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10. QUANTUM ERROR CORRECTION CODES

Quantum computing based on pure states and unitary evolutions is an
idealization that works fine for so-called closed (idealised) quantum
systems.

In any real quantum computing one has to assume an interaction
between the quantum system used for computing and its environment.
This has deep and negative consequences, for potential to have stable
quantum memory and error-free quantum computation, termed as
decoherence.

Strong scepticism concerning the possibility to have powerful quantum
computers has been mainly due to the phenomenon of decoherence.

Quantum error correcting codes and quantum fault-tolerant
computation methods represent a powerful way to fight decoherence.

Jozef Gruska December 6, 2010 1



Quantum computing 10, 2010

QUANTUM DECOHERENCE

Decoherence is the process of interaction of a quantum system with its environment.

An interaction of a quantum system with its environment causes that some of its states get entangled

with the states of the environment and that can destroy supersensitive quantum superpositions.

Quantum system ts τdec comput.
steps

Mössbauer nucleus 10−19 10−10 109

GaAs electrons 10−13 10−10 103

Au electrons 10−14 10−8 106

Trapped indium ions 10−14 10−1 1013

Optical microcavity 10−14 10−5 109

Electron spin 10−7 10−3 104

Electron quantum dot 10−6 10−3 103

Nuclear spin 10−3 104 107

Table 1: Switching time ts, decoherence τdec, both in seconds, and the number of computation steps performed before decoherence impacts occur

Moreover, as a quantum system evolves, information about its states leaks into environment, causing

the states to loose their purity and, consequently, their ability to interfer.

Decoherence is the main enemy of the potential quantum computers.

A WAY OUT — QUANTUM ERROR-CORRECTING CODES
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CLASSICAL LINEAR CODES

The Hamming distance of two words u and v, notation hd(u, v), is the number of symbols in

which u and v differ.

A binary code C is a subset of {0, 1}n for some n; its elements are called codewords. For error

detection and correction the minimal distance d(C) of a code C is of importance.

d(C) = min{hd(u, v) | u, v ∈ C, u 6= v}.
This allows us to formulate one of the most basic results of the error-detecting and -correcting codes.

Theorem 0.1 (1) A code C can detect up to s errors in any codeword if and only if d(C) ≥ s+ 1; (ii) A

code C can correct up to t errors if and only if d(C) ≥ 2t + 1.

Definition 0.2 An (n,M, d)-code is a code of M words of length n and minimal distance d.

A very important class of codes are so-called linear codes.

Definition 0.3 A binary code C is linear if for any two codewords w1, w2 ∈ C also w1 ⊕ w2 is in C. A

linear code of codewords of length n form a subspace of n-dimensional vector space over Z2.
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If the dimension dim(C) of a linear code C, as that of the subspace C, is k then C is said to be an

[n, k]-code. In addition if C is of distance d, then it is said to be [n, k, d]-code.

If C is a linear code, then C⊥ = {w | u · w = 0 if u ∈ C} is called the dual code to C. A code C is

self-dual if C⊥ = C.

A matrix G whose rows are all vectors of a basis of a linear code C (as a subspace) is said to be a

generator matrix of C. A generator matrix H of the dual code C⊥ is called the parity-check

matrix of C.
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EXAMPLES of LINEAR CODES

Code

C = {000, 011, 101, 110}
is linear and his generating matrix has the form

G =







0 1 1

1 0 1





 .

Code

C ′ = { 0000000, 1111111, 1000101, 1100010

0110001, 1011000, 0101100, 0010110

0001011, 01110101, 00111101, 1001110

0100111, 1010011, 1101001, 1110100}

is also linear and its generating matrix has the form




















1 1 1 1 1 1 1

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 1 0 0 0 1





















.
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CHANNELS, CODES and CORRECTABLE ERRORS

A noisy communication channel changes a message u to u′. The difference e = u′ − u is called error

(word, vector).

A set E of errors is said to be correctable by a code C if for ei 6= ej or u 6= v:

u + ei 6= v + ej.∀u, v ∈ C(u 6= v).

Example Let channel errors occur in bursts affecting always pairs, i.e. let error vectors are

E = {00, 11}. This set of errors is correctable by the code

{00, 01}.

Example Let a channel changes a bit with probability p < 1
2. Then the code

C = {000, 111}

corrects the set of errors

E = {000, 100, 010, 001}.
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ENCODING and SYNDROME DECODING for LINEAR CODES

Encoding with linear codes.

If C is an linear [n, k]-code with a generator matrix G, then C contains 2k codewords and therefore it

can be used to communicate up to 2k distinct messages.

Let us identify messages with binary words of length k. Encoding of a message u is done by the matrix

multiplication uG.

Syndrome decoding with linear codes

is also easy, but several new concepts are needed.

Definition 0.4 If C is a linear binary [n, k]-code and a is any binary vector of length n then the set

a + C = {a + x | x ∈ C} is called the coset of C. A vector of a coset with the minimum weight is its

leader (which does not have to be unique).

Algorithm 0.5 (Syndrome decoding for linear codes) Given a word y to decode do the following;

1. compute S(y) = yHT ;

2. Decode y as y − ly, where ly is the coset leader in the coset with the syndrome S(y).
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PROBLEMS with QUANTUM ERROR CORRECTING CODES

There seemed to be reasons to believe that powerful quantum error
correcting codes are impossible.

1. The variety of possible quantum ”errors” seems to be much larger
(even infinite) than in the classical case.

2. Faithful copying of quantum information is impossible due to
no-cloning theorem.

3. The assumption that encoding and decoding are error free is much
less realistic.

4. QECC would need to have potential “to fight exponentially growing
decoherence in polynomial time” what seemed to be impossible.
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BASIC IDEAS and BASIC EXAMPLES

The very basic idea of quantum computation with quantum error-correcting codes goes as follows:

Quantum evolution is restricted to a subspace of a Hilbert space that is carefully chosen in such a way

that if quantum bits are encoded using states of the chosen subspace, then all departures from this

subspace, due to errors, lead to mutually orthogonal subspaces.

