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PROLOGUE - I.

• The idea to build a quantum computer has emerged around
1982.

• Around 1996 it started to be quite clear that that we can
consider such an idea as feasible.

• For years researchers were able to build quantum processors
only with less than 10 qubits.

• Recently situation has started to change.

• In 2016 Intel has design a 49 qubits processor.

• In 2017 IBM announced a 50 qubits processor.

• In May 2018 Google announced a 72 qubits processor.
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PROLOGUE - II.

• In 2007 Canadian company D-WAVE announced 16 qubits
”quantum computer” D-Wave

• As the next step they announced 28 qubits quantum computer
D-Wave

• As the next step they announced a 128 qubits computer
D-Wave

• As the next step they announced a 512 qubits D-wave
computer

• In 2008 they announced a 1024 qubits D-wave computer

• In 2018 they announced a 2000 qubits D-wave computer

However, view differ how are these computers inherently
quantum.
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PROLOGUE

Progress in quantum key distribution:

• First experimental key distribution for 38 cm , 1989

• 10km fiber key distribution, 1994

• 67km fiber key distribution, under Geneva lake, 2002

• 1.8 km free space quantum key distribution

• 141 km free space quantum key distribution, Canary islands,
2007

• 120 km quantum key distribution on fiber, 2016

• 2000 km satellite quantum key distribution, 2018

• Underwater quantum key distribution, 2014
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Chapter 1. INTRODUCTION - WHY QUANTUM COMPUTATION

In the first lecture we present and discuss at
first main reasons why quantum information
processing, communication and security are
new and very interesting ideas for information
processing in general and for computing,
communication and security in particular.
Secondly we present and analyze very basic
experiments, that were behind e developments
and theoretical capturing quantum mechanics
as one of the basic theory of physical and also
nformation processing worlds.

We deal also, in some details, with classical
reversible computations, as a special case of
quantum computation.
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INTRODUCTORY OBSERVATIONS

¯

In quantum computing we witness a merge of two of the most
important areas of science of 20th century: quantum physics and
informatics.

This merge is bringing new aims, challenges and potentials for
informatics and also new approaches to explore quantum world.

In spite of the fact that it is hard to predict particular impacts of
quantum computing on computing in general, it is quite safe to
expect that the merge will lead to important outcomes.

In the lecture the very basic aims, history, principles, concepts,
models, methods, results, as well as problems of quantum
computing will be presented with emphasis much more on
computational aspects than on the underlying physics.
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INTRODUCTORY OBSERVATIONS

In quantum computing we witness an
interaction between the two most important
areas of science and technology of 20-th
century, between

quantum physics and informatics.

This may have important consequences for
21st century.
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A VIEW of HISTORY

19th century was mainly influenced by the first
industrial revolution that had its basis in the
classical mechanics discovered, formalized
and developed in the 18th century.

20th century was mainly influenced by the
second industrial revolution that had its basis
in electrodynamics discovered, formalized
and developed in the 19th century.

21th century can be expected to be mainly
developed by quantum mechanics and
informatics discovered, formalized and
developed in the 20th century.
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FROM CLASSICAL to QUANTUM PHYSICS

At the end of 19th century it was believed by most that
the laws of Newton and Maxwell were correct and
complete laws of physics.

At the beginning of 20th century it got clear that these
laws are not sufficient to explain all observed physical
phenomena.

As a result, a new mathematical framework for
physics called quantum mechanics was formulated
and a new theory of physics, called quantum physics
was developed.
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QUANTUM PHYSICS

is

is an excellent theory to predict probabilities of
quantum events.

Quantum physics is an elegant and conceptually simple
theory that describes with astounding precision a large
spectrum of the phenomena of Nature.

The predictions made on the base of quantum physics
have been experimentally verified to 14 orders of
precision. No conflict between predictions of theory and
experiments is known.

