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BASIC PROBABILITIES FOR RANDOMIZED
ALGORITHMS

Let us consider any decision problem P.

For any randomized algorithm A for P, and for any input x of A, let the set
SA,x of all runs of A on x be the main sample space for the analysis of A on
the input x .

If one chooses the random variable VA,x that assigns 1 (0) to any run of A on
x with the correct (wrong) output, then the expectation value of VA,x is
exactly the success probability of A on x .

The probability of the complementary event is called the error probability of
A on x .

If one takes a random variable that assigns to every computation its
complexity (number of steps), then the expectation of this random variable
equals the expected time complexity of A on x .
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CLASSIFICATION of RANDOMIZED
ALGORITHMS

As Las Vegas algorithms are called those algorithms that never produce
wrong outcomes, though sometimes they may produce the outcome “I don’t
know” (usually denoted as ??). (However, with bounded probability only.)
A one-sided-error Monte Carlo algorithm (1MC), for a language L, is an
algorithm that accepts with probability at least 1

2 any input x ∈ L and rejects
for sure any input not in L; (The error probability of such algorithms
converges to 0 with exponential speed if a number of independent runs are
executed.)
A bounded-error Monte Carlo algorithm (2MC) A, for a function F , is an
algorithm for which there exists a constant ε > 0 such that, for any input x ,
the algorithm computes the correct output A(x) = F (x), with probability at
least 1/2 + ε. (The error probability of such an algorithm can be reduced to
an arbitrarily small given constant δ using only constantly many (depending
on δ) runs.)
A (unbounded error) Monte Carlo algorithm (UMC) is an algorithm that, for
any input x , computes the correct output with probability at least 1/2. (To
reduce the error probability of such an algorithm below a given constant,
exponentially many runs may be needed.)
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RANDOMIZED ALGORITHMS DESIGN
PARADIGMS - I

Fooling the adversary (balamuting nepriatela) method: One finds for a given
problem P a set of deterministic algorithms for P such that, for each input most
of these algorithms compute correct results of P efficiently
and one then takes as the randomized algorithm for P a probability distribution
over such a set of deterministic algorithms for P.

The idea is to overcome such a situation when a set S of deterministic algorithms
for P is given such that for each of them there exist bad inputs (for which the
algorithm gives wrong result or computes inefficiently) and for each input there
exist a lot of algorithms in S giving a correct answer efficiently).
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RANDOMIZED ALGORITHMS DESIGN
PARADIGMS - II

Abundance of witnesses technique. A witness y for an input x and problem P is
information with which one can solve the problem P for input x more efficiently
than without it.

If one finds a set S such that at least half of its elements are witnesses for P and
x , then a random choice of an element in the set S leads to a witness for P and
x , with probability at least 1

2 .
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RANDOMIZED ALGORITHMS DESIGN
PARADIGMS - III

Fingerprinting. For solving various
problems it can be much more efficient
to work with very small fingerprints
(hashes) of large inputs than with such
large inputs directly.
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RANDOMIZED ALGORITHMS DESIGN
PARADIGMS - IV

Random sampling. If there are in a set sufficiently many objects we are
looking for, then a random sampling in that set can provide such an object
with sufficiently high probability. This method is also called probabilistic
method.

colorred Random rounding.: A hard to solve optimization problem P is
transferred to an easy to solve optimization problem P0, just by increasing
the size of the solution space, in such a way that the outcomes of any
solution of the new problem can be used to create an efficient randomized
algorithm to solve the original problem P.

An amplification of the success probability of a randomized algorithm can
be achieved by repeating independent computations on the same input (but,
of course, with different random auxiliary inputs).
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Example for random rounding

A {0, 1}-problem P , in which the task is
to find a proper assignment of the values
from the set {0, 1} to each variable,

is
transferred to a [0, 1]-problem in
which the task is to assign to each
variable x a number nx ∈ [0, 1] such that
to solve the problem P with high
probability the value 1 is assigned with
the probability nx .
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STRINGS EQUALITY PROBLEM

Notation: For a binary vector/string x = x1x2 . . . xn let

Number(x) =
n∑

i=1

xi2
n−i .

Problem: Let each of the two parties, say A and B have a one n-bit string. Both
parties have to decide, by communication only, whether their strings are equal.
How to do that efficiently?

