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PROBABILITY INTUITIVELY

Intuitively, probability of an event E is the ratio between the number of favorable
elementary events involved in E to the number of all possible elementary events involved
in E .

Pr(E) =
number of favorable elementary events involved in E

number of all possible elementary events involved in E

Example: Probability that when tossing a perfect 6-sided dice we get a number divided
by 3 is

2/6 = 1/3

.

Key fact: Any probabilistic statement must refer to a specific underlying probability
space - a space of elements to which a probability is assigned.
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PROBABILITY SPACES

A probability space is defined in terms of a sample space Ω (often with an algebraic
structure – for example outcomes of some cube tossing) and a probability measure
(probability distribution) defined on Ω.

Subsets of a sample space Ω are called events. Elements of Ω are referred to as
elementary events.

Intuitively, the sample space represents the set of all possible outcomes of a probabilistic
experiment – for example of a cube tossing. An event represents a collection (a subset)
of possible outcomes.

Intuitively - again, probability of an event E is the ratio between the number of
favorable elementary events involved in E and the number of all possible
elementary events.
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PROBABILITY THEORY

Probability theory took almost 300 years to develop

from intuitive ideas of Pascal, Fermat and Huygens,
around 1650,

to the currently acceptable axiomatic definition of
probability (due to A. N. Kolmogorov in 1933).

IV054 1. Basics of Probability Theory 5/106

AXIOMATIC APPROACH - I.

Axiomatic approach: Probability distribution on a set Ω is every function
Pr : 2Ω → [0, 1], satisfying the following axioms (of Kolmogorov):

1 Pr({x}) ≥ 0 for any element (elementary event) x ∈ Ω;

2 Pr(Ω) = 1

3 Pr(A ∪ B) = Pr(A) + Pr(B) if A,B ⊆ Ω, A ∩ B = ∅.

Example: Probabilistic experiment – cube tossing; elementary events – outcomes of
cube tossing; probability distribution – {p1, p2, p3, p4, p5, p6},

∑6
i=1 pi = 1, where pi is

probability that i is the outcome of a particular cube tossing.

In general, a sample space is an arbitrary set. However, often we need (wish) to consider
only some (family) of all possible events of 2Ω.

The fact that not all collections of events lead to well-defined probability spaces leads to
the concepts presented on the next slide.
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AXIOMATIC APPROACH - II.

Definition: A σ-field (Ω,F) consists of a sample space Ω and a collection F of subsets of
Ω satisfying the following conditions:

1 ∅ ∈ F

2 ε ∈ F⇒ ε ∈ F

3 ε1, ε2, . . . ∈ F⇒ (ε1 ∪ ε2 ∪ . . .) ∈ F

Consequence

A σ-field is closed under countable unions and intersections.

Definition: A probability measure (distribution) Pr : F→ R≥0 on a σ-field (Ω,F) is a
function satisfying conditions:

1 If ε ∈ F, then 0 ≤ Pr(ε) ≤ 1.

2 Pr[Ω] = 1.

3 For mutually disjoint events ε1, ε2, . . .
Pr
[⋃

i εi
]

=
∑

i Pr(εi )

Definition: A probability space (Ω,F,Pr) consists of a σ-field (Ω,F) with a probability
measure Pr defined on (Ω,F).
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PROBABILITIES and their PROPERTIES - I.

Properties (for arbitrary events εi):

Pr (ε) = 1− Pr (ε);

Pr (ε1 ∪ ε2) = Pr (ε1) + Pr (ε2)− Pr (ε1 ∩ ε2);

Pr(
⋃

i≥1

εi ) ≤
∑

i≥1

Pr(εi ).

Definition: Conditional probability of an event ε1 given an event ε2 is defined by

Pr [ε1|ε2] =
Pr [ε1 ∩ ε2]

Pr [ε2]

if Pr [ε2] > 0.
Theorem: Law of the total probability Let ε1, ε2, . . . , εk be a partition of a sample
space Ω. Then for any event ε

Pr [ε] =
k∑

i=1

Pr [ε|εi ] · Pr [εi ]
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EXAMPLE:

Let us consider tossing of two perfect dices with sides labelled by 1, 2, 3, 4, 5, 6. Let

ε1 be the event that the reminder at the division of the sum of the outcomes of both
dices when divided by 4 is 3, and

ε2 be the event that the outcome of the first cube is 4.
In such a case

Pr [ε1|ε2] =
Pr [ε1 ∩ ε2]

Pr [ε2]
=

1
36
1
6

=
1

6
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PROBABILITIES and their PROPERTIES - II.

Theorem: (Bayes’ Rule/Law)

(a) Pr (ε1) · Pr (ε2|ε1) = Pr (ε2) · Pr (ε1|ε2) basic equality

(b) Pr(ε2|ε1) = Pr (ε2) Pr (ε1|ε2)

Pr (ε1)
simple version

(c) Pr [ε0|ε] = Pr [ε0∩ε]

Pr [ε]
= Pr [ε|ε0]·Pr [ε0]∑k

i=1 Pr [ε|εi ]·Pr [εi ]
. extended version

Definition: Independence

1 Two events ε1, ε2 are called independent if

Pr (ε1 ∩ ε2) = Pr (ε1) · Pr (ε2)

.

2 A collection of events {εi |i ∈ I} is independent if for all subsets S ⊆ I

Pr

[⋂

i∈S
εi

]
=
∏

i∈S
Pr [εi ].
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MODERN (BAYESIAN) INTERPRETATION of BAYES RULE

for the entire process of learning from evidence has the form

Pr [ε1|ε] =
Pr [ε1 ∩ ε]

Pr [ε]
=

Pr [ε|ε1] · Pr [ε1]∑k
i=1 Pr [ε|εi ] · Pr [εi ]

.

In modern terms the last equation says that Pr [ε1|ε], the probability of a hypothesis ε1

(given information ε), equals Pr (ε1), our initial estimate of its probability, times Pr [ε|ε1],
the probability of each new piece of information (under the hypothesis ε1), divided by the
sum of the probabilities of data in all possible hypothesis (εi ).
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TWO BASIC INTERPRETATIONS of PROBABILITY

In Frequentist interpretation, probability is defined with respect to a large number of
trials, each producing one outcome from a set of possible outcomes - the
probability of an event A , Pr(A), is a proportion of trials producing an
outcome in A.

In Bayesian interpretation, probability measures a degree of belief. Bayes’ theorem then
links the degree of belief in a proposition before and after receiving an
additional evidence that the proposition holds.
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EXAMPLE 1

Let us toss a two regular cubes, one after another and let

ε1 be the event that the sum of both tosses is ≥ 10

ε2 be the event that the first toss provides 5

How much are: Pr(ε1),Pr(ε2),Pr(ε1|ε2),Pr(ε1 ∩ ε2)?

Pr(ε1) =
6

36

Pr(ε2) =
1

6

Pr(ε1|ε2) =
2

6

Pr(ε1 ∩ ε2) =
2

36
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EXAMPLE 2

Three coins are given - two fair ones and in the third one heads land with
probability 2/3, but we do not know which one is not fair one.