Without quantum physics we cannot explain properties
of superfluids, functioning of laser, the substance of
chemistry, the structure and function of DNA, the
existence and behaviour of solid bodies, color of stars,
. . ..
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QUANTUM PHYSICS — SUBJECT

Quantum physics deals with fundamentals
entities of physics — particles like

• protons, electrons and neutrons (from
which matter is built);

• photons (which carry electromagnetic
radiation) - they are the only particles we
can directly observe;

• various “elementary particles” which
mediate other interactions of physics.

We call them particles in spite of the fact that
some of their properties are totally unlike the
properties of what we call particles in our
ordinary world.
Indeed, it is not clear in what sense these
“particles” can be said to have properties at
all.
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QUANTUM MECHANICS - ANOTHER VIEW

•Quantum mechanics is not physics in the
usual sense - it is not about matter, or
energy or waves, or particles - it is about
information, probabilities, probability
amplitudes and observables, and how they
relate to each other.

•Quantum mechanics is what you would
inevitably come up with if you would started
from probability theory, and then said, let’s
try to generalize it so that the numbers we
used to call ”probabilities” can be negative
numbers.

As such, the theory could be invented by
mathematicians in the 19th century without
any input from experiment. It was not, but it
could have been (Aaronson, 1997).
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You have nothing to do but mention the
quantum theory, and people will take
your voice for the voice of science, and
believe anything

Bernard Shaw (1938)
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WHAT QUANTUM PHYSICS TELL US?

Quantum physics

tells us

WHAT happens

but does not tell us

WHY it happens

and does not tell us either

HOW it happens

nor

HOW MUCH it costs
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WHAT QUANTUM PHYSICS TELLS US?

•Quantum physics tells us that things do not
behave at the quantum (particle or
microscopic) level the way we are used to in
our macroscopic experience.
•Quantum physics also tells us what happens

at the quantum level, but it does not tell us
neither why it happens nor how it happens
nor how much it costs.
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QUANTUM PHYSICS

is, from the point of view of explaining quantum
phenomena, a very unsatisfactory theory.

Quantum physics is a theory with either some hard to
accept principles or a theory leading to mysteries and
paradoxes.

Quantum theory seems to lead to philosophical
standpoints that many find deeply unsatisfying.
At best, and taking its descriptions at their most
literal, it provides us with a very strange view of
the world indeed.
At worst, and taking literally the proclamations
of some of its most famous protagonists, it
provides us with no view of the world at all.

Roger Penrose
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QUANTUM PHYSICS VIEWS

Quantum physics, that mysterious, confusing
discipline, which none of us really understands,
but which we all know how to use.

M. Gell-Mann

Physical concepts are free creations of the
human min, and are not, however it may seem,
uniquely determined by the external world.

Albert Einstein
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QUANTUM PHYSICS UNDERSTANDING

I am going to tell you what Nature behaves
like......

However do not keep saying to yourself, if you
can possibly avoid it,

BUT HOW CAN IT BE LIKE THAT?

because you will get “down the drain” into a
blind alley from which nobody has yet
escaped.

NOBODY KNOWS HOW IT CAN BE LIKE THAT.
Richard Feynman (1965): The character of physical law.
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QUANTUM MECHANICS

Quantum physics phenomena are difficult to
understand since at attempts to understand
quantum physics most of our everyday
experiences are not applicable.
Quantum mechanics is a theory in
mathematical sense: it is governed by a set of
axioms.
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MATHEMATICS BEHIND QUANTUM MECHANICS

• Concerning mathematics behind quantum
mechanics, one should actually do not try to
understand what mathematics means, one
should try to learn to work with it.
• Nobody saw superposition of quantum states

- one can ”see” only a basis state.
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QUANTUM PHYSICS - OBSERVATION

It is well known that it is very hard to
understand quantum physics

however,

it is less known that understanding of
quantum physics is child’s play comparing
with understanding of child’s play.
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WHY QUANTUM COMPUTING?

1. Quantum computing is a natural challenge because
the world we live in is quantum mechanical.

2. Quantum computing seems to be in some sense a
necessity.

3. Quantum computing seems to have potential to be
essentially faster than classical computing for
solving some important algorithmic problems.

