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7.GROVER’s ALGORITHMS and AMPLITUDE AMPLIFICATION

Grover’s search algorithm and its
modifications will be presented an
analyzed in this chapter as well as some
related problems concerning design of
efficient quantum algorithms.
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GROVER’s SEARCH PROBLEM I

Grover’s method applies to problems for which: (1) it is hard
to find a solution; (2) it is easy to recognize a solution; (3) it
is easy to create a list of potential solutions; (4) it is hard to
find a special structure of the problem to speed-up search for
a solution.

Problem - a popular formulation: In an
unsorted database of N items there is exactly one, x0,
satisfying an easy to verify condition P . Find x0.

Classical algorithms need in average N
2 checks.

Quantum algorithm exists that needs O(
√
N) steps.

Here is the basic idea of the algorithm - ”cooking” a solution.
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Figure 1: “Cooking” the solution with Grover’s algorithm
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Figure 2: “Cooking” the solution with Grover’s algorithm

The figure above shows some steps of the Grover algorithm. Starting

state, Figure (a), is equally weighted superposition of all basis states.

State |x0〉 is the one with f (x0) = 1. Next step, Figure (b), is the state

obtained by multiplying with −1 the amplitude of the state |x0〉. Figure

(c) shows the state after so called inversion over the average is done -

the amplitude at |x0〉 is increased and amplitudes at all other basis states

are decreased. Next step, Figure (d), depicts situation that amplitude at

the basis state |x0〉 is negated and the next step, Figure (e), is again the

result after another inversion about the average is implemented. In case

this process iterate a proper number of steps we get the situation that

the amplitude at the state |x0〉 is (almost) 1 and amplitudes at all other

states are (almost) 0. A measurement in such a situation produces x0 as

the classical outcome.
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DESIGN of a BLACK BOX
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GROVER’s SEARCH PROBLEM II

Modified problem: Given an easy to use black box Uf
to compute a function

f : {0, 1}n → {0, 1},

find an x0 such that f (x0) = 1, for the case that the number
t of solutions, that is the number

t = |{x | f (x) = 1}|
is known
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INVERSION ABOUT THE AVERAGE

Example 0.1 (Inversion about the average) The unitary

transformation

Dn :
2n−1∑
i=0

ai|φi〉 →
2n−1∑
i=0

(2E − ai)|φi〉,

where E is the average of {ai | 0 ≤ i < 2n}, can be performed by the matrix

−HnV
n
0 Hn = Dn =



−1 + 2
2n

2
2n . . . 2

2n
2
2n −1 + 2

2n
. . . 2

2n... ... . . . ...
2
2n

2
2n . . . −1 + 2

2n


.

The name of the operation comes from the fact that 2E − x = E + E − x
and therefore the new value is as much above (below) the average as it was

initially below (above) the average—which is precisely the inversion about

the average.

The matrix Dn is clearly unitary and it can be shown to have the form

Dn = −HnV
n
0 Hn, where

V n
0 [i, j] = 0 if i 6= j, V n

0 [1, 1] = −1 and V n
0 [i, i] = 1 if 1 < i ≤ n.

Let us consider again the unitary transformation

Dn :
2n−1∑
i=0

ai|φi〉 →
2n−1∑
i=0

(2E − ai)|φi〉,

and the following example:

Example: Let ai = a if i 6= x0 and ax0 = −a. Then

E = a− 2

2n
a

2E − ai =

 a−
4
2na if i 6= x0

2E − ax0 = 3a− 4
2na; otherwise
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GROVER’s SEARCH ALGORITHM

Start in the state

|φ〉 =
1√
2n

2n−1∑
x=0
|x〉

and iterate bπ4
√

2nc times the transformation

−HnV
n
0 HnVf︸ ︷︷ ︸ |φ〉 → |φ〉.

Grover’s iterate

Finally, measure the register to get x0 and check whether f (x0) = 1. If

not, repeat the procedure.

It has been shown that the above algorithm is optimal for finding the

solution with probability > 1
2.

In the case that there are t solutions, repeat the above iteration

π
4

√√√√√2n

t

 times
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ANALYSIS of GROVER’s ALGORITHM

Denote

X1 = {x | f (x) = 1} X0 = {x | f (x) = 0}
and denote the state after jth iteration of Grover’s iterate −HnV

n
0 HnVf

as

|φj〉 = kj
∑

x∈X1

|x〉 + lj
∑

x∈X0

|x〉

with

k0 =
1√
2n

= l0.

Since

|φj+1〉 = −HnV
n
0 HnVf |φj〉,

it holds

kj+1 =
2n − 2t

2n
kj +

2(2n − t)
2n

lj, lj+1 =
2n − 2t

2n
lj −

2t

2n
kj

what yields

kj =
1√
t

sin((2j + 1)θ)

lj =
1√

2n − t
cos((2j + 1)θ)

where

sin2 θ =
t

2n
.
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Recurrence relations therefore provide

kj =
1√
t

sin((2j + 1)θ), lj =
1√

2n − t
cos((2j + 1)θ)

where

sin2 θ =
t

2n
.

