
Part I

1.Basic concepts and Examples of Randomized

Algorithms



Chapter 1. INTRODUCTION

The main aim of the first chapter of the lecture is:

1 To present several views of randomized algorithms

2 to present several interesting examples of simple randomized algorithms;

3 to demonstrate advantages of randomized algorithms and methods of their
analysis.

The second aim of this chapter is to introduce main complexity classes for
randomized algorithms.

Third aim is to show relations between randomized and deterministic
complexity classes.

Fourth aim is to discuss in some details puzzling concept of randomness, at
least in some details.
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Revolution in designing algorithms

The idea that randomized
algorithm can be VERY useful can
be seen as the main revolutionary
idea in the design of algorithms in
the last 2200 years.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 3/66



Deterministic versus randomized algorithms

Usual (deterministic) algorithm is a set of rules how to solve some problem, step
by step, in which each next step is uniquely determined.

As a consequence, each
time a deterministic algorithm A is applied on the same input it produces the
same output.

Randomized (probabilistic) algorithm is a set of rules how to solve some problem,
step by step, in which each next step is chosen, with a determined probability, from
a finite set of possible steps. As a consequence, a randomized algorithm A may
produce different outputs when applied more than one times to the same input.
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WHY to use RANDOMIZED ALGORITHMS?

Randomized algorithms are such algorithms that may make random choices
(such as ones obtained using coin-tossing) concerning the ways they have to
continue, during their executions. As a consequence, their outcomes do not
depend only on their (external) problem inputs.

Advantages: There are several important reasons why randomized algorithms are
of increasing importance:

1 Randomized algorithms are often faster than deterministic ones for the
same problem either from the worst-case asymptotic point of view
or/and from the numerical implementations point of view;

2 Randomized algorithms are often (much) simpler than deterministic ones
for the same problem;

3 Randomized algorithms are often easier to analyze and/or reason
about than deterministic ones especially when applied in
counter-intuitive settings;

4 Randomized algorithms have often more easily interpretable outputs,
which is of interests in applications where analyst’s time rather than just
computation time is also of interest;

5 Randomized numerical algorithms are often better organized better to
exploit parallelism of modern computer architectures.
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WHY CAN RANDOMIZED ALGORITHMS BE
MORE EFFICIENT?

Two simplified explanations:

(1) A systematic search for a solution must often go through a time-consuming
computation paths corresponding to some (few) very unlikely pathological cases.
A randomized search for a solution can often avoid, with a sufficiently
large probability, such time-consuming paths.

(2) For some algorithmic problems P, for each deterministic algorithm for P there
are also bad inputs that force the algorithm to do very long computations.
However, for P there may be also sets of deterministic algorithms such that for
any input most of these algorithms are fast and a random choice of one of the
algorithms from such a set provides very likely fast a proper output.

Moreover, quantum algorithms are, in principle, randomized.

Randomized complexity classes offer also a plausible way to extend the very
important feasibility concept.
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VIEWS of RANDOMIZED ALGORITHMS:

A randomized algorithm A is an algorithm that at each new run receives, in
addition to its input i , a new stream/string r of random bits which are then used
to specify outcomes of the subsequent random choices (or coin tossing) during the
execution of the algorithm.

Streams r of random bits are assumed to be independent of the input i for the
algorithm A.

input

random bits

randomized

algorithm

i −

r −

output i,r

Important comment: Repeated runs of a randomized algorithm with the same
input data (but not same random input strings) may not, in general, produce the
same results. Outcomes, of A(i , r), will depend not only on i , but also on r .
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A BIT of HISTORY

The concept of algorithm is very old.

It goes back to Euclid and Al Khwarizmi in
around 300 BC and 800 AC.

One of the key points of this concept was that each time a (deterministic)
algorithm takes the same input it provides the same output.

The concept of randomized algorithm is from 20th century and got larger
attention practically only after 1977.

One of the key points of this concept is that each time a (randomized) algorithm
takes the same input it may provide different outcomes.
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MODELS of RANDOMIZED ALGORITHMS I.

A randomized algorithm can be seen also in other ways:

As an algorithm that may, from time to time, toss a coin, or read a (next)
random bit from its special input stream of random bits, and then proceeds
depending on the outcome of the coin tossing (or of a chosen random bit).

As a nondeterministic-like algorithm which has a probability assigned to each
possible transition.