4. Research in quantum computing seems to have
potential to contribute to the essential increase of
our knowledge about the world we live in.

5. For modern cryptography even the vision that a
powerful quantum computer may exist in 20-30
years represents a significant danger for safety of
current cryptographic communications and
signatures.
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WHY is QIPC so IMPORTANT?

There are five main reasons why QIPC is increasingly
considered as of (very) large importance:

• QIPC is believed to lead to new Quantum
Information Processing Technology that could have
deep and broad impacts.

• Several areas of science and technology are
approaching the point at which they badly need
expertise with isolation, manipulating and
transmission of particles.

• It is increasingly believed that new, quantum
information processing based, understanding of
(complex) quantum phenomena and systems can
be developed.

• Quantum cryptography seems to offer new level of
security and be soon feasible.

• QIPC has been shown to be more efficient in
interesting/important cases.

• TCS and Information theory got new dimension and
impulses.
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WHY von NEUMANN

Jozef Gruska October 13, 2020 23



Quantum computing - Fall 2020, I. Introduction

DID (COULD) NOT DISCOVER QUANTUM COMPUTING?

• No computational complexity theory was
known (and needed).
• Information theory was not yet well

developed.
• Progress in physics and technology was far

from what would be needed to make even
rudimentary implementations.
• The concept of randomized algorithms was

not known.
• No public key cryptography was known (and

needed).
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WHEN WE CAN EXPECT to have powerful QUANTUM COMPUTERS?

• Recently, NSA announced that it plans to shift the
encryption of governmental and military data away
from current cryptographic schemes to new ones,
yet to be determined, that could resist any attack by
quantum computers.

• The reason behind is that NSA expect that powerful
quantum computers will be available within 5-30
years.
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DEVELOPMENT of BASIC VIEWS

on the role of information in physics:

• Information is information, nor matter, nor
energy.
Norbert Wiener

• Information is physical
Ralf Landauer

Should therefore information theory and foundations of computing (complexity theory and

computability theory) be a part of physics?

• Physics is informational
Should (Hilbert space) quantum mechanics be a part of Informatics?
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WHEELER’s VIEW

I think of my lifetime in physics as divided
into three periods

• In the first period ...I was convinced that
EVERYTHING IS PARTICLE

• I call my second period
EVERYTHING IS FIELDS

• Now I have new vision, namely that
EVERYTHING IS INFORMATION
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WHEELER’s “IT from BIT”

IT FROM BIT symbolizes the idea that every
item of the physical world has at the bottom -
at the very bottom, in most instances - an
immaterial source and explanation.

Namely, that which we call reality arises from
posing many yes-no questions, and registering
of equipment-invoked responses.
In short, that things physical are information
theoretic in origin.
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MAIN PARADOX

•Quantum physics is extremely elaborated
theory, full of paradoxes and mysteries. It
takes any excellent physicist years to
develop a proper feeling for quantum
mechanics - for a proper relation between
theory and physical reality.

• Some (theoretical) computer
scientists/mathematicians, with almost no
background in quantum physics, have been
able to make crucial contributions to theory
of quantum information processing.
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PERFORMANCE OF PROCESSORS

1. There are no reasons why the increase of
performance of processors should not follow Moore
law in the near future.

2. A long term increase of performance of processors
according to Moore law seems to be possible only if,
at the performance of computational processes, we
get more and more on atomic level.

EXAMPLE

An extrapolation of the curve depicting the number of
electrons needed to store a bit of information shows
that around 2020 we should need one electron to
store one bit.
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MOORE LAW

It is nowadays accepted that information processing technology
has been developed for the last 50 years according the so-called
Moore law. This law has now three forms.

Economic form: Computer power doubles, for
constant cost, every two years or so.

Physical form: The number of atoms needed to
represent one bit of information should
halves every two years or so.