The aim now is to find such an j which maximizes kj and minimizes lj.

Take j such that cos((2j + 1)θ) = 0, that is (2j + 1)θ = (2m + 1)π2 .

Hence

j =
π

4θ
− 1

2
+
mπ

2θ
what yields

j0 = d π
4θ
e,

and because

sin2 θ =
t

2n

we have

0 ≤ sin θ ≤
√√√√√ t

2n

and therefore

j0 = O

√√√√√2n

t

 .
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A MORE DETAILED ANALYSIS

Theorem Let f ∈ Fn
2 → {0, 1} and let there be exactly t elements

x ∈ Fn
2 such that f (x) = 1. Assume that 0 < t < 3

42n, and let

θ0 ∈ [0, π/3] be chosen such that sin2 θ0 = t
2n ≤

3
4. After b π4θ0e iterations

of the Grover iterates on the initial superposition 1√
2
n

∑
x∈Fn

2
|x〉 the

probability of finding a solution is at least 1
4.

Proof The probability of seeing a desired element is given by

sin2((2j + 1)θ0) and therefore j = −1
2 + π

4θ0
would give a probability 1.

Therefore we need only to estimate the error when −1
2 + π

4θ0
is replaced

by b π4θ0c. Since

b π
4θ0
c = −1

2
+

π

4θ0
+ δ

for some |δ| ≤ 1
2, we have

(2b π
4θ0
c + 1)θ0 =

π

2
+ 2δθ0,

and therefore the distance of (2b π4θ0c + 1)θ0 from π
2 is |2δθ0| ≤ π

3 . This

implies

sin2((2b π
4θ0
c + 1)θ0) ≥ sin2(

π

2
− π

3
) =

1

4
.
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A VARIATION on GROVER’s ALGORITHM

Input: A black box function f : Fn
2 → {0, 1} and

t = |{x | f (x) = 1}| > 0

Output: an y such that f (y) = 1

Algorithm:

1. If t > 3
42
n, then choose randomly an y ∈ Fn

2 and stop.

2. Otherwise compute r = b π4θ0c, where θ0 ∈ [0, π/3] and

sin2 θ0 = t
2n and apply Grover’s iterate Gn r times

starting with the state

1√
2n

∑
x∈Fn2

|x〉

and measure the resulting state to get some y.

If the first step is applied we find a correct outcome with
probability 3

4 and if the second step is applied then we find a
correct outcome with probability at least 1

4.
Very special case is t = 1

42
n. In such a case sin2 θ0 = 1

4 and
therefore θ0 = π

6 . The probability to find a correct outcome
after one step is then

sin2((2 · 1 + 1)θ0) = sin2(
π

2
) = 1.
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ANOTHER DERIVATION of the GROVER ITERATION

Let f : {0, 1}n → {0, 1} be a mapping such that f (a) = 1 for a single

a ∈ {0, 1}n.

Let Vf be a mapping such that for any x ∈ {0, 1}n

Vf |x〉 = (−1)f(x)|x〉.

Then for any state

|ψ〉 =
∑

x∈{0,1}n
αx|x〉

it holds

Vf |ψ〉 =
∑

x∈{0,1}n
(−1)f(x)αx|x〉+αa|a〉−αa|a〉 = |ψ〉−2αa|a〉 = |ψ〉−2|a〉〈a|ψ〉

because αa = 〈a|ψ〉 and therefore we can write

Vf = 1− 2|a〉〈a|.

Therefore, the operator Vf , when acting on any state changes the sign of

the amplitude of the basis state |a〉, while leaving unchanged

amplitudues of basis states orthogonal to |a〉.
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CONTINUATION

If we define

|φ〉 = Hn|0n〉 =
1√
2n

2n−1∑
i=0
|i〉

and consider the operator

W = 2|φ〉〈φ| − 1

then this operator preserves the state |φ〉, while changing the sign of the

component orthogonals to |φ〉.
Grover algorithm can now be defined as an iterative application of the

operator WV to the resulting states starting with the initial state |φ〉.

Observe that

−W = 1− 2|φ〉〈φ| = H(n)(1− 2|0(n)〉〈0(n)|H(n)

Jozef Gruska October 27, 2020 13
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ANALYSIS

• Both operators V and W when acting on a superposition of states |a〉
and |φ〉 produce a superposition of the same states.

• Indeed, since 〈a|φ〉 = 1√
2n

, it holds

V |a〉 = −|a〉, V |φ〉 = |φ〉 − 2√
2n
|a〉

W |φ〉 = |φ〉 W |a〉 =
2√
2n
|φ〉 − |a〉

• As a consequence, a repeated application of the operator WV to the

resulting states starting with the state |φ〉 will always result in a state

that will be a superposition of |a〉 and |φ〉.

• If we denote by |a⊥〉 a state orthogonal to |a〉 in the subspace

generated by |a〉 and |φ〉, and by γ and θ angles

sin θ = cos γ = 〈a|φ〉 =
1√
2n

with θ = π
2 − γ, then

θ ≈ 1√
2n

for large n.