When making an experiment and flipping all coins let the first two come up heads and
the third one comes up tails. What is probability that the first coin is the biased one?

Let εi be the event that the ith coin is biased and B be the event that three coins flips
came up heads, heads, tails.

Before flipping coins we have Pr(εi ) = 1
3

for all i . After flipping coins we have

Pr(B|ε1) = Pr(B|ε2) =
2

3

1

2

1

2
=

1

6
Pr(B|ε3) =

1

2

1

2

1

3
=

1

12

and using Bayes’ law we have

Pr(ε1|B) =
Pr(B|ε1)Pr(ε1)∑3
i=1 Pr(B|εi )Pr (εi )

=
1
6
· 1

3
1
6
· 1

3
+ 1

6
· 1

3
+ 1

12
· 1

3

=
2

5

Therefore, the above outcome of the three coin flips increased the likelihood that the first
coin is biased from 1/3 to 2/5
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THEOREM

Let A and B be two events and let Pr(B) 6= 0. Events A and B are independent if and
only if

Pr(A|B) = Pr(A).

Proof

Assume that A and B are independent and Pr(B) 6= 0. By definition we have

Pr(A ∩ B) = Pr(A) · Pr(B)

and therefore

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
=

Pr(A) · Pr(B)

Pr(B)
= Pr(A).

Assume that Pr(A|B) = Pr(A) and Pr(B) 6= 0. Then

Pr(A) = Pr(A|B) =
Pr(A ∩ B)

Pr(B)

and multiplying by Pr(B) we get

Pr(A ∩ B) = Pr(A) · Pr(B)

and so A and B are independent.
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SUMMARY

The notion of conditional probability, of A given B, was introduced in order to get
an instrument for analyzing an experiment A when one has partial information B
about the outcome of the experiment A before experiment has finished.

We say that two events A and B are independent if the probability of A is
equal to the probability of A given B,

Other fundamental instruments for analysis of probabilistic experiments are random
variables as functions from the sample space to R, and expectation of random
variables as the weighted averages of the values of random variables.
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MONTY HALL PARADOX

Let us assume that you see three doors D1, D2 and D3
and you know that behind one door is a car and behind
other two are goats.

Let us assume that you get a chance to choose one door
and if you choose the door with car behind the car will be
yours, and if you choose the door with a goat behind you
will have to milk that goat for years.

Which door you will choose to open?
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Let us now assume that you have chosen the door D1.

and let afterwords a moderator comes who knows where
car is and opens one of the doors D2 or D3, say D2, and
you see that the goat is in.

Let us assume that at that point you get a chance to
change your choice of the door.

Should you do that?
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Let C1 denote the event that the car is behind the door D1.
Let C3 denote the event that the car is behind the door D3.
Let M2 denote the event that moderator opens the door D2.

Let us assume that the moderator chosen a door at random if goats were behind both
doors he could open. In such a case we have

Pr [C1] =
1

3
= Pr [C3], Pr [M2|C1] =

1

2
, Pr [M2|C3] = 1

Then it holds

Pr [C1|M2] =
Pr [M2|C1]Pr [C1]

Pr [M2]
=

Pr [M2|C1]Pr [C1]

Pr [M2|C1]Pr [C1] + Pr [M2|C3]Pr [C3]
=

1/6

1/6 + 1/3
=

1

3

Similarly

Pr [C3|M2] =
Pr [M2|C3]Pr [C3]

Pr [M2]
=

Pr [M2|C3]Pr [C3]

Pr [M2|C1]Pr [C1] + Pr [M2|C3]Pr [C3]
=

1/3

1/6 + 1/3
=

2

3
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RANDOM VARIABLES - INFORMAL APPROACH

A random variable is a function defined on the elementary events of a probability space
and having as values real numbers.

Example: In case of two tosses of a fair six-sided dice, the value of a random variable V
can be the sum of the numbers on te two top spots on the dice rolls.

The value of V can therefore be an integer from the interval [2, 12].

A random variable V with n potential values v1, v2, . . . , vn is characterized by a probability
distribution p = (p1, p2, . . . , pn), where pi is probability that V takes the value vi .

The concept of random variable is one of the most important of modern science and
technology.
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INDEPENDENCE of RANDOM VARIABLES

Definition Two random variables X , Y are called independent random variables if

x , y ∈ R⇒ PrX ,Y (x , y) = Pr[X = x ] · Pr[Y = y ]
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EXPECTATION – MEAN of RANDOM VARIABLES

Definition: The expectation (mean or expected value) E[X ] of a random variable X is
defined as

E[X ] =
∑

ω∈Ω

X (ω)PrX (ω).

Properties of he mean for random variabkes X and Y and a constant c:

E[X + Y ] = E[X ] + E[Y ].

E[c · X ] = c · E[X ].

E[X · Y ] = E[X ] · E[Y ], if X ,Y are independent

The first of the above equalities is known as linearity of expectations. It can be
extended to a finite number of random variables X1, . . . ,Xn to hold

E[
n∑

i=1

Xi ] =
n∑

i=1

E[Xi ]

and also to any countable set of random variables X1,X2, . . . to hold: If∑∞
i=1 E[|Xi |] <∞, then

∑∞
i=1 |Xi | <∞ and

E[
∞∑

i=1

Xi ] =
∞∑

i=1

E[Xi ].
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EXPECTATION VALUES

For any random variable X let RX be the set of values of X . Using RX one can show that

E [X ] =
∑

x∈RX

x · Pr(X = x).

Using that one can show that for any real a, b it holds

E[aX + b] =
∑

x∈RX

(ax + b)Pr(X = x)

= a
∑

x∈RX

x · Pr(X = x) + b
∑

x∈RX

Pr(X = x)

= a · E[X ] + b

The above relation is called weak linearity of expectation.
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INDICATOR VARIABLES

A random variable X is said to be an indicator variable if X takes on only values 1 and 0.

For any set A ⊂ S , one can define an indicator variable XA that takes value 1 on A and 0
on S − A, if (S ,Pr) is the underlying probability space.