Code |0E〉 |1E〉
Shor’s (X)(X)(X) (Y )(Y )(Y )

9 qb code X = |000〉 + |111〉 Y = |000〉 − |111〉
Steane’s |0000000〉 + |1010101〉 + |0110011〉 |1111111〉 + |0101010〉 + |1001100〉
7 qb code +|1100110〉 + |0001111〉 + |1011010〉 +|0011001〉 + |1110000〉 + |0100101〉

|0111100〉 + |1101001〉 +|1000011〉 + |0010110〉
LMPZ’s +|00000〉 + |11100〉 − |10011〉 − |01111〉 −|00011〉 + |11111〉 − |10000〉 + |01100〉

5 qb code +|11010〉 + |00110〉 + |01001〉 + |10101〉 +|11001〉 − |00101〉 − |01010〉 + |10110〉
Barenco’s |000〉 + |011〉 + |101〉 + |110〉 |111〉 + |100〉 + |010〉 + |001〉
3 qb code

Figure 1: Examples of 1-qubit quantum error-correcting codes; all superpositions are equally weighted, but amplitudes are omitted in the table

After a quantum state is entangled with the environment and an “error” occurs , one can determine,

by a measurement, but without destroying the “erroneous state”, into which of the erroneous

subspaces the erroneous state has felt, and an error can be undone using a unitary transformation.
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ERROR CORRECTION SETTING

Alice encodes a to-be-sent quantum state into a new quantum state
which is then sent through a noisy channel on which an error operator
operates (changes the state).

Encoding has to be such that even if the error operator changes the
state being transmitted, it cannot entangle it with the environment.

Consequently, Bob, who can act on the state he receives, but not on
the environment, is then able to determine which error was made, and
then undo its effect and to receive the original state.

For Bob to be able to undo the error effect, no information about the
state Alice sends should leak into the environment.
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ENCODING IDEA

The idea is to use such encodings that

encoded quantum information of k qubits is spread out over n qubits

k qubits n qubits

encoding

in a non-local way, through an entangled state in such a way that environment which
can access only a small number of qubits can gain no information about the overall
state being transmitted and this way the transmitted quantum state is protected.
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ERROR MODELS

Noise and decoherence can be described in terms of the most general quantum operators —

superoperators — in terms of unitary operators on the system and its environment.

A large variety of quantum errors is possible. However, successful QECC can be developed under the

assumption that errors are:

• Locally independent (that is errors in different qubits or gates are not correlated).

• Sequentially independent (That is subsequent errors on the same qubit are not correlated).

No knowledge about the physical nature of errors will be assumed.

As a consequence, an error on n qubits can be written at each time step as a tensor product of errors

on particular qubits.

If the above conditions are satisfied, then it is believed that errors are correctable provided that error

rate is below 10−5 per qubit and clock cycle.
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ERROR DECOMPOSITION

Any interaction between a qubit

α|0〉 + β|1〉
and environment has the form

|e〉(α|0〉 + β|1〉) → α(|e00〉|0〉 + |e01〉|1〉) + β(|e11〉|1〉 + |e10〉|0〉)
= (|e0+〉I + |e0−〉σz + |e1+〉σx − |e1−〉iσy)(α|0〉 + β|1〉),

where |e〉, {|eij〉, | i, j ∈ {0, 1}} are states of the environment, σx, σy, σz are Pauli matrices, and

|e0+〉 =
1

2
(|e00〉 + |e10〉) |e0−〉 =

1

2
(|e00〉 − |e10〉)

|e1+〉 =
1

2
(|e01〉 + |e11〉) |e1−〉 =

1

2
(|e01〉 − |e11〉)

CONSEQUENCES

• Any quantum error can be seen as being composed of four basic errors and therefore if we are able

to correct any of these four types of errors we can correct any error.

• Error model resembles more a discrete one than a continuous one.

• The resulting state of the environment is independent of the state on which an error process acts

and depends only on the type of error operators being applied.
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BASIC ERROR TYPES

Three Pauli matrices represents three basic types of errors:

• σx — bit error

• σz — sign error

• σy — bit-sign error

This is due to the following impacts Pauli matrices have on a qubit |φ〉 = α|0〉 + β|1〉:
σx(α|0〉 + β|1〉) : α|1〉 + β|0〉;
σz(α|0〉 + β|1〉) : α|0〉 − β|1〉;

σxσz(α|0〉 + β|1〉) : α|1〉 − β|0〉;
−iσy|φ〉(α|0〉 + β|1〉) : α|1〉 − β|0〉.

General type of errors:

M =
n

⊗

i=1
Mi,

where

Mi ∈ {X, Y, Z, I}, X = σx, Z = σz, Y = σxσz.

For the case all Mi ∈ {X, I} (Mi ∈ {I, Z}) error operators are usually written as

Xu (Zu)

where u ∈ {0, 1}n and Mi = X (Mi = Z) if and only if ui = 1.
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GENERAL ERROR CORRECTION

Let an extra ancilla qubit, initially in the state |0〉, records what type of errors occurs.

