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Chapter 5. SIMPLE QUANTUM ALGORITHMS

This chapter presents very basic techniques of designing
quantum algorithms that are more efficient than their
classical counterparts.

Quantum algorithms for the Deutsch, Deutsch-Jozsa and
Simon problems are presented and analyzed.

Power of quantum parallelism, constructive and
destructive interference and entanglement are
illustrated.
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QUANTUM PARALLELISM

If

f : {0, 1, . . . , 2n − 1} =⇒ {0, 1, . . . , 2n − 1}
then the mapping

f ′ : (x, b) =⇒ (x, b⊕ f(x)),

where x, b ∈ {0, 1, . . . , 2n − 1} is one-to-one and therefore there is a unitary transformation Uf such

that.

Uf(|x〉|0〉) =⇒ |x〉|f(x)〉
Let

|ψ〉 = 1√
2n

2n−1
∑

i=0
|i〉|0〉

With a single application of the mapping Uf we get

Uf |ψ〉 =
1√
2n

2n−1
∑

i=0
|i〉|f(i)〉

IN A SINGLE COMPUTATIONAL STEP 2n VALUES OF f ARE ”COMPUTED”! - in

some sense
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INTERPRETATION of QUANTUM PARALLELISM

• Last application of the unitary Uf results in a state with 2n values of f .

• In case of n = 100 that resulting state contains billion billion trillion values of
function f .

• Such a massive parallelsm is an important part of the magic the quantum
computation exhibits.

• However, the major part of such a magic is only apparent.

• Actually one cannot say that the result of such a computation is 2n evaluations of f .

• All one can say is that such a unitary mapping results in a state that fully specifies
all values of the function f .

• There is, however, in general no way to learn from the resulting state all the values
of the function f .

• There is, however, often a way to get, using such quantum parallellis, several
important relations between values of the function f - usually at the price of being
no longer able to get (some) values of f .
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INTERPRETATION of QUANTUM PARALLELISM I

It is wrong, and deeply misleadingm to say that after an application
of the unitary Uf as folllows

Uf |ψ〉 =
1√
2n

2n−1
∑

i=0
|i〉|f(i)〉

the quantum computer has evaluated the function f(x) for all
0 ≤ x < 2n.

Such assertions are based on the mistaken view that each quantum
state encodes a propeety inherent in the qubits.

The state encodes only the possibilities available for the extraction
of information from those qubits.

In spite of that quantum parallelism nevertheles permits a quantum
computer to perform tricks that no classical computer can
accomplish.
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MEASUREMENT — EXAMPLE

If we “measure” second register of the state

|φ〉 = 1√
2n

2n−1
∑

i=0
|i〉|f(i)〉

with respect to the standard basis {|z〉 | z ∈ {0, 1}n}, then the state |φ〉 collapses into one of the states

|φy〉 =
1

√

ky

∑

{x | f(x)=y}
|x〉|y〉,

where

• y is in the range of the values of the function f .

• ky = |{x | f(x) = y}|.
The collapse into the state |φy〉 happens with the probability

ky
2n

and into the classical world one gets information which of y in the range of f , in the second register,

has been (randomly) chosen.

This fact we usually interpret that y is the (classical) result of the measurement of the second register

of the state|φ〉, with respect to the standard basis.
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REDUCTION of PROJECTIVE MEASUREMENT TO

COMPUTATIONAL BASIS MEASUREMENT - I

>φj|αj U m

m

m

| >j U
−1 |φj >

Figure 1: Transformation of any projection measurement to computational basis measurement - 1 version

The above figure shows one way how to reduce measurement with respect to any
orthonormal basis {|φj〉}2

n

j to a measurement with respect to the computational basis

{|j〉}2nj=1. After the measurement of the state
∑αj|φj〉 with respect to the above

basis a state |φj0〉 is obtained with probability |αj0|2.
In the above circuit, at first a unitary transformation U is applied that transforms the
basis {|φj〉}j to the computational basis {|j〉}2nj=1, that is it transforms each state

|φj〉 into a state |j ′〉. If, afterwards, the compuational measurement is performed,
then the result is a state |j ′′〉 and if the inverse unitary is applied afterwards, the state
|φj ′′′〉 is obtained.
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REDUCTION of PROJECTIVE MEASUREMENT TO

COMPUTATIONAL BASIS MEASUREMENT - II
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|

Figure 2: Transformation of any projection measurement to computational basis measurement - 2 version