It holds:

EPr[XA] =
∑

s∈S
XA(s) · Pr({s})

=
∑

s∈A
XA(s) · Pr({s}) +

∑

s∈S−A

XA(s) · Pr({s})

=
∑

s∈A
1 · Pr({s}) +

∑

s∈S−A

0 · Pr({s})

=
∑

s∈A
Pr({s})

= Pr(A)
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VARIANCE and STANDARD DEVIATION

Definition For a random variable X variance VX and standard deviation σX are
defined by

VX = E((X − EX )2)

σX =
√

VX

Since

E((X − EX )2) = E(X 2 − 2X EX + (EX )2) =

= E(X 2)− 2(EX )2 + (EX )2 =

= E(X 2)− (EX )2,

it holds
VX = E(X 2)− (EX )2

Example: Let Ω = {1, 2, . . . , 10}, Pr(i) = 1
10

, X (i) = i ; Y (i) = i − 1 if i ≤ 5 and
Y (i) = i + 1 otherwise.
EX = EY = 5.5, E(X 2) = 1

10

∑10
i=1 i2 = 38.5, E(Y 2) = 44.5; VX = 8.25, VY = 14.25
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TWO RULES

For independent random variables X and Y and a real number c it holds

V(cX ) = c2V(X ); σ(cX ) = cσ(X )

V(X + Y ) = V(X ) + V(Y ). σ(X + Y ) =
√

V (X ) + V (Y ).
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MOMENTS

Definition

For k ∈ N the k-th moment mk
X and the k-th central moment µk

X of a random variable X
are defined as follows

mk
X = EX k

µk
X = E((X − EX )k)

The mean of a random variable X is sometimes denoted by µX = m1
X and its variance by

µ2
X .
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EXAMPLE I

Each week there is a lottery that always sells 100 tickets. One of the tickets wins 100
millions, all other tickets win nothing.

What is better: to buy in one week two tickets (Strategy I) or two tickets in two different
weeks (Strategy II)?

Or none of these two strategies is better than the second one?
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EXAMPLE II

With Strategy I we win (in millions)

0 with probability 0.98

100 with probability 0.02

With Strategy II we win (in millions)

0 with probability 0.9801 = 0.99 · 0.99

100 with probability 0.0198 = 2 · 0.01 · 0.99

200 with probability 0.0001 = 0.01 · 0.01

Variance at Strategy I is 196

Variance at Strategy II is 198
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PROBABILITY GENERATING FUNCTION

The probability density function of a random variable X whose values are natural
numbers can be represented by the following probability generating function (PGF):

GX (z) =
∑

k≥0

Pr(X = k) · zk .

Main properties
GX (1) = 1

EX =
∑

k≥0

k · Pr(X = k) =
∑

k≥0

Pr(X = k) · (k · 1k−1) = G′X(1).

Since it holds

E(X2) =
∑

k≥0

k2 · Pr(X = k)

=
∑

k≥0

Pr(X = k) · (k · (k − 1) · 1k−2 + k · 1k−1)

= G′′X(1) + G′X(1)

we have

VX = G ′′X (1) + G ′X (1)− (G ′X (1))2.
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AN INTERPRETATION

Sometimes one can think of the expectation E[Y ] of a random variable Y as the
”best guess” or the ”best prediction” of the value of Y .

It is the ”best guess” in the sense that among all constants m the expectation
E[(Y −m)2] is minimal when m = E[Y].
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WHY ARE PGF USEFUL?

Main reason: For many important probability distributions their PGF are very simple
and easy to work with.

For example, for the uniform distribution on the set {0, 1, . . . , n − 1} the PGF has form

Un(z) =
1

n
(1 + z + . . .+ zn−1) =

1

n
· 1− zn

1− z
.

Problem is with the case z = 1.
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PROPERTIES of GENERATING FUNCTIONS

Property 1 If X1, . . . ,Xk are independent random variables with PGFs G1(z), . . . ,Gk(z),
then the random variable Y =

∑k
i=1 Xi has as its PGF the function

G(z) =
k∏

i=1

Gi (z).

Property 2 Let X1, . . . ,Xk be a sequence of independent random variables with the same
PGF GX (z). If Y is a random variable with PGF GY (z) and Y is independent of all Xi ,
then the random variable S = X1 + . . .+ XY has as PGF the function

GS(z) = GY (GX (z)).
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IMPORTANT DISTRIBUTIONS

Two important distributions are connected with experiments, called Bernoulli trials, that
have two possible outcomes:

success with probability p

failure with probability q = 1− p

Coin tossing is an example of a Bernoulli trial.

1. Let values of a random variable X be the number of trials needed to obtain a success.
Then

Pr(X = k) = qk−1p

Such a probability distribution is called the geometric distribution and such a variable
geometric random variable. It holds

EX =
1

p
VX =

q

p2
G(z) =

pz

1− qz

2. Let values of a random variable Y be the number of successes in n trials. Then

Pr(Y = k) =

(
n
k

)
pkqn−k

Such a probability distribution is called the binomial distribution and it holds

EY = np VY = npq G(z) = (q + pz)n
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and also
EY 2 = n(n − 1)p2 + np
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BERNOULLI DISTRIBUTION

Let X be a binary random variable (called usually Bernoulli or indicator random variable)
that takes value 1 with probability p and 0 with probability q = 1− p, then it holds

E[X ] = p VX = pq G [z] = q + pz .
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BINOMIAL DISTRIBUTION revisited

Let X1, . . . ,Xn be random variables having Bernoulli distribution with the common
parameter p.
The random variable

X = X1 + X2 + . . .+ Xn

has so called binomial distribution denoted B(n, p) with the density function denoted

B(k, n, p) = Pr(X = k) =

(
n
k

)
pkq(n−k)
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POISSON DISTRIBUTION

Poisson distribution

Let λ ∈ R>0. The Poisson distribution with the parameter λ is the probability
distribution with the density function

p(x) =

{
λx e−λ

x!
, for x = 0, 1, 2, ...

0, otherwise

For large n the Poisson distribution is a good approximation to the Binomial distribution
B(n, λ

n
)

Property of a Poisson random variable X :

E[X ] = λ VX = λ G [z] = eλ(z−1)
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EXPECTATION+VARIANCE OF SUMS OF RANDOM VARIABLES

Let

Sn =
n∑

i=1

Xi

where each Xi is a random variable which takes on value 1 (0) with probability p
(1− p = q).
It clearly holds

E(Xi ) = p

E(X 2
i ) = p

E(Sn) = E(
n∑

i=1

Xi ) =
n∑

i=1

E(Xi ) = np

E(S2
n ) = E((

n∑

i=1

Xi )
2) = E(

n∑

i=1

X 2
i +

∑

i 6=j

XiXj) =

=
n∑

i=1

E(X 2
i ) +

∑

i 6=j

E(XiXj)
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Hence

E(S2
n ) = E((

n∑

i=1

Xi )
2) = E(

n∑

i=1

X 2
i +

∑

i 6=j

XiXj) =

=
n∑

i=1

E(X 2
i ) +

∑

i 6=j

E(XiXj)

and therefore, if Xi , Xj are pairwise independent, as in this case, E(XiXj) =
= E(Xi )E(Xj) Hence

E(S2
n ) = np + 2

(
n
2

)
p2

= np + n(n − 1)p2

= np(1− p) + n2p2

= n2p2 + npq

VAR[Sn] = E(S2
n )− (E(Sn))2 = n2p2 + npq − n2p2 = npq
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MOMENT INEQUALITIES

The following inequality, and several of its special cases, play very important role in the
analysis of randomized computations:

Let X be a random variable that takes on values x with probability p(x).

