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4. QUANTUM CIRCUITS

Quantum circuits are the most easy to deal with model
of quantum computations.

Several simple quantum gates form elementary building
blocks from which any quantum circuit can be built.
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PART I - MOTIVATION
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MOTTO I.

Progress in science is often done by pessimists.
Progress in technology is always done by optimists.
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MOTTO II.

Progress in science is often done by pessimists.
Progress in technology is always done by knowledgeable

and experienced optimists.
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TWO STORIES TO REMEMBER

• The proposal to build Collosus, the first electronic computer for
cryptanalysis purposes, was during the 2WW rejected by a
committee of prominent specialists as impossible to make, in spite
of the fact that British cryptanalysts needed it badly to crack
communication between Hitler and his generals.

• Collosus was then built by an ingenious optimist, Tommy Flowers,
within 10 months in a Post office laboratory, and worked from the
beginning successfully to break Lorenz cipher, starting January
1944.

• The key point was that Flowers realized that velvets were reliable
provided they were never switched on and off. (Of course, nobody
believed him.)

• The idea that 30m long ENIAC with 19000 vacuum tubes could
work looked also crazy, for scientists, but it worked.
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BASIC OBSERVATIONS – I

Observation: An apparently small observation of a
scientists or an experience of an engineer can turn a field
upside down and “create a superstar from a sleeping
beauty”.

Conclusion: It is very, very important to search for
primitives and for new and new primitives - even in the
areas one can hardly expect them.
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MODELS of UNIVERSAL COMPUTERS

• Classical models: circuits, Turing machines, cellular automata,
RAM a PRAM

• Quantum models

– (Unitary operations based ) Quantum Turing Machines

– (Unitary operations based) Quantum Circuits

– Quantum cellular automata ????

– Measurements based quantum circuits

– Measurements based quantum Turing machines

• Emerging idea: Classically controlled quantum computation
(automata).
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MAIN MODELS of AUTOMATA

a q

qALU

memory

Operations:Load,  Store
Add, Subtract
Jump, Jump−if

RAM

Three tape Turing machine

Two−dimensional cellular automaton

RAM RAM RAM RAM

shared memory

PRAM

Finite automaton
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QUANTUM GATES — SIMPLE EXAMPLES

Unitarity is the main new requirement quantum gates have to satisfy.

U

Definition A quantum gate with n inputs and n outputs is specified by a unitary operator

U : H2n → H2n, and it is represented by a unitary matrix AU of degree 2n.

Example The so-called Hadamard (rotation) gates are represented by matrices

H =
1√
2







1 1

1 −1





 H ′ =
1√
2







1 1

−1 1





 H ′′ =
1√
2







1 −1

1 1





 .

Example The following one parameter set of rotation gates (represented by matrices) is also often

used:

Rx(θ) =







cos θ i sin θ

i sin θ cos θ





 , Ry(θ) =







i cos θ sin θ

sin θ i cos θ





 ,

Rz(θ) =







eiθ 0

0 e−iθ





 ,
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QUANTUM GATES → UNITARY MATRICES

Unitary matrix for XOR-gate (CNOT-gate)

has the form

























1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

























.

What is the unitary matrix representing the “inverse XOR gate”?

h
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h

What is the unitary matrix representing the “inverse
XOR gate”?

It has the form
































1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

































.
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SOLVING SCHRÖDINGER EQUATION

For the Hamiltonian

H =
πh̄

2

























0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

























=
πh̄

2
V

the Schrödinger equation

ih̄
∂U (t)

∂t
= HU (t)

has the solution

U (t) = e−
i
h̄Ht =

∞
∑

k=0

(−iπ
2
)kV ktk

k!
= I +

1

2

∞
∑

k=1

(−πit)k
k!

V

because V k = 2k−1V and therefore for t = 1,

e−
iπ
2 V = I +

1

2
(e−iπ − 1)V = I − V = XOR = CNOT.
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FROM GATES to UNITARY MATRICES

In general, if a quantum gate has n inputs and outputs
then for the corresponding unitary matrix the entry

in the column x ∈ {0, 1}n

and

in the row y ∈ {0, 1}n

is the amplitude for transition from the basis state |x〉 to
the basis state |y〉.
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UNITARY MATRICES versus BASES

Each unitary operator has different matrix representations in
different bases.

