Exercises – set 8 Probabilistic Method II Shenggen Zheng, April 18th, 2013, 8:30–9:45 B411

- 1. Consider an instance of SAT with m clauses, where every clause has exactly k literals.
 - (a) Prove that there is an assignment that satisfies at least $m(1-2^{-k})$ clauses.
 - (b) Give a Las Vegas algorithm that finds an assignment satisfying at least $m(1-2^{-k})$ clauses, and analyze its expected running time.
- 2. (Apple Game) Consider the following two-player game. The game begins with n apples on the table. Each round, one player, called Alice, takes no more than 3 but at least 1 apple out of the table. The second player, called Bob, also takes no more than 3 but at least 1 apple out of the table. The last one to take apples on the table wins the game.
 - a) Is there any winning strategy for Alice when n = 18?
 - b) Is there any winning strategy for Bob for some n?
 - c) Prove that if n is randomly chosen. It is better to be the first one who takes apples from the table.
- 3. Let us consider an $n \times m$ boolean matrix M, for example

$$\left(\begin{array}{cccc} 1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{array}\right)_{n \times m}$$

The entry of $M_{i,j} = 1$ means that deterministic algorithm A_i accepts input w_j and $M_{i,j} = 0$ means that deterministic algorithm A_i rejects input w_j , respectively.

- a) Let $N = \sum_{i,j} M_{i,j}$. How large must N be in order to imply that there must exist an *i* such that $\sum_{j} M_{i,j} = m$ (means that there must exist an A_i accepts every input).
- b) Suppose that there is a randomized algorithm A and the number of inputs for A is m. For every input w,

$$Pr(A \text{ accepts } w) = \frac{1}{n} \sum_{i=1}^{n} Pr(A_i \text{ accepts } w)$$

is the probability that A accepts the input w, where A_i is a deterministic algorithm (means that $Pr(A_i \text{ accepts } w) = 1$ or $Pr(A_i \text{ accepts } w) = 0$). There exists an ε such that for every input w,

$$Pr(A \text{ accepts } w) > 1 - \varepsilon.$$

Prove that there exists an A_i that accepts every input w if $\varepsilon < \frac{1}{m}$.