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7.GROVER’s ALGORITHMS and AMPLITUDE AMPLIFICATION

Grover’s search algorithm and its modifications will be
presented an analyzed in this chapter as well as some
related problems concerning design of efficient quantum
algorithms.

Jozef Gruska November 20, 2013 1



Quantum computing 7, Fall 2013

GROVER’s SEARCH PROBLEM I

Grover’s method applies to problems for which it is hard to find a solution, it is easy
to recognize a solution, it is easy to through a list of potential solutions, but hard to
find some special structure of the problem to speed-up search for a correct solution

Problem - a popular formulation: In an unsorted database of N items
there is exactly one, x0, satisfying an easy to verify condition P . Find x0.

Classical algorithms need in average N
2

checks.

Quantum algorithm exists that needs O(
√
N) steps.

Here is the basic idea of the algorithm - ”cooking” a solution.
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Figure 1: “Cooking” the solution with Grover’s algorithm
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Figure 2: “Cooking” the solution with Grover’s algorithm

The figure above shows some steps of the Grover algorithm. Starting state, Figure (a), is equally

weighted superposition of all basis states. State |x0〉 is the one with f(x0) = 1. Next step, Figure (b),

is the state obtained by multiplying with −1 the amplitude of the state |x0〉. Figure (c) shows the

state after so called inversion over the average is done - the amplitude at |x0〉 is increased and

amplitudes at all other basis states are decreased. Next step, Figure (d), depicts situation that

amplitude at the basis state |x0〉 is negated and the next step, Figure (e), is again the result after

another inversion about the average is implemented. In case this process iterate a proper number of

steps we get the situation that the amplitude at the state |x0〉 is (almost) 1 and amplitudes at all other

states are (almost) 0. A measurement in such a situation produces x0 as the classical outcome.

Jozef Gruska November 20, 2013 3



Quantum computing 7, Fall 2013

DESIGN of a BLACK BOX
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GROVER’s SEARCH PROBLEM II

Modified problem: Given an easy to use a black box Uf to compute a function

f : {0, 1}n → {0, 1},
find an x0 such that f(x0) = 1, for the case that the number t of solutions, that is
the number

t = |{x | f(x) = 1}|
is known
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INVERSION ABOUT THE AVERAGE

Example 0.1 (Inversion about the average) The unitary transformation

Dn :
2n−1∑

i=0
ai|φi〉 →

2n−1∑

i=0
(2E − ai)|φi〉,

where E is the average of {ai | 0 ≤ i < 2n}, can be performed by the matrix

−HnV
n
0 Hn = Dn =













−1 + 2
2n

2
2n . . . 2

2n

2
2n −1 + 2

2n

. . . 2
2n

... ... . . . ...
2
2n

2
2n . . . −1 + 2

2n













.

The name of the operation comes from the fact that 2E − x = E +E − x and therefore the new value is

as much above (below) the average as it was initially below (above) the average—which is precisely the

inversion about the average.

The matrix Dn is clearly unitary and it can be shown to have the form Dn = −HnV
n
0 Hn, where

V n
0 [i, j] = 0 if i 6= j, V n

0 [1, 1] = −1 and V n
0 [i, i] = 1 if 1 < i ≤ n.
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Let us consider again the unitary transformation

Dn :
2n−1∑

i=0
ai|φi〉 →

2n−1∑

i=0
(2E − ai)|φi〉,

and the following example:

Example: Let ai = a if i 6= x0 and ax0
= −a. Then

E = a− 2

2n
a

2E − ai =







a− 4
2na if i 6= x0

2E − ax0
= 3a− 4

2na; otherwise
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GROVER’s SEARCH ALGORITHM

Start in the state

|φ〉 =
1√
2n

2n−1∑

x=0
|x〉

and iterate ⌊π4
√

2n⌋ times the transformation

−HnV
n
0 HnVf

︸ ︷︷ ︸

|φ〉 → |φ〉.
Grover’s iterate

Finally, measure the register to get x0 and check whether f(x0) = 1. If not, repeat the procedure.

It has been shown that the above algorithm is optimal for finding the solution with probability > 1
2.