Quantum form: For certain application,
quantum computers need to increase in the
size only by one qubit every two years or
so, in order to keep pace with the classical
computers performance increase.
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ULTIMATE LIMITS

On the base of quantum mechanics one can
determine that “ultimate laptop” of mass 1 kg
and size 1 l cannot perform more than
2.7× 1050 bit operations per second.

Calculations (Lloyd, 1999), are based only on
the amount of energy needed to switch from
one state to another distinguishable state.

It seems to be harder to determine the number
of bits of such an “ultimate laptop”. However,
the bound 3.8× 1016 has been determined for a
computer compressed to form a black hole.

It is quite clear that Moore law cannot hold longer than for
another 200 years.
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CLASSICAL versus QUANTUM COMPUTING

The essence of the difference
between

classical computers and quantum computers

is in the way information is stored and processed.

In classical computers, information is represented on
macroscopic level by bits, which can take one of the
two values

0 or 1

In quantum computers, information is represented on
microscopic level using qubits, which can take on any
from uncountable many values

α|0〉 + β|1〉

where α, β are arbitrary complex numbers such that

|α|2 + |β|2 = 1.
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PRE-HISTORY

1970 Landauer demonstrated importance of reversibility
for minimal energy computation;

1973 Bennett showed the existence of universal
reversible Turing machines;

1981 Toffoli-Fredkin designed a universal reversible gate
for Boolean logic;

1982 Benioff showed that quantum processes are at
least as powerful as Turing machines;

1982 Feynman demonstrated that quantum physics
cannot be simulated effectively on classical
computers;

1984 Quantum cryptographic protocol BB84 was
published, by Bennett and Brassard, for absolutely
secure generation of shared secret random classical
keys.

1985 Deutsch showed the existence of a universal
quantum Turing machine.

1989 First cryptographic experiment for transmission of
photons, for distance 32.5cm was performed by
Bennett, Brassard and Smolin.

1993 Bernstein-Vazirani-Yao showed the existence of an
efficient universal quantum Turing machine;
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1993 Quantum teleportation was discovered, by Bennett
et al.

1994 Shor discovered a polynomial time quantum
algorithm for factorization;

Cryptographic experiments were performed for the
distance of 10km (using fibers).

1994 Quantum cryptography went through an
experimental stage;

1995 DiVincenzo designed a universal gate with two
inputs and outputs;

1995 Cirac and Zoller demonstrated a chance to build
quantum computers using existing technologies.

1995 Shor showed the existence of quantum
error-correcting codes.

1996 The existence of quantum fault-tolerant
computation was shown by Shor.
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REVERSIBILITY

QUANTUM PROCESSES ARE REVERSIBLE

An operation is reversible if its outputs uniquely
determine its inputs.

(a, b)→ a + b (a, b)→ (a + b, a− b)

a non-reversible operation a reversible
operation

a→ f (a) (a, 0)→ (a, f (a))

A mapping
that can but
does not
have to be
reversible

a surely
reversible
operation
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REVERSIBLE GATES

x x

x x

y x  +  y

x

y

z

x

y

(x  y)  +  z

NOT

CNOT = XOR

-gate

-gate

CCNOT-gate

A universal reversible gate for
Boolean logic

Three reversible classical gates: NOT gate, XOR or CNOT gate
and Toffoli or CCNOT gate.
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UNIVERSALITY of GATES

Definition A set G of gates is universal for
classical computation if for any positive
integers n,m and function
f : {0, 1}n→ {0, 1}m, a circuit can be
designed for computing f using only gates
from G.

Gates { NAND, FANOUT} form a universal
set of gates.

The set consisting of just the Toffoli gate is
also universal for classical computing
(provided we add the ability to add ancillary
bits to the circuit that can be initiated to either
0 or 1 as required).
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GARBAGE REMOVAL

In order to produce reversible computation one needs
to produce garbage (information). Its removal is
possible and important.

Bennett (1973) has shown that if a function f is
computable by a one-tape Turing machine in time t(n),
then there is a 3-tape reversible Turing machine
computing, with constant time overhead, the mapping

a→ (a, g(a), f (a))

Bennett (1973) has also shown that there is an
elegant reversible way how to remove garbage:

Basic computation: of f : a→ (a, g(a), f (a)).