Another way to implement the von Neumann measurements. At first
the outcome of the transformation U is mapped into the ancillary
registers to create the state ∑

j αj|j〉|j〉. The inverse basis changing
unitary U−1 leaves as the outcome the state ∑

j |φj〉|j〉. The following
measurement of the ancillary register in the computational basis gives
the outcome ”j” with probability |αj|2 and leaves the main register in
the state |φj〉.
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Uf OPERATOR versus Vf OPERATOR

Another useful operator related to functions

f : {0, 1, . . . , 2n − 1} → {0, 1}

is the operator

Vf |x〉 → (−1)f(x)|x〉,

where x ∈ {0, 1, 2, . . . , 2n − 1}, which can be expressed using the operator

Uf : |x, b〉 → |x, b⊕ f(x)〉
and one additional qubit, called again ancilla, in the state 1√

2
(|0〉 − |1〉) as follows

Uf |x,
1√
2
(|0〉 − |1〉)〉 =

1√
2
(x, 0⊕ f(x)〉 − |x, 1⊕ f(x)〉

= (−1)f(x)|x〉 ⊗ 1√
2
(|0〉 − |1〉)

Warm-up: Show how the operator Vf can be used to implement Uf .
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EXAMPLE

Mapping Vf : {0, 1}2 ↔ {0, 1} is realized by the unitary
matrix

Vf =





































(−1)f(00) 0 0 0

0 (−1)f(01) 0 0

0 0 (−1)f(10) 0

0 0 0 (−1)f(11)





































.
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DEUTSCH PROBLEM – RANDOMIZED SOLUTION

Given a function f : {0, 1} → {0, 1}, as a black box, the task is to determine whether f is constant or

balanced.

In classical computing 2 calls of f are needed.

In quantum computing 1 call of f is sufficient.

Quantum algorithm presented below solves the problem with probability 1
2 in such a way that we know

whether the answer is correct. Since

Uf : (
1√
2
(|0〉 + |1〉)|0〉) → 1√

2
(|0, f(0)〉 + |1, f(1)〉),

the result can be written, in the standard and dual basis, as follows:

if f is constant:
1√
2
(|0, f(0)〉 + |1, f(1)〉) = 1√

2
(|0′, 0′〉 + (−1)f(0)|0′, 1′〉)

and if f is balanced:

1√
2
(|0, f(0)〉 + |1, f(1)〉) = 1√

2
(|0′, 0′〉 + (−1)f(0)|1′, 1′〉).

If the measurement of the second qubit in the dual bases provides 0 we have lost all information about

f . Otherwise the measurement of the first qubit yields the correct result.

The corresponding circuit is shown in the following Figure.
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(a)

 H
U

U
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|0> - f is constant

 |1> - f is balanced

(b)

 f

f

|0> - f is constant

|1> - f is balanced
|0> - no information about f

|f(0) + f(1)>
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M
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 H H

|1> - information by first qubit

|0>

|0>

|0>

|1>
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DEUTSCH PROBLEM – DETERMINISTIC SOLUTION

Apply first the Hadamard transform on both registers in the initial
state |0, 1〉 and then Uf to get

|0〉|1〉 H2→ 1

2
(|0〉 + |1〉)(|0〉 − |1〉)

=
1

2
(|0〉(|0〉 − |1〉) + |1〉(|0〉 − |1〉))

Uf→ 1

2
(|0〉(|0⊕ f(0)〉 − |1⊕ f(0)〉) + |1〉(|0⊕ f(1)〉 − |1⊕ f(1)〉))

=
1

2
(

1
∑

x=0
(−1)f(x)|x〉)(|0〉 − |1〉)

=
1

2
(−1)f(0)(|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉). (1)
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Hence

|0〉|1〉 H2→ 1
2
(−1)f(0)(|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉) (2)

From the right side in (2), the two possibilities for f to be constant
lead to the left sides in (3) and (4) and two possibilities for f to be
balanced lead to the left sides in (5) and (6):

1

2
(|0〉 + |1〉)(|0〉 − |1〉) = |0′〉|1′〉 if f(0) = 0; (3)

1

2
(|0〉 + |1〉)(|1〉 − |0〉) = −|0′〉|1′〉 if f(0) = 1; (4)

1

2
(|0〉 − |1〉)(|0〉 − |1〉) = |1′〉|1′〉 if f(0) = 0; (5)

1

2
(|0〉 − |1〉)(|1〉 − |0〉) = −|1′〉|1′〉 if f(0) = 1. (6)

By measuring the first bit, with respect to the dual basis, we can
immediately see whether f is constant or balanced.
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EVEN-ODD PROBLEM

A function f : {0, 1}2 ↔ {0, 1} is called even (odd) if the range of f has even (odd)
number of ones.