In the case that there are t solutions, repeat the above iteration








π

4

√
√
√
√
√

2n

t






 times
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ANALYSIS of GROVER’s ALGORITHM

Denote

X1 = {x | f(x) = 1} X0 = {x | f(x) = 0}
and denote the state after jth iteration of Grover’s iterate −HnV

n
0 HnVf as

|φj〉 = kj
∑

x∈X1

|x〉 + lj
∑

x∈X0

|x〉

with

k0 =
1√
2n

= l0.

Since

|φj+1〉 = −HnV
n
0 HnVf |φj〉,

it holds

kj+1 =
2n − 2t

2n
kj +

2(2n − t)
2n

lj, lj+1 =
2n − 2t

2n
lj −

2t

2n
kj

what yields

kj =
1√
t
sin((2j + 1)θ)

lj =
1√

2n − t cos((2j + 1)θ)

where

sin2 θ =
t

2n
.
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Recurrence relations therefore provide

kj =
1√
t
sin((2j + 1)θ), lj =

1√
2n − t cos((2j + 1)θ)

where

sin2 θ =
t

2n
.

The aim now is to find such an j which maximizes kj and minimizes lj. Take j such that

cos((2j + 1)θ) = 0, that is (2j + 1)θ = (2m + 1)π2 .

Hence

j =
π

4θ
− 1

2
+
mπ

2θ
what yields

j0 = ⌈ π
4θ
⌉,

and because

sin2 θ =
t

2n
we have

0 ≤ sin θ ≤
√
√
√
√
√
t

2n

and therefore

j0 = O






√
√
√
√
√

2n

t





 .
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A MORE DETAILED ANALYSIS

Theorem Let f ∈ Fn
2 → {0, 1} and let there be exactly t elements x ∈ Fn

2 such that f(x) = 1.

Assume that 0 < t < 3
4
2n, and let θ0 ∈ [0, π/3] be chosen such that sin2 θ0 = t

2n ≤ 3
4
. After ⌊ π

4θ0
⌉

iterations of the Grover iterates on the initial superposition 1√
2
n

∑

x∈Fn

2
|x〉 the probability of finding a

solution is at least 1
4
.

Proof The probability of seeing a desired element is given by sin2((2j + 1)θ0) and therefore

j = −1
2

+ π
4θ0

would give a probability 1.

Therefore we need only to estimate the error when −1
2 + π

4θ0
is replaced by ⌊ π4θ0⌋. Since

⌊ π
4θ0
⌋ = −1

2
+

π

4θ0
+ δ

for some |δ| ≤ 1
2, we have

(2⌊ π
4θ0
⌋ + 1)θ0 =

π

2
+ 2δθ0,

and therefore the distance of (2⌊ π
4θ0
⌋ + 1)θ0 from π

2
is |2δθ0| ≤ π

3
. This implies

sin2((2⌊ π
4θ0
⌋ + 1)θ0) ≥ sin2(

π

2
− π

3
) =

1

4
.
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A VARIATION on GROVER’s ALGORITHM

Input A black box function f : Fn
2 → {0, 1} and t = |{x | f(x) = 1}| > 0

Output: an y such that f(y) = 1

Algorithm:

1. If t > 3
42
n, then choose randomly an y ∈ Fn

2 and stop.

2. Otherwise compute r = ⌊ π4θ0⌋, where θ0 ∈ [0, π/3] and sin2 θ0 = t
2n and apply

Grover’s iterate Gn r times starting with the state
1√
2n

∑

x∈Fn2
|x〉

and measure the resulting state to get some y.

If the first step is apply we get correct outcome with probability 3
4 and if second step

is applied then with probability at least 1
4.

Very special case is t = 1
4
2n. On such a case sin2 θ0 = 1

4
and therefore θ0 = π

6
. The

probability to get the correct result after one step is then

sin2((2 · 1 + 1)θ0) = sin2(
π

2
) = 1.
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ANOTHER DERIVATION of the GROVER ITERATION

Let f : {0, 1}n→ {0, 1} be a mapping such that f(a) = 1 for a single a ∈ {0, 1}n.

Let Vf be a mapping such that for any x ∈ {0, 1}n

Vf |x〉 = (−1)f(x)|x〉.