σz(α|0〉 + β|1〉) ⊗ |0〉an → (α|0〉 − β|1〉) ⊗ |σz〉an
I(α|0〉 + β|1〉) ⊗ |0〉an → (α|0〉 + β|1〉) ⊗ |no− error〉an

If the actual error is

Rθ/2 =







1 0

0 eiθ





 = eiθ/2






e−iθ/2 0

0 eiθ/2





 = (cos
θ

2
I − i sin

θ

2
σz)e

iθ/2,

then recording the error in the ancilla gives us a superposition

eiθ/2(cos
θ

2
I(α|0〉 + β|1〉) ⊗ Ian − i sin

θ

2
(α|0〉 − β|1〉) ⊗ |σz〉an)

If we now measure the ancilla we get with probability sin2 θ/2

(α|0〉 − β|1〉) ⊗ |σz〉an
and with probability cos2 θ/2 we get

I(α|0〉 + β|1〉) ⊗ Ian.

In each case, inverting the error indicated in the ancilla restores the original state.

The above arguments work for any linear combination of errors.
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Theorem If a quantum code corrects errors Ea and Eb, it also
corrects any linear combination of Ea and Eb. In particular, if it
corrects each weight t Pauli error, then the code corrects any
superposition of t-qubit errors.
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QECC — EXAMPLE

Example of a qubit communication process through a noisy channel using a 3-qubit bit-error correction

code.

Alice: encoding. Alice encodes the qubit |φ〉 = α|0〉 + β|1〉 by a network of two XOR gates and

two additional qubits in the ancilla state |00〉 into the entangled state α|000〉 + β|111〉, see Figure.

Noisy channel. A bit error is assumed to occur with probability p < 1
2 on any qubit and results in

one of the states shown bellow:

resulting state its probability

α|000〉 + β|111〉 (1 − p)3

α|100〉 + β|011〉 p(1 − p)2

α|010〉 + β|101〉 p(1 − p)2

α|001〉 + β|110〉 p(1 − p)2

α|110〉 + β|001〉 p2(1 − p)

α|101〉 + β|010〉 p2(1 − p)

α|011〉 + β|100〉 p2(1 − p)

α|111〉 + β|000〉 p3
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BOB: Syndrome computation process: By using two additional ancilla qubits in state |00〉
and four XOR operations syndromes of errors can be computed as shown in the following table

resulting state its probability

(α|000〉 + β|111〉)|00〉 (1 − p)3

(α|100〉 + β|011〉)|11〉 p(1 − p)2

(α|010〉 + β|101〉)|10〉 p(1 − p)2

(α|001〉 + β|110〉)|01〉 p(1 − p)2

(α|110〉 + β|001〉)|01〉 p2(1 − p)

(α|101〉 + β|010〉)|10〉 p2(1 − p)

(α|011〉 + β|100〉)|11〉 p2(1 − p)

(α|111〉 + β|000〉)|00〉 p3

Error correction. Bob does nothing if syndrome is 00 and performs σx operation

on third qubit if syndrome is 01

on second qubit if syndrome is 10

on first qubit if syndrome is 11

Resulting state is either α|000〉 + β|111〉 or β|000〉 + α|111〉.
Final decoding provides either the state α|0〉 + β|1〉 or the state β|0〉 + |1〉.
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error
correction

|0>
|0>

|φ>

encoding

channel

noise
|0>
|0> measurement

syndrome computation decoding

|φ>
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VARIATIONS on SYNDROME COMPUTATIONS

Syndrome computation can be seen in the above example as a measurement with the
following four projection operators

P0 ≡ |000〉〈000| + |111〉〈111| no error

P1 ≡ |100〉〈100| + |011〉〈011| bit flip on first qubit

P2 ≡ |010〉〈010| + |101〉〈101| bit flip on second qubit

P3 ≡ |001〉〈001| + |110〉〈110| bit flip on third qubit

Observe that our error correction procedure works perfectly if there is at most one bit
error, that is with probability

(1 − p)3 + 3p(1 − p)2 = 1 − 3p2 + 2p3.
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IMPROVED ERROR ANALYSIS

If a bit error occurs with probability p, then without error-correction the resulting state, after the

transmission through the noisy channel of the qubit |φ〉 = a|0〉 + b|1〉, is

ρ = (1 − p)|φ〉〈φ| + pσX |φ〉〈φ|σx.
The fidelity is given by

F =
√

〈φ|ρ|φ〉 =
√

(1 − p) + p〈φ|σx|φ〉〈φ|σx|φ〉.

Minimum fidelity without error correction is F =
√

1 − p if |φ〉 = |0〉.

On the other hand, the resulting mixed state after both the noise and error correction is

ρ = [(1 − p)3 + 3p(1 − p)2]φ〉〈φ| + . . .

and the fidelity after error-correction is

F =
√

〈φ|ρ|φ〉 ≥
√

(1 − p)3 + 3p(1 − p)2.

Hence, the fidelity is improved provided p < 1
2
.
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SIGN-ERROR CASE

Let us now assume that instead of a bit-error channel we have a sign error channel that with

probability p changes the state |φ〉 = a|0〉 + b|1〉 into the state a|0〉 − b|1〉.

Observe

σx|0〉 = |1〉, σx|1〉 = |0〉;
σx|0′〉 = |0′〉, σx|1′〉 = −|1′〉;
σz|0〉 = |0〉, σz|1〉 = −|1〉;
σz|0′〉 = |1′〉, σz|1′〉 = |0′〉.

Hence, sign error in the standard basis {|0〉, |1〉} is the bit error in the dual basis {|0′〉, |1′〉}.

The corresponding encoding is then

|0〉 = |0′0′0′〉 |1〉 = |1′1′1′〉

and hence the corresponding encoding circuit is then obtained by adding one Hadamard transformation

gate on each qubit after encoding circuit for bit error.
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QUANTUM ERROR CORRECTION PROCESS I

ENCODING PROCESS

Encoding of k qubits into n > k qubits is done by first introducing n− k new, auxiliary, qubits (an

ancilla), in a special state, say |0(n−k)〉, and then

any k qubit state |φ〉 is mapped using a (unitary) encoding transformation E

as follows

E(|φ〉|0(n−k)〉 → |φE〉)
and |φE〉 is said to be quantum code (codeword) of |φ〉 determined by E.