Classically, given such a function f as an oracle, one needs 4 calls of f to determine
whether f is even or odd.

Quantumly, it holds

(H ⊗H)Vf(I ⊗H)Vf(H ⊗H)|00〉 =


















1√
2
(±|00〉 + |01〉) if f is even

1√
2
(±|10〉 + |01〉) if f is odd

and therefore using only two quantum calls of f (of Vf), the problem is transformed
into the problem to distinguish two non-orthogonal quantum states.

Unfortunately, there is no projection measurement that can faithfully distinguish such
non-orthogonal states. However, as discussed later, there is so called POVM
measurement that either tells us whether a given function f is even or odd or the
algorithm tells us “I don’t know”.
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DEUTSCH-JOZSA PROMISE PROBLEM

Given a function f : {0, 1}n → {0, 1}, as a black box, that is (promised
to be) balanced or constant. Decide which property f has.

Classical deterministic computers needs, in the worst case,
exponential time to solve the problem. Surprisingly, there is a
quantum algorithm to solve the problem by applying f only once.

Let us consider one quantum register with n qubits and apply the
Hadamard transformation Hn to the first register. This yields

|0(n)〉 Hn→ |φ〉 = 1√
2n

2n−1
∑

i=0
|i〉.

By applying the transformation Vf on the first register we get

Vf |φ〉 =
1√
2n

2n−1
∑

i=0
(−1)f(i)|i〉 = |φ1〉.

What has been achieved by these operations? The values of f were
transferred to the amplitudes.
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This can be utilized, through the power of quantum superposition
and a proper observable, as follows.

Let us consider the observable D = {Ea, Eb}, where Ea is the
one-dimensional subspace spanned by the vector

|ψa〉 =
1√
2n

2n−1
∑

i=0
|i〉,

and Eb = (Ea)
⊥. The projection of |φ1〉 into Ea and Eb has the form

|φ1〉 = α|ψa〉 + β|ψb〉 with |α|2 + |β|2 = 1,

where |ψb〉 is a vector in Eb such that |ψa〉 ⊥ |ψb〉. A measurement by
D provides “the value a or b” with probability |α|2 or |β|2.
It is easy to determine α in

|φ1〉 = α|ψa〉 + β|ψb〉 with |α|2 + |β|2 = 1,

using the projection of |φ1〉 onto Ea by the computation

α = 〈ψa|φ1〉.
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Indeed

α = 〈ψa|φ1〉 =






1√
2n

2n−1
∑

i=0
〈i|













1√
2n

2n−1
∑

j=0
(−1)f(j)|j〉







=
1

2n
2n−1
∑

i=0

2n−1
∑

j=0
(−1)f(j)〈i|j〉 = 1

2n
2n−1
∑

i=0
(−1)f(i),

because 〈i|j〉 = 1 if and only if i = j and 0 otherwise.

If f is balanced, then the sum for α contains the same number of 1s
and −1s and therefore α = 0. A measurement of |φ1〉, with respect to
D therefore provides, for sure, the outcome b.

If f is constant, then either α = 1 or α = −1 and therefore the
measurement of |φ1〉 with respect to D always gives the outcome a.

A single measurement of |φ1〉, with respect to D, therefore provides
the solution of the problem with probability 1.
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SECOND SOLUTION

If the Hadamard transformation is applied to the state |φ1〉 we get
the state

|φ2〉 =
1√
2n

2n−1
∑

i=0
(−1)f(i)

1√
2n

2n−1
∑

u=0
(−1)u·i|u〉 = 1

2n
2n−1
∑

u=0
(
2n−1
∑

i=0
(−1)u·i(−1)f(i))|u〉.

Case 1 f is constant. Then

2n−1
∑

i=0
(−1)u·i =















0 if u 6= 0
2n if u = 0

One measurement of the register therefore provides u = 0 with
probability 1.

Case 2 f is balanced. In such a case

2n−1
∑

i=0
(−1)u·i(−1)f(i) = 0 if and only if u = 0.

One measurement therefore shows whether f is balanced or not.
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DEUTSCH-JOZSA PROBLEM - RANDOMIZED SOLUTION

It is easy to show that though deterministic algorithms to solve the Deutsch-Jozsa
problem for n = 2k require 2k−1 + 1 queries in the worst case, there are probabilistic
algorithms to solve this problem relatively fast, if we are willing to tolerate some error.