Then for any state |ψ〉 it holds

Vf |ψ〉 = |ψ〉 − 2|a〉〈a|ψ〉
and therefore we can write

Vf = 1− 2|a〉〈a|.
Therefore, the operator Vf , when acting on any state changes the sign of the amplitude of the basis

state |a〉, while leaving unchanged amplitudues of basis states orthogonal to |a〉.
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CONTINUATION

If we define

|φ〉 = Hn|0n〉 =
1√
2n

2n−1∑

i=0
|i〉

and consider the operator

W = 2|φ〉〈φ| − 1

then this operator preserves the component of any state along |φ〉, while changing the component

orthogonal to |φ〉.
Grover algorithm can now be defined as an iterative application of the operator WV to the resulting

states starting with the initial state |φ〉.

Observe that

−W = 1− 2|φ〉〈φ| = H(n)(1− 2|0(n)〉〈0(n)|H(n)

Jozef Gruska November 20, 2013 14
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ANALYSIS

• Both operators V and W when acting on a superposition of states |a〉 and |φ〉 produce a

superposition of the same states.

• Indeed, since 〈a|φ〉 = 1√
2n

, it holds

V |a〉 = −|a〉, V |φ〉 = |φ〉 − 2√
2n
|a〉

W |φ〉 = |φ〉 W |a〉 =
2√
2n
|φ〉 − |a〉

• As a consequence, a repeated application of the operator WV to the resulting states starting with

the state |φ〉 will always result in a state that will be a superposition of |a〉 and |φ〉.
• If we denote by |a⊥〉 a state orthogonal to |a〉 in the subspace generated by |a〉 and |φ〉, and by γ

and θ angles

sin θ = cos γ = 〈a|φ〉 =
1√
2n

with θ = π
2
− γ, then

θ ≈ 1√
2n

for large n.
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• The net effect of the operator W in two dimensional plane is to transform any vector by its

reflection with respect to the mirror line through the origin along |φ〉.
• Similarly, the net effect of the operator V on any vector is its reflection with respect to the vector

|a⊥〉.

θ
θ

2θ

V|φ>

|a >

|φ>

WV|φ>

|a>
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• The net effect of the any application of the product WV , of two operators that are
two-dimensional reflections, is therefore a rotation about the angle 2θ.

θ
θ

2θ

V|φ>

|a >

|φ>

WV|φ>

|a>

• Since m iterations will result in the rotation by the angle 2mθ, with respect to the
initial state |φ〉, and θ is very close to 1√

2n
, the number of iterations needed to come

to the state orthogonal to |a⊥〉 (that is to the state |a〉), should be approximately

π

4

√
2n

because for m = π
4

√
2n we have

2mθ = 2
π

4

√
2n

1√
2n

=
π

2
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THE CASE of UNKNOWN NUMBER of SOLUTIONS

To deal with the general case – that number of elements we search for
is not known – we will need the following technical lemma:
Lemma For any real α and any positive integer m

m−1
∑

r=0
cos((2r + 1)α) =

sin(2mα)

2 sinα
.

Jozef Gruska November 20, 2013 18
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MAIN LEMMA

Lemma Let f : Fn
2 → {0, 1} be a blackbox function with t ≤ 3

42
n solutions and

θ0 ∈ [0, π
3
] be defined by sin2 θ0 = t

2n
. Let m > 0 be any integer and r ∈r [0,m− 1].

If Grover’s iterate is applied to the initial state

1√
2n

∑

x∈Fn2
|x〉

r times, then the probability of seeing a solution is

Pr =
1

2
− sin(4mθ0)

4m sin(2θ0)

and if m > 1
sin(2θ0)

, then Pr ≥ 1
4.

Proof We know that the probability of seeing solution after r iteration of Grover’s
iterate is sin2((2r + 1)θ0).

Jozef Gruska November 20, 2013 19
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Therefore if r ∈r [0,m− 1], then the probability of seeing a solution is

Pm =
1

m

m−1∑

r=0
sin2((2r + 1)θ0) (1)

=
1

2m

m−1∑

r=0
(1− cos((2r + 1)2θ0)) (2)

=
1

2
− sin(4mθ0)

4m sin(2θ0)
. (3)

Moreover, if m ≥ 1
sin(2θ0)

, then

sin(4mθ0) ≤ 1 =
1

sin(2θ0)
sin(2θ0) ≤ m sin(2θ0

and therefore sin(4mθ0)
4m sin(2θ0)

≤ 1
4 what implies that Pm ≥ 1

4
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ALGORITHM

Input A blackbox function f : Fn
2 → {0, 1}.