• The net effect of the operator W in two dimensional plane is to

transform any vector by its reflection with respect to the mirror line

through the origin along |φ〉.

• Similarly, the net effect of the operator V on any vector is its

reflection with respect to the vector |a⊥〉.
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• The net effect of the any application of the product WV ,
of two operators that are two-dimensional reflections, is
therefore a rotation about the angle 2θ.

θ

θ

2θ

V|φ>

|a >

|φ>

WV|φ>

|a>

• Since m iterations will result in the rotation by the angle
2mθ, with respect to the initial state |φ〉, and θ is very
close to 1√

2n
, the number of iterations needed to come to

the state orthogonal to |a⊥〉 (that is to the state |a〉),
should be approximately

π

4

√
2n

because for m = π
4

√
2n we have

2mθ = 2
π

4

√
2n

1√
2n

=
π

2
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THE CASE of UNKNOWN NUMBER of SOLUTIONS

To deal with the general case – that number of
elements we search for is not known – we will need
the following technical lemma:
Lemma For any real α and any positive integer m

m−1∑
r=0

cos((2r + 1)α) =
sin(2mα)

2 sinα
.
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MAIN LEMMA

Lemma Let f : Fn
2 → {0, 1} be a blackbox function with

t ≤ 3
42
n such x that F (x) = 1 and θ0 ∈ [0, π3 ] be defined by

sin2 θ0 = t
2n . Let m > 0 be any integer and r ∈r [0,m− 1].

If Grover’s iterate is applied to the initial state

1√
2n

∑
x∈Fn2

|x〉

r times, then the probability of seeing a solution is

Pr =
1

2
− sin(4mθ0)

4m sin(2θ0)

Amplit
and if m > 1

sin(2θ0)
, then Pr ≥ 1

4.

Proof We know that the probability of seeing solution after r
iteration of Grover’s iterate is sin2((2r + 1)θ0).

Therefore if r ∈r [0,m− 1], then the probability of seeing a
solution is

Pm =
1

m

m−1∑
r=0

sin2((2r + 1)θ0) (1)

=
1

2m

m−1∑
r=0

(1− cos((2r + 1)2θ0)) (2)

=
1

2
− sin(4mθ0)

4m sin(2θ0)
. (3)
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Moreover, if m ≥ 1
sin(2θ0)

, then

sin(4mθ0) ≤ 1 =
1

sin(2θ0)
sin(2θ0) ≤ m sin(2θ0)

and therefore sin(4mθ0)
4m sin(2θ0)

≤ 1
4 what implies that Pm ≥ 1

4
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ALGORITHM

Input A blackbox function f : Fn
2 → {0, 1}.

Output An y ∈ Fn
2 such that f (y) = 1.

Algorithm

1. Choose an x ∈r Fn
2 and if f (x) = 1 then output x and

stop.

2. Choose r ∈r [0,m− 1], where m =
√

2n + 1 and apply
Grover’s iterate Gn r times to

1√
2n

∑
x∈Fn2

|x〉.

Observe the outcome to get some y.

Algorithm works. Indeed, if t > 3
42
n, then algorithm will

output a solution after the first step with probability at least
3
4, Otherwise

m ≥
√√√√√√2n

t
≥ 1

sin(2θ0)

and the fact that we get a proper outcome with probability
at least 1

4 follows from previous lemma.
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ANOTHER DERIVATION of GROVER’s ALGORITHM

Given is an f : {0, 1, 2, . . . , 2n − 1} → {0, 1}, for which
there is a single y such that f (y) = 1. Given is also an
oracle O that can identify y if y comes as an input for O.
Namely, O provides for x ∈ {0, 1, 2, . . . , 2n − 1}

O|x〉 = (−1)f(x)|x〉.

We can say that oracle marks the solution by shifting the
phase.
The crucial ingredient is the following Grover operator,
defined as the one performing the following sequence of
actions:

1. apply the oracle O;

2. apply the Hadamard transform Hn;

3. apply the conditional phase shift Fc|0〉 = |0〉 and
Fc|x〉 = −|x〉 for x > 0;

4. apply Hn again.

Jozef Gruska October 27, 2020 22
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Observe that Fc = 2|0〉〈0| − I and therefore the Grover
operator G has the form

G = HnFcHnO = Hn(2|0〉〈0| − I)HnO

If we denote

|ψn〉 = Hn|0〉 =
1√
2n

2n−1∑
x=0
|x〉

and take into consideration that H2
n = I , the Grover

operator has the form

G = (2|ψn〉〈ψn| − I)O.

We show now that G can be seen as a two-dimensional
rotation. Indeed, denote

|α〉 =
1√

2n − 1

∑
x 6=y
|x〉

and then

|ψn〉 =

√√√√√√1− 1

2n
|α〉 +

√√√√√√ 1

2n
|y〉.