For example XOR operator has in the standard basis

{|00〉, |01〉, |10〉, |11〉}
representation

























1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

























and in the basis
{|00〉, |10〉, |01〉, |11〉}
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its representation is
























1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

























Representation of XOR in the Bell basis {|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉}, where

|Φ+〉 =
1√
2
(|00〉 + |11〉) |Φ−〉 =

1√
2
(|00〉 − |11〉)

|Ψ+〉 =
1√
2
(|01〉 + |10〉) |Ψ−〉 =

1√
2
(|01〉 − |10〉)

has the form
























1
2

1
2

1
2
−1

2
1
2

1
2 −1

2
1
2

1
2
−1

2
1
2

1
2

−1
2

1
2

1
2

1
2
























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XOR GATE as a REAL WIRE

|φ>

|0>

α|0>+β|1>

|0>

α|00>+β|11>

|0>

|0> |0> |0>

|1>

|1>

As already mentioned, of central importance for quantum
computing is the XOR gate (see leftmost and topmost figure).

Observe that if the target qubit has the input |0〉, then this gate can
be used to copy qubits |0〉 and |1〉 from the control qubit.

At the same time the gate in Figure a can be seen as a classical wire
because it cannot carry on a superposition of the states.
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A QUANTUM EVOLUTION STEP

A quantum evolution step consists formally of a quantum state (vector) multiplication by a unitary

operator. That is

A|φ〉 = |ψ〉
For example,





















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









































b1
b2
b3
b4





















=





















a11b1 + a12b2 + a13b3 + a14b4
a21b1 + a22b2 + a23b3 + a24b4
a31b1 + a32b2 + a33b3 + a34b4
a41b1 + a42b2 + a43b3 + a44b4





















.

A better insight into such a process can be obtained using different notation at which it is assumed

that all rows and columns are labeled by the states of the standard basis of H4.





















a00,00 a00,01 a00,10 a00,11

a01,00 a01,01 a01,10 a01,11

a10,00 a10,01 a10,10 a10,11

a11,00 a11,01 a11,10 a11,11









































b00

b01

b10

b11





















=





















b00a00,00 + b01a00,01 + b10a00,10 + b11a00,11

b00a01,00 + b01a01,01 + b10a01,10 + b11a01,11

b00a10,00 + b01a10,01 + b10a10,10 + b11a10,11

b00a11,00 + b01a11,01 + b10a11,10 + b11a11,11





















=





















d00

d01

d10

d11





















.
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QUANTUM CIRCUITS — SIMPLE EXAMPLES

defi A quantum (Boolean) circuit is a collection of quantum gates acyclically
connected (by “quantum wires”). defi
A relation between a quantum circuit and the corresponding unitary matrix is far from
being very transparent even for simple circuits and some experience is needed to get
proper feelings in this respect.

A

A A

B

(a) (b) (c)

Figure 1: Elementary networks I

(a) (b) (c)

 B
A

C

Figure 2: Elementary networks II
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INVERSE XOR GATE CIRCUIT

=

(a) (b)

G

G

H H

H H

1

2

Figure 3: An implementation of the inverse of the XOR gate.

The processing in the network on the left side of the identity in Figure ??b for the
input |0〉|1〉 can be depicted as follows:
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|0〉|1〉 H−gates−→ |0′〉|1′〉
=

1√
2
(|0〉 + |1〉) 1√

2
(|0〉 − |1〉)

=
1

2
(|0〉|0〉 + |1〉|0〉 − |0〉|1〉 − |1〉|1〉)

XOR gate−→ 1

2
(|0〉|0〉 + |1〉|1〉 − |0〉|1〉 − |1〉|0〉)

=
1√
2
(|0〉 − |1〉) 1√

2
(|0〉 − |1〉) = |1′〉|1′〉

H gates−→ |1〉|1〉.
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EXAMPLE

There are various generalizations of XOR gates:

(a1) (a2) (a3) (a4)

|φ>

|ψ>

|ψ>

|φ>

(b)

G

a

b

c

a

b

c

d

a

b

c

a

b

c

d

Figure 4: Generalized XOR gate notations and a quantum circuit to flip the qubits

The circuit in Figure b realizes flipping of qubits.