Theorem For any λ > 0 the so called k th moment inequality holds:

Pr [|X | > λ] ≤ E(|X |k)

λk

Proof of the above inequality;

E(|X |k) =
∑
|x |kp(x) ≥

∑

|x|>λ
|x |kp(x) ≥

≥ λk
∑

|x|>λ
p(x) = λkPr [|X | > λ]
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Two important special cases - I.1

of the moment inequality;

Pr [|X | > λ] ≤ E(|X |k)

λk

Case 1 k → 1 λ→ λE(|X |)

Pr [|X | ≥ λE(|X |)] ≤ 1

λ
Markov′s inequality

Case 2 k → 2 X → X − E(X ), λ→ λ
√

V (X )

Pr
[
|X − E(X )| ≥ λ

√
V (X )

]
≤ E((X − E(X ))2)

λ2V (X )
=

=
V (X )

λ2V (X )
=

1

λ2
Chebyshev′s inequality

Another variant of Chebyshev’s inequality:

Pr[|X − E(X )| ≥ λ] ≤ V (X )

λ2

and this is one of the main reasons why variance is used.
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Two important special cases - I.2

The following generalization of the moment inequality is also of importance:

Theorem

If g(x) is non-decreasing on [0,∞), then

Pr [|X | > λ] ≤ E(g(X ))

g(λ)

As a special case, namely if g(x) = etx , we get:

Pr [|X | > λ] ≤ E(etX )

etλ
basic Chernoff ′s inequality

Chebyshev’s inequalities are used to show that values of a random variable lie close to its
average with high probability. The bounds they provide are called also concentration
bounds. Better bounds can usually be obtained using Chernoff bounds discussed in
Chapter 5.
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FLIPPING COINS EXAMPLES on CHEBYSHEV INEQUALITIES

Let X be a sum of n independent fair coins and let Xi be an indicator variable for the
event that the i-th coin comes up heads. Then E(Xi ) = 1

2
, E(X ) = n

2
, Var[Xi ] = 1

4
and

Var[X ] =
∑

Var[Xi ] = n
4

.

Chebyshev’s inequality

Pr[|X − E(X )| ≥ λ] ≤ V (X )

λ2

for λ = n
2

gives

Pr [X = n] ≤ Pr [|X − n/2| ≥ n/2] ≤ n/4

(n/2)2
=

1

n
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THE INCLUSION-EXCLUSION PRINCIPLE

Let A1,A2, . . . ,An be events – not necessarily disjoint. The Inclusion-Exclusion
principle, that has also a variety of applications, states that

Pr

[
n⋃

i=1

Ai

]
=

n∑

i=1

Pr (Ai)−
∑

i<j

Pr (Ai∩Aj) +
∑

i<j<k

Pr (Ai∩Aj∩Ak)−

− . . . + (−1)k+1
∑

i1<i2<...<ik

Pr

[
k⋂

j=1

Aij

]
. . . +

+ (−1)n+1 Pr

[
n⋂

i=1

Ai

]
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BONFERRONI’S INEQUALITIES

the following Bonferroni’s inequalities follow from the Inclusion-exclusion principle:
For every odd k ≤ n

Pr

(
n⋃

i=1

Ai

)
≤

k∑

j=1

(−1)j+1
∑

i1<...<ij≤n

Pr

(
j⋂

l=1

Ail

)

For every even k ≤ n

Pr

(
n⋃

i=1

Ai

)
≥

k∑

j=1

(−1)j+1
∑

i1<...<ij≤n

Pr

(
j⋂

l=1

Ail

)

IV054 1. Basics of Probability Theory 46/106

SPECIAL CASES of THE INCLUSION-EXCLUSION PRINCIPLE

”Markov”-type inequality - Boole’s inequality or Union bound

Pr

(⋃

i

Ai

)
≤
∑

i

Pr (Ai )

”Chebyshev”-type inequality

Pr

(⋃

i

Ai

)
≥
∑

i

Pr (Ai )−
∑

i<j

Pr (Ai ∩ Aj)

Another proof of Boole’s inequality:

Let us define Bi = Ai −
⋃i−1

j=1 Aj . Then
⋃

Ai =
⋃

Bi . Since Bi are disjoint and for each i
we have Bi ⊂ Ai we get

Pr[
⋃

Ai ] = Pr[
⋃

Bi ] =
∑

Pr[Bi ] ≤
∑

Pr[Ai ]
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APPENDIX

APPENDIX
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PUZZLE - HOMEWORK

Puzzle 1 Given a biased coin, how to use it to simulate an unbiased coin?

Puzzle 2 n people sit in a circle. Each person wears either red hat or a blue hat, chosen
independently and uniformly at random. Each person can see the hats of all the other
people, but not his/her hat. Based only upon what they see, each person votes on
whether or not the total number of red hats is odd. Is there a scheme by which the
outcome of the vote is correct with probability greater than 1/2.
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MODERN (BAYESIAN) INTERPRETATION of BAYES RULE

Bayes rule for the process of learning from evidence has the form:

Pr [ε1|ε] =
Pr [ε1 ∩ ε]

Pr [ε]
=

Pr [ε|ε1] · Pr [ε1]∑k
i=1 Pr [ε|εi ] · Pr [εi ]

.

In modern terms the last equation says that Pr [ε1|ε], the probability of a hypothesis ε1

(given information ε), equals Pr (ε1), our initial estimate of its probability, times Pr [ε|ε1],
the probability of each new piece of information (under the hypothesis ε1), divided by the
sum of the probabilities of data in all possible hypothesis (εi ).
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EXAMPLE - DRUG TESTING

Suppose that a drug test will produce 99% true positive and 99% true negative results.

Suppose that 0.5% of people are drug users.

If the test of a user is positive, what is probability that such a user is a drug user?
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SOLUTION

Pr(drg-us|+) =
Pr(+|drg-us)Pr(drg-us)

Pr(+|drg-us)Pr(drg-us) + Pr(+|no-drg-us)Pr(no-drg-us)

Pr(drg − us|+) =
0.99× 0.005

0.99× 0.005 + 0.01× 0.995
=≈ 33.2%
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BAYES’ RULE INFORMALLY

Basically, Bayes’ rule concerns of a broad and fundamental issue: how we analyze
evidence and change our mind as we get new information, and make rational decision in
the face of uncertainty.

Bayes’ rule as one line theorem: by updating our initial belief about something with new
objective information, we get a new and improved belief
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BAYES’ RULE STORY

Reverend Thomas Bayes from England discovered the initial version of the ”Bayes’s
law” around 1974, but soon stopped to believe in it.

In behind were two philosophical questions
Can an effect determine its cause?
Can we determine the existence of God by observing nature?

Bayes law was not written for long time as formula, only as the statement: By
updating our initial belief about something with objective new information, we
can get a new and improved belief.

Bayes used a tricky thought experiment to demonstrate his law.

Bayes’ rule was later invented independently by Pierre Simon Laplace, perhaps the
greatest scientist of 18th century, but at the end he also abounded it.

Till the 20 century theoreticians considered Bayes rule as unscientific. Bayes rule
had for centuries several proponents and many opponents in spite that it has turned
out to be very useful in practice.