As a probability distribution on a set of deterministic algorithms - {Ai , pi}ni=1.
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RANDOMIZED ALGORITHMS as
PROBABILISTIC DISTRIBUTIONS on
DETERMINISTIC ALGORITHMS

randomized algorithm

1/2
1/2

1/2 1/2

as a probabilistic distribution on three deterministic algorithms

A

(B, 1/4) (C, 1/4) (D, 1/2)

B, C, D
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MODELS of RANDOMIZED ALGORITHMS II
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STORY of RANDOMNESS
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DOES RANDOMNESS EXIST? - I

One of the fundamental questions (of science) has been, and actually still is,
whether randomness really exists or whether term randomness is used only to deal
with events the laws of which we do not fully understand. Two early views are:

The randomness is the unknown and Nature is determined in its
fundamentals.

Democritos (470-404 BC)

By Democritos, the order conquered the world and this order is governed by
unambiguous laws. By Leucippus, the teacher of Democritos.
Nothing occurs at random, but everything for a reason and necessity.

By Democritus and Leucippus, the word random is used when we have an
incomplete knowledge of some phenomena. On the other side:

The randomness is objective, it is the proper nature of some
events.

Epikurus (341-270 BC)

By Epikurus, there exists a true randomness that is independent of our knowledge.

Einstein also accepted the notion of randomness only in the relation to incomplete
knowledge.
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VIEWS on RANDOMNESS in 19th CENTURY

Main arguments, before 20th century, why randomness does not exist:

God-argument: There is no place for randomness in a world created by God.

Science-argument: Success of natural sciences and mechanical engineering in
19th century led to a belief that everything could be discovered and
explained by deterministic causalities of a cause and the resulting
effect.

Emotional-argument: Randomness used to be identified with uncertainty or
unpredictability or even chaos.

There are only two possibilities, either a big chaos conquers the world, or order
and law.

Marcus Aurelius
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EINSTEIN versus BOHR

God does not roll dice.

Albert Einstein, 1935, a strong opponent of randomness.

The true God does not allow anybody to prescribe what he has to do.

Famous reply by Niels Bohr - one of the fathers of quantum mechanics.
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DOES GOD PLAY DICE? - NEW VIEWS

God does play even non-local dice.

An observation, due to N. Gisin, on the basis that measurement of entangled
states produces shared randomness.

God is not malicious and made Nature to produce, so useful, (shared)
randomness.

This is what the outcomes of the theoretical informatics imply.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 16/66



DOES GOD PLAY DICE? - NEW VIEWS

God does play even non-local dice.

An observation, due to N. Gisin, on the basis that measurement of entangled
states produces shared randomness.

God is not malicious and made Nature to produce, so useful, (shared)
randomness.

This is what the outcomes of the theoretical informatics imply.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 16/66



DOES GOD PLAY DICE? - NEW VIEWS

God does play even non-local dice.

An observation, due to N. Gisin, on the basis that measurement of entangled
states produces shared randomness.

God is not malicious and made Nature to produce, so useful, (shared)
randomness.

This is what the outcomes of the theoretical informatics imply.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 16/66



RANDOMNESS in NATURE

Two big scientific discoveries of 20th century changed the view on usefulness of
randomness.

1 It has turned out that random
mutations of DNA have to be
considered as a crucial instrument of
evolution.

2 Quantum measurement yields, in
principle, random outcomes.
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RANDOMNESS

Randomness as a mathematical topic has been studied since 17th century.

Attempts to formalize chance by mathematical laws is somehow paradoxical
because, a priory, chance (randomness) is the subject of no law.

There is no proof that perfect randomness exists in the real world.

More exactly, there is no proof that quantum mechanical phenomena of the
microworld can be exploited to provide a perfect source of randomness for the
macroworld.
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KOLMOGOROV COMPLEXITY

Kolmogorov complexity KC (x) of a binary string x with respect to a universal
computer C is the length of the shortest program for C that produces x .

The above definition is basically independent of the choice of C . Namely, it
holds that for any other universal computer C ′ there is a constant aC ,C ′ such
that for any string x , KC ′(x) ≤ KC (x) + aC ,C ′ .

A string x is considered as random if KC (x) ≈ |x |, that is if x is
incompressible.

Kolmogorov complexity is not computable.

It is undecidable whether a given string is random.

Until Kolmogorov complexity was introduced we had no meaningful way to
talk about a given object being random.
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PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost
random) strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the
design of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 20/66



PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost
random) strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the
design of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 20/66



PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost
random) strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the
design of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 20/66



PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost
random) strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the
design of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 20/66



PSEUDORANDOM GENERATORS STORY

Pseudorandom generators are algorithms that generate pseudorandom (almost
random) strings or integers.