Each deterministic protocol clearly requires sending at least n bits in the worth
case.
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STRINGS EQUALITY PROBLEM - RANDOMIZED
PROTOCOL

Initial situation.
Party A has a binary string x = x1x2 . . . xn.
Party B has a binary string y = y1y2 . . . yn.

Protocol:

1 Alice chooses, randomly, a prime p ≤ n2 and sends to Bob p and the binary
representation of the number

s = Number(x) mod p;

2 Bob computes
t = Number(y) mod p

and declares that x = y iff s = t.

Analysis: The protocol requires to send at most
2dlg n2e ≤ 4dlg ne bits.

Example: For n = 264 ≈ 1021 the protocol requires to send at most 256 bits.
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ERROR ANALYSIS

Let us say that a prime 2 < p < n2 is bad for a pair (x , y), x 6= y , if the above
protocol for such an input pair (x , y) and such a choice of a prime yields a wrong
answer.

Notation Prim(m) = number of primes smaller than m.

Error probability for an input (x , y) is

number of bad primes for (x , y)

Prim(n2)
.

Since, by Prime number theorem, Prim(m) > m/ lnm for m > 69, we have that
for n ≥ 9

Prim(n2) >
n2

2 ln n
.

The so-called Prime number theorem says that there are approximately n
ln n primes

among the first n integers.
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NUMBER Of BAD PRIMES

Lemma Number of bad primes for x 6= y is at most n − 1.

Proof. A prime p is clearly bad for the pair (x , y), x 6= y , if and only if p divides
the number

w = |Number(x)− Number(y)| < 2n

Observe that w can be uniquely factorized as

w = pe1
1 pe2

2 . . . pekk

where p1 < p2 < . . . < pk are primes.

We can show that k ≤ n − 1. Indeed, if k ≥ n, then

w ≥ 1 · 2 · 3 . . . n = n! > 2n

what is a contradiction.

Probability of the error of the above equality protocol is therefore:

n − 1

Prim(n2)
≤ n − 1

n2/ ln n2
≤ ln n2

n
=

2 ln n

n

which is at most 0.369 · 10−14 in case n = 1016.
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PROBABILITY AMPLIFICATION

In case the above protocol is repeated 10 times, each time with a different prime,
and the answer is x = y each time, then the probability of an error is at most(

ln n2

n

)10

and therefore, for n = 1016, the error probability is at most

0.47 · 10−141.

Reminder: Probability of the correct output is at least

1− 2 ln n

n
.
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A LAS VEGAS ALGORITHM WITH ?? -
EXAMPLE

Let Alice have 10 n bit strings xi ∈ {0.1}n, 1 ≤ i ≤ 10, n > 200 and Bob have 10
n bit strings yi ∈ {0, 1}n, 1 ≤ i ≤ 10. The task for them is to determine, by
communication, whether there exists an i0 such that xi0 = yi0 .

One can show that each deterministic protocol for this problem has to exchange in
the worth case 10n bits. Therefore no deterministic algorithm is essentially more
efficient than sending all bits from Alice to Bob and then let Bob to make
comparisons of pairs xi and yi until (if at all) such an i0 is found..

We show the existence of a Las Vegas algorithm to solve the above problem (that
is to decide whether such an i exists) with communication complexity

n +O(lg n).
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PROTOCOL

Alice first randomly chooses 10 primes p1, . . . , p10, each smaller than n2.

Afterwards, Alice computes all

si = Number(xi ) mod pi , i ∈ {1, .2, . . . , 10}

and, finally, she sends to Bob all 20 numbers:

p1, . . . , p10, s1, . . . , s10.

Bob computes all numbers

ri = Number(yi ) mod pi

and compares elements in all pairs (si , ri ).

If si 6= ri for all i , then Bob outputs NO (or 0).

Otherwise, if j is the smallest integer such that sj = rj , then Bob sends to
Alice the pair (j , yj).
If xj = yj , Alice outputs YES (or 1);
otherwise she outputs ?? (because it may exist other k with xk = yk).
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COMPLEXITY ANALYSIS of the PROTOCOL 1/2

Above protocol exchanges 20dlg n2e+ n + 4 bits - {4 bits one needs to send j}.
Proof that the protocol is a Las Vegas protocol:

If xi 6= yi for all i , then the probability that

Number(xi ) mod pi 6= Number(yi ) mod pi

for all i , and therefore the probability that the above protocol produces the
correct output is at least (

1− 2 ln n

n

)10

because, according to the analysis of the strings equality algorithm, the
probability that for any 1 ≤ i ≤ 10 Number(xi ) mod pi 6= Number(yi ) mod pi
is at least 1− 2 ln n

n .