Bayes rule was used to help to create rules of insurance industries, to develop
strategy for artillery during the first and even Second World War (and also a great
Russian mathematician Kolmogorov helped to develop it for this purpose).
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It was used much to decrypt ENIGMA codes during 2WW, due to Turing, and also
to locate German submarines.
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Part II

Basic Methods of design and Analysis of Randomized Algorithms



Chapter 4. BASIC TECHNIQUES for DESIGN and ANALYSIS

In this chapter we present a new way how to see
randomized algorithms and several basic techniques how to
design and analyse randomized algorithms:

Especially we deal with:

Application of linearity of expectations

Game theory based lower bounds methods for
randomized algorithms.
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PROLOGUE

A way to see basics of deterministic, randomized
and quantum computations and their differences.
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MATHEMATICAL VIEWS of COMPUTATION 1/3

Let us consider an n bits strings set S ⊂ {0, 1}n.

To describe a deterministic computation on S we need to specify:

an initial state - by an n-bit string - say s0

and an evolution (computation) mapping E : S → S which can be described by a vector
of the length 2n, the elements and indices of which are n-bit strings.

A computation step is then an application of the evolution mapping E to the current
state represented by an n-bit string s.

However, for any at least a bit significant task, the number of bits needed to describe
such an evolution mapping, n2n, is much too big. The task of programming is
then/therefore to replace an application of such an enormously huge mapping by an
application of a much shorter circuit/program.
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MATHEMATICAL VIEWS of COMPUTATION 2/3

To describe a randomized computation we need;

1:) to specify an initial probability distribution on all n-bit strings. That can be done by
a vector of length 2n, indexed by n-bit strings, the elements of which are non-negative
numbers that sum up to 1.

2:) to specify a randomized evolution, which has to be done, in case of a homogeneous
evolution, by a 2n × 2n matrix A of conditional probabilities for obtaining a new
state/string from an old state/string.

The matrix A has to be stochastic - all columns have to sum up to one and A[i , j ] is a
probability of going from a string representing j to a string representing i .

To perform a computation step, one then needs to multiply by A the 2n-elements
vector specifying the current probability distribution on 2n states.

However, for any nontrivial problem the number 2n is larger than the number of particles
in the universe. Therefore, the task of programming is to design a small
circuit/program that can implement such a multiplication by a matrix of an enormous
size.
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MATHEMATICAL VIEWS of COMPUTATION 3/3

In case of quantum computation on n quantum bits:

1:) Initial state has to be given by an 2n vector of complex numbers (probability
amplitudes) the sum of the squares of which is one.

2:) Homogeneous quantum evolution has to be described by an 2n × 2n unitary matrix
of complex numbers - at which inner products of any two different columns and any two
different rows are 0.1

Concerning a computation step, this has to be again a multiplication of a vector of the
probability amplitudes, representing the current state, by a very huge 2n × 2n unitary
matrix which has to be realized by a ”small” quantum circuit (program).

1A matrix A is usually called unitary if its inverse matrix can be obtained from A by transposition around
the main diagonal and replacement of each element by its complex conjugate.
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LINEARITY OF EXPECTATIONS

A very simple, but very often very useful, fact is that for any random variables X1,X2, . . .
it holds

E[
∑

i

Xi ] =
∑

i

E[Xi ].

even if Xi are dependent and dependencies among Xi ’s are very complex.

Example: A ship arrives at a port, and all 40 sailors on board go ashore to have fun. At
night, all sailors return to the ship and, being drunk, each chooses randomly a cabin to
sleep in. Now comes the question: What is the expected number of sailors sleeping in
their own cabins?

Solution: Let Xi be a random variable, so called (indicator variable), which has value 1 if
the i-th sailor chooses his own cabin, and 0 otherwise.

Expected number of sailors who get to their own cabin is

E[
40∑

i=1

Xi ] =
40∑

i=1

E[Xi ]

Since cabins are chosen randomly E[Xi ] = 1
40

and E[
∑40

i=1 Xi ] = 40. 1
40

= 1.
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EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
1/3

Problem Given a set S = {s1, . . . , sn} of non-intersecting line segments, find a partition
of the plane such that every region will contain at most one line segment (or at most a
part of a line segment).

s
1

s
3

s
3

s
3

L 1

s
1

s
2

L 2 L 3

L 1

s
1

s
2

s
3

L 2

L 3

s
2

A (binary) partition will be described by a binary tree + additional information (about
nodes). With each node v a region rv of the plane will be associated (the whole plane
will be represented by the root) and also a line Lv intersecting rv .

Each line Lv will partition the region rv into two regions rl,v and rr,v which correspond to
two children of v - to the left and right one.
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EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
2/3

Notation: l(si ) will denote a line-extension of the segment si .
autopartitions will use only line-extensions of given segments.
Algorithm RandAuto:

Input: A set S = {s1, . . . , sn} of non-intersecting line segments.
Output: A binary autopartition PΠ of S .
1: Pick a permutation Π of {1, . . . , n} uniformly and randomly.
2: While there is a region R that contains more than one segment, choose one of

them randomly and cut it with l(si ) where i is the first element in the ordering induced
by Π such that l(si ) cuts the region R.
Theorem: The expected size of the autopartition PΠ of S , produced by the above
RandAuto algorithm is θ(n ln n).
Proof: Notation (for line segments u, v).

index(u, v) =
i if l(u) intersects i − 1 segments before hitting v ;
∞ if l(u) does not hit v .

u a v will be an event that l(u) cuts v in the constructed (autopartition) tree.
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EXAMPLE - BINARY PARTITION of a SET of LINE SEGMENTS
3/3

Probability: Let u and v be segments, index(u, v) = i and let u1, . . . , ui−1 be segments
the line l(u) intersects before hitting v .
The event u a v happens, during an execution of RandPart, only if u occurs before any
of {u1, . . . , ui−1, v} in the permutation Π.Therefore the probability that event u a v
happens is 1

i+1
= 1

index(u,v)+1
.

Notation: Let Cu,v be the indicator variable that has value 1 if u a v and 0 otherwise.

E[Cu,v ] = Pr[u a v ] =
1

index(u, v) + 1
.

Clearly, the size of the created partition PΠ equals n plus the number of intersections due
to cuts. Its expectation value is therefore

n + E [
∑

u

∑

v 6=u

Cu,v ] = n +
∑

u

∑

v 6=u

Pr [u a v ] = n +
∑

u

∑

v 6=u

1

index(u, v) + 1
.

For any line segment u and integer i there are at most two v ,w such that
index(u, v) = index(u,w) = i .Hence

∑
v 6=u

1
index(u,v)+1

≤∑n−1
i=1

2
i+1

and therefore

n + E[
∑

u

∑
v 6=u Cu,v ] ≤ n +

∑
u

∑n−1
i=1

2
i+1
≤ n + 2nHn.
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GAME TREE EVALUATION - I.

Game trees

x3x1 x2 x4 x5 x6 x7 x8 1 y2 y3 y4 y5 6 y7 y8y y

min min

min

min min

max max

Game trees are trees with operations max and min alternating in internal nodes and
values assigned to their leaves. In case all such values are Boolean - 0 or 1 Boolean
operation OR and AND are considered instead of max and min.