Encodings of the basis states of k qubits form an orthonormal basis of a 2k-dimensional

subspace of H2n.

E|0〉 → |0E〉,
E|1〉 → |1E〉,
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QUANTUM ERROR CORRECTION PROCESS II

ERRORS

If an error occurs in a state |φE〉, then |φE〉 is altered by some superoperator E to have

|φE〉 E→ |EφE〉.

ERROR CORRECTION PROCESS

An error-correction process (ECP) can now be modeled by unitary transformations that first entangle

the erroneous state |EφE〉 with a new ancilla (an auxiliary state of auxiliary qubits), and then

transform the resulting entangled state into a tensor product of the state |EφE〉 and a new state |AE〉
of the ancilla:

|EφE〉|A〉 ECP→ |EφE〉|AE〉.

Since the state |EφE〉|AE〉 is not entangled we can measure |AE〉 without disturbing Ms|EφE〉 and this

way we can determine a transformation which has to be applied to |EφE〉 to get |φE〉.
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ERROR CREATION and CORRECTION — DETAILS

Consider the important case where erroneous states have the form

l
∑

s=1
Ms|φE〉 or

l
∑

s=1
|ψsenv〉Ms|φE〉, (1)

where each Ms is a tensor product of n error matrices from the set {X, Y, Z, I} and |ψsenv〉 are states

of the environment.

The basic task is to determine, without disturbing MS|φE〉 in an irreversible way, an operation to be

performed to get |φE〉 out of Ms|φE〉.

The basic idea is to compute, as in the case of linear codes, syndromes of errors without disturbing

MS|φE〉. This is done by introducing an ancilla in the state |0(n−k)〉 and then a carefully chosen

syndrome-extraction operator S is applied to get the state

l
∑

s=1
|ψsenv〉(Ms|φE〉|s〉). (2)

where the states |s〉 are mutually orthogonal and specify different syndromes. Since the states |s〉 are

orthogonal we can measure the ancilla qubits in the basis {|s〉} to get:

|ψs0env〉(Ms0|φE〉|s0〉)

for a single, randomly chosen, s0.
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SUPER!!!!!!!!!!!!

Instead of a complicated erroneous state (2) we have now only one error operator Ms0 and by applying

M−1
s0

we get as the result the state

|ψs0env〉|φE〉|s0〉.
Therefore, the state |φE〉 has been reconstructed—it is no longer entangled.
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QECC — NECESSARY AND SUFFICIENT CONDITIONS I

A necessary and sufficient condition will be derived for a QECC to correct any error from a given set

SE of errors.

First basic idea.

In order to be able to correct any two error Ea and Eb from SE , one has to be able to distinguish the

case Ea is acting on the codeword |ψi〉 of a basis vector from the case Eb is acting on any codeword

|φj〉, i 6= j of another basis vector.

Hence it has to hold

〈ψi|E∗
aEb|ψj〉 = 0 (3)

In other words

errors on codewords of different basis vectors have to result in orthogonal states.
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QECC — NECESSARY and SUFFICIENT CONDITIONS II

How about different errors on a same basis codeword? Should we require again that the condition (3)

〈ψi|E∗
aEb|ψj〉 = 0 (4)

holds? Namely, that (4) holds also for i = j and all Ea, Eb from SE?

No, the condition (4) is too strong.

Second main idea.

What is needed for a QECC is that when we make a measurement to find out about an errorneous

state, we must learn nothing about the actual state of the coding space on which the error was made.

How we learn information about an errorneous codeword? By computing

〈ψi|E∗
aEb|ψi〉.

This value has therefore to be the same for all basis codewords.

Therefore for any correctable errors (i.e. from SE) Ea and Eb and any i 6= j it has to hold:

〈ψi|E∗
aEb|ψi〉 = 〈ψj|E∗

aEb|ψj〉. (5)

It can be shown that conditions (3) and (5) are necessary and sufficient for a code to be able to correct

a given set SE of errors.
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Notation A code is called orthogonal or non-degenerate if for
all errors Ea and Eb and any basis states |ψi〉 and |ψj〉

〈ψi|E∗
aEb|ψj〉 = 0.

Such codes are more easy to deal with.

In general any physically realisable operation can be an error.
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WHAT ARE QUANTUM OPERATIONS?

Informally, there are four basic quantum operations: additions of ancillas, unitary operations, quantum

measurements and discarding quantum subsystems.

Formally, as discussed later, there are several equivalent mathematical concepts that are very useful

when quantum operations are considered.

Let us now discuss in more details what are all physically realizable operations (suoperoopeators) one

can perform (at least theoretically) on (mixed) states (to get again (mixed) states )?

In closed quantum systems unitary operations are actually the only quantum operations that are

available. Measurements are actualy outside of the closed system framework, an interface from

quantum to classical world, but surely they are operations we consider as physically realizable.

It is perhaps a bit surprising, but actually nice, useful and natural, that we can actually study and

consider open quantum systems in the framework of closed quantum systems. We can consider as the

basic setting that our (principal) quantum system and its environment form a closed quantum system

in which we operate.

The requirement to consider only physically realizable (at least theoretically) operation is, of course,

logical. As we shall see this question has, in a sense and at least theoretically, clear and simple answer.

They are, as discussed later, trace preserving completely positive linear maps.

Jozef Gruska December 6, 2010 30



Quantum computing 10, 2010

THREE APPROACHES

There are basically three main approaches to define what are “physically realizable
quantum operations” (superoperators) E .