To see that, denote Ijk the matrix obtained from the unit matrix of degree 4 by exchanging j-th and

h-th columns (i.e. XOR=I34).

If |φ〉 = α|0〉 + β|1〉, |ψ〉 = α′|0〉 + β′|1〉, then computation by the circuit in Figure b, gate by gate,

corresponds to the following matrix computation:

I34I24I34





















αα′

αβ′

βα′

ββ′





















= I34I24





















αα′

αβ′

ββ′

βα′





















= I34





















αα′

βα′

ββ′

αβ′





















=





















αα′

βα′

αβ′

ββ′





















=





















α′α
α′β
β′α
β′β




















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BELL STATE CIRCUITS

|ϕ>

|ψ>

|α>

|β>

H |ϕ>

|ψ>

|ϕ  >

|ψ  >

(a) (b)

1

1

The circuit in Figure a produces all four Bell states for
all possibilities |φ〉, |ψ〉 ∈ {|0〉, |1〉}.
The circuit in Figure b performs one-to-one mapping of
Bell states into Bell states.
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GRAPHICAL REPRESENTATION of some BASIC GATES

CNOT−gate SWAP−gate

U
U

Λ(U)−gate Λ  (2 U)−gate
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SOME USEFUL IDENTITIES

Several simple identities between elementary gates are surprisingly useful.

σx     
=

σ

σ

x     

x     σx     σx     

=

σ σ

σ σ

σ

σ

y

y

z

y

z

y

= =

σ σ

σ

σ

σ

z

z

z z

z

= =

Jozef Gruska October 20, 2011 24
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ANOTHER USEFUL IDENTITIES I

σx     
=

σx     

σ σ
=

σ σ

σ σ σy y

= =

σ σ

σ

σ

σz

= =

σx

σx     

y

σy

z

σ

x

z

y σy

x

σ

y

y σz

z σy x

y

σ

σ

z

x

σ

σ

z

x

σ

σ σ

z

y y

= =
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ANOTHER USEFUL IDENTITIES II

0   eiφ

=

1   0

1   0

0   e

i

iφ
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PERMUTATION CIRCUITS

Using several copies of the circuit to flip (or to transpose) two qubits one can realize
any permutation of qubits. Using such a method one needs 6 gate-steps to perform
permutation shown in the following figure, where such a permutation is realized, using
a more complex circuit, with three ancilla qubits, but in only four gate-steps.

|ψ1>

  0

|ψ2>

0

|ψ3>

0

|ψ3>

  0

|ψ1>

  0

|ψ2>

0

Figure 5: Permutation circuit
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HADAMARD GATE

The Hadamard transform Hn is implemented by the circuit in Figure a, and Figure b
contains the usual notation for the circuit for Hn.

H

H

H

H

|0>

|0>

|0>

|0>

|ϕ>

|0>

|0>

|0>

|0>

H |ϕ>n

(a) (b)

The Hadamard circuit Hn and its application to the state |0(n)〉 with the outcome

|φ〉 =
1√
2n

2n−1
∑

i=0
|i〉.
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COMPUTATIONAL MEANING OF QGATES

x
x
x

x
x

y
y

y

1

2

3

n-1

n

1

2

m

The computational meaning of quantum circuits is defined as follows.

For any quantum circuit C with input variables x1, . . . , xn and output variables y1, . . . , ym, m ≤ n

(they are to be a subset of outputs), we associate to any input x ∈ {0, 1}n the probability distribution

ρx over {0, 1}m defined in the following way.

For any input x the final quantum state v, corresponding to all output wires, not only to those carrying

output variables, has the form

v =
∑

y∈{0,1}m
αy|y〉,

where αy is the amplitude obtained by the projection of v when the output variables are set to the

value y, i.e. αy is the square root of the sum of squares of amplitudes of these final outcomes having

value y in the wires corresponding to output variables.