Output An y ∈ Fn
2 such that f(y) = 1.

Algorithm

1. Choose an x ∈r Fn
2 and if f(x) = 1 then output x and stop.

2. Choose r ∈r [0,m− 1], where m =
√

2n + 1 and apply Grover’s iterate Gn r
times to

1√
2n

∑

x∈Fn2
|x〉.

Observe the outcome to get some y.

Algorithm works. Indeed, if t > 3
42
n, then algorithm will output a solution after the

first step with probability at least 3
4, Otherwise

m ≥
√
√
√
√
√
√

2n

t
≥ 1

sin(2θ0)

and the fact that we get a proper outcome with probability at least 1
4

follows from
previous lemma.
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QUANTUM SEARCH in ORDERED LISTS

A related problem to that of a search in an unordered list is a search in
an ordered list of n items.

• The best upper bound known today is 3
4 lgn.

• The best lower bound known today is 1
12 lg n−O(1).

Jozef Gruska November 20, 2013 22
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EFFICIENCY of GROVER’s SEARCH

There are at least four different proofs that Grover’s search is
asymptotically optimal.

Quite a bit is known about the relation between the error ε and the
number T of queries when searching an unordered list of n elements.

• ε can be an arbitrary small constant if O(
√
n) queries are used, but

not when o(
√
n) queries are used.

• ε can be at most 1
2n
α using O(n0.5+α) queries.

• To achieve no error (ε = 0), θ(n) queries are needed.

Jozef Gruska November 20, 2013 23
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APPLICATIONS of GROVER’s SEARCH

There is a variety of applications of Grover’s search algorithm. Let us mention some of them.

• Extremes of functions computation (minimum, maximum).

• Collision problem Task is to find, for a given black-box function f : X → Y , two different

x 6= y such that f(x) = f(y), given a promise that such a pair exist.

On a more general level an analogical problem deals with the so-called r-to-one functions every

element of their image has exactly r pre-images. It has been shown that there is a quantum

algorithm to solve collision problem for r-to-one functions in quantum time O((n/r)1/3). It has been

shown in 2003 by Shi that the above upper bound cannot be asymptotically improved.

• Verification of predicate calculus formulas. Grover’s search algorithm can be seen as a

method to verify formulas

∃xP (x),

where P is a black-box predicate.

It has been shown that also more generalized formulas of the type

∀x1∃y1∀x2∃y2 . . . ∀xk∃ykP (x1, y1, x2, y2, . . . , xk, yk)

can be verified quantumly with the number of queries O(
√

2(2k)).

Jozef Gruska November 20, 2013 24



Quantum computing 7, Fall 2013

QUANTUM MINIMUM FINDING ALGORITHM

Problem: Let s = s1, s2, . . . , sn be an unsorted sequence of distinct elements. Find an m such that

sm is minimal.

Classical search algorithm needs θ(n) comparisons.

QUANTUM SEARCH ALGORITHM

1. Choose as a first “threshold” a random y ∈ {1, . . . , n}.
2. Repeat the following three steps until the total running time is more than 22.5

√
n + 1.4 lg2 n.

2.1. Initialize

|ψ0〉 =
1√
n

n∑

i=1
|i〉|y〉

and consider an index i as marked if si < sy.

2.2. Apply Grover search to the first register to find an marked element.

2.3. Measure the first register. If y′ is the outcome and sy′ < sy, take as a new threshold the index

y′.

3. Return as the output the last threshold y.

It is shown in my book that the above algorithm finds the minimum with probability at least 1
2

if the

measurement is done after a total number of θ(
√
n) operations.
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QUANTUM COUNTING

There is a quantum algorithm, a combination of Shor’s and Grover’s algorithms, to
count approximately the number of solutions of the equation f(x) = 1, where
f : {0, 1}n→ {0, 1}, that is asymptotically more efficient than any classical
algorithm for counting.

Basic idea: At the Grover’s algorithm amplitudes kj and lj vary with the number of
iterations, according to a periodic function. This period is directly related to the size
of sets X0 and X1. An estimation of the common period, using Quantum Fourier
Transform, provides an approximation of the size of the sets X0 and X1.

Quantum algorithm presented below for approximate counting has two parameters: A
black-box function f and a p = 2k for some k (to set up the precision of
approximation).