A physically motivated axiomatic approach says that for a Hilbert space H we should
consider as physically realizable operations maps B(H) → B(H) which are consistent
with the (statistical) interpretation of quantum theory. That is map that are linear (to
preserve superpositions), positive and trace preserving (to map density operators to
density operators) and actually completely positive (to be sure that if a superoperator
is applied to a subsystem, then the whole system is again in a quantum state).

A pragmatic approach says that superoperators are those operations that can be
combined from unitary operations, adding ancillas, performing (non-selective)
projective measurement and discarding subsystems (ancillas), by performing a tracing
out operation.
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A mathematical approach says that all basic quantum operations: adding and discardi
ng quantum subsystems, unitary operations and non-selective projective
measurements have Kraus operator-sum representation

ρ→ k
∑

i=1
EiρE

†
i ,

where so called Kraus operators Ei : H → H are not necessarily Hermitian
operators, but they should be positive and should form a “decomposition of the
identity operator”, that is, ∑k

i=1E
†
iEi = IH – so called completeness condition.

It is a consequence of the completeness condition, and a property of trace operation,
that for an y superoperator E holds

Tr(E(ρ)) = Tr(
∑

i
EiρE

†
i ) = Tr(

∑

i
E†
iEiρ) = Tr((

∑

i
E†
iEi)ρ) = Tr(ρ) = 1.

In general Kraus operators E†
i and Ei do not commute. Condition ∑k

i=1EiE
†
i = I is

therefore different from the condition ∑k
i=1E

†
iEi = I .
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STINESPRING DILATION THEOREM

So called Stinespring dilation theorem, discussed below, says, that each superoperator
can be realized in “one big three-stage-step” : adding an ancilla, performing a unitary
operation on a composed quantum system and, finally, discarding the ancilla, see
Figure 2, or other subsystems.

ρ

|φ><φ|

Ε(ρ)
U

Figure 2: A Stinespring realization of a superoperator. In this view a superoperator E performs the mapping E(ρ) = Tra(U(ρ × ρa)U
†), where ρa is

the “initial state”, for example |φ〉〈φ| of an ancilla subsystem, U is a unitary operation on composed system and, finally, a tracing out operation is
performed.
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ANALYSIS of THREE APPROACHES

Each of the above three approaches to the definition of quantum operations has its strong and week

points.

• Pragmatic approach is easy to justify, but hard to deal with mathematically.

• Axiomatic approach is easy to justify, but neither easy to transfer to practical actions nor to handle

mathematically.

• Kraus’ approach is mathematically easy to handle, but less easy “to see into” and to justify.

However, it has one very important advantage – it actually says that when thinking about operations

in a quantum system S we can actually ignore ancillas and express all operations on S in terms of

operators in S (and that way to ignore “unessential” developments, from the system S point of

view, going on in ancillas, no matter how they are chosen).

Observe that unitary transformations ρ→ UρU † and measurement operators Em(ρ) =
√

Fmρ
√

Fm

are actually also of the above Kraus form.

In general, Kraus operators E†
i and Ei do not commute. Condition

∑k
i=1EiE

†
i = I is therefore different

from the condition
∑k
i=1E

†
iEi = I.
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EXAMPLE – XOR

Example 0.6 In the case of a two-qubit circuit for XOR operation, see Figure 3, it is
straightforward to calculate that after discarding the ancilla (in the state |0〉), the
resulting state is

E(ρ) = P0ρP0 + P1ρP1,

where
P0 = |0〉〈0|

and
P1 = |1〉〈1|.

Observe that
XOR = |00〉〈00| + |01〉〈01| + |11〉〈10| + |10〉〈11|.

ρ Ε(ρ)
XOR

|0>

Figure 3: A realization of XOR operation where E(ρ) = P0ρP0 + P1ρP1, where P0 = |0〉〈0| and P1 = |1〉〈1|
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AN EXAMPLE of NONUNITARY ERRORS

In the case of Shor’s code , we cannot distinguish between σz errors on the first or second or third

qubit, but that is O.K. since we can correct either one of them with a single σz operation on any of the

first three qubits.

To understand the necessary condition for the existence of quantum codes, let us look at the operators

F1 = (σz1 + σz2)/2, F2 = (σz1 − σz2)/2

instead of σz1 and σz2.

F1 and F2 spans the same space as σz1 and σz2 do, so Shor’s code certainly corrects them.

Indeed, if we use F ’s as the basic errors the equation

〈0E|F ∗
1F2|0E〉 = 〈1E|F ∗

1F2|1E〉
is satisfied.

That is we can make a measurement and learn which of errors happened.

We need also to invert an error, and this is a potential problem, since F1 and F2 are not unitary.

However, F1 acts as σz1 on the coding space, so σ∗z1 suffices to invert F1 on the state of interest.

F2 acts the same way as the 0 operator on the coding space. We can’t invert this, but we don’t need to

— since F2 annihilates codewords, it can never contribute a componenet to the actual erroneous state.
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EXAMPLE

Shor’s code has encodings:

|0〉 → |0E〉 =
1√
8

∑

x,y,z∈{0,1}
|xxxyyyzzz〉

|1〉 → |1E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x+y+z|xxxyyyzzz〉

After the bit error on the first qubit we get the states

σx|0E〉 =
1√
8

∑

x,y,z∈{0,1}
|x̄xxyyyzzz〉

σx|1E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x+y+z|x̄xxyyyzzz〉
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In the encoding using Shor’s code

|0〉 → |0E〉 =
1√
8

∑

x,y,z∈{0,1}
|xxxyyyzzz〉

|1〉 → |1E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x+y+z|xxxyyyzzz〉

we get after the sign error on the first qubit

σz|0E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x|xxxyyyzzz〉

σz|1E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x̄+y+z|xxxyyyzzz〉

After the bit-and-sign error on the first qubit we get:

σy|0E〉 =
1√
8

∑

x,y,z∈{0,1}
(−1)x̄|x̄xxyyyzzz〉 σy|1E〉 =???