Pseudorandom generators is an additional key concept of cryptography and of the
design of efficient algorithms.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 20/66



von NEUMANN EXAMPLE

The concept of pseudorandom generators is quite old. An interesting example is
due to John von Neumann:

Take an arbitrary integer x as the ”seed”
and repeat the following process:

compute x2 and take a sequence
of the middle digits of x2 as a new
”seed” x.
whenever you end such an iterative process, the final seed is a pseudorandom
string of digits.
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Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736

550732 = 3033035329
3303532 = 109133104609

13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732

= 3033035329
3303532 = 109133104609

13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732 = 3033035329

3303532 = 109133104609
13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732 = 3033035329

3303532

= 109133104609
13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732 = 3033035329

3303532 = 109133104609

13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732 = 3033035329

3303532 = 109133104609
13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



Von NEUMANN PSEUDORANDOM
GENERATION

23562 = 5550736
550732 = 3033035329

3303532 = 109133104609
13310462 =

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 22/66



SIMPLE PSEUDORANDOM GENERATORS

Informally, a pseudorandom generator is a deterministic polynomial time
algorithm which expands short random sequences (called seeds) into longer bit
sequences such that the resulting probability distribution is in polynomial time
indistinguishable from the uniform probability distribution.

Example. Linear congruential generator

One chooses n-bit numbers m, a, b, X0 and generates an n2 element sequence

X1X2 . . .Xn2

of n-bit numbers by the iterative process

Xi+1 = (aXi + b) mod m.

There is a variety of classical algorithms capable to generate pseudorandomness of
different quality concerning randomness.

Quantum processes can generate perfect randomness and on this basis quantum
(almost perfect) generators of randomness are already commercially available.
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CRYPTOGRAPHICALY STRONG
PSEUDORANDOM GENERATORS

In cryptography random sequences can usually be replaced by pseudorandom
sequences generated by (cryptographically perfect/strong) pseudorandom
generators.

Definition. Let l(n) : N → N be such that l(n) > n for all n. A
(cryptographically strong) pseudorandom generator with a stretch function
l , is an efficient deterministic algorithm which on the input of a random n-bit seed
outputs a l(n)-bit sequence which is computationally indistinguishable from any
random l(n)-bit sequence.

Candidate for a cryptographically strong pseudorandom generator:

A very fundamental concept: A predicate b is a hard core predicate of the
function f if b is easy to evaluate, but b(x) is hard to predict from f(x). (That is,
it is unfeasible, given f(x) where x is uniformly chosen, to predict b(x)
substantially better than with the probability 1/2.)

Conjecture: The least significant bit of x2 mod n is a hard-core predicate.
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Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G (s) = b(s) · b(f (s)) · · · b
(
f l(|s|)−1(s)

)
is a (cryptographically strong) pseudorandom generator with stretch function l(n).
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EXAMPLES of RANDOMIZED ALGORITHMS

EXAMPLES
of

RANDOMIZED ALGORITHMS
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EXAMPLE 1. MONOPOLIST GAME

Game Given are n active players each having w one dollar coins. They play, in
rounds, the following game until all, but one player, become bankrupt:

1 In each round every active player puts $1 on the table and the roulette wheel
is spined to determine the winner, who then takes all money on the table.

2 A player who looses all his money declares bankruptcy and becomes inactive.

Will the game end? If not, why? If yes, when?
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EXAMPLE 1. MONOPOLIST GAME - again

Game Given are n active players each having w one dollar coins. They play, in
rounds, the following game until all but one player become bankrupt:

1 In each round every active player puts $1 on the table and the roulette wheel
is spined to determine the winner who then takes all money on the table.

2 A player who looses all his money declares bankruptcy and becomes inactive.

Will the game end? It can be shown that it ends almost always in approximately
at most (nw)2 steps.
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EXAMPLE 2 - ELECTION of a LEADER

In some cases randomization is the only way to solve the problem.

Example Let n identical processors, connected into a ring, have to choose one of
them to be a “leader”, under the assumption that each of the processors knows n.

eeeeeee e e e
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EXAMPLE 2 - ELECTION of a LEADER - I.

Algorithm (Election of a leader - a symmetry breaking protocol)

1 Each processor sets its local variable V to n and starts to be active.

2 Each active processor chooses, randomly and independently, an integer
between 1 and V and put it into V .

3 Those processors that choose 1 (if any), send one-bit message around the
ring – clockwise - with the speed of one processor per time unit.