Tk – binary game tree of depth 2k.

T
1

Goal is to evaluate the tree - the root.
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GAME TREE EVALUATION - II.

x3x1 x2 x4 x5 x6 x7 x8 1 y2 y3 y4 y5 6 y7 y8y y

min min

min

min min

max max

Evaluation of game trees plays a crucial role in AI, in various game playing programs.

Assumption: An evaluation algorithm chooses at each step (somehow) a leaf, reads
its value and performs all evaluations of internal nodes it can perform. Cost of an
evaluation algorithm is the number of leaves inspected. Determine the total number
of such steps needed.
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WORST CASE COMPLEXITY

Tk – will denote the binary game tree of depth 2k.

T
1

Every deterministic algorithm can be forced to inspect all leaves. The worst-case
complexity of a deterministic algorithm is therefore:

n = 4k = 22k .
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A RANDOMIZED ALGORITHM - BASIC IDEA:

To evaluate an AND-node v , the algorithm chooses randomly one of its
children and evaluates it.

If 1 is returned, algorithm proceeds to evaluate other children subtree and
returns as the value of v the value of that subtree. If 0 is returned,
algorithm returns immediately 0 for v (without evaluating other subtree).

To evaluate an OR-node v , algorithm chooses randomly one of its children
and evaluates it.

If 0 is returned, algorithm proceeds to evaluate other subtree and returns as
the value of v the value of the subtree. If 1 is returned, the algorithm
returns 1 for v .
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RANDOMIZED ALGORITHMS - SUMMARY of THE BASIC IDEA

Start at the root and in order to evaluate a node evaluate
(recursively) a random child of the current node.

If this does not determine the value of the current node,
evaluate the node of other child.
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Theorem: Given any instance of Tk , the expected number of steps for the above
randomized algorithm is at most 3k .

Proof by induction:
Base step: Case k = 1 easy - verify by computations for all cases.
Inductive step: Assume that the expected cost of the evaluation of any instance of Tk−1

is at most 3k−1.

Consider an OR-node tree T with both children being Tk−1-trees.
If the root of T were to return 1, at least one of its Tk−1-subtrees has to return 1.
With probability 1

2
this child is chosen first, given in average at most 3k−1

leaf-evaluations. With probability 1
2

both subtrees are to be evaluated.
The expected cost of determining the value of T is therefore:

1

2
× 3k−1 +

1

2
× 2× 3k−1 =

1

2
× 3k =

3

2
× 3k−1.
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If the root of T were to return 0 both subtrees have to be evaluated, giving the cost
2× 3k−1.

Consider now the root of Tk .

If the root evaluates to 1, both of its OR-subtrees have to evaluate to 1. The expected
cost is therefore

2× 3

2
× 3k−1 = 3k .

If the root evaluates to 0, at least one of the subtrees evaluates to 0. The expected cost
is therefore

1

2
× 2× 2× 3k−1 +

1

2
× 3

2
× 3k−1 ≤ 3k = nlg4 3 = n0.793.

Our algorithm is therefore a Las Vegas algorithm. Its running time (number of leaves
evaluations) is: n0.793.
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CLASSICAL GAMES THEORY

CLASSICAL GAMES THEORY
BRIEFLY
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BASIC CONCEPTS of CLASSICAL GAME THEORY

We will consider games with two players, Alice and Bob. X and Y will be
nonempty sets of their game (pure) strategies -X of Alice, Y of Bob. Mappings
pX : X × Y → R and pY : X × Y → R will be called payoff functions of Alice
and Bob. The quadruple (X ,Y , pX , pY ) will be called a (mathematical) game.

A mixed strategy will be a probability distribution on pure strategies.

An element (x , y) ∈ X × Y is said to be a Nash equilibrium of the game
(X ,Y , pX , pY ) iff pX (x ′, y) ≤ pX (x , y) for any x ′ ∈ X , and pY (x , y ′) ≤ pY (x , y)
for all y ′ ∈ Y .

Informally, Nash equilibrium is such a pair of strategies that none of the players
gains by changing his/her strategy.

A game is called zero-sum game if pX (x , y) + pY (x , y) = 0 for all x ∈ X and
y ∈ Y .
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ONE of THE BASIC RESULTS

One of the basic result of the classical game theory is that
not every two-players zero-sum game has a Nash
equilibrium in the set of pure strategies, but there is always
a Nash equilibrium if players follow mixed strategies.
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POWER Of QUANTUM PHENOMENA

It has been shown, for several zero-sum games, that if one of the
players can use quantum tools and thereby quantum strategies, then
he/she can increase his/her chance to win the game.

This way, from a fair game, in which both players have the same
chance to win if only classical computation and communication tools
are used, an unfair game can arise, or from an unfair game a fair one.

IV054 2. Basic Methods of design and Analysis of Randomized Algorithms 76/106



EXAMPLE - PENNY FLIP GAME

Alice and Bob play with a box and a penny as follows:

Alice places a penny head up in a box.

Bob flips or does not flip the coin

Alice flips or does not flip the coin

Bob flips or does not flip the coin

After the “game” is over, they open the box and Bob wins if the penny is head up.

It is easy to check that using pure strategies chances to win are 1
2

for each player and
there is no (Nash) equilibrium in the case of pure classical strategies.

However, there is equilibrium if Alice chooses its strategy with probability 1
2

and Bob
chooses each of the four possible strategies with probability 1

4
.
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VERSION of PRISONERS’ DILEMMA from 1992

Two members of a gang are imprisoned, each in a separate cell, without possibility to
communicate. However, police has not enough evidence to convict them on the principal
charge and therefore police intends to put both of them for one year to jail on a lesser
charge.

Simultaneously police offer both of them so called Faustian bargain. Each prisoner gets a
chance either to betray the other one by testifying that he committed the crime, or to
cooperate with the other one by remaining silent. Here are payoffs they are offered:

If both betray, they will get into jail for 2 years.

If one betrays and second decides to cooperate, then first will get free and second
will go to jail for 3 years.

If both cooperate they will go to jail for 1 year.

What is the best way for them to behave? This game is a model for a variety of real-life
situations involving cooperative behaviour. Game was originally framed in 1950 by M.
Flood and M. Dresher
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PRISONERS’ DILEMMA - I.

Two prisoners, Alice and Bob, can use, independently, any of the following
two strategies: to cooperate or to defect (not to cooperate).

The problem is that the payoff function (pA, pB), in millions, is a very
special one (first (second) value is payoff of Alice (of Bob):

Alice
Bob CA DA

CB (3, 3) (5, 0)
DB (0, 5) (1, 1)

What is the best way for Alice and Bob to proceed in order to maximize
their payoffs?
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PRISONERS’ DILEMMA - II.

A strategy sA is called dominant for Alice if for any other strategy s ′A of
Alice and sB of Bob, it holds

PA(sA, sB) ≥ PA(s ′A, sB).