Jozef Gruska December 6, 2010 38



Quantum computing 10, 2010

QUANTUM ERROR CORRECTION CODES - GENERAL CASE

Let {βi}2k
i=1 be an orthonormal basis of H2k and let U a unitary transformation on

H2n, k < n. A quantum [n, k] code is a subspace of H2n of the dimension 2k

generated by the orthonormal vectors {U (βi ⊗ 0n−k)}2k
i=1
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OPERATOR FORM of ERROR-CORRECTION CONDITIONS

Theorem 0.7 Let C be a quantum code, and let P be the projector onto C. If E = {Ei} is a quantum

error process with error elements Ei, then a necessary and sufficient condition for the existence of an error

detection-recovery operation R, that can correct all above errors Ei, is that

PE†
iEjP = dijP (6)

for some Hermitian matrix D = {dij} of complex numbers.

Example 0.8 It is easy to verify that error correction conditions are satisfied for the repetition code

|0L〉 = |000〉 and |1L〉 = |111〉 with projector P = |000〉〈000| + |111〉〈111| and errors

{
√

(1 − p)3I,
√

p(1 − p)2X1,
√

p(1 − p)2X2,
√

p(1 − p)2X3}.
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BOUNDS on QECC

A bound on parameters k, n, t of QECC mapping k qubits into n and correcting t errors can be

developed.

There are 2k basis states of k qubits.

Since there are three possible errors (X , Y or Z) on each qubit. The number of possibilities for having

i errors on a codeword of n qubits is 3i
(n
i

)

and for i ∈ {0, . . . , t} there are

2k
t

∑

i=0
3i







n

i







possible error states.

If the code is non-degenerate, all error states obtained from the original basis state have to be

orthogonal. Hence

2k
t

∑

i=0
3i







n

i





 ≤ 2n.

In the case k = 1 = t the bound is

2(3n + 1) ≤ 2n

and

n = 5

is the minimal n satisfying the bound 2(3n + 1) ≤ 2n.
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BIT versus SIGN ERRORS

There is a simple relation between bit errors, represented by the matrix X = σx and the phase error,

represented by the matrix Z = σz. Namely,

Z = HXH and X = HZH (7)

where H is the Hadamard matrix, an application of which transforms the states expressed in the

standard basis to the dual basis and vice versa.

In other words a sign error in the standard basis is the bit error in the dual basis and vice versa.

There are several other important identities concerning Hadamard transformation in the area of

quantum error-correcting codes:

1. For any u, e ∈ {0, 1}n
ZeHn|u〉 = HnXe|u〉 = Hn|u + e〉.

2. (Dual code theorems.) For any linear [n, k]-code C

Hn
∑

u∈C
|u〉 =

∑

v∈C⊥
|v〉

and

Hn
∑

v∈C⊥
|u + v〉 =

∑

v∈C
(−1)u·v|v〉.
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ENCODERS — ENCODING CIRCUITS

To use a quantum code with mappings |0〉 → |0E〉, |1〉 → |1E〉, a quantum circuit is needed to

transform an arbitrary quantum state α|0〉 + β|1〉 into the state α|0E〉 + β|1E〉.
Encoding circuits for Steane’s code

|0〉 → 1√
8
(|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉

+|0001111〉 + |1011010〉 + |0111100〉 + |1101001〉)

|1〉 → 1√
8
(|1111111〉 + |0101010〉 + |1001100〉 + |0011001〉

+|1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)

and for LMPZ’s code

|0〉 → 1√
8
(|00000〉 + |11100〉 − |10011〉 − |01111〉 + |11010〉 + |00110〉 + |01001〉 + |10101〉)

|1〉 → 1√
8
(−|00011〉 + |11111〉 − |10000〉 + |01100〉 + |11001〉 − |00101〉 − |01010〉 + |10110〉)

are shown in Figures 4a,b.
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H

H

H

α|0>+β|1>

|0>

|0>

|0>

|0>

|0>

|0>

Η

Η

Η

π π

π

|0>

|0>

|0>

|0>

(a) (b)

α|0>+|β>

Figure 4: Encoding circuits for the Steane’s and LMPZ’s codes; π-gate realizes π-rotation
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ERROR CORRECTION — SHOR’s CODE

In the case of Shor’s code the impact of the decoherence process

|e0〉|0〉 → |a0〉|0〉 + |a1〉|1〉, |e1〉|1〉 → |b0〉|0〉 + |b1〉|1〉,

where |a0〉. |a1〉, |b0〉, |b1〉 are states of the environment, on the first qubit of the states
1√
2
(|000〉 + |111〉) and 1√

2
(|000〉 − |111〉) results in the states

1√
8
(|a0〉 + |b1〉)(|000〉 + |111〉)

+ 1√
8
(|a0〉 − |b1〉)(|000〉 − |111〉)

+ 1√
8
(|a1〉 + |b0〉)(|100〉 + |011〉)

+ 1√
8
(|a1〉 − |b0〉)(|100〉 − |011〉)

1√
8
(|a0〉 + |b1〉)(|000〉 − |111〉)

+ 1√
8
(|a0〉 − |b1〉)(|000〉 + |111〉)

+ 1√
8
(|a1〉 + |b0〉)(|100〉 − |011〉)

+ 1√
8
(|a1〉 − |b0〉)(|100〉 + |011〉)

At the measurement during the syndrome computation, with respect to Bell basis, the erroneous state,

obtained from the state α|0E〉 + β|1E〉, collapses into one of the states

(|a0〉 + |b1〉)((α + β)|000〉 + (α− β)|111〉),
(|a0〉 − |b1〉)((α + β)|000〉 − (α− β)|111〉),
(|a1〉 + |b0〉)((α + β)|100〉 + (α− β)|011〉),
(|a1〉 − |b0〉)((α + β)|100〉 − (α− β)|011〉),

(8)

In order to make the correction to each of such resulting states a unitary transformation has to be

applied that produces the original state α(|000〉 + |111〉) + β(|000〉 − |111〉).
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HAMMING CODES I

An important family of simple error-correcting linear codes which are easy to encode and decode are

the so-called Hamming codes.