Jozef Gruska November 20, 2013 26
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The algorithm uses two transformations

Cf : |m,ψ〉 → |m,G(m)
f ψ〉,

Fp : |k〉 → 1√
2k

p−1
∑

l=0
e2πikl/p|l〉,

where Gf is Grover iterate for f and G
(m)
f denotes its m-th iteration.

ALGORITHM COUNT(f,p)

1. |ψ0〉 ← (Hn ⊗Hn)|0(n), 0(n)〉;
2. |ψ1〉 ← Cf |ψ0〉;
3. |ψ2〉 ← Fp ⊗ I|ψ1〉;
4. f ← if measure of |ψ2〉 > p

2
then p−M(|ψ2〉) else M(|ψ2〉);

5. output ← 2n sin2(fπ
p

).

Jozef Gruska November 20, 2013 27
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AMPLITUDE AMPLIFICATION

Another natural generalization of Grover’s search yields additional important quantum algorithm design

techniques.

Problem: Let f : X → {0, 1} be a function that partition X into good (f(x) = 1) and bad

(f(x) = 0) elements and let A be a quantum algorithm such that A|0〉 =
∑

x∈X αx|x〉 and, finally, let

a be the probability that a good element is obtained if A|0〉 is measured.

In average we need to repeat the process of running A, measuring the outcome and checking it (using

f), about 1
a times, to find a good element.

Amplitude amplification is a process that allows to find a good x after expected 1√
a number of

applications of the algorithm A and of its inverse, assuming A makes no measurement.

In the case a is known, a good x can be found in the worst case after 1√
a applications of A and of its

inverse.

This quadratic speed-up can be obtained also for a large family of search problems (for which there are

faster classical algorithms as the naive quantum ones).

Jozef Gruska November 20, 2013 28



Quantum computing 7, Fall 2013

AMPLITUDE AMPLIFICATION – DETAILS

Let H be a Hilbert space and Z = {0, 1, . . . , 2n − 1} be a set of names of its basis states. Let a

mapping f : Z→ {0, 1} partition of Z into good (f(x) = 1) and bad (f(x) = 0) states. Good (bad)

basis states generate good (bad) subspace H1 (H0).

For each pure state |ψ〉 ∈ H there is a unique decomposition

|ψ〉 = |ψ1〉 + |ψ0〉,

where |ψi〉 ∈ Hi.

The probability that measurement of |ψ〉 provides a good (bad) state is 〈ψ1|ψ1〉 = a

(〈ψ0|ψ0〉 = 1− a).

The amplification process is realized by repeatedly applying the operator

Q = −AI0A−1If

The first key point is that Q maps subspace Hψ spanned by vectors |ψ1〉 and |ψ0〉 into itself. Indeed, it

holds

Q|ψ1〉 = (1− 2a)|ψ1〉 − 2a|ψ0〉
Q|ψ0〉 = 2(1− a)|ψ1〉 − (2a− 1)|ψ0〉

Jozef Gruska November 20, 2013 29
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because

Q = IψIψ0
,

where

Iψ = I − 2|ψ〉〈ψ|, Iψ0
= I − 2

1− a|ψ0〉〈ψ0|.

Let H⊥ψ be the orthogonal complement of Hψ in H. The operator AI0A∗ acts as identity on H⊥ψ and

therefore Q2 acts as identity on H⊥ψ and every eigenvector on H⊥ψ has eigenvalues +1 and −1.

In order to understand the action of Q on an arbitrary state |χ〉 it is therefore sufficient to understand

the action of Q on the projection of |χ〉 on Hψ.

The operator Q is unitary and on Hψ it has two eigenvectors

|ψ±〉 =
1

2
(

1√
a
|ψ1〉 ±

i√
1− a|ψ0〉),

provided 0 < a < 1 and eigenvalues are

λ± = e±i2θa,

where θa is such an angle in [0, π/2] defined by

sin2(θa) = a = 〈ψ1|ψ1〉.