Fanout: (a, g(a), f (a))→ (a, g(a), f (a), f (a))

Uncomputing of f : (a, g(a), f (a), f (a))→ (a, f (a))
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CIRCUIT REPRESENTATION OF GARBAGE REMOVAL

Observe that CNOT gate with 0 as the initial value of the target
bit is a copy gate. Indeed,

CNOT(x, 0) = (x, x)

A circuit version of the garbage removal has then the form

Input

0
0
0

0
0
0
0

0
0
0
0

0

Work
space

Copy
space

Cf
Cf
−1 0

0
0

0

(Output)

0
0
0

0

Input

Output

Jozef Gruska October 13, 2020 40



Quantum computing - Fall 2020, I. Introduction

BILLIARD BALL REVERSIBLE COMPUTER

. .

(a)

(b)

(c) (e)

(d)

Figure 1: Billiard ball model of reversible computation
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Figure 2: Switch gate

c

x

c x

c

c x

Figure 3: A billiard ball implementation of the switch gate
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CLASSICAL EXPERIMENTS
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QUANTUM EXPERIMENTS
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QUANTUM EXPERIMENTS
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TWO-SLIT EXPERIMENT – OBSERVATIONS

• Contrary to our intuition, at some places
one observes fewer electrons when both
slits are open, than in the case only one slit
is open.

• Electrons — particles, seem to behave as
waves.

• Each electron seems to behave as going
through both holes at once.

• Results of the experiment do not depend on
frequency with which electrons are shot.

•Quantum physics has no explanation where
a particular electron reaches the detector
wall. All quantum physics can offer are
statements on the probability that an
electron reaches a certain position on the
detector wall.
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BOHR’s WAVE-PARTICLE DUALITY PRINCIPLES

• Things we consider as waves correspond
actually to particles and things we consider
as particles have waves associated with
them.

• The wave is associated with the position of
a particle - the particle is more likely to be
found in places where its wave is big.

• The distance between the peaks of the
wave is related to the particle’s speed; the
smaller the distance, the faster particle
moves.

• The wave’s frequency is proportional to the
particle’s energy. (In fact, the particle’s
energy i s equal exactly to its frequency
times Planck’s constant.)
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THREE BASIC PRINCIPLES

P1 To each transfer from a quantum state φ to a state ψ a complex
number

〈ψ|φ〉
is associated, which is called the probability amplitude of the
transfer, such that

|〈ψ|φ〉|2

is the probability of the transfer.

P2 If a transfer from a quantum state φ to a quantum state ψ can be
decomposed into two subsequent transfers

ψ ← φ′ ← φ

then the resulting amplitude of the transfer is the product of
amplitudes of sub-transfers: 〈ψ|φ〉 = 〈ψ|φ′〉〈φ′|φ〉

P3 If the transfer from φ to ψ has two independent alternatives, with
amplitudes α and β

ϕψ

then the resulting amplitude is the sum α + β of amplitudes of
two sub-transfers.
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QUANTUM SYSTEM = HILBERT SPACE

Hilbert spaceHn is n-dimensional complex vector space
with

scalar product

〈ψ|φ〉 =
n∑
i=1
φiψ

∗
i of vectors |φ〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1
φ2
...
φn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, |ψ〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1

ψ2
...
ψn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

norm of vectors
||φ|| =

√
|〈φ|φ〉|

and the metric

dist(φ, ψ) = ||φ− ψ||.
This allows us to introduce onH a topology and such
concepts as continuity.
For each φ of a Hilbert space H the mapping fφ : H → C defined
by

fφ(ψ) = 〈φ|ψ〉
is a linear mapping on H in the sense that fφ(cψ) = cfφ(ψ) and
fφ(ψ1 + ψ2) = fφ(ψ1) + fφ(ψ2). One can even show that we get all
linear mappings from H to C by this construction. Namely, it
holds:
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Theorem To each continuous linear mapping f : H → C there
exists a unique φf ∈ H such that f (ψ) = 〈φf |ψ〉 for any ψ ∈ H.
Elements (vectors) of a Hilbert space H are usually called pure
states of H.
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THREE BASIC PRINCIPLES

P1 To each transfer from a quantum state φ to a state ψ a complex
number

〈ψ|φ〉
is associated, which is called the probability amplitude of the
transfer, such that

|〈ψ|φ〉|2

is the probability of the transfer.