Moreover, it can be shown that for for sufficiently large n.(
1− 2 ln n

n

)10

≥ 1− 20 ln n

n
≥ 1

2
.
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COMPLEXITY ANALYSIS of the PROTOCOL 2/2

Let us now consider the complementary case - namely that there is a j such
that xj = yj and let j0 be the smallest such j .

Protocol then accepts the input iff

Number(xi ) mod pi 6= Number(xi ) mod pi

for all i < j0. Let us denote such an event by Ej0 .

If j0 = 1, then the protocol accepts the input with certainty. If j0 > 1, then,
as discussed before, probability of the event Ej0 is at least(

1− 2 ln n

n

)j0−1

≥ 1− 2(j0 − 1) ln n

n

for sufficiently large n

and therefore the protocol outputs YES (1) with probability at least
1− 18 ln n

n , which is larger than 1
2 for all n ≥ 189.

In the again complementary case, when there is an l < j0 such that

Number(xl) mod pl = Number(xl) mod pl

the protocol produces as output ?? and is indeed Las vegaas protocol.
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TWO TYPES of LAS VEGAS ALGORITHMS

As already defines, there are two types of Las Vegas algorithms:

Algorithms that never produce ??.

Algorithms that may produce ??.

Note: Las Vegas algorithms may not terminate for some inputs!!!

Claim: Any Las Vegas algorithm A1 can be converted to a Las Vegas algorithm A2

that solves the same problem and never produces ??.

Construction of A2 is simple. Each time A1 is to produce the output ??, what can
be done only with bounded probability, a new run of A1 is initialized with the
same input.
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AMPLIFICATION of 1MC ALGORITHMS

Error probability of 1MC algorithms decreases exponentially with the number of
repetitions of computations.

Indeed, if we have k independent runs of the algorithm and one output is 1
(accepted), then the input is accepted with certainty.

If all outputs are 0 (rejection), then the output will be NO (rejection) and the

error probability is at most
(

1
2

)k
.

Because of the exponential decrease of error probability using repeated
applications, 1MC algorithms are very popular.
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AMPLIFICATION of 2MC ALGORITHMS

Let A be a 2MC algorithm for a function F and ε > 0 such that

Prob(A(x) = F (x)) ≥ 1

2
+ ε.

For any integer k let Ak be the algorithm that performs k independent runs of A
and if there is an α that appears at least d k2 e times as the output, then Ak

produces α as the output; if there is no such an α, Ak produces ?? as the output.

One can show that if an δ > 0 is fixed, then

Prob(Ak(x) = F (x)) ≥ 1− δ

if

k ≥ 2 ln δ

ln(1− 4ε2)
.

If ε and δ are considered as constant, then so is k and therefore

TimeAk
(n) = O(TimeA(n)).
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2MC versus UMC algorithms

Basic question: What is the difference between 2MC and UMC algorithms?

Answer: For an UMC algorithm A it may happen that the distance between the
error probability and 1

2 tends to 0 with growing input size.

As a consequence, if we design, given an δ > 0, an algorithm Ak , that performs k
independent runs of A and

Prob(Ak(x)) = F (x)) > 1− δ

then running time of Ak may be exponential in the input length.
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SECRET SHARING between TWO

Problem: The task is to ”partition”, by a moderator, a given binary-string secret
S between two parties P1 and P2 in such a way that none of the parties alone has
the slightest idea what S is, but if they get together they can easily determine S .

Method: A moderator distributes a binary-string secret S , between two parties P1

and P2 by choosing a random binary string b, of the same length as S , and sends:

b to P1 and

S ⊕ b to P2.

This way, none of the parties P1 and P2 alone has a slightest idea about S , but
both together easily recover S by computing

b ⊕ (S ⊕ b) = S .
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PERFECT MATCHING ALGORITHM - I.

Let G = 〈V ,E 〉 be an undirected graph. A subset X ⊆ E is said to be a matching
of G if no two edges in X have a common node.

A matching is said to be a perfect matching if its edges cover all nodes of G .

Example: Which of the graphs in the next figure has a perfect matching?