Since

A|0〉 = |ψ〉 =
−i√

2
(eiθa|ψ+〉 − e−iθa|ψ−〉)

Jozef Gruska November 20, 2013 30
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It is now clear that after j applications of iterate Q yields

Qj|ψ〉 =
−i√

2
((2j+1)iθa|ψ+〉 + e−(2j+1)iθa|ψ−〉 (4)

=
1√
a

sin((2j + 1)θa)|ψ1〉 +
1√

1− a cos((2j + 1)θa)|ψ0〉. (5)

On this basis it is straightforward to show:

Theorem(Quadratic speedup) Let A be a quantum algorithm that uses no measurement and

f : {0, 1, . . . , 2n − 1} → {0, 1}. If the initial probability of success is a, then after computing

QmA|0]〉, where m = ⌈π/4θa⌉, where sin2 θa = a, 0 < θa ≤ π
2 , the outcome is good with probability

at least max(1− a, a).

In the case of the original Grover’s algorithm a = 1
2n

Jozef Gruska November 20, 2013 31
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QUADRATIC SPEED-UP WITHOUT KNOWING a

Theorem(Quadratic speed-up without knowing a.) There exists a quantum algorithm QSearch

with the following properties. Let A be any quantum algorithm that uses no measurement, and let

f : {0, 1, . . . , 2n} → {0, 1}. Let a be success probability of A. Algorithm QSearch finds a good

solution using θ( 1√
a
) if a > 0, and otherwise runs infinitely.

Algorithm QSearch:

1. Set l = 0 and c ∈ (1, 2), apply A to the initial state |0〉 and measure the system. If the output is a

good state, then stop.

2. Increase l by 1 and set M = ⌊cl⌋.
3. Choose randomly j ∈ [1,M ] and apply Qj to A|0〉
4. Measure the resulting state. If the outcome |z〉 is good, then output z; otherwise go to step 2.

Correctness of the algorithm is obvious. If a > 3/4, then we find with large probability a good solution

in Step 2. Otherwise steps 3 and 4 are repeated until a good solution is found (if it exists). A difficult

task is to show that the probability of success is as claimed.
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APPENDIX

We prove now several technical results that were used in the main part
of this chapter.
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Proof that

−HnV
n
0 Hn = Dn =















−1 + 2
2n

2
2n . . . 2

2n
2
2n

−1 + 2
2n

. . . 2
2n... ... . . . ...

2
2n

2
2n . . . −1 + 2

2n















.

(−HnV
n
0 Hn)xy = − ∑

z∈F2
n
(HnR

n
0)xz(Hn)zy (6)

= −∑

z

∑

w
(Hn)xw(V n

0 )wz(Hn)zy (7)

= − 1

2n
∑

z∈Fn
2−{0}

(−1)x·z)V n
0 )zz(−1)z·y (8)

=
1

2n
(2− ∑

z∈Fn
2−{0}

(−1)(x+y)·z) (9)

=







2
2n
, if x 6= y

−1 + 2
2n ifx = y

(10)
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Solution of recurrent equations (Hirvensalo, 2001)

kj+1 =
2n − 2t

2n
kj +

2(2n − t)
2n

lj, lj+1 =
2n − 2t

2n
lj −

2t

2n
kj

with the initial condition

k0 =
1√
2n

= l0.

It is clear that all kj and lj are real and all points (kj, lj) are points of the ellipse defined by equation

tr2
j + (2n − t)l2j = 1.

Hence
rj = 1√

t
sin θj

tj = 1√
2n−t cos θj

for some number θj. Our basic recursion for rj=1 and lj+1 are then:

sin θj+1 = (1− 2t

2n
) sin θj +

2

2n

√

t(2n − t) cos θj (11)

cos θj+1 = − 2

2n

√

t(2n − t) sin θj + (1− 2t

2n
) cos θj (12)
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Since t is number of elements such that f(y) = 1 we have 1− 2t
2n ∈ [−1, 1]. we can therefore choose

ω ∈ [0, π] such that cosω = 1− 2t
2n . This then implies that sinω = 2

2n

√

t(2n − t) and therefore our

recurrent equations get a nice form

sin θj+1 = sin(θj + ω)

cos θj+1 = cos(θj + ω).

and since the boundary condition gives us sin2 θ0 = t
2n we have as a solution of our recurrences

kj = 1√
t
sin(tω + θ0),

lj = 1√
2n−t cos(tω + θ0).

where θ0 ∈ [0, π/2] and ω ∈ [0, π]. Since cosω = 1− 2t
2n we have

cosω = 1− 2 sin2 θ0 = cos 2θ0

and so ω = 2θ0

kj = 1√
t
sin((2t + 1)θ0),

lj = 1√
2n−t cos((2t + 1)θ))

.
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PHASE ESTIMATION

Closely related to implementation of Fourier transform is a method for phase

estimation. Given is a unitary operator U with an eigenvector |u〉 and eigenvalue

e2πiφ, where |φ〉 is unknown. The task is to determine φ.