4 After n − 1 steps each processor knows the number l of processors that
chosen 1. If l = 1, the election ends and the leader introduces himself; if
l = 0, election continues by repeating Step 2. If l > 1, the only processors
remaining active will be those that have chosen 1 in Step 2. They set V ← l
and election continues with Step 2.
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and election continues with Step 2.

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 30/66



CLASSICAL versus QUANTUM RANDOMIZATION

Exact solvability of the leader election problem for regular graphs with
identical node-processors is a celebrated unsolvable problem of classical
distributed computing.

It can be shown that this problem cannot be solved exactly and in bounded
time on classical computers even in the case processors know number of
nodes (n) and topology of the network.

However, there is quantum algorithm that runs in O(n3) time, its
communication complexity is O(n4), and it can solve this problem exactly for
any network topology, provided parties are connected by quantum
communication links.
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THE DINING CRYPTOGRAPHERS PROBLEM

Three cryptographers have dinner at a round table of a 5-star restaurant.

Their waiter tells them that an arrangement has been made that bill will be
paid anonymously - either by one of them, or by NSA.

They respect each others right to make an anonymous payment, but they
wonder if NSA has payed the dinner.

How should they proceed to learn whether one of them paid the bill without
learning which on e - for other two?
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DINNING CRYPTOGRAPHERS - SOLUTION

Protocol

Each cryptographer flips a perfect coin between him and the cryptographer on
his right, so that only two of them can see the outcome.
Each cryptographer who did not pay dinner states aloud whether the two coins
he see - the one he flipped and the one his right-hand neighbour flipped - fell
on the same side or not.
The cryptographer who paid the dinner states aloud the opposite what he sees.

Correctness:

Odd number of differences uttered at the table implies that that a
cryptographer paid the dinner.
Even number of differences uttered at the table implies that NSA paid the
dinner.
In a case a cryptographer paid the dinner the other two cryptographers would
have no idea he did that.
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TECHNICAL SOLUTION

Let three coin tossing made by cryptographers be represented by bits

b1, b2, b3

In case none of them payed dinner, then what they say loudly are values

b1 ⊕ b2, b2 ⊕ b3, b3 ⊕ b1

and their parity is

(b1 ⊕ b2)⊕ (b2 ⊕ b3)⊕ (b3 ⊕ b1) = 0

In case one of them payed dinner, say Cryptographer 2, they say loudly:

b1 ⊕ b2, b2 ⊕ b3, b3 ⊕ b1

and
(b1 ⊕ b2) ⊕ (b2 ⊕ b3) ⊕ (b3 ⊕ b1) = 1
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EXAMPLE: RANDOM COUNTING

Problem: Determine the number, say n, of elements of a bag X , provided you
can do, repeatedly, only the following operation: to pick up, randomly, an element
of the bag X , to look at it, and to return it back to the bag.

Algorithm:
k ← 0;
do choose randomly an element from X , mark it and return it back; set k ← k + 1
until the just chosen element has already been chosen;

n←
⌊
2k2

π

⌋
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EXAMPLE: ZERO POLYNOMIAL TESTING

Problem: Decide whether a given polynomial p(x1, . . . , xn), (given implicitly)
with integer coefficients, and with each product of variables being of the degree at
most k, is identically 0.

Algorithm:
Compute p(x1, . . . , xn) N times, for sufficiently large N; each time with randomly
chosen integer values for x1, . . . , xn from the interval [0, 2kn].

If, at the above process at least once a value different from 0 is obtained, then p
is not identically 0.

If all N values obtained are 0, then we can consider p to be identically 0. The
probability of error is at most 2−N .
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DESIGN of the SMALLEST ENCLOSING DISK

Task: Given is a set S of n points in the plane. Find the smallest disk (circle)
D(S) containing S .

Note D(S) is determined by any three points on its edge.

Naive solution For any three points design a disk/circle passing through them -
complexity of such an algorithm is O(n3)
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Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of
about 20 points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′), then double their weights
and go to Step 1. Otherwise you are done

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 39/66



Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of
about 20 points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′), then double their weights
and go to Step 1. Otherwise you are done

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 39/66



Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of
about 20 points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′), then double their weights
and go to Step 1. Otherwise you are done

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 39/66



Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of
about 20 points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′),

then double their weights
and go to Step 1. Otherwise you are done

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 39/66



Random O(n) algorithm - Welzl

For the start let us consider all points as having the weight 1

Algorithm

1 Choose randomly (taking into considerations weights of points) a set of
about 20 points S ′ and determine, somehow, D(S ′).

2 In case there are points of S that are out of D(S ′), then double their weights
and go to Step 1. Otherwise you are done

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 39/66



RANDOMIZED QUICKSORT

Problem: To sort a set S of n elements we can use the following algorithm.