Definition 0.9 Let r be an integer and H be an r × (2r − 1) matrix columns of which are non-zero

distinct words from V (r, 2). The code having H as its parity-check matrix is called binary Hamming

code and denoted by Ham(r, 2).

Ham(2, 2) = H =







1 1 0

1 0 1





 ⇒ G = [ 1 1 1 ]

Ham(3, 2) = H =















0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1















⇒ G =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Theorem 0.10 Hamming code Ham(r, 2)

• is [2r − 1, 2r − 1 − r]-code,

• has minimum distance 3,

• is a perfect code.
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HAMMING CODE II

Theorem 0.11 Coset leaders for the Hamming code are precisely words of weight ≤ 1.
The syndrome of the word 0 . . . 010 . . . 0, with 1 in j-th position and 0 otherwise, is the
transpose of the j-th column of H.

Decoding algorithm for the case the columns of H are arranged in the order of
increasing binary numbers the columns represent.

• Step 1 Given y compute syndrome S(y) = yH⊤.
• Step 2 If S(y) = 0, then y is assumed to be the codeword sent.
• Step 3 If S(y) 6= 0, then assuming a single error, S(y) gives the binary position of
the error.
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SYNDROM COMPUTATION for STEANE’s CODE

For Steane’s code

|0〉 → 1√
8
(

∑

even v∈Hamming
|v〉)

=
1√
8
(|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉

+|0001111〉 + |1011010〉 + |0111100〉 + |1101001〉)

|1〉 → 1√
8
(

∑

odd v∈Hamming
|v〉)

=
1√
8
(|1111111〉 + |0101010〉 + |1001100〉 + |0011001〉

+|1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)
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the syndrom computation circuit has the form

|0> measure

|0> measure

|0> measure

because parity check matrix for Hamming code is

P =















0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1















.
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ERROR SYNDROME COMPUTATION — LMPZ-CODE

Efficient syndrome computation is the key problem in using quantum error-correcting codes.

Syndromes for LMPZ’s code can be computed with the same circuit as for code generation; it is only

necessary to run this circuit backward. A relation between syndromes and errors is shown in Figure 5a.

error syndrome resulting
type s1, s2, s3, s4 state

no 0000 α|0〉 + β|1〉
BS3 1011 −α|1〉 + β|0〉
BS5 1111 −α|0〉 + β|1〉
B2 1000
S3 0101 α|0〉 − β11〉
S5 0011

BS2 1010

B5 1100
S1 0001 −α|0〉 − β|1〉
S2 0010
S4 0100

B1 0110
B3 1110
B4 1101 −α|1〉 + β|0〉
BS1 1110
BS4 1001

Figure 5: Syndrome tables for the LMPZ’s code. (B (S) stands for bit (sign) error and the number specifies the qubit.
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QUASI-CLASSICAL QUANTUM CODES

With each [n, k] classical binary linear code C which can correct up to t errors, two quantum codes

can be assigned

BC = {|u〉 | u ∈ C} SC = {Hn|u〉 | u ∈ C}
Code BC (SC) can correct t bit (sign) errors, Xe (Ze), where hw(e) ≤ t, e ∈ {0, 1}n and

Xe|u〉 = |u + e〉 ZeHn|u〉 = HnXe|u〉 = Hn|u + e〉.

Denote by XORC the unitary operator such that

XORC|u + e〉|0(k)〉 = |u + e〉|PCeT 〉, (9)

where PC is the parity-check matrix for C. XORC can be implemented by a circuit consisting of XOR

gates only that have their control bits on qubits of |u + e〉 and their target bits are from the ancilla

|0(k)〉. Each row of PC define a parity check and consequently a sequence of XOR’s has to be used.

Relation 9 describes the syndrom extraction operation for the code BC.

Syndrom extraction for the code SC has the form

(HnXORCHn)Hn|u + e〉 = |PCeT 〉Hn|u + e〉.
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DESTRUCTIVE and NONDESTRUCTIVE MEASUREMENT

Encoded qubits can be measured in a destructive or nondestructive way. In the case of Steane’s code

|0〉 → |0E〉 =
1√
8
(|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉

+|0001111〉 + |1011010〉 + |0111100〉 + |1101001〉)

|1〉 → |1E〉 =
1√
8
(|1111111〉 + |0101010〉 + |1001100〉 + |0011001〉

+|1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)

by the measurement of encoded qubits in the standard basis (Figure a) we get a codeword and its

parity is the value of the logical qubit. This is a destructive measurement – it does not preserve the

code subspace.

measurement

measurement

measurement

measurement

measurement

measurement

measurement

0
or

1
or

|0> measurement
(a) (b)

|1 E >

>E|0
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Nondestructive measurement is shown in Figure b with outcome

XOR18XOR28XOR38(α|0E〉 + β|1E〉)|0〉

what equals

α|0E〉|0〉 + β|1E〉|1〉
and the measurement of the ancilla provides the answer

0 with probability |α|2 and the state collapses into the state|0E〉

1 with probability |β|2 and the state collapses into the state|1E〉
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MOTIVATION for STABILIZER CODES

Binary stabilizer codes represent a very important family of quantum
codes for the following reasons:

• Stabilizer codes have similar advantages as classical linear codes, with
stabilizer and check matrices playing a similar role as syndromes and
parity check matrices for linear codes;

• Stabilizer codes have very concise description, straightforward
encoding, decoding, syndrome computation and error-correction.
Moreover, very important CSS codes, discussed later and constructed
easily from two classical linear codes, are a special class of binary
stabilizer codes.
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STABILIZERS

Stabilizers, especially Pauli stabilizers, represent special ways to specify efficiently and elegantly certain

quantum states and operations.