Indeed, a randomized algorithm can solve the Deutsch-Jozsa problem with probability
of error at most 1

3
with only two queries.

The probability of error can be reduced to less than 1
2k

with only k + 1 queries.

Therefore, in spite of the fact that there is an exponential gap between deterministic
classical and exact quantum query complexity, the gap between randomized classical
complexity and quantum query complexity is in this case constant in the case of
constant error.
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. SIMON’s PROBLEM

Simon has discovered a simple problem with expected polynomial
time quantum algorithm, but with no polynomial time randomized
algorithm.

Let f : {0, 1}n → {0, 1}n be a function such that either f is one-to-one
or f is two-to-one and there exists a single 0 6= s ∈ {0, 1}n such that

∀x 6= x′(f(x) = f(x′) ⇔ x′ = x⊕ s).

The task is to determine which of the above conditions holds for f
and, in the second case, to determine also s.

To solve the problem two registers are used, both with n qubits, and
the initial states |0(n)〉, and (expected) O(n) repetitions of the
following version of the so-called Hadamard-twice scheme:
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1. Apply the Hadamard transformation on the first register,
with the initial value |0(n)〉, to produce the superposition
1√
2n

∑

x∈{0,1}n |x, 0(n)〉.
2. Apply Uf to compute |ψ〉 = 1√

2n
∑

x∈{0,1}n |x, f(x)〉.
3. Apply Hadamard transformation on the first register to

get
1

2n
∑

x,y∈{0,1}n
(−1)x·y|y, f(x)〉.

4. Observe the resulting state to get a pair (y, f(x)).

Case 1: f is one-to-one. After performing the first three steps of the
above procedure all possible states |y, f(x)〉 in the superposition are
distinct and the absolute value of their amplitudes is the same,
namely 2−n.

n− 1 independent applications of the scheme Hadamard-twice

therefore produce n− 1 pairs (y1, f(x1)), . . . , (yn−1, f(xn−1)), distributed
uniformly and independently over all pairs (y, f(x)).
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Case 2: There is some s 6= 0(n) such that

∀x 6= x′((f(x) = f(x′) ⇔ x′ = x⊕ s).

In such a case for each y and x the states |y, f(x)〉 and |y, f(x⊕ s)〉 are
identical. Their total amplitude α(x, y) has the value

α(x, y) = 2−n((−1)x·y + (−1)(x⊕s)·y).

If y · s ≡ 0 mod 2, then x · y ≡ (x⊕ s) · y mod 2 and therefore
|α(x, y)| = 2−n+1; otherwise α(x, y) = 0. n independent applications of
the scheme Hadamard-twice therefore yield n− 1 independent pairs

(y1, f(x1)), . . . , (yn−1, f(xn−1)) such that yi · s ≡ 0 (mod 2),

for all 1 ≤ i ≤ n− 1.

In both cases, after n− 1 repetitions of the scheme Hadamard-twice,
n− 1 vectors yi, 1 ≤ i ≤ n− 1, are obtained.
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If these vectors are linearly independent, then the system of n− 1
linear equations in Z2,

yi · s ≡ 0 (mod n)

can be solved to obtain s.

In Case 2, if f is two-to-one, s obtained in such a way is the one to
be found.

In Case 1, s obtained in such a way is a random string.

To distinguish these two cases, it is enough to compute f(0) and f(s).

If f(0) 6= f(s), then f is one-to-one.

If the vectors obtained by the scheme Hadamard-twice are not
linearly independent, then the whole process has to be repeated.
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LOWER BOUND

It can be shown that each classical algorithm needs to
perform Ω(

√
2n) queries to solve Simon’s problem.

Indeed, let us assume that f is a randomly chosen
function satisfying requirements of the Simon’s problem.
If k f-queries are performed then the number of

potential s is decreased at most by k(k−1)
2 possibilities.

In total there are 2n potential s.

Hence at least in half of the cases any classical algorithm
needs to perform Ω(

√
2n) f-queries.
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COMPUTATIONAL POWER of ENTANGLEMENT

As illustrated in the following examples, in some cases there is a
clever way to make use of quantum entanglement to compute
efficiently some global properties of a function.

Let a function f : {1, . . . , n} → {0, 1} be given as a black box.

To determine f classically, n calls of f are needed—to get the string
wf = f(1)f(2) . . . f(n).