1 Choose a median y of S .

2 Compare all elements of S with y and divide S into the set S1 of elements
smaller than y and into the set S2 of the remaining elements.

3 Sort recursively sets S1 and S2.

Analysis of the number of comparisons: T (n)
T (n) ≤ 2T ( n

2 ) + (c + 1)n
in case we can find y in cn steps for some constant c

Solution of the above inequality:
T (n) ≤ c ′n lg n

Asymptotically, the same solution is obtained if we require only that none of the
sets S1, S2 has more than 3

4n elements. Since there are at least n
2 elements y with

the last property there is a good chance that if y is always chosen randomly, then
we get a good performance.

This way we obtain random QUICKSORT or RQUICKSORT.
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ANALYSIS of RQUICKSORT (RQS)

Let the set S to be sorted be given and let

si – be the i-th smallest element of S ;
sij – be a random variable having value 1 if si and sj are being compared

(during an execution of the RQS).

Expected number of comparisons of RQS

E

 n∑
i=1

n∑
j=1

sij

 =
n∑

i=1

n∑
j=1

E [sij ]

If pij is the probability that si and sj are being compared during an execution of
the algorithm, then E [sij ] = pij .
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In order to estimate pij it is enough to realize that if si and sj are compared
during an execution of the RQS, then one of these two elements has to be
in the subtree headed by the other element in the comparison tree being
created at that execution.

Moreover, in such a case all elements between si and
sj are still to be inserted into the tree being created. Therefore, at the moment
other element (not the one in the root of the subtree), is chosen, it is chosen
randomly from at least |j − i |+ 1 elements. Hence pij ≤ 1

|i−j|+1 . Therefore we

have (for Hn =
∑n

i=1
1
i ):

n∑
i=1

n∑
j=1

pij ≤
n∑

i=1

n∑
j=i

2

j − i + 1
≤

n∑
i=1

n−i+1∑
k=1

2

k
≤

2
n∑

i=1

n−i+1∑
k=1

1

k
≤ 2nHn = Θ(n log n)
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SATISIFIABILITY of BOOLEAN FORMULAS

The following algorithm finds, given a satisfiable Boolean formula F in 3-CNF,
with very high probability, a satisfying assignment for F .

Algorithm:
Choose randomly a truth assignment T for F ;
while there is a truth assignment T ′ that differs from T in

exactly one variable and satisfies more clauses of F than T
do choose such of these T ′ that satisfy the most clauses and set T ← T ′ od;

return T

A natural question: How good is this simple algorithm?

Theorem If 0 < ε < 1
2 , then there is a constant c such that for all but a fraction

of at most n2ne−
εn2

2 of satisfiable 3-CNF Boolean formulas with n variables, the
probability that the above algorithm succeeds in discovering a truth assignment in
each independent trial from a random start is at least 1− e−ε

2n.
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EXAMPLE: CUTS in MULTIGRAPHS - PROBLEM

Given is an undirected and loop-free multigraph G .The task is to find one of the
smallest sets C of edges (called a cut) of G such that the removal of edges from
C disconnects the multigraph G .

Basic operation is an edge contraction If e is an edge of a loop-free multigraph G ,
then the multigraph G/e is obtained from G by contracting the edge e = {x , y},
that is, we identify the vertices x and y and remove all resulting loops.
Example:

q
q

q
q qc
��

@@

pp p pa p p pa p p
pp p pa p p pa p p
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CUTS in MULTIGRAPHS - ALGORITHM

Basic idea of the algorithm given below: An edge contraction of a multigraph
does not reduce the size of the minimal cut.
Contract algorithm:
while there are more than 2 vertices in the multigraph

do edge-contraction of a randomly chosen edge od
Output the size of the minimal cut of the resulting 2 vertices multigraph.

Example:

q
q

q
q qc
��

@@

pp p pa p p pa p p
pp p pa p p pa p p

In the above example, where two options are explored in the second step, we got
once the optimal result, and once a non-optimal result.
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HOW GOOD is the ABOVE ALGORITHM?

How probable is that our algorithm produces an incorrect result?

Let G be a multigraph with n vertices and k be the size of its minimal cut;
C - be a particular minimal cut of size k .

Observation: G has to have at least kn
2 edges. (Why?)

We derive a lower bound on the probability that no edge of C is ever contracted
during an execution of the algorithm.

Let Ei be the event of non-choosing an edge of C at the i-th step of the
algorithm. The probability that the edge randomly chosen in the first step is in C

is at most k
nk
2

= 2
n and therefore Pr(E1) ≥ 1− 2

n .