Observe now that the oracle O actually performs a reflection
across |α〉 in the plane P spanned by |α〉 and |y〉. Indeed, it
holds

O(a|α〉 + b|y〉) = a|α〉 − b|y〉.
Similarly, operator 2|ψ〉〈ψ| − I performs a reflection in P
across |ψ〉. Indeed, if |ψ⊥n 〉 is a unit vector orthogonal to
|ψn〉 in P , then

(2|ψn〉〈ψn| − I)(a|ψn〉 + b|ψ⊥n 〉) = a|ψn〉 − b|ψ⊥n 〉
Jozef Gruska October 27, 2020 23
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However, the product of two reflections, with respects to
lines L1 and L2, is a rotation, by an angle that is twice the
angle between these two lines. This also tells us that Gk|ψn〉
remains in P for all k

|y>
G |ψ>

θ

θ/2

θ/2

|ψ>

|α>

Ο |ψ>

The rotation angle can be now obtained as follows: Let

cos(θ/2) =

√√√√√√2n − 1

2n

and then

|ψn〉 = cos(
θ

2
)|α〉 + sin(

θ

2
)|y〉,

and therefore, see the figure above,

G|ψn〉 = cos(
3θ

2
)|α〉 + sin(

3θ

2
)|y〉

and

Gk|ψn〉 = cos(
2k − 1

2
θ)|α〉 + sin(

2k − 1

2
θ)|y〉

and the rest of reasoning is similar as in the first proof.
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QUANTUM SEARCH in ORDERED LISTS

A related problem to that of a search in an
unordered list is a search in an ordered list of n
items.

• The best upper bound known today is 3
4 lg n.

• The best lower bound known today is
1
12 lg n−O(1).

Jozef Gruska October 27, 2020 25
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EFFICIENCY of GROVER’s SEARCH

There are at least four different proofs that
Grover’s search is asymptotically optimal.

Quite a bit is known about the relation between
the error ε and the number T of queries when
searching an unordered list of n elements.

• ε can be an arbitrary small constant if O(
√
n)

queries are used, but not when o(
√
n) queries

are used.

• ε can be at most 1
2n
α using O(n0.5+α) queries.

• To achieve no error (ε = 0), θ(n) queries are
needed.

Jozef Gruska October 27, 2020 26
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APPLICATIONS of GROVER’s SEARCH

There is a variety of applications of Grover’s search algorithm. Let us

mention some of them.

• Extremes of functions computation (minimum, maximum).

• Collision problem Task is to find, for a given black-box function

f : X → Y , two different x 6= y such that f (x) = f (y), given a

promise that such a pair exist.

On a more general level an analogical problem deals with the so-called

r-to-one functions every element of their image has exactly r

pre-images. It has been shown that there is a quantum algorithm to

solve collision problem for r-to-one functions in quantum time

O((n/r)1/3). It has been shown in 2003 by Shi that the above upper

bound cannot be asymptotically improved.

• Verification of predicate calculus formulas. Grover’s search

algorithm can be seen as a method to verify formulas

∃xP (x),

where P is a black-box predicate.

It has been shown that also more generalized formulas of the type

∀x1∃y1∀x2∃y2 . . . ∀xk∃ykP (x1, y1, x2, y2, . . . , xk, yk)

can be verified quantumly with the number of queries O(
√

2(2k)).

Jozef Gruska October 27, 2020 27
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QUANTUM MINIMUM FINDING ALGORITHM

Problem: Let s = s1, s2, . . . , sn be an unsorted sequence of distinct

elements. Find an m such that sm is minimal.

Classical search algorithm needs θ(n) comparisons.

QUANTUM SEARCH ALGORITHM

1. Choose as a first “threshold” a random y ∈ {1, . . . , n}.

2. Repeat the following three steps until the total running time is more

than 22.5
√
n + 1.4 lg2 n.

2.1. Initialize

|ψ0〉 =
1√
n

n∑
i=1
|i〉|y〉

and consider an index i as marked if si < sy.

2.2. Apply Grover search to the first register to find an marked

element.

2.3. Measure the first register. If y′ is the outcome and sy′ < sy, take

as a new threshold the index y′.

3. Return as the output the last threshold y.

It is shown in my book that the above algorithm finds the minimum with

probability at least 1
2 if the measurement is done after a total number of

θ(
√
n) operations.
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EXTRAS

Jozef Gruska October 27, 2020 29
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GROVER’s SEARCH – MOTIVATION/GENERALIZATION

In Grover’s search the Grover iterate, that can be written in the form

Q = −HnI0HnIx0

is applied to the initial state

|ψ0〉 = H|0(n)〉,

where Ij is the operator that inverts sign at j, that is

Ij|x〉 =

 −|x〉 if x=j;

|x〉; otherwise

We shall see that the Hadamard transformation can be replaced, in the

Grover iterate, by any unitary transformation.

We shall also provide motivation for all components of Grover’s iterate

and Grover’s search.

The basic observation is a simple result from elementary geometry.

MO

1

2

M

α

Lemma 0.2 Let M1 and M2 be two lines in the plane intersecting at the

point O and let α be the angle from M1 to M2.

Then the operation of reflection with respect to M1, followed by reflection

with respect to M2 is just the rotation by angle 2α around the point O.