There are polynomial time algorithms to decide whether a given graph has perfect
matching, but none is so simple as the randomized algorithm based on so called
Tutte theorem presented bellow.
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TUTTE MATRIX

Basic concept: Tutte matrix of a graph
Let G = 〈V ,E 〉 be a graph with nodes V = {1, 2, . . . , n}, |V | even. The Tutte
matrix AG = {aij}ni,j=1 of G is defined by

aij =

 xij if (i , j) ∈ E , i < j ;
−xij if (i , j) ∈ E , i > j ;

0 if (i , j) 6∈ E

 ,

where xij are variables, all different for different i , j .
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TUTTE THEOREM - I.

Example: For the graph of six nodes at which node 1 is connected with nodes 4
and 5, node 2 with nodes 5 and 6 and the node 3 is connected with nodes 5 and 6
the Tutte matrix has the form:


0 0 0 x14 x15 0
0 0 0 0 x25 x26

0 0 0 0 x35 x36

−x14 0 0 0 0 0
−x15 −x25 −x35 0 0 0

0 −x26 −x36 0 0 0


Tutte theorem: A graph G = 〈V ,E 〉, with |V | even, has a perfect matching iff
the determinant of the corresponding Tutte matrix is not identically zero.

Proof: The determinant of AG equals
∑
π σπ

∏n
i=1 aiπ(i) where π are
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TUTTE THEOREM - OBSERVATIONS

Observation 1: For a permutation π,
∏n

i=1 aiπ(i) 6= 0 iff
Gπ = {(i , π(i)), 1 ≤ i ≤ n} is a subgraph of G .

Observation 2: Permutations π with at least one odd cycle do not contribute at
all to the determinant of A, because to each such permutation π there is a
permutation π′ such that

∏n
i=1 aiπ(i) = −

∏n
i=1 aiπ′(i)

Observation 3: It is sufficient to consider permutations π such that Gπ consists
only of even cycles.

Notation: Let permutation πr be obtained from π by reversing all cycles.

Notation For a perfect matching E ′ let tE ′ denote the product of the a′s
corresponding to the edges of E ′.
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TUTTE THEOREM - CASE ANALYSIS

Case I: π = πr ⇒ Gπ consist of the cycles of length 2, π corresponds to a perfect
matching E ′ such that

∏n
i=1 aiπ(i) = (tE ′)

2.

Case II: π 6= πr In this case both π and πr correspond to the union of two perfect
matchings E , and E ′ obtained by alternatively selecting edges within the cycles so
that

n∏
i=1

aiπ(i) +
n∏

i=1

aiπr (i) = 2tE tE ′ .

Conclusion;
det(AG ) = (tE ′1 + · · ·+ tE ′k )2

where E ′i denotes i-th perfect matching.
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EXPLANATION

Let us illustrate claims from the previous slide for a graph with 4 nodes: 1, 2, 3 ,4

Case 1. Let us have edges 1-2, 3-4 only and permutation

π = πr : 1→ 2, 2→ 1, 3→ 4, 4→ 3

Perfect matching E ′ is 1− 2, 3− 4, tE ′ = a12a34 and

4∏
i=1

aiπ(i) = a12a21a34a43 = x12x12x34x34 = (tE ′)
2

Case 2. Let us have edges 1-2, 2-3, 3-4, 4-1 and permutations:

π : 1→ 2→ 3→ 4→ 1, πr : 1→ 4→ 3→ 2→ 1

tE = a12a34, tE ′ = a41a23

4∏
i=1

aiπ(i) +
4∏

i=1

aiπr (i) = a12a23a34a41 + a12a23a34a41 = 2tE tE ′ .
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RANDOM SELECT

Problem Given is a set S = {a1, . . . , an} of n > 0 different numbers, and
1 ≤ k ≤ n, find the k-th smallest number from S .

A naive way to solve the problem is to sort at first S . This requires O(n lg n)
comparisons. The following randomized algorithm RSELECT can do that in O(n)
steps:

Algorithm RSELECT(S , k))

1 If n = 1 output a1.

2 Otherwise choose i ∈r {1, 2, . . . , n} and

1 compute
S< = {b ∈ S | b < ai}
S> = {b ∈ S | b > ai}

2 if |S<| ≥ k then RSELECT(S<, k);
else if |S<| = k − 1 then output ai ; else

RSELECT(S>, k − |S<| − 1)

This is clearly a Las Vegas algorithm.
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CLASSIFICATION of RANDOMIZED
OPTIMIZATION ALGORITHMS

Classification of the randomized algorithms we had so far was based on the
frequency of correct outputs and it is suited only for classification of algorithms
for decision problems and for computation of functions, but not for optimization
problems.