P2 If a transfer from a quantum state φ to a quantum state ψ can be
decomposed into two subsequent transfers

ψ ← φ′ ← φ

then the resulting amplitude of the transfer is the product of
amplitudes of sub-transfers: 〈ψ|φ〉 = 〈ψ|φ′〉〈φ′|φ〉

P3 If the transfer from φ to ψ has two independent alternatives, with
amplitudes α and β

ϕψ

then the resulting amplitude is the sum α + β of amplitudes of
two sub-transfers.
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ORTHOGONALITY of PURE STATES

Two quantum states |φ〉 and |ψ〉 are called
orthogonal if their scalar product is zero, that
is if

〈φ|ψ〉 = 0.

Two pure quantum states are physically
perfectly distinguishable only if they are
orthogonal.
In every Hilbert space there are so-called
orthogonal bases all states of which are
mutually orthogonal.
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MYSTERIOUS WARNING

A quantum system is a useful abstraction which
frequently appears in the literature, but does not really
exists in nature.

A. Peres (1993)
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BRA-KET NOTATION

Dirac introduced a very handy notation, so
called bra-ket notation, to deal with
amplitudes, quantum states and linear
functionals f : H → C.

If ψ, φ ∈ H , then

〈ψ|φ〉— a number - a scalar product of ψ and φ
(an amplitude of going from φ to ψ).

|φ〉— ket-vector — a column vector - an
equivalent to φ

〈ψ|— bra-vector – a row vector - the conjugate
transpose of |ψ〉 – a linear functional on H

such that 〈ψ|(|φ〉) = 〈ψ|φ〉
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Example If φ = (φ1, . . . , φn) and
ψ = (ψ1, . . . , ψn), then

ket vector - |φ〉 =



φ1
...
φn


and 〈ψ| = (ψ∗1 , . . . , ψ

∗
n) −bra-vector

and

inner product - scalar product: 〈φ|ψ〉 =
n∑
i=1

φ∗iψi

outer product: |φ〉〈ψ| =



φ1ψ
∗
1 . . . φ1ψ

∗
n... . . . ...

φnψ
∗
1

... φnψ
∗
n



The meaning of the out-product |φ〉〈ψ| is that
of the mapping that maps any state |γ〉 into the
state

|φ〉〈ψ|(|γ〉) = |φ〉(〈ψ|γ〉) = 〈ψ|γ〉)|φ〉
It is often said that physical counterparts of
vectors of n-dimensional Hilbert spaces are
n-level quantum systems.

Jozef Gruska October 13, 2020 58



Quantum computing - Fall 2020, I. Introduction

QUBITS

A qubit - a two-level quantum system is a quantum state in H2

|φ〉 = α|0〉 + β|1〉

where α, β ∈ C are such that |α|2 + |β|2 = 1 and

{|0〉, |1〉} is a (standard) basis of H2

EXAMPLE: Representation of qubits by

(a) electron in a Hydrogen atom — (b) a spin-12 particle

n=1

Basis states

|0> |1>H H

Hamplitudes

(a) (b)

|0> = | > |1> = |

General state

=

amplitudes

α

β

α|0> + β|1>

|α| + |β| = 1

α + β

| > =  α| > + β| >

|α| +  |β| =  1

2

2 2

>

General state

2

n=1

n=2n=2

Basis states

Figure 12: Qubit representations by energy levels of an electron in a hydrogen atom and by a spin-12 particle. The
condition |α|2 + |β|2 = 1 is a legal one if |α|2 and |β|2 are to be the probabilities of being in one of two basis states (of
electrons or photons).

x

Jozef Gruska October 13, 2020 59



Quantum computing - Fall 2020, I. Introduction

CLASSICAL versus QUANTUM COMPUTING

The essence of the difference
between

classical computers and quantum computers

is in the way information is stored and processed.