If E1 occurs, then at the second contraction step there are at least k(n−1)
2 edges.

Hence Pr(E2|E1) ≥ 1− 2
n−1

Similarly, in the i-th step

Pr

Ei |
i−1⋂
j=1

Ej

 ≥ 1− 2

n − i + 1
=

n − i − 1

n − i + 1
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How probable is that our algorithm produces an incorrect result?

Let G be a multigraph with n vertices and k be the size of its minimal cut;
C - be a particular minimal cut of size k .

Observation: G has to have at least kn
2 edges. (Why?)

We derive a lower bound on the probability that no edge of C is ever contracted
during an execution of the algorithm.

Let Ei be the event of non-choosing an edge of C at the i-th step of the
algorithm. The probability that the edge randomly chosen in the first step is in C
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= 2
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PROOF CONTINUATION

Therefore, the probability that no edge of C is ever contracted during an
execution of the algorithm, that is that algorithm gives correct output, can be
lower bounded by

Pr

[
n−2⋂
i=1

Ei

]
≥

n−2∏
i=1

(
1− 2

n − i + 1

)
=

n−2∏
i=1

(
n − i − 1

n − i + 1

)
=

2

n(n − 1)
= Ω(

1

n2
)

Hence, the probability of an incorrect result is ≤ 1− 2
n(n−1) .

Moreover, if the above algorithm is repeated n2

2 times, making each time random
decisions, then the probability that a minimal cut is not found is at most

(
1− 2

n2 − n

) n2

2

<

(
1− 2

n2

) n2

2

=

(
1− 1

n2

2

) n2

2

<
1

e

Running time of the best deterministic minimum cut algorithm is O(nm + n2 lg n),
where m is number of edges and n is number of vertices.
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REMINDERS

The following facts are well-known from
mathematical analysis:

(1 + x
n)n ≤ ex ;

limn→∞(1 + x
n)n = ex
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PRIMES RECOGNITION

The fastest known sequential deterministic algorithm to decide whether a given
integer n is prime has complexity O

(
(lg n)14

)
A simple randomized Rabin-Miller’s Monte Carlo algorithm for prime recognition
is based on the following result from the number theory.

Lemma Let n ∈ N, n = 2sd + 1, d is odd. Denote, for 1 ≤ x < n, by C (x) the
condition: xd 6≡ 1 (mod n) and x2

rd 6≡ −1 (mod n) for all 1 < r < s Key fact:
If C (x) holds for some 1 ≤ x < n, then n is not prime (and x is a witness for
compositness of n). If n is not prime, then C (x) holds for at least half of x
between 1 and n.

In other words most of the numbers between 1 and n are witnesses for
composability of n.

Rabin-Miller algorithm
Choose randomly integers x1, . . . , xm such that 1 ≤ xj < n;
For each xj determine whether C (xj) holds;
if C (xj) holds for some xj ;

then n is not prime
else n is prime, with probability of error 2−m
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Choose randomly integers x1, . . . , xm such that 1 ≤ xj < n;
For each xj determine whether C (xj) holds;
if C (xj) holds for some xj ;

then n is not prime

else n is prime, with probability of error 2−m
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LARGEST PRIME - I.

On February 3, 2016 C. Cooper from
university Missouri announced a new
(Mersenne) prime

274207181 − 1
that has 5 millions more digits as
previously known largest prime.
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LARGEST PRIME - II.

On December 29, 2017 people from the
project GIMPS (Great Internet Mersenne
Prime Search a new (Mersenne) prime

277232917 − 1

announced that has 2 millions more digits
as previously known largest prime. It has
23, 249,425 digits.

Four research groups over the world verified after the announcement for three
days that the number claimed to be a new largest prime is indeed a prime.
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In 2008 a 100.000 $ price was given for
first 10 millions digit primes.

A special price is offered for first 100
millions of digits prime.

Percentage of 512 bits numbers that are
primes is 0.006...
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RANDOMIZED COMPLEXITY CLASSES

RANDOMIZED
COMPLEXITY CLASSES
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COMPLEXITY CLASSES for DETERMINISTIC
COMPUTATIONS

P is the class of problems (languages) that can be solved (accepted) by
deterministic algorithms running in polynomial time. (Or P is class of
problems solvable in polynomial time on deterministic Turing
machines.)

NP is the class of problems solution of which can be verified in polynomial
time. (Or NP is the class of problems that can be solved in polynomial
time on nondeterministic Turing machines.)

co-NP is the class of languages that are complements of languages in NP.