In case of optimization problems, we do not take as the output the most frequent
output from several runs, but the best output according to some optimization
criterion.

Moreover, in case of optimization problems our goal is not always to find an
optimal solution. We are usually quite happy to find (and in a feasible way) an
almost optimal solution - whose cost (quality) does not differ much from the cost
(quality) of some optimal solution.

All that means that a different approach to the classification of randomized
approximation algorithms is needed.
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ILLUSTRATION

If a randomized algorithm A computes an optimal solution for an input x only
with probability at

least 1
|x| , then it does not mean that A is not useful.

Indeed, one can execute |x | independent runs of A on given input x , call that to
be the Ax algorithm, and then take the best output of all of them. Let us explore
now what is the probability of success of such an Ax algorithm.

Probability of not computing an optimal solution in one run is at most

1− 1

|x |

and therefore the probability that Ax does not find an optimal solution in |x |
independent runs is at most

(1− 1

|x |
)|x| <

1

e

and we have a constant probability 1− 1
e of computing an optimal solution.
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e of computing an optimal solution.
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DEFINITION of OPTIMIZATION PROBLEMS

Definition: An optimization problem is a 6-tuple P = (ΣI ,ΣO , L,M, cost, goal),
where

1 ΣI is an input alphabet;

2 ΣO is an output alphabet;

3 L ⊆ Σ∗I is the language of feasible inputs and any x ∈ L is called a problem
instance of P;

4 M is a function from L to 2Σ∗O , and for each x ∈ L, M(x) is the set of
feasible solutions for x ;

5 cost is a function:
⋃

x∈L(M(x)× x)→ R+, called the cost function;

6 goal ∈ (minimum, maximum) is an objective.
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SOLVING an OPTIMIZATION PROBLEM

Observe that to solve an optimization problem is more as computing a relation,
than as computing a function, because we are usually happy with finding one of
the optimal solutions or even with a solution quite close to an optimal one.

A feasible solution α ∈M(x) is called optimal for the problem instance x of P if

cost(α, x) = goal{cost(β, x) |β ∈M(x)}.

An algorithm A is said to solve P if, for any x ∈ L,

A(x) ∈M(x);

cost(A(x), x) = goal{cost(β, x) |β ∈M(x)}

If the goal is to find minimum (maximum) we talk about a minimization
(maximization) problem.
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EXAMPLE - MINIMUM COST HAMILTONIAN
CYCLE PROBLEM

Input: A weighted complete graph (G , c), where G = (V ,E ), V = {v1, . . . , vn},
E ⊂ V × V and c : E → N is a cost function.

Hamiltonian cycles: For any problem instance (G , c), let M(G , c) be the set of
Hamiltonian cycles of G - each such cycle is represented by a sequence of vertices
vi1 , vi2 , . . . , vin , vi1 , where i1, i2, . . . , in is a permutation of (1, 2, . . . , n) and for each
j , (vij , vij+1 ) is an edge of G

Costs of Hamiltonian cycles: For every Hamiltonian cycle
H = (vi1 , vi2 , . . . , vin , vi1 ) ∈M(G , c)

cost((vi1 , vi2 , . . . , vin , vi1 ), (G , c)) =
n∑

j=1

c((vij , vi(j+1) mod n
)).

Goal: minimum - to find a Hamiltonian cycle with minimum cost.
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EXAMPLE

v1

v2

v3

v4

v5

8

1

2

71

12

3

1

1

cost((v1, v2, v3, v4, v5, v1), (G , c)) = 19

cost((v1, v5, v3, v2, v4, v1), (G , c) = 5
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INTEGER LINEAR PROGRAMMING

Given is a system of linear equations and a linear function over variables of this
equations. The task is to find a solution to the system of equations such that the
value of the linear function is minimized. More formally:

Input An m × n matrix and two vectors

A = {aij}i=m,j=n
i,j=1 , b = (b1, . . . , bm)T , c = (c1, . . . , cn)

with integer entries.

Set of feasible solutions: M(A, b) = {X = (x1, . . . , xn)T |AX = b}.

Cost of a solution: For X = (x1, . . . , xn) ∈M(A, b)

cost(X , c)) = c · X =
n∑

i=1

cixi .