Clearly, defection is the dominant strategy of Alice (and also of Bob) in the
case of Prisoners Dilemma game.

Prisoners Dilemma game has therefore dominant-strategy equilibrium

Alice
Bob CA DA

CB (3, 3) (5, 0)
DB (0, 5) (1, 1)
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BATTLE of SEX GAME

Alice and Bob have to decide, independently of each other, where to spent the evening.

Alice prefers to go to opera (O), Bob wants to watch TV (T) - tennis.

However, at the same time both of them prefer to be together than to be apart.

Pay-off function is given by the matrix (columns are for Alice) (columns are for Bob)

O T
O (α, β) (γ, γ)
T (γ, γ) (β, α)

where α > β > γ.

What kind of strategy they should choose?

The two Nash equilibria are (O,O) and (T ,T ), but players are faced with tactics
dilemma, because these equilibria bring them different payoffs.
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COIN GAME

There are three coins: one fair, with both sides different, and two unfair, one with two
heads and one with two tails.

The game proceeds as follows.

Alice puts coins into a black box and shakes the box.

Bob picks up one coin.

Alice wins if coin is unfair, otherwise Bob wins

Clearly, in the classical case, the probability that Alice wins is 2
3
.
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FROM GAMES to LOWER BOUNDS for RANDOMIZED
ALGORITHMS

Next goal is to present, using zero-sum games theory, a method how
to prove lower bounds for the average running time of randomized
algorithms.

This techniques can be applied to algorithms that terminate for all
inputs and all random choices.
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TWO–PERSON ZERO–SUM GAMES – EXAMPLE

A two players zero–sum game is represented by an n ×m payoff–matrix M with all rows
and columns summing up to 0.
Payoffs for n possible strategies of Alice are given in rows of M.
Payoffs for m possible strategies of Bob are given in columns of M.

Mi,j

is the amount paid by Bob to Alice if Alice chooses strategy i and Bob’s choice is
strategy j .
The goal of Alice (Bob) is to maximize (minimize) her payoff.
Example - stone-scissors-paper game

PAYOFF–MATRIX

Alice

Bob
Scissors Paper Stone

Scissors 0 1 -1
Paper -1 0 1
Stone 1 -1 0

→ Table shows how
much Bob has to pay
to Alice
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STRATEGIES for ZERO-INFORMATION and ZERO-SUM GAMES

(Games with players having no information about their opponents’ strategies.)

Observe that if Alice chooses a strategy i , then she is guaranteed a payoff of minj Mij

regardless of Bob’s strategy.

An optimal strategy OA for Alice is such an i that maximises minj Mij .

OA = max
i

min
j

Mij

denotes therefore the lower bound on the value of the payoff Alice gains (from Bob)
when she uses an optimal strategy.

An optimal strategy OB for Bob is such a j that minimizes maxi Mij . Bob’s optimal
strategy ensures therefore that his payoff is at least

OB = min
j

max
i

Mij
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Theorem
OA = max

i
min

j
Mij ≤ min

j
max

i
Mij = OB

Often OA < OB . In our last (scissors-...) example, −1 = OA < OB = +1.

If OB = OA we say that the game has a solution – a specific choice of strategies that
leads to this solution.

% and γ are so called optional strategies for Alice and Bob if

OA = OB = M%γ
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Example of the game which has a so-
lution (OA = OB = 0)

0 1 2
-1 0 1
-2 -1 0

What happens if a game has no solution ?
There is no clear–cut strategy for any player.
Way out: to use randomized strategies.

Alice chooses strategies according to a probability vector p = (p1, . . . , pn); pi is
probability that Alice chooses strategy sA,i

Bob chooses strategies according to a probability vector q = (q1, . . . , qn); qj is a
probability that Bob chooses strategy sB,j .

Payoff is now a random variable – if p, q are taken as column vectors then

E [payoff] = pTMq =
n∑

i=1

m∑

j=1

piMijqj
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Let OA (OB) denote the best possible (optimal) lower
(upper) bound on the expected payoff of Alice (Bob).
Then it holds:

OA = max
p

min
q

pTMq OB = min
q

max
p

pTMq
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Theorem (von Neumann Minimax theorem) For any
two–person zero–sum game specified by a payoff matrix M it holds

max
p

min
q

pTMq = min
q

max
p

pTMq

Observe that once p is fixed, maxp minq pTMq = minq maxp pTMq is a linear function and
is minimized by setting to 1 the qj with the smallest coefficient in this linear function.

This has interesting/important implications:

If Bob knows the distribution p used by Alice, then his optimal strategy is a pure
strategy.

A similar comment applies in the opposite direction. This leads to a simplified version of
the minimax theorem, where ek denotes a unit vector with 1 at the k-th position and 0
elsewhere.

Theorem (Loomis’ Theorem) For any two–persons zero–sum game

max
p

min
j

pTMej = min
q

max
i

eT
i Mq
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YAO’S TECHNIQUE 1/3

Yao’s technique provides an application of the game-theoretic results to the
establishment of lower bounds for randomized algorithms.
For a given algorithmic problem P let us consider the following payoff matrix.

I
N
P
U
T
S

c1

c2

c3

c4

deterministic algorithms
A1 A2 A3∣∣∣∣∣∣∣∣∣∣∣∣

entries
=

resources
(i.e. used computation time)

∣∣∣∣∣∣∣∣∣∣∣∣

Bob – a designer
choosing good algorithms

Alice – an adversary
choosing bad inputs

Pure strategy for Bob corresponds to the choice of a deterministic algorithm.
Optimal pure strategy for Bob corresponds to a choice of an optimal deterministic
algorithm.
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YAO’S TECHNIQUE 2/3

Let VB be the worst-case running time of any deterministic algorithm of Bob

Problem: How to interpret mixed strategies ?

A mixed strategy for Bob is a probability distribution over (always correct) deterministic
algorithms—so it is a Las Vegas randomized algorithm.

An optimal mixed strategy for Bob is an optimal Las Vegas algorithm. Distributional
complexity of a problem is an expected running time of the best deterministic algorithm
for the worst distribution on the inputs.

Loomis theorem implies that distributional complexity equals to the least possible time
achievable by any randomized algorithm
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Reformulation of von Neumann+Loomis’ theorem in the language of algorithms

Corollary Let Π be a problem with a finite set I of input instances and A be a finite set
od deterministic algorithms for Π. For any input i ∈ I and any algorithm A ∈ A, let
T (i ,A) denote computation time of A on input i . For probability distributions p over I
and q over A, let ip denote random input chosen according to p and Aq a random
algorithm chosen according to q. Then

max
p

min
q

E [T (ip,Aq)] = min
q

max
p

E [T (ip,Aq)]

max
p

min
A∈A

E [T (ip,A)] = min
q

max
i∈I

E [T (i ,Aq)]
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YAO’S TECHNIQUE 3/3

Consequence:

Theorem(Yao’s Minimax Principle) For all distributions p over I and q over A.

min
A∈A

E[T (ip,A)] ≤ max
i∈I

E[T (i ,Aq)]

Interpretation: Expected running time of the optimal deterministic algorithm for an
arbitrarily chosen input distribution p for a problem Π is a lower bound on the expected
running time of the optimal (Las Vegas) randomized algorithm for Π.