πx(y) = |αy|2 is the corresponding probability and {πx | x ∈ {0, 1}n} is said to be the distribution

generated by the circuit C.
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CONTROLLED QUANTUM GATES

To any quantum gate G we can design a controlled version CG of G as follows

G

control bit

target bit
G

For example

XOR gate
NOT

If

R(θ) =







cos θ − sin θ

sin θ cos θ





 or R(θ) =







cos θ i sin θ

i sin θ cos θ







then

Ρ(Φ/2)

represents rotation of the target qubit by angle θ
2 if the control bit is 1.
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MEASUREMENT GATES

Measurement gates are not only to magnify results of quantum evolution to provide
its outcomes to the classical world. They can be used also to influence, in an essential
way, the whole process of quantum computation.

Consider the two quantum circuits depicted in Figure. The first one consists at first of
two Hadamard gates Hn and ends with the measurement gate, with respect to the
standard observable.

The second circuit has in addition a measurement gate also in between two Hadamard
gates.

m
easurem

ent

m
easurem

ent

m
easurem

ent

|0>
|0>

|0>
|0>

|0>
|0>

|0>
|0>

(a) (b)

Hn Hn Hn Hn

Figure 6: Measurement gates and their role

There is an essential difference between these two circuits. Which one?
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QUBIT TESTING CIRCUIT

Let |α〉 and |β〉 be two qubits and δ = |〈α|β〉|. Equality of two qubits can be tested by the following

so called swap test circuit

H H M|0>

|α>

|β>
consisting of two Hadamard gates, one Fredkin gate (that exchanges inputs on other two inputs if

target bit is 1 and otherwise let all inputs to get through without any change.

Indeed, the resulting state before the measurement is the state

1√
2
(|0〉(|α〉|β〉 + |β〉|α〉) + |1〉(|α〉|β〉 − |β〉|α〉)

and therefore if |α〉 = |β〉, then the result of measurement is 0 with probability 1 and if |α〉 6= |β〉,
then the result of measurement is 0 with probability (1 + δ2)/2 and the result of measurement is 1 with

probability (1 − δ2)/2.
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BASIC OBSERVATIONS – II

• Nature offers many ways – let us call them technologies – various quantum
information processing primitives can be exhibited, realized and utilized.

• Since it appears to be very difficult to exploit potential of nature for QIP, it is of
large importance to explore which quantum primitives form universal sets of
primitives, and are (quite) easy to implement.

• Also from the point of view of understanding of the laws and limitations of QIP and
also o f quantum mechanics itself, the problems of finding rudimentary and
universal QIP primitives , as well as methods for their optimal use, are of large
experimental and fundamental importance.

• Search for quantum computation universal primitives, and their optimal use, is
actually one of the major tasks of the current QIP research (both theoretical and
experimental) that starts to attack the task of building quantum processors
seriously.
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SETS of UNIVERSAL PRIMITIVES in CLASSICAL COMPUTING

• In classical computing, the most often used universal sets of gates are

– AND-, OR- and NOT-gates,

– AND- and NOT-gates,

– NOR- (NAND-) gate.

• The optimization problem for classical circuits with such sets of gates has been
solved qu ite satisfactorily.

• In case of classical reversible computing, universal are both the Toffoli gate

T (x, y, z) = (x, y, (x ∧ y) ⊕ z)

and the Fredkin gate

F (x, y, z) = (x, x̄y + xz, x̄z + xy),

if constant inputs are allowed, as well as “wires” with the identity gates.
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BASIC CONCEPTS – APPROXIMABILITY

Definition An operator
U : H2r → H2r

is ε-approximated, for an ε > 0, by an operator

Ū : H2n → H2n,

where n ≥ r, using an ancilla state |α〉 ∈ H2n−r, if for any state
|φ〉 ∈ H2r,

||Ū(|φ〉 ⊗ |α〉) − U (|φ〉) ⊗ |α〉|| ≤ ε.
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TYPES of UNIVERSALITIES

Definition A set of gates G is called fully universal (f-universal) if every gate can be
realized, up to a global phase factor, by a G-circuit.

Definition A set of gates G is called universal if there is an integer n0 such that any
n-qubit unitary gate with n ≥ n0, can be, for any ε > 0, ε-approximated by a
G-circuit.