Quantumly, this can be done, with probability greater than 0.95,
using n

2 +
√
n quantum calls of f .

Indeed, on the base of equality

|wf〉 = Hn
1√
2n

∑

x∈{0,1}n
(−1)x·wf |x〉 (7)

in order to compute x · wf one needs hw(x) calls of f , where hw(x) is
the Hamming weight of x—the number of 1’ in x.
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The basic trick is to compute the sum in (7) but only for x such
that hw(x) ≤ k, for a suitable k.

If Fk is such a function that for x ∈ {0, 1}n,

Fk(x) =















x · wf if hw(x) ≤ k
0; otherwise

then

VFk|x〉 =














(−1)x·wf |x〉, if hw(x) ≤ k
|x〉; otherwise

Therefore if VFk is applied to the (initial) state

|ψk〉 =
1√
Mk

hw(x)≤k
∑

x∈{0,1}n
|x〉,

where Mk =
∑k
i=0

(

n
i

)

, then

|ψ′
k〉 = VFk|ψk〉 =

1√
Mk

hw(x)≤k
∑

x∈{0,1}n
(−1)x·wf |x〉.

In order to compute |ψ′
k〉, at most k calls of f are needed. Let us

now measure all n qubits of |ψ′′
k〉 = Hn|ψ′

k〉.
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The probability that this way we get wf is

Pr(|ψ′′
k〉 yields at measurement wf) = |〈wf |ψ′′

k〉|2 =
Mk

2n
=

1

2n
k
∑

i=1











n

i











and, as one can easily calculate, this probability is more than 0.95 if
k = n

2 +
√
n.
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EXTRAS
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QUANTUM FOURIER TRANSFORM

The Quantum Fourier Transform is a quantum variant of the Discrete Fourier
Transform (DFT). It maps a discrete function to another discrete one with equally
distant points as its domain. For example it maps a q-dimensional complex vector

{f(0), f(1), . . . , f(q − 1)} into {f̄ (0), f̄ (1), . . . , f̄ (q − 1)},
where for c ∈ {0, . . . , q − 1}

f̄(c) =
1√
q

q−1
∑

a=0
e2πiac/qf(a), (8)

for c ∈ {0, . . . , q − 1}.
The quantum version of DFT (QFT) is the unitary transformation

QFTq : |a〉 →
1
√
q

q−1
∑

c=0
e2πiac/q|c〉 (9)
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for 0 ≤ a < q, with the unitary matrix

Fq =
1√
q



































1 1 1 . . . 1
1 ω ω2 . . . ω(q−1)

1 ω2 ω4 . . . ω2(q−1)

... ... ... ...

1 ω(q−1) ω2(q−1) . . . ω(q−1)2



































,

where ω = e2πi/q is the qth root of unity.
If applied to a quantum superposition, QFTq performs as follows;

QFTq :
q−1
∑

a=0
f(a)|a〉 →

q−1
∑

c=0
f̄ (c)|c〉,

where f̄ (c) is defined by (8).
Observe that

QFTq : |0〉 →
1
√
q

q−1
∑

i=0
|i〉,
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DE-QUANTUMIZATION in CASE of DEUTSCH PROBLEM

Surprisingly, quantum algorithms for Deutsch problem can be de-quantised as follows:

For a given f : {0, 1} → {0, 1} we define an oraculum mapping

Cf(a + bi) = (−1)0⊕f(0)a + (−1)1⊕f(1)bi

For the four possible functions f we get the following four functions
Cf :

C00(x) = x∗ if f(0) = 0, f(1) = 0
C01(x) = x if f(0) = 0, f(1) = 1
C10(x) = −x if f(0) = 1, f(1) = 0
C11(x) = −x∗ if f(0) = 1, f(1) = 1

The Deutsch problem can now be formulated as follows: A function
is chosen secretly from the set of functions {C00, C01, C10, C11} and the
task is to determine, with a single query, which type of the function
it is - balanced or constant.
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Algorithm Given f , calculate (i− 1)Cf(1 + i). If the outcome is real,
then the function chosen is balanced; otherwise it is constant.

Correctness:

(i− 1)C00(1 + i) = (i− 1)(1− i) = 2i
(i− 1)C01(1 + i) = (i− 1)(1 + i) = −2
(i− 1)C10(1 + i) = (i− 1)(−1− i) = 2
(i− 1)C11(1 + i) = (i− 1)(1− i) = −2i
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