PSPACE is the class of problems (languages) that can be solved (accepted)
by algorithms using only polynomially large space/memory.

EXP is the class of problems (languages) solvable in exponential time.
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RANDOMIZED COMPLEXITY CLASSES

A way how to model random steps formally, and to study power of randomization,
is to consider probabilistic algorithms as nondeterministic Turing machines
(NTM), that have in each configuration exactly two choices to make and for each
input all computations have the same length.

In order to define different
complexity classes for randomized computations, one then just needs to consider
different acceptance modes.
RP: A language L is in randomized complexity class RP (Random Polynomial
time) if there is a polynomial NTM such that:

if x ∈ L, then at least half of all computations of M on x terminate in an
accepting state;

if x 6∈ L, then all computations of M terminate in rejecting states. (So called
Monte Carlo acceptance or one-sided Monte Carlo acceptance).

ZPP: A language L is in ZPP (Zero error Probabilistic Polynomial time) (it is
also called Las Vegas acceptance if.) L ∈ ZPP = RP ∧ coRP.

PP: A language L is in PP (Probabilistic Polynomial time) if there is a
polynomial NTM such that: x ∈ L iff more than half of computations of M on x
terminate in accepting states. (So called acceptance by majority.)
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BPP and OTHER VIEW of COMPLEXITY
CLASSES

BPP: A language is in BPP (Bounded error away from 1
2 Probabilistic

Polynomial time), if there is a polynomial NTM M such that:
If x ∈ L, then at least 3

4 computations of M on x terminate in accepting
states.
If x 6∈ L, then at least 3

4 of computations of M on x terminate in rejecting
states.

Less formally, classes RP, PP and BPP can be defined as classes of problems
(languages) for which there is a randomized algorithm A with the following
property:

RP:
x ∈ L⇒ PR(A(x) accepts) ≥ 1

2
;

x 6∈ L⇒ PR(A(x) accepts) = 0
PP:

x ∈ L⇒ PR(A(x) accepts) > 1
2
;

x 6∈ L⇒ PR(A(x) accepts) ≤ 1
2
.

BPP:
x ∈ L⇒ PR(A(x) accepts) ≥ 3

4
;

x 6∈ L⇒ PR(A(x) accepts) < 1
4
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PP class - some observations

Definition of the class PP seems to be very natural. However, in reality this
class is not realistic.

An example of a PP problem: Given a Boolean formula φ with n variables,
do at least half of the 2n possible assignments of variables make the formula
to evaluate to TRUE?

Just like the problem to decide whether there exists a satisfying assignment
for a Boolean formula is NP-complete, so this majority-vote variant of the
above decision problem can be shown to be PP-complete; that is, any other
PP-complete problem is efficiently reducible to it.

Problems: a PP-algorithm is free to accept with probability 1/2 + 2−n if the
answer is yes and probability 1/2− 2n if the answer is no. However how can a
mortal distinguish these two cases if, for example, n = 5000?
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INCLUSIONS between MAIN COMPLEXITY
CLASSES

Theorem
P ⊆ ZPP ⊆ RP ⊆ NP ⊆ PP ⊆ PSPACE

Proof: Since relations P ⊆ ZPP ⊆ RP are obvious, we show first

RP ⊆ NP

If L ∈ RP then there is a NTM M accepting L with Monte Carlo acceptance.
Hence, L ∈ NP. Now we show:

NP ⊆ PP

Let L ∈ NP and M be a polynomial NTM for L. Design a NTM M ′ that for f an
input w nondeterministically chooses and performs one of two steps:

1 (1) M ′ accepts (2) M ′ simulates M on the input w .
M ′ can be transformed into an equivalent NTM M ′′ that always have two choices
and all its computations on w have the same length. M ′′ therefore accepts L by
majority what implies: L ∈ PP. Indeed: If w 6∈ L, then exactly half of
computations accept – those corresponding to step 1.
If w ∈ L, then there is at least one computation of M that accepts w ⇒ more
than half of computations of M ′′ accept. In addition, it holds PP ⊆ PSPACE.
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COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 .

In other words, for any ε < 1
2 we can say that an

BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε

BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



COMPLEXITY CLASS BPP

Acceptance by clear majority seems to be the most important concept of the
randomized computing.

The number 3
4 used in the definition of the class BPP can be replaced by any

number larger than 1
2 . In other words, for any ε < 1

2 we can say that an
BPP-algorithm accepts (rejects) any word from (not from) the underlying
language with the probability at least 1− ε
BPP–algorithms allow to diminish, by a repeated application, the probability
of error as much as needed.