Definition A set of real gates G is called computationally universal (c-universal) if
there is an integer n0 such that any n-qubit real unitary gate with n ≥ n0, can be, for
any ε > 0, ε-approximated by a G-circuit.
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BASIC GATES

Gates that will play an important role in the following:

σx = X, σy = Y, σz = Z,K = σ
1
2
z , T = σ

1
4
z .

where σx, σy and σz are Pauli operators;

CNOT = Λ1(σx), TOFFOLI = TOF = Λ2(σx),

where for any one-qubit unitary U ,

Λ1(U ) =









12 02

02 U








, Λ2(U ) =









I4 04

04 Λ1(U )









are conditional operators and

HADAMARD = H =
1√
2
(σx + σz), SWAP and

√
SWAP,

where the two-qubit unitary SWAP just exchanges inputs.
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BASIC ROTATION GATES

Rotations around axes:

Rx(θ) = e−iθσx/2 = cos
θ

2
I − i sin

θ

2
σx =







cos θ
2

−i sin θ
2

−i sin θ
2 cos θ2







Ry(θ) = e−iθσy/2 = cos
θ

2
I − i sin

θ

2
σy =







cos θ2 − sin θ
2

sin θ
2

cos θ
2







Rz(θ) = e−iθσz/2 = cos
θ

2
I − i sin

θ

2
σz =









e−i
θ
2 0

0 e
iθ
[
2









As a generalization we have a rotation around an arbitrary real unit
vector n̄ = (nx, ny, nz) defined by

Rn̄(θ) = e−iθn̄·σ̄/2 = cos
θ

2
(nxσx + nyσy + nzσz).
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UNIVERSAL GATES

Definition 0.1 A set of quantum gates is universal if any
unitary transformation U on any qubit register can be
performed, with arbitrary precision ε > 0, by a quantum
circuit CU,ε, consisting of the gates from that set. (In
other words, the unitary matrix defined by CU,ε is ε-close
to U.)

A simple quantum gate is universal if by itself it forms a
universal set when supported by constant inputs |0〉 and
|1〉
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SETS OF UNIVERSAL QUANTUM PRIMITIVES

Several examples of universal sets of quantum computation primitives are known.
Deutsch gate

D(θ) =

































1 0

0

1 0 0 0
0 1 0 0
0 0 i cos θ sin θ
0 0 sin θ i cos θ

































.

Barenco gate

A(φ, α, θ) =



























1 0 0 0
0 1 0 0
0 0 eiα cos θ −iei(α−φ) sin θ
0 0 −iei(α+φ) sin θ eiα cos θ



























.

where parameters are not racional multiplies of π.
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A SIMPLE UNIVERSAL GATE

It is well known that any rotation on Bloch sphere can
be composed out of rotations

Ry(φ) =













cosφ − sinφ
sinφ cosφ













Rz(φ) =













e−iφ 0

0 eiφ













and these gates can be also used to construct a universal
2-qubit gate (Tamir, 2004)













Ry(α) 0
0 Rz(β)













,

where α, β and π are linearly independent over rationals.
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FUNDAMENTAL RESULTS

The first really satisfactory results, concerning universality of gates, have been due to Barenco et al.

(1995)

Theorem 0.2 CNOT gate and all one-qubit gates form a universal set of gates.

The proof is in principle a simple modification of the RQ-decomposition from linear algebra.

Theorem ?? can be easily improved:

Theorem 0.3 CNOT gate and elementary rotation gates

Rα(θ) = cos
θ

2
I − i sin

θ

2
σα, for α ∈ {x, y, z}.

form a universal set of gates.

An important generalization has been due to Brylinskis (2001)

Theorem 0.4 Any entangling two-qubit gate and all one-qubit gates (or all elementary
gates) form a universal set of gates.
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SETS of UNIVERSAL COMPUTATION PRIMITIVES

1. XOR gate and one-qubit gates;

2. A simple universal set of quantum gates consists of gates:

CNOT =

































1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

































, H =
1√
2













1 1
1 −1













, σ1/4
z =













1 0

0 e
π
4 i












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ENTANGLING GATES

A two-qubit gate is called entangling if it can create an entangled
state when applied to a separable state.

