper
bound for the case quantum computation tools can be used is
O(n0.5).
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