Goal: minimum
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QUANTIFICATION of “ALMOST OPTIMAL
SOLUTIONS” 1/2

Many very important optimization problems are NP-hard and so we know only
exponential time algorithms for finding optimal solutions.

New idea is to jump from exponential to polynomial time by weakening the
requirements - to be satisfied with almost optimal solutions. To quantize that
tries the next definition.

Definition Let P = (ΣI ,ΣO , L,M, cost, goal) be an optimization problem. We
say that A is a consistent algorithm for P if, for every x ∈ L, the output A(x) is a
feasible solution for x - that is A(x) ∈M(x).
We say that an approximation algorithm A mapping each instance x of an
optimization problem P to one of its feasible solutions has the ratio bound ρA(n)
and the relative error bound εA(n) if

max
|x|=n

{
cost(A(x))

cost(Opt(x))
,

cost(Opt(x))

cost(A(x))

}
≤ ρA(n)

and

max
|x|=n

{
|cost(A(x))− cost(Opt(x))|

max{cost(Opt(x)), cost(A(x))

}
≤ εA(n)
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New idea is to jump from exponential to polynomial time by weakening the
requirements - to be satisfied with almost optimal solutions.

To quantize that
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Both definitions

max
|x|=n

{
cost(A(x))

cost(Opt(x))
,

cost(Opt(x))

cost(A(x))

}
≤ ρA(n)

and

max
|x|=n

{
|cost(A(x))− cost(Opt(x))|

max{cost(Opt(x)), cost(A(x))

}
≤ εA(n)

are chosen to correspond to our intuition and to apply simultaneously to
minimization and maximization problems. Both of these bounds compare an
approximation solution with the optimal one, but in two different ways.
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QUANTIFICATION of “ALMOST OPTIMAL
SOLUTIONS” 2/2

For any δ > 1 we say that A is a
δ-approximation algorithm for P if,
for every integer n, ρA(n) ≤ δ.

The ratio bound is never less than one.
An optimal algorithm has ratio bound 1.
The larger is the best possible ratio bound
of an approximation algorithm, the worse
is the algorithm.
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Approximation algorithms for NP problems

Two general problems concerning approximation of NP-complete problems are of
special interest and importance.

The constant relative error bound problem: Given an NP-complete optimization
problem P with a cost of solution function c and an ε > 0, does there exist an
approximation polynomial time algorithm for P with the relative error bound ε?

The approximation scheme problem: Given an NP-complete problem P, does
there exist for P with a cost of solution function c a polynomial time algorithm for
designing, given an ε > 0 and an input instance x , an approximation for P and x
with the relative error bound ε?
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Approximation thresholds

It is said that an algorithm A is an ε-approximation algorithm for an optimization
problem P if ε is its relative error bound.

The approximation threshold for P is the greatest lower bound of all ε > 0 such
that there is a polynomial time ε-approximation algorithm for P.

It can be shown that NP-complete problems can differ very much with respect to
their approximation thresholds.

Note that if an optimization problem P has an approximation threshold 0, this
means that a (polynomial time) approximation arbitrarily close to the optimum is
possible.

Note also that if P has approximation threshold 1, this means that no universal
(polynomial time) approximation method is possible.
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Examples

Example 1 The approximation threshold for the optimization version of the
KNAPSACK PROBLEM is 0.

Example 2 The approximation threshold for the VERTEX COVER PROBLEM
is ≤ 1

2 .

Example 3 Unless P = NP, thee approximation threshold for the TRAVELING
SALESMAN PROBLEM is 1.
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WHY TO APPLY RANDOMIZATION in
DISCRETE OPTIMIZATIONS

One of the main goals in the area of discrete optimization is to improve the
approximation ratio. One tries to design randomized approximation algorithms
that produce feasible solutions whose cost (quality) is not very far from the
optimal cost with high probability. In the analysis of randomized algorithms we
consider therefore the approximation ratio as a random variable and the aim is
then either

1 to estimate the expected value, E(Ratio), or

2 to guarantee that a certain approximation ratio is achieved with probability at
least 1

2 .

These two different aims lead to two ways randomized approximation algorithms
are defined.
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Definition 1 Let P = (ΣI ,ΣO , L,M, cost, goal) be an optimization problem. For
any δ > 1, a randomized algorithm A is called a randomized E[δ]-approximation
algorithm for P if

1 Prob(A(x) ∈M(x)) = 1, and

2 E[RatioA(x) ≤ δ] ≥ 1
2 .

for every x ∈ L.