In classical computers, information is represented on
macroscopic level by bits, which can take one of the
two values

0 or 1

In quantum computers, information is represented on
microscopic level using qubits, which can take on any
from uncountable many values

α|0〉 + β|1〉

where α, β are arbitrary complex numbers such that

|α|2 + |β|2 = 1.
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HILBERT SPACE H2

STANDARD (COMPUTATIONAL) BASIS
DUAL BASIS

|0〉, |1〉 |0′〉, |1′〉 1
0


 0

1




1√
2
1√
2




1√
2

− 1√
2


Hadamard matrix (Hadamard operator in the standard basis)

H =
1√
2

 1 1
1 −1


has properties

H|0〉 = |0′〉 H|0′〉 = |0〉

H|1〉 = |1′〉 H|1′〉 = |1〉
and transforms standard basis {|0〉, |1〉} into dual (or
Hadamard) basis {|0′〉 = |+〉, |1′〉 = |−〉} and vice
verse.
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QUANTUM EVOLUTION/COMPUTATION

EVOLUTION
COMPUTATION

in in

QUANTUM SYSTEM
HILBERT SPACE

is described by

Schrödinger linear equation

ih̄
∂ψ(t)

∂t
= H(t)ψ(t),

where H(t) is a Hermitian operator representing total energy of
the system, from which it follows that ψ(t) = e−

i
h̄H(t) and therefore

that an discretized evolution (computation) step of a quantum
system is performed by a multiplication of the state vector by a
unitary operator, i.e. a step of evolution is a multiplication by a
unitary matrix A of a vector |ψ〉, i.e.

A|ψ〉

A matrix A is unitary if for A and its adjoin matrix A† (with
A†ij = (Aji)

∗) it holds:

A · A† = A† · A = I
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ANOTHER VIEW of UNITARITY

A unitary mapping U is a linear mapping that
preserves the inner product, that is

〈Uφ|Uψ〉 = 〈φ|ψ〉.
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HAMILTONIANS

The Schrödinger equation tells us how a
quantum system evolves

subject to the Hamiltonian

However, in order to do quantum mechanics,
one has to know how to pick up the
Hamiltonian.

The principles that tell us how to do so are real
bridge principles of quantum mechanics.
Each quantum system is actually uniquely
determined by a Hamiltonian.
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UNITARY MATRICES — EXAMPLES

In the following there are examples of unitary matrices of degree
2

Pauli matrices σx =


0 1
1 0

 σy =


0 −i
i 0

 σz =


1 0
0 −1



Hadamard matrix =



1√
2

1√
2

1√
2
− 1√

2


1

2


1− i 1 + i
1 + i 1− i

 =
√
σx −matrix


i cos θ sin θ
sin θ i cos θ




eiα cos θ −iei(α−θ) sin θ

−iei(α+θ) sin θ eiα cos θ



Pauli matrices play a very important role in
quantum computing.
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UNITARITY OF MATRICES

A matrix A is unitary if

AA∗ = I = A∗A

If the matrix A is finite then

AA∗ = 1⇐⇒ A∗A = I

The above equivalence does not have to be true if the matrix¡A is
infinite. Example: 

1√
2

1√
2

0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
... ... ... ... . . .

. . . . . . . . . . . . . . .



Observe that equality AA∗ = 1 is equivalent to the statement that
row of A are orthogonal.

Unitarity of a matrix therefore implies that its rows (columns) are
orthogonal.
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A UNIVERSAL SET of QUANTUM GATES

The main task at quantum computation is to
express solution of a given problem P as a
unitary matrix UP and then to construct a
circuit CUP with elementary quantum gates
from a universal se ts of quantum gates to
realize U . That is

P → UP → CUP .