For a related control-U j-gate it holds

U j(
1√
2
(|0〉 + |1〉)]|u〉 =

1√
2
(|0〉|u〉 + e2πijφ|1〉|u〉) =

1√
2
(|0〉 + e2πjφ|1〉)|u〉.

This means that the first n-qubit of the circuit produces the state

|0>

|0>

|0>

|u> |u>U U U2 2 20 1 n−1

H

H

H

1√
2n

n⊗

t=1
(|0〉 + e2πi2t−1φ|1〉) =

1√
2n

2n−1∑

k=0
e2πikφ|k〉

The last equality follows from the lemma on next slide.
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LEMMA

Let x ∈ {1, . . . , 2n− 1} and let its binary representation be x1x2 . . . xn. For quantum
Fourier transform

F |x〉 =
1√
2n

2n−1∑

k=0
e2πijk/2n|k〉

it holds

Lemma

F |x〉 =
1√
2n

[(|0〉 + e2πi0.xn|1〉)(|0〉 + e2πi0.xn−1xn|1〉) . . . (|0〉 + e2πi0.x1...xn|1〉)].

Proof This follows form calculations

F |x〉 =
1√
2n

2n−1
∑

k=0
e2πixk/2n|k〉 =

1√
2n

1∑

k1=0
. . .

1∑

kn=0
exp(2πix

n∑

l=1
kl2
−l)|x1 . . . xn〉(13)

=
1√
2n

1∑

k1=0
. . .

1∑

kn=0

n⊗

l=1
e2πixkl/2

l|kl〉 =
1√
2n

n⊗

l=1

1∑

kl=0
e2πixkl/2

l|kl〉 (14)

=
1√
2n

n⊗

l=1
(|0〉 + e2πix/2l|1〉) (15)
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AMPLITUDE AMPLIFICATION

In the original Grover’s search algorithm the first step is to apply the operator H⊗n to
the state |0n〉 to obtain a uniform superposition of all basis states.

The above step can be seen as follows: the operator H⊗n guesses a solution in such a
way that all possible solutions have the same probability.

Grover’s idea can be applied to any algorithm A which guesses a solution by setting
up some other superposition of all basis states.
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The state
|ψ〉 = A|0n〉 =

∑

x
αx|x〉

can be naturally splitted as follows

|ψ〉 =
∑

x∈Xgood

αx|x〉 + ∑

x∈Xbad

αx|x〉

Observe that
pgood =

∑

x∈Xgood

|αx|2 and pbad =
∑

x∈Xbad

|αx|2

are probabilities of measuring a good and a bad state.

In a nontrivial case 0 < pgood < 1, we can consider the states

|ψgood〉 =
∑

x∈Xgood

αx√
pgood

|x〉 |ψbad〉 =
∑

x∈Xbad

αx√
pbad

|x〉

and then we can write

|ψ〉 =
√
pgood|ψgood〉 +

√
pbad|ψbad〉

or
|ψ〉 = sin(θ)|ψgood〉 + cos(θ)|ψbad〉
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where θ ∈ (0, π
2
), sin2(θ) = pgood.

The state |ψ〉 is orthogonal to the state

|ψ̄〉 = cos(θ)|ψgood〉 − sin(θ)|ψbad〉
and therefore

{|ψ〉, |ψ̄〉} and {|ψgood〉, |ψbad〉}
are two orthonormal bases in the same 2-dimensional subspace.