In other words, to determine a lower bound on the performance of all randomized
algorithms for a problem P, derive instead a lower bound for any deterministic
algorithm for P when its inputs are drawn from a specific probability distribution (of
your choice).
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IMPLICATIONS OF YAO’S MINIMAX PRINCIPLE

Interpretation again Expected running time of the optimal deterministic algorithm for an
arbitrarily chosen input distribution p for a problem Π is a lower bound on the expected
running time of the optimal (Las Vegas) randomized algorithm for Π.

Consequence:
In order to prove a lower bound on the randomized complexity of an algorithmic problem,
it suffices to choose any probability distribution p on the input and prove a lower bound
on the expected running time of deterministic algorithms for that distribution.

The power of this technique lies in

1 the flexibility at the choice of p

2 the reduction of the task to determine lower bounds for randomized algorithms to
the task to determine lower bounds for deterministic algorithms.

(It is important to remember that we can expect that the deterministic algorithm
”knows” the chosen distribution p.)

The above discussion holds for Las Vegas algorithms only!
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THE CASE OF MONTE CARLO ALGORITHMS

Let us consider Monte Carlo algorithms with error probability 0 < ε < 1
2
.

Let us define the distributional complexity with error ε, notation

min
A∈A

E [Tε(Ip,A)],

to be the minimum expected time of any deterministic algorithm that errs with
probability at most ε under the input Ip with distribution p.

Let us denote by
max
i∈I

E [(Tε(i ,Aq)]

the expected time (under the worst input) of any randomized algorithm Aq that errs with
probability at most ε.

Theorem For all distributions p over inputs and q over Algorithms, and any ε ∈ [0, 1/2],
it holds

1

2
(min
A∈A

E [T2ε(ip,A)]) ≤ max
i∈I

E [Tε(i ,Aq)]
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GAMES TREES REVISITED

A randomized algorithm for a game-tree T evaluations can be viewed as a probability
distribution over deterministic algorithms for T , because the length of computation and
the number of choices at each step are finite.

Instead of AND–OR trees of depth 2k we can consider NOR–trees of depth 2k.
Indeed, it holds:

(a ∨ b) ∧ (c ∨ d) ≡ (a NOR b)NOR(c NOR d)

NOR NOR

NOR

NOR NOR NOR NOR

IV054 2. Basic Methods of design and Analysis of Randomized Algorithms 96/106



Note: It’s important to distinguish between:

the expected running time of the randomized algorithm with a fixed input
(where probability is considered over all random choices made by the algorithm)

and

the expected running time of the deterministic algorithm when proving the lower
bound (the average time is taken over all random input instances).
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LOWER BOUND FOR GAME TREE EVALUATION - I

Assume now that each leaf of a NOR-tree is set up to have value 1 with probability

p = 3−
√

5
2

(observe that (1− p)2 = p for such a p).

Observe that if inputs of a NOR-gate have value 1 with probability p then its output
value is also 1 with probability (1− p)(1− p) = p.

Consider now only depth–first pruning algorithms for tree evaluation.
(They are such depth–first algorithms that make use of the knowledge that subtrees that
provide no additional useful information can be ”pruned away”.)

Of importance for the overall analysis is the following technical lemma:

Lemma Let T be a NOR–tree each leaf of which is set to 1 with a fixed probability. Let
W (T ) denote the minimum, over all deterministic algorithms, of the expected number of
steps to evaluate T . Then there is a depth–first pruning algorithm whose expected
number of steps to evaluate T is W (T ).

The last lemma tells us that for the purposes of our lower bound, we may restrict our
attention to the depth–first pruning algorithms.
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LOWER BOUND FOR GAME TREE EVALUATION - II

For a depth–first pruning algorithm evaluating a NOR–tree, let W (h) be the expected
number of leaves the algorithm inspects in determining the value of a node at distance h
from the leaves.

It holds
W (h) = pW (h − 1) + (1− p)2W (h − 1) = (2− p)W (h − 1)

because with the probability 1− p the first subtree produces 0 and therefore also the
second tree has to be evaluated. If h = lg2 n, then the above recursion has a solution

W (h) ≥ n0.694.

This implies:

Theorem The expected running time of any randomized algorithm that always evaluates
an instance of Tk correctly is at least n0.694, where n = 22k is the number of leaves.
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The upper bound for randomized game tree evaluation algorithms already shown, at the
beginning of this chapter was n0.79, what is more than the lower bound n694 just shown.

It was therefore natural to ask what does the previous theorem really says?

For example, is our lower bound technique weak? ?

No, the above result just says that in order to get a better lower bound another
probability distribution on inputs may be needed.
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RECENT RESULTS

Two recent results put more light on the Game tree evaluation
problem.

It has been shown that for our game tree evaluation problem the
upper bound presented at the beginning is the best possible and
therefore that θ(n0.79) is indeed the classical (query) complexity of
the problem.

It has also been shown, by Farhi et al. (2009), that the upper
bound for the case quantum computation tools can be used is
O(n0.5).
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APPENDIX

The concept of the number of wisdom introduced in the following and
related results helped to show that randomness is deeply rooted even
in arithmetic.

In order to define numbers of wisdom the concept of self-delimiting
programs is needed.

A program represented by a binary word p, is self-delimiting for a
computer C , if for any input pw the computer C can recognize where
p ends after reading p only..
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Another way to see self-delimiting programs is to consider only such
programming languages L that no program in L is a prefix of another
program in L.
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Ω - numbers of wisdom

For a universal computer C with only self-delimiting programs, the number
of wisdom ΩC is the probability that randomly constructed program for C
halts. More formally

ΩC =
∑

p halts

2−|p|

where p are (self-delimiting) halting programs for C .

ΩC is therefore the probability that a self-delimiting computer program for
C generated at random, by choosing each of its bits using an independent
toss of a fair coin, will eventually halt.
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Properties of numbers of wisdom

0 ≤ ΩC ≤ 1

ΩC is an uncomputable and random real number.

At least n-bits long theory is needed to determine n bits of ΩC .

At least n bits long program is needed to determine n bits of ΩC

Bits of Ω can be seen as mathematical facts that are true for no reason.

IV054 2. Basic Methods of design and Analysis of Randomized Algorithms 105/106

Greg Chaitin, who introduced numbers of wisdom, designed a specific
universal computer C and a two hundred pages long Diophantine
equation E , with 17,000 variables and with one parameter k, such that
for a given k the equation E has a finite (infinite) number of solutions
if and only if the k-th bit of ΩC is 0 (is 1).{ As a consequence, we have
that randomness, unpredictability and uncertainty occur even in the
theory of Diophantine equations of elementary arithmetic.}
Knowing the value of ΩC with n bits of precision allows to decide
which programs for C with at most n bits halt.
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