A simple universal set of quantum gates
consists of gates

CNOT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


, H =

1√
2


1 1
1 −1

 , σ1/4
z =


1 0

0 e
π
4 i


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SOLVING SCHRÖDINGER EQUATION

For the Hamiltonian

H =
πh̄

2



0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1


=
πh̄

2
V

the Schödinger equation

ih̄
∂U(t)

∂t
= HU(t)

has the solution

U(t) = e−
i
h̄Ht =

∞∑
k=1

(−iπ
2 )kV ktk

k!
= I +

1

2

∞∑
k=0

(−πit)k

k!
V

and therefore for t = 1,

e−
iπ
2 V = I +

1

2
(e−iπ − 1)V = I − V = CNOT.
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STRUCTURE of ATOMS - BASIC FACTS

• Atoms are typically a few billions of a metre across spheres
held together by electricity.

• An atom has a compact nuclei (100 000 times smaller)
consisting of (positively charged) protons and (without charge)
neutrons;

• A nucleus is surrounded by a cloud of electrons whose masses
are a couple of thousands times smaller that those of protons
and neutrons;

• Electrons are negatively charged and there are so many
neutrons as protons and therefore each atom as the whole is
electrically neutral.

• Each electron has a wave associated with its position and
velocity. The places where wave is big are places where
electrons are likely to be found. The shorter the length of the
wave, the faster electron is moving.

• The rate at which the wave wiggles up and down is
proportional to electron’s energy.

• Suppose we want to fit electron’s wave around an atom’s
nuclei. The simplest wave that can fit around a nucleus is a
sphere; the next simplest way has one peak, then two and so
on. Each of these types of waves corresponds to an electron in
a definite energy state. The more peaks has an electron’s
wave, more energy it has.
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• When an electron jumps from a higher energy state to a lower
energy state it emits a photon whose energy equals of energy
difference of two states. Similarly, an atom can absorb a
photon and jump from one energy level to a higher energy
level. Any atoms refuses to absorb a photon whose energy is
not exactly the difference of some energy levels.

• Emitting or absorbing a photon takes some time.

• Usually we take the ground state (corresponding to lowest
energy level) as representing |0〉 and the next exciting state as
representing the state |1〉.

• An application of a laser pulse takes an atom from state |0〉 to
|1〉 and vice verse.
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ORTHOGONALITY of STATES
Two vectors |φ〉 and |ψ〉 are called orthogonal if 〈φ|ψ〉 = 0.
Physically are fully distinguishable only orthogonal vectors
(states).

A basis B of Hn is any set of n vectors |b1〉, |b2〉, . . . , |bn〉 of the
norm 1 which are orthogonal.

Given a basis B, any vector |ψ〉 from Hn can be uniquely
expressed in the form

|ψ〉 =
n∑
i=1
αi|bi〉.

A set S of vectors is called orthonormal if all vectors of S have
norm 1 and are mutually orthogonal.

Definition A subspace G of a Hilbert space H is a subset of H
closed under addition and scalar multiplication.

An important property of Hilbert spaces is their de-composability
into mutually orthogonal subspaces. It holds:

Theorem For each closed subspace W of a Hilbert space H
there exists a unique subspace W⊥ such that 〈φ|ψ〉 = 0,
whenever φ ∈ W and ψ ∈ W⊥ and each ψ ∈ H can be uniquely
expressed in the form ψ = φ1 + φ2, with φ1 ∈ W and φ2 ∈ W⊥. In
such a case we write H = W ⊕W⊥ and we say that W and W⊥

form an orthogonal decomposition of H.

In a natural way we can make a generalization of an orthogonal
decomposition

H = W1 ⊕W2 ⊕ . . .⊕Wn,
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of H into mutually orthogonal subspaces W1, . . . ,Wn such that
each ψ ∈ H has a unique representation as
ψ = φ1 + φ2 + . . . + φn, with φi ∈ Wi, 1 ≤ i ≤ n.
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