It seems that P $ BPP $ NP and therefore the class BPP seems to be a
reasonable extension of the class P and as a class of feasible problems.

Theorem All languages in BPP have polynomial size Boolean circuits.

Definition A language L ⊆ {0, 1}? has polynomial size Boolean circuits if there is
a family of Boolean circuits G = {Ci}∞i=1 and a polynomial p such that size of Cn

is bounded by p(n), Cn has n inputs and x ∈ L iff the output of C|x| is 1 if its
input is x .

IV054 1. 1.Basic concepts and Examples of Randomized Algorithms 59/66



AMPLIFICATION of PROBABILITIES

Let a PTM M have a probability of error at solving a decision problem at most
ε < 1

2 . Let us run M for the same input k times and take as the output the
majority one (in other words apply so called majority voting).
In order to determine how wrong may be such majority voting, observe that for
any subset S ⊆ {1, . . . , k}, |S | ≤ k/2 the probability that majority voting provided
by outcomes at such a set of runs is erroneous is smaller than (1− ε)|S|εk−|S|.
Such a majority voting will therefore be wrong with probability

perr ≤
∑

S⊆{1,...,k},|S|≤k/2

(1− ε)|S|εk−|S| (1)

= ((1− ε)ε)k/2
∑

S⊆{1,...,k},|S|≤k/2

(
ε

1− ε

)k/2−|S|

(2)

< (
√
ε(1− ε))k2k = λk , (3)

where λ = 2
√
ε(1− ε) < 1, because the above sum is ≤ 2k , since ε

1−ε ≤ 1.

In case k is big enough, the effective error probability will be as small as we wish.
This process is called amplification of probability.
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HIERARCHY of COMPLEXITY CLASSES

ZPP

coRPRP

BPPNP coNP

PP

PSPACE

EXP

P
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CLASS MA

The class BPP can be seen as a randomized version of the class P. In a similar
way the class MA (Marlin-Arthur), defined bellow, can be seen as a randomized
version of the class NP.

MA is the class of decision problems solvable by a Merlin-Arthur protocol, which
goes as follows: Merlin, who has unbounded computational resources, sends
Arthur a polynomial-size to-be-proof that the answer to the problem is ”yes”.
Arthur must verify the proof in BPP, so that if the answer to the decision problem
is

”yes”, then there exists a proof which Arthur accepts with probability at least
2
3 .

”no”, then Arthur accepts any ”to-be-proof” with probability at most 1
3 .

An alternative definition requires that if the answer is ”yes”, then there exists a
proof that Arthur accepts with certainty.

It can be shown that if P = BPP, then MA=NP.
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version of the class NP.
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HOW IMPORTANT is RANDOMNESS for DESIGN
of ALGORITHMS

The answer depends much on how we define when an algorithm is ”efficient”.

If constant factors are of importance, then randomization is clearly of large
importance.

If we consider O(n),O(n2) and also O(n3) algorithms as still efficient, but
already O(n4) algorithms as not, then randomness is still of importance for
some problems.

If ”polynomial-time computability” is used for efficiency criterion, we do not
know answer yet but we maybe able to claim that randomness is not
essential. Why

There is a strong evidence that P = BPP.

Such assumption is based on results showing that computational hardness of
some problems can be used to generate pseudorandom sequences that look
random to all polynomial time algorithms.

Using such techniques Widgerson and Impagliazo showed that P=BPP if
there is a problem computable in an exponential time that requires circuits of
exponential size.
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WHAT is PROBABILITY- of an EVENT?

Intuitively, probability of an elementary event e in a finite set of events E
is the ratio between the number of e-favorable elementary events in E to the total
number of all possible elementary events involved in E .

Pr(e ∈ E ) =
number of favorable e-events in E

number of all possible elementary events in E

Example When tossing a perfect dice with it sides labeled by 1, 2,3, 4, 5 6, then
the probability that the outcome of a perfectly random tossing of such a dice is 3
is

1

6
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PUZZLE

In case the set of elementary
events E is infinite situation is
much more complex as the
following example discuss in lecture
3 illustrates.
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BERTRAND’s PROBLEM - PARADOX

The following problem has at least three very different (and correct) solutions,
with different outcomes. This indicates how tricky are concepts of probability and
randomness.

Problem See the next figure. Fix a circle of radius 1. Draw in the circle
equilateral triangle and denote l its length. Choose randomly a chord d (and
denote m its length) of the circle. What is the probability that m ≥ l?

There are at least 3 very different answers
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