Jozef Gruska October 27, 2020 30
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OBSERVATION

For any state |ψ〉 the operator

I|ψ〉 = I − 2|ψ〉〈ψ|

is the operator of reflection in the hyperplane orthogonal to |ψ〉.

Example 0.3 Any state |φ〉 can be uniquely expressed in the form

|φ〉 = α|ψ〉 + β|ψ⊥〉,

where |ψ⊥〉 is a state orthogonal to |ψ〉.

In such a case

I|ψ〉|φ〉 = (I − 2|ψ〉〈ψ|)|φ〉 = −α|ψ〉 + β|ψ⊥〉

that is the parallel component is inverted, the orthogonal is unchanged.

Example 0.4
I|x0〉 = I − 2|x0〉〈x0|.

Lemma 0.5 If |φ〉 is any state then I|ψ〉 preserves the 2-dimensional

subspace spanned by |φ〉 and |ψ〉.

Proof. It holds

I|ψ〉|ψ〉 = −|ψ〉
and

I|ψ〉|φ〉 = −α|ψ〉 + β|ψ⊥〉 = −2α|ψ〉 + α|ψ〉 + β|ψ⊥〉 = −2α|ψ〉 + |φ〉.

Jozef Gruska October 27, 2020 31
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Lemma 0.6 For any unitary operator U it holds

UI|ψ〉U
−1 = IU |ψ〉.

Proof.

UI|ψ〉U
−1 = U(I − 2|ψ〉〈ψ|)U−1 (4)

I − 2U |ψ〉〈ψ|U−1 = I − 2|Uψ〉〈Uψ| = IU |ψ〉 (5)

Generalized Grover iterate

Q = −UI0U−1Ix0
has therefore the form

Q = −IU |0(n)〉I|x0〉

Jozef Gruska October 27, 2020 32
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Lemma 0.7 For any two dimensional real (vector) ψ

−Iψ = Iψ⊥.

φ

ψ

ψ

Iψ

Iψ

I

Generalized Grover’s iterate can therefore be written as

Q = I|w〉I|x0〉,

where |w〉 is orthogonal to U |0(n)〉 and lies in the plane of U |0(n)〉 and

|x0〉.

Since we are working with real coordinates in two-dimensional subspace

spanned by U |0n〉, |x0〉, previous theorem shows that Grover’s iterate Q

is just operation of rotation through the angle 2α, where α is the angle

between |w〉 and |x0〉. Hence

cosα = 〈x0|w〉 sinα = 〈x0|U |0(n)〉〉.
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NEW INTERPRETATION of GROVER’s SEARCH

Problem: Given Ix0 as a black box, find x0.

Idea: Apply Ix0 to a (random) state |ω〉, or to a U |0(n)〉 for a (random)

unitary transformation U .

By previous results transformation

I|ω〉I|x0〉

provides a way moving around in the subspace spanned by |x0〉 and |ω〉
— it is just a rotation by twice the angle between |x0〉 and |ω〉.

The idea is to use such a rotation that gets us fast from |ω〉 to |x0〉 (this

process is called amplitude amplification) and when we are close to

|x0〉, then to perform measurement in the standard basis {|i〉}2n−1i=0 to get

x0.

Problem: We do not know the angle α between |ω〉 and |x0〉 and,

consequently, we do not know the angle 2α of rotation provided by

I|ω〉I|x0〉 and therefore we do not know how many times to apply Grover’s

iterate.

Solution: If we choose |ω〉 = 1√
2n

∑2n−1
i=0 |i〉, then

cosα = 〈x0, ω〉 =
1√
2n
.
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PROPERTIES of the INVERSION Iψ

A good insight into Grover’s algorithm provides inversion

I|ψ〉 = I − 2|ψ〉〈ψ| in Hilbert space H about the hyperplane

perpendicular to |ψ〉. In the case of basis states I|x〉 = Vf(|x〉), where

f (x0) = 1 and f (x) = 0 otherwise.

Definition Let for |ψ〉, |ξ〉 ∈ H, 〈ψ|ξ〉 be real. Let us define

SC = span(|ψ〉, |ξ〉) = {x|ψ〉 + y|ξ〉, x, y ∈ C}

SR = span(|ψ〉, |ξ〉) = {x|ψ〉 + y|ξ〉, x, y ∈ R}
to be complex and real inner product subspaces of H. If |ψ〉 and |ξ〉 are

linearly independent, then SR is a 2-dimensional real inner-product space

lying inside the complex 2-dimensional subspace SC .

Theorem Let |ψ〉, |ξ〉 ∈ H be pure states with real inner product. It

holds

• Both SC and SR are invariant under mappings I|ψ〉 and I|ξ〉.

• If L|ψ⊥〉 is the line in the plane SR which passes through the origin and

is perpendicular to |ψ〉, then I|ψ〉 restricted to SR is a reflection in the

line L|ψ⊥〉.

• If |ψ⊥〉 is a unit vector in SR perpendicular to |ψ〉, then SR, then

−I|ψ〉 = I|ψ⊥〉.