Entangling gates are important. As shown by J. Brylinski and R.
Brylinski (2001):

A two qubit gate forms with one-qubit gates a universal set of gates if
and only if it is an entangling gate.
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MAJOR FINITE UNIVERSAL SETS OF GATES

The following are finite, interesting and important d-universal sets of gates:

• SHOR={TOF, H, σ
1
2
z}, see Shor (1996).

• KLZ1 = {CNOT,Λ1(σ
1
2
z ), σ

1
2
z}, see Knill et al. (1998?).

• KITAEV = {Λ1(σ
1
2
z ), H}, see Kitaev (1997).

• BMPRV={CNOT,H, σ
1
4
z}, see Boykin et al. (1999).

Kitaev (1997) has shown universality of the set KITAEV. Since sets KITAEV and
SHOR are equivalent and gates in SHOR can be simulated by KLZ1-circuits.
Universality of the set KLZ1 follows from that.
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COMPUTATIONALLY UNIVERSAL SETS OF GATES

• Bernstein and Vazirani (1993) have shown that for having universal quantum
computation it is sufficient to work with real amplitudes.

• Adleman et al. (1997) have shown that the set of amplitudes that is really needed
is very small, for example

A = {0,±3/5,±4/5,±1}, or B = {0,±1/
√

2,±1},
or C = {0,± cos θ,± sin θ,±1}, for various θ.

• Rudolph and Grover (2002) have shown, surprisingly, that a simple two-qubit real
gate

G =

























1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

























,

with φ being an irrational multiple of π, is computationally universal.
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SHI’s RESULTS

Surprising results have been obtained by Shi (2003)

Theorem 0.5 • Toffoli gate and any one-qubit gate changing the computational
basis form a computationally universal set of gates.

• CNOT gate and any one-qubit gate such that its square does not preserve
computational basis form a universal set of g ates.

As a consequence

• Toffoli and Hadamard gates form a computationally universal set of gates.

Since Toffoli gate is universal for classical reversible computing, Shi’s result means
that full power of quantum computation is obtained by adding just the Hadamard
gate.
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BINARY ADDER

The following quantum circuit performs binary addition.
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Figure 7: Quantum network for binary addition
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PART II - OPTIMIZATION
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EFFICIENCY of UNIVERSAL SETS of QUANTUM PRIMITIVES

• It is a natural and important question to ask how good are, from the efficiency
point of view, different universal sets of quantum primitives.

• So called Solovay-Kitaev theorem implies that for evolutionary and computational
universality, it is not costly to replace one universal basis by another one – it
requires only poly-logarithmic overhead in lg 1/ε and that that number of base
gates are needed.

• Solovay-Kitaev result implies that any gate from one finite universal set can be
approximated with precision ε using polylog(1

ε
) gates from other finite universal set

of gates. More exactly, Solovay and Kitaev showed that there exist polynomial time
algorithm (in lg 1/ε that creates a circuit with O(lgc(1/ε)) gates, where c ∈ [3, 4].)
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DECOMPOSITION of UNITARIES into ONE- and TWO-QUBIT GATES

Two very basic questions concerning decomposition of
n-qubit unitaries into one-and two-qubit gates are the
following ones

• What is the total number of one- and two-qubits gates
needed to decompose an arbitrary n qubit unitary
operation?

• What is the total number of CNOT gates (or of some
other entangling two qubit gates) needed to decompose
an arbitrary n qubit unitary?
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GENERAL RESULTS

• Barenco et al. (1995) have shown that any n qubit gate can be
realized by O(n34n) CNOT and one-qubit gates.

• The above result has been improved, step by step, to O(n24n),
O(n4n) and, finally, by Vartiainen et al. (2003) to O(4n) –
asymptotically tight.

• Concerning the CNOT gates only:

– The best known upper bound is O(4n) due to Vartiainen et al.
(2003).

– The best lower bound, due to Shende et al. (2003), is
⌈(4n − 3n− 1)/4⌉.
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KEY PROBLEMS

• The key problem is how many CNOT and one-qubit
gates are necessary and sufficient to implement any
two-qubit gate.