Let us now consider operators Uψ⊥ and Uf defined by

Uψ⊥|ψ〉 = |ψ〉 and Uψ⊥|φ〉 = −|φ〉
for all |φ〉 orthogonal to |ψ〉 and

Uf : |x〉 → (−1)f(x)|x〉
By straightforward calculations one can derive relations

U⊥ψ Uf |ψ〉 = cos(2θ)|ψ〉+ sin(2θ)|ψ̄〉
and also

U⊥ψ Uf |ψ〉 = sin(3θ)|ψgood〉 + cos(3θ)|ψbad〉
The last state is illustrated in the following figure
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>goodψ|

|ψbad>
θ

2θ |ψ >

Uψ U f ψ| >

Observe now that for any real θ the operator Uf does the following

Uf(sin(θ)|ψgood〉 + cos(θ)|ψbad〉 = − sin(θ)|ψgood〉 + cos(θ)|ψbad〉
and therefore Uf performs a reflection about the axis defined by the vector |ψbad〉
and similarly

U⊥ψ (sin(θ)|ψ〉+ cos(θ)|ψ̄〉 = sin(θ)|ψ〉 − cos(θ)|ψ̄〉
and therefore U⊥ψ performs a reflection about the axis defined by the state |ψ〉.
It is a well-known fact from the elementary geometry that two such reflections
correspond to a rotation through the angle 2θ in the 2-dimensional space.
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An application of the operator G = U⊥ψ Uf k-times therefore rotates the initial state
|ψ〉 to the state

Gk|ψ〉 = cos((2k + 1)θ)|ψbad〉 + sin((2k + 1)θ)|ψgood

If such a state is measured when (2k + 1)θ ≈ π
2 , then with very high probability a

good basic state is revealed.
For small θ we have θ ≈ sin(θ) =

√

pgood and therefore a measurement should be

performed after k =≈ π
4θ
≈ π

4
√

pgood]
iterations.

An application of such a procedure therefore requires to know the probability with
which the operator A guesses a solution to f(x) = 1.
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QUANTUM AMPLITUDE ESTIMATION and QUANTUM COUNTING

Quantum counting is a problem, given

F : {0, 1, . . . , N − 1} → {0, 1}
to determine the number t of such x that f(x) = 1.

Quantum counting problem is a special case of the following

Amplitude estimation problem:
Given are:

• The operator A with the property that A|0n〉 = sin(θ)|ψgood〉 + cos(θ)|ψbad〉,
0 ≤ θ ≤ π

2 .

• The operator Uf that maps |ψgood〉 → −|ψgood〉 and |ψbad〉 → |ψbad〉
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The task is to estimate sin(θ)

In case A = H⊗n amplitude estimation problem is actually quantum counting
problem.

Indeed, if t is number of solutions, then

H⊗n|0n〉 =

√
√
√
√
√
√

t

N
|ψgood +

√
√
√
√
√
√

N − t
N
|ψbad〉

and therefore sin2(θ) = t
N .
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QUANTUM AMPLITUDE ESTIMATION

Let us have an operator

A|0n〉 =
2n−1

∑

j=0
αj|j〉

and define for 0 < θ < π
2

∑

j∈Xgood
|αj|2 = sin2(θ)

∑

j∈Xbad
|αj|2 = cos2(θ)

and therefore
A|0n〉 = sin θ|ψgood〉 + cos θ|ψbad〉.

As already shown the amplitude amplification through a Grover-iteration like operator
Q is actually rotation in the space spanned by the states |ψgood〉, |ψbad〉} through an
angle 2θ. Therefore in this space Q is described by the rotation matrix







cos θ − sin θ
sin θ cos θ







that has eigenvectors







i√
2

1√
2















− i√
2

1√
2







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and the corresponding eigenvalues ei2θ and e−i2θ. Therefore

|ψ〉 = eiθ
1√
2
|ψ+〉 + e−iθ

1√
2
|ψ−〉

where

|ψ+〉 =
1√
2
|ψbad〉 +

i√
2
|ψgood〉, |ψ−〉 =

1√
2
|ψbad〉 −

i√
2
|ψgood〉

Quantum amplitude estimation algorithm works by applying eigenvalue estimation
with the second register in the above state |ψ〉. Such an algorithm gives us an
estimate of either 2θ or −2θ.

The quantum amplitude estimation circuit has the form

|0> n QFTM QFTM
−1

|0> n A G x
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|0> n QFTM QFTM
−1

|0> n A G x

This is therefore a circuit for quantum amplitude estimation where M = 2n

applications of the search iterate and therefore M applications of Uf are used. A
measurement of the top register yields a string representing an integer y. The value
2xy
M is an estimate of either 2θ or 2π − 2θ. The circuit outputs an integer
y ∈ {0, 1, 2, . . . ,M − 1}, where M = 2m, m ≥ 1 and the estimate of p = sin2(θ) is
p̄ = sin2(π y

M
).
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