• If U is a unitary transformation on H, then

UI|ψ〉U
∗ = IU |ψ〉.
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Another View of Grover’s Algorithm

Grover’s iterate has now for |ψ0〉 = H|0〉 the form

Q = −HI|0〉HI|x0〉 = −I|ψ0〉I|x0〉

In particular, for a restriction of Q to SR,

Q|SR = I|ψ⊥0 〉
I|x0〉

is the composition of two inversions in SR: the first inversion is in the

line L|x⊥0 〉
in SR passing through the origin and having |x0〉 as a normal;

the second in the line L|ψ0〉 passing through the origin having |ψ⊥0 〉 as a

normal.

|x    >

|x    >

L
|x  >

L

α
α

β

β

0

0

|ψ  >

|ψ >

0

0

The key next result is the already mentioned theorem from plane

geometry:

Theorem If L1 and L2 are lines in the Euclidean 2-dimensional plane

intersecting at a point O; and if β is the angle from L1 to L2, then

reflection in L1 followed by reflection in L2 is just rotation by the angle

2β about the point O.

Corollary If β is the angle from |x⊥0 〉 to |ψ0〉, then Q|SR = I|ψ⊥0 〈
I|x0〉 is

a rotation about the origin by the angle 2β.
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GROVER’s ALGORITHM

The key idea of Grover’s algorithm is to move |ψ0〉 = H|0〉 toward the

unknown state |x0〉 by successively applying the rotation given by Q to

|ψ0〉. Indeed, starting with the state

|ψ0〉 = sin β|x0〉 + cos β|x⊥0 〉

after k applications of Grover’s iterate Q we get the state

|ψk〉 = Qk|ψ0〉 = sin[(2k + 1)β]|x0〉 + cos[(2k + 1)β]|x⊥0 〉.

This iteration has to be applied k times such that

sin[(2k + 1)β]

is as close to 1 as possible. Hence

k = b π
4β
− 1

2
c)

where
1√
2n

= 〈x0|ψ0〉 = cos(
π

2
− β) = sin β.

The probability of error is

cos2[(2k + 1)β] ≤ sin2 β ≤ sin2 β =
1

2n
.

Jozef Gruska October 27, 2020 37



Quantum computing 7, 2020

AMPLITUDE AMPLIFICATION

Another natural generalization of Grover’s search yields additional

important quantum algorithm design techniques.

Problem: Let f : X → {0, 1} be a function that partition X into

good (f (x) = 1) and bad (f (x) = 0) elements and let A be a quantum

algorithm such that A|0〉 =
∑
x∈X αx|x〉 and, finally, let a be the

probability that a good element is obtained if A|0〉 is measured.

In average we need to repeat the process of running A, measuring the

outcome and checking it (using f), about 1
a times, to find a good

element.

Amplitude amplification is a process that allows to find a good x

after expected 1√
a number of applications of the algorithm A and of its

inverse, assuming A makes no measurement.

In the case a is known, a good x can be found in the worst case after 1√
a

applications of A and of its inverse.

This quadratic speed-up can be obtained also for a large family of search

problems (for which there are faster classical algorithms as the naive

quantum ones).
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Amplitude amplification - basic idea

If a probabilistic algorithm provides a solution of a problem with a

probability a > 0, then by repeating the algorithm we can increase the

probability of success by a constant at each run.

Amplitude amplification technique increases probability amplitude of

success roughly by a constant at each run.

Because squares of the amplitudes correspond to probabilities, it suffices

to repeat amplitude amplification procedure approximately 1√
a times to

achieve success with probability almost 1.

Observe that in Grover’s search problem the initial probability of success

by the measurement is 1
2n .

Amplitude estimation

A combination of ideas of Grover’s and Shor’s algorithms allows to

perform amplitude estimation, a process that allows to estimate the

probability a.

An application of amplitude estimation techniques allows to estimate the

number of x such that f (x) = 1. This is also called quantum

counting.
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AMPLITUDE AMPLIFICATION – DETAILS

Let H be a Hilbert space and Z = {0, 1, . . . , 2n − 1} be a set of names

of its basis states. Let a mapping f : Z→ {0, 1} partition Z into good

(f (x) = 1) and bad (f (x) = 0) states. Good (bad) basis states generate

good (bad) subspace H1 (H0).

For each pure state |ψ〉 ∈ H there is a unique decomposition

|ψ〉 = |ψ1〉 + |ψ0〉,

where |ψi〉 ∈ Hi.

The probability that measurement of |ψ〉 provides a good (bad) state is

〈ψ1|ψ1〉 = a (〈ψ0|ψ0〉 = 1− a).

The amplification process is realized by repeatedly applying the operator

Q = −AV0A−1Vf

The first key point is that Q maps subspace Hψ spanned by vectors |ψ1〉
and |ψ0〉 into itself. Indeed, it holds

Q|ψ1〉 = (1− 2a)|ψ1〉 − 2a|ψ0〉
Q|ψ0〉 = 2(1− a)|ψ1〉 − (2a− 1)|ψ0〉

because

Q = IψIψ0,

where

Iψ = I − 2|ψ〉〈ψ|, Iψ0 = I − 2

1− a
|ψ0〉〈ψ0|.