• Since each one-qubit gate can be expressed as a
composition of any two of the elementary rotation gates
Rx, Ry and Rz, it is of interest, and actually of large
practical importance, to determine what is the minimal
number of (elementary) gates Rx, Ry, Rz and CNOT
needed to implement an arbitrary two-qubit gate.
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MAIN OUTCOMES

We discuss here only the best outcomes, so far, mainly due to Vidal and Dawson (2003), Shende et al.

(2003 ) and Vatan and Williams (2003).

• 3 CNOT gates and 10 one-qubit and CNOT gates in total are
sufficient to realize any two qubit gate.

• 3 CNOT gates and 9 gates in total are necessary.

• Each two-qubit gate can be realized using 3 CNOT gates and in total
with 18 gates from the set containing the CNOT gate and any two of
the three gates from the set {Rx, Ry, Rz}. (The above result is
optimal for the case temporary storage is not allowed (because of
being expensive).

• For gates from SO(4) only 12 gates Ry, Rz are needed.
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UNIVERSAL CIRCUIT SCHEMES

The universal two-qubit circuit scheme with three CNOT gates and
10 basic gates, or 18 gates from the set {CNOT,Ry, Rz} is in Fig
ure ??.

  A

  B

  C

  D  R   R

 R z

 R  y  z  y

Figure 8: A universal 2-qubit circuit
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B-GATE STORY

Search for the best implementation of two qubit gates using a fixed
two-qubit gate and one-qubit gates brought also a discovery of a new
gate, so called B-gate. It is the gate realized by the following circuit:

e
iπ/4σx

B−gate

Figure 9: B-gate circuit

This gate is “better” than CNOT gate in the following sense.

Theorem Each two-qubit gate can be realized by a circuit with at most
two B-gates and one-qubit gates.
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MODELS of UNIVERSAL COMPUTERS

• Classical models: circuits, Turing machines, cellular
automata, RAM a PRAM

• Quantum models

– (Unitary operations based ) Quantum Turing
Machines

– (Unitary operations based) Quantum Circuits - all
gates are unitaries

– Quantum cellular automata ????

– Measurements based quantum circuits - all gates are
measurements;

– Measurements based quantum Turing machines
(Perdrix, Jorrand, 2004);

All these models have the same (Turing) computational power.
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TWO COMPUTATION MODES

Initial state
preparation

Initialize 

measurements

Compute    

operation
unitary

Get a results

measurement

measurements measurements

Measurement = projective measurement.
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GENERALIZED TELEPORTATION

Teleportation Teleportation of any unitary U

|ψ>

|EPR>

B

m ε {0,1,2,3}m {0,1,2,3}ε

σm

|ψ>

|ψ>
|EPR>

|σ>mU |ψ>

B U

for a proper measurement BU . In a slightly different form this looks as
follows:

m ε {0,1,2,3}
|ψ>

|σ>

B U
Β

n ε {0,1,2,3}

m,nU |ψ>
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MINIMAL RESOURCES for UNIVERSAL MEASUREMENTS

Perdrix (2004) has shown that

one-qubit ancilla and

one two-qubit Pauli measurement (X ⊗ Z) and three one-qubit Pauli

measurements (X, Z, 1√
2
(X + Y ))

are sufficient to approximate, up to a Pauli operator, any unitary
operation.
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MINIMAL RESOURCES for UNIVERSAL MEASUREMENTS

Perdrix (2004) has shown that one-qubit ancilla, one two-qubit Pauli measurement and three one-qubit

Pauli measurements are sufficient to approximate, up to a Pauli operator, any unitary operation.

U*ZU

VZV* Z

 Z

 X

X

Z Z (σ xσ) ΧΝΟΤ|φ>

|φ>

*VXV

U*XU

VσU*|φ> |φ>(a)
(b)

Figure 10: Two schemes for providing universal state transfer

• In the cases U = H and V = I, the output has the form σH|φ〉.

• In the case U = T = σ
1
4
z and V = H the output has the form σHT |φ〉.

• In the above two cases only the measurements with observables X , Z, 1√
2
(X + Y ) and X ⊗ Z are

used.
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