Definition Let P = (ΣI ,ΣO , L,M, cost, goal) be an optimization problem.For any
δ > 1, a randomized algorithm A is called a randomized δ-approximation
algorithm for P if

1 Prob(A(x) ∈M(x)) = 1, and

2 Prob(RatioA(x) ≤ δ) ≥ 1
2 .

for every x ∈ L.
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Online algorithms

Another area in which randomization plays important role are online algorithms.

In practice the following problems are often of importance. One always obtains
only a part of the input that has to be processed immediately. Once this is done
one obtains another part of the input and has to process it again immediately, and
so on - the input can be infinitely long. Such problems are called online problems
and algorithms to solve them are called online algorithms.

Example Scheduling problem - immediate assigning of resources for requests
coming one after another.

Key question. How good can an online algorithm (that does not know the
future) be in comparison to an algorithm that knows the whole input (the future)
from the beginning?
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Evaluation of online algorithms

Let P == (Σi ,Σ0, L,M, cost, goal) be an optimization problem that can be
viewed as an online problem1 An algorithm A is an online algorithm for P if, for
every input x = x1x2 . . . xn ∈ L the following conditions are satisfied:

1 For all i ∈ {1, . . . , n} x1x2 . . . xi is a feasible input.
2 A(x) ∈ M(x), i.e. A always computes a feasible solution.
3 For all i ∈ {1, . . . , n}, A(x1x2 . . . xi ) is a part of A(x), i.e. the decisions made

for the prefix x1x2 . . . xi of x cannot be changed any more.

For every input x ∈ L, the competitive ratio compA(x) of A on x is the number

compA(x) = max

{
OptP(x)

costA(x)
,

costA(x)

OptP(x)

}
where OptP(x) denotes the cost of an optimal solution for the instance x of the
problem P.

Let δ ≥ 1. We say that A is a δ-competitive algorithm for P if compA(x) ≤ δ
for all x ∈ L.

Let δ ≥ 1 be a real. We say that an online problem P is δ-hard if there does not
exist any d-competitive online algorithm for P with d < δ.

1An optimization problem can be viewed as an online problem when each prefix y of every
input x can be viewed also as a problem instance, and one is required to provide a solution for y
that has to remain unchanged as a part of the solution for the whole input x .
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RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



RANDOMNESS EXTRACTORS

Extractors are algorithms that produce from any long and weakly-random
bit-string a shorter, but more random, bit-string.

In other words, an extractor is a mapping which, when applied to high-entropy
source generates a shorter yet uniformly distributed output.

In a more general approach an extractor is an algorithm that converts a long
weakly random source and a truly random short seed into a uniformly distributed
random output (that is longer than the seed and shorter than the source).

An extractor is a certain kind of pseudorandom generator.

No extractor is currently know that has been proven to work when applied to any
type of high-entropy source.

IV054 1. 2. Types and Basic Design Methods for Randomized Algorithms 48/50



von NEUMANN EXTRACTOR

It is an extractor that keeps taking successive pairs of consecutive bits
(non-overlapping) from the input stream and if the two bits are the same, no
output is generated; if they are different the first of them is outputted.

For example the input sequence

10111100001111000011100110010101

is transformed to the sequence
1101000

The von Neumann extractor can be shown to produce a uniform output, even if
the distribution of the input bits is not uniform, so long as each bit has the same
probability of being one and there is no correlation between successive bits.
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EXTRACTORS - FORMAL DEFINITION

Definition A (k, ε)-extractor Ext is a mapping

Ext : {0, 1}n × {0, 1}d → {0, 1}m

such that for every distribution X on {0, 1}n with H∞(X ) ≥ k and the seed s, the
distribution Ext(X , s) is ε-close to the uniform distribution on {0, 1}m.

The aim is to have n > m and d << m.

By a probabilistic method to be discussed later one can show that there exists a
(k, ε) extractor for many k and ε.

Note H∞ stands for so-called min-entropy, which is a measure of the amount of
randomness in the worst case.
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By a probabilistic method to be discussed later one can show that there exists a
(k , ε) extractor for many k and ε.

Note H∞ stands for so-called min-entropy, which is a measure of the amount of
randomness in the worst case.
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