Let H⊥ψ be the orthogonal complement of Hψ in H. The operator

AI0A∗ acts as identity on H⊥ψ and therefore Q2 acts as identity on H⊥ψ
and every eigenvector on H⊥ψ has eigenvalues +1 and −1.
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In order to understand the action of Q on an arbitrary state |χ〉 it is

therefore sufficient to understand the action of Q on the projection of

|χ〉 on Hψ.

The operator Q is unitary and on Hψ it has two eigenvectors

|ψ±〉 =
1

2
(

1√
a
|ψ1〉 ±

i√
1− a

|ψ0〉),

provided 0 < a < 1 and eigenvalues are

λ± = e±i2θa,

where θa is such an angle in [0, π/2] defined by

sin2(θa) = a = 〈ψ1|ψ1〉.

Since

A|0〉 = |ψ〉 =
−i√

2
(eiθa|ψ+〉 − e−iθa|ψ−〉)

It is now clear that after j applications of iterate Q yields

Qj|ψ〉 =
−i√

2
((2j+1)iθa|ψ+〉 + e−(2j+1)iθa|ψ−〉 (6)

=
1√
a

sin((2j + 1)θa)|ψ1〉 +
1√

1− a
cos((2j + 1)θa)|ψ0〉. (7)

On this basis it is straightforward to show:

Theorem(Quadratic speedup) Let A be a quantum algorithm that uses

no measurement and f : {0, 1, . . . , 2n − 1} → {0, 1}. If the initial

probability of success is a, then after computing QmA|0]〉, where

m = dπ/4θae, where sin2 θa = a, 0 < θa ≤ π
2 , the outcome is good with

probability at least max(
√

1− a,
√
a).

In the case of the original Grover’s algorithm a = 1
2n
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APPENDIX

We prove now several technical results that were
used in the main part of this chapter.
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Proof that

−HnV
n
0 Hn = Dn =



−1 + 2
2n

2
2n . . . 2

2n
2
2n −1 + 2

2n
. . . 2

2n... ... . . . ...
2
2n

2
2n . . . −1 + 2

2n


.

(−HnV
n
0 Hn)xy = − ∑

z∈F2
n
(HnV

n
0 )xz(Hn)zy (8)

= −∑
z

∑
w

(Hn)xw(V n
0 )wz(Hn)zy (9)

= − 1

2n
∑

z∈Fn
2

(−1)x·z)V n
0 )zz(−1)z·y (10)

=
1

2n
(2− ∑

z∈Fn
2−{0}

(−1)(x+y)·z) (11)

=


2
2n , if x 6= y

−1 + 2
2n if x = y

(12)
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Solution of recurrent equations (Hirvensalo, 2001)

kj+1 =
2n − 2t

2n
kj +

2(2n − t)
2n

lj, lj+1 =
2n − 2t

2n
lj −

2t

2n
kj

with the initial condition

k0 =
1√
2n

= l0.

It is clear that all kj and lj are real and all points (kj, lj) are points of

the ellipse defined by equation

tr2j + (2n − t)l2j = 1.

Hence
kj = 1√

t
sin θj

tj = 1√
2n−t cos θj

for some number θj. Our basic recursion for kj=1 and lj+1 are then:

sin θj+1 = (1− 2t

2n
) sin θj +

2

2n

√
t(2n − t) cos θj (13)

cos θj+1 = − 2

2n

√
t(2n − t) sin θj + (1− 2t

2n
) cos θj (14)

Since t is number of elements such that f (y) = 1 we have

1− 2t
2n ∈ [−1, 1]. we can therefore choose ω ∈ [0, π] such that

cosω = 1− 2t
2n . This then implies that sinω = 2

2n

√
t(2n − t) and

therefore our recurrent equations get a nice form

sin θj+1 = sin(θj + ω)

cos θj+1 = cos(θj + ω).
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and since the boundary condition gives us sin2 θ0 = t
2n we have as a

solution of our recurrences

kj = 1√
t
sin(tω + θ0),

lj = 1√
2n−t cos(tω + θ0).

where θ0 ∈ [0, π/2] and ω ∈ [0, π]. Since cosω = 1− 2t
2n we have

cosω = 1− 2 sin2 θ0 = cos 2θ0

and so ω = 2θ0
kj = 1√

t
sin((2t + 1)θ0),

lj = 1√
2n−t cos((2t + 1)θ))

.
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PHASE ESTIMATION

Closely related to implementation of Fourier transform is

a method for phase estimation. Given is a unitary

operator U with an eigenvector |u〉 and eigenvalue e2πiφ,

where |φ〉 is unknown. The task is to determine φ.

For a related control-U j-gate it holds

U j(
1√
2

(|0〉+ |1〉)]|u〉 =
1√
2

(|0〉|u〉+ e2πijφ|1〉|u〉) =
1√
2

(|0〉+ e2πjφ|1〉)|u〉.

This means that the first n-qubit of the circuit produces

|0>

|0>

|0>

|u> |u>
U U U
2 2 20 1 n−1

H

H

H

the state

1√
2n

n⊗
t=1

(|0〉 + e2πi2
t−1φ|1〉) =

1√
2n

2n−1∑
k=0

e2πikφ|k〉

The last equality follows from the lemma on next slide.
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LEMMA

Let x ∈ {1, . . . , 2n − 1} and let its binary representation be
x1x2 . . . xn. For quantum Fourier transform

F |x〉 =
1√
2n

2n−1∑
k=0

e2πijk/2
n|k〉

it holds

Lemma

F |x〉 =
1√
2n

[(|0〉+e2πi0.xn|1〉)(|0〉+e2πi0.xn−1xn|1〉) . . . (|0〉+e2πi0.x1...xn|1〉)].

Proof This follows form calculations

F |x〉 =
1√
2n

2n−1∑
k=0

e2πixk/2
n|k〉 =

1√
2n

1∑
k1=0

. . .
1∑

kn=0
exp(2πix

n∑
l=1
kl2
−l)|x1 . . . xn〉(15)

=
1√
2n

1∑
k1=0

. . .
1∑

kn=0

n⊗
l=1
e2πixkl/2

l|kl〉 =
1√
2n

n⊗
l=1

1∑
kl=0

e2πixkl/2
l|kl〉 (16)

=
1√
2n

n⊗
l=1

(|0〉 + e2πix/2
l|1〉) (17)
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AMPLITUDE AMPLIFICATION

In the original Grover’s search algorithm the first step is to
apply the operator H⊗n to the state |0n〉 to obtain a uniform
superposition of all basis states.

The above step can be seen as follows: the operator H⊗n

guesses a solution in such a way that all possible solutions
have the same probability.

Grover’s idea can be applied to any algorithm A which
guesses a solution by setting up some other superposition of
all basis states.
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The state
|ψ〉 = A|0n〉 =

∑
x
αx|x〉

can be naturally splitted as follows

|ψ〉 =
∑

x∈Xgood

αx|x〉 +
∑

x∈Xbad

αx|x〉

Observe that

pgood =
∑

x∈Xgood

|αx|2 and pbad =
∑

x∈Xbad

|αx|2

are probabilities of measuring a good and a bad state.

In a nontrivial case 0 < pgood < 1, we can consider the states

|ψgood〉 =
∑

x∈Xgood

αx√
pgood

|x〉 |ψbad〉 =
∑

x∈Xbad

αx√
pbad

|x〉

and then we can write

|ψ〉 =
√
pgood|ψgood〉 +

√
pbad|ψbad〉

or
|ψ〉 = sin(θ)|ψgood〉 + cos(θ)|ψbad〉

where θ ∈ (0, π2), sin2(θ) = pgood.

The state |ψ〉 is orthogonal to the state

|ψ̄〉 = cos(θ)|ψgood〉 − sin(θ)|ψbad〉

and therefore

{|ψ〉, |ψ̄〉} and {|ψgood〉, |ψbad〉}
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are two orthonormal bases in the same 2-dimensional
subspace.

Let us now consider operators Uψ⊥ and Uf defined by

Uψ⊥|ψ〉 = |ψ〉 and Uψ⊥|φ〉 = −|φ〉

for all |φ〉 orthogonal to |ψ〉 and

Uf : |x〉 → (−1)f(x)|x〉

By straightforward calculations one can derive relations

U⊥ψ Uf |ψ〉 = cos(2θ)|ψ〉 + sin(2θ)|ψ̄〉

and also

U⊥ψ Uf |ψ〉 = sin(3θ)|ψgood〉 + cos(3θ)|ψbad〉

The last state is illustrated in the following figure
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>goodψ|

|ψbad >
θ

2θ
|ψ >

Uψ U f ψ| >

Observe now that for any real θ the operator Uf does the
following

Uf(sin(θ)|ψgood〉 + cos(θ)|ψbad〉 = − sin(θ)|ψgood〉 + cos(θ)|ψbad〉
and therefore Uf performs a reflection about the axis defined
by the vector |ψbad〉 and similarly

U⊥ψ (sin(θ)|ψ〉 + cos(θ)|ψ̄〉 = sin(θ)|ψ〉 − cos(θ)|ψ̄〉

and therefore U⊥ψ performs a reflection about the axis
defined by the state |ψ〉.

It is a well-known fact from the elementary geometry that
two such reflections correspond to a rotation through the
angle 2θ in the 2-dimensional space.

An application of the operator G = U⊥ψ Uf k-times therefore
rotates the initial state |ψ〉 to the state

Gk|ψ〉 = cos((2k + 1)θ)|ψbad〉 + sin((2k + 1)θ)|ψgood

If such a state is measured when (2k + 1)θ ≈ π
2 , then with

very high probability a good basic state is revealed.

Jozef Gruska October 27, 2020 51



Quantum computing 7, 2020

For small θ we have θ ≈ sin(θ) =
√
pgood and therefore a

measurement should be performed after
k =≈ π

4θ ≈
π

4
√
pgood]

iterations.

An application of such a procedure therefore requires to
know the probability with which the operator A guesses a
solution to f (x) = 1.
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