So called quantum stabilizer circuits are a powerful class of circuits that can be efficiently simulated on

classical computers and that play the key role in various areas of QIP, especially in quantum error

correction and fault-tolerant processes.

The basic point is that some quantum states and subspaces have a very concise and handy description

in terms of fix-points of certain operators. For example:

• The state |φ〉 = 1√
2n

∑

x∈{0,1}n |x〉, that plays so important role in the design of efficient quantum

algorithms, is the fixpoint of the operator O =
⊗n
i=1 σx, that is O|φ〉 = |φ〉.

• The state 1√
2
(|00〉 + |11〉) is fully specified/defined as the only fix point of operators σx × σx and

σz × σz.

• The subspace generated by Bell states |Φ+〉 and |Ψ+〉 is the subspace of states that are fix-points of

the operator σx ⊗ σx.

• The subspace generated by states |000〉 and 111〉, that was used for a single bit error correction, is

the fixed point of the operators I ⊗ σz ⊗ σz, σz ⊗ I ⊗ σz and σz ⊗ σz ⊗ I.

Jozef Gruska December 6, 2010 55



Quantum computing 10, 2010

STABILIZERS II

It is easy to observe that the set of operators that stabilizes a state is a group and that the set of

states stabilized by an operator is a subspace.

In case a state |φ〉 is a fix-point of an operator O, that is |φ〉 is the eigenvector of O corresponding to

its eigenvalue +1, it got common to say that the operator O stabilizes |φ〉 and/or that O is a stabilizer

of |φ〉.

In terms of stabilizers one can also characterize some unitary operators, and thereby certain quantum

dynamics, in a concise and useful way.

Indeed, if a state |φ〉 is stabilized by an operator O, that is O|φ〉 = |φ〉, and U is any unitary operator.

then the state U |φ〉 is stabilized by the operator UOU †.

An operator U can therefore be seen as maping stabilizers of some states into stabilizers of other

states. For example, since HσxH
† = σz, the Hadamard transform maps the σx stabilizer, that

stabilizes (and specifies) the state |0′〉, to the σz stabilizer, that stabilizes (and specifies) the state |0〉.

Important operations that maps Pauli stabilizers to Pauli stabilizers are CNOT, Hadamard and Phase

operators. Circuits composed of these operators form a very important class of circuits that can be

efficiently simulated on classical computers and that produce so called stabilizer states that have very

concise specification.
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SUBSPACES STABILIZED BY PAULI STABILIZERS

In all examples above, the stabilizers were Pauli operators σx, or σz, or
their tensor products.

This has not been by a chance. Exactly such stabilizers will play a
crucial role in the following and also later when they will be used to
define the most important class of quantum error-correcting codes.

Since O† = O for all such operators, and any product of two stabilizers
of a state or subspace is again its stabilizer, a set of Pauli stabilizers of
a state or of a set of states form an Abelian group. The existence of
such a nice group structure play then an important role in all major
applications of the stabilizer concept.
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Observe that the following states are stabilized by Pauli operators

σx :
1√
2
(|0〉 + |1〉 −σx : 1√

2
(|0〉 − |1〉 (10)

σy :
1√
2
(|0〉 + i|1〉 −σy : 1√

2
(|0〉 − i|1〉 (11)

σz : |0〉 −σz : |1〉 (12)

I : all states −I : no states (13)
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PAULI GROUP

It is the group Pn generated by Pauli operators

M = E1 ⊗ E2 ⊗ . . .⊗ En, (14)

where each Ei ∈ {I,X, Y, Z} and X = σx, Z = σz and Y = XZ = iσy, with σx,
σy and σz being Pauli matrices.

A Pauli operator (14) is said to have weight t if it has t Pauli matrices different
from I .

Group Pn has 4n+1 elements – there are 4 Pauli matrices for each Ei and four phase
factors ±1 and ±i (that are needed to have really a group). According to the
Lagrange theorem, each subgroup of Pn has 2i elements for some integer i.

All elements M1 and M2 of Pn square to one, have eigenvalues ±1 and either
commute, [M1,M2] = 0, or anticommute, {M1,M2} = 0.
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STABILIZER GROUPS and THEIR REPRESENATIONS

To each subgroup G of the Pauli group Pn we can associate the subspace SG of H2n

of all those states in H2n that are commmon fix-points of all operators from G.

It is easy to see that if −I is an element of G, or G is not Abelian, then the subspace
SG is trivial.

Indeed, there is no state |φ〉 such that −I|φ〉 = |φ〉.
Moreover, if G is non-Abelian, then it has to have two elements g1, g2 such that
g1g2 = −g2g1 and therefore if |φ〉 ∈ SG, then
|φ〉 = g1(g2(|φ〉)) = −g2(g1(|φ〉)) = −|φ〉. That is, SG is empty – or trivial.

In the following we will therefore consider only Abelian subgroups of Pn that do not
contain −I .
Each Abelian subgroup G of Pn with 2k elements can be specified by an independent
set of k generators {g1, . . . , gk}.
That is by such a set of its elements that each element of the group can be expressed
as a product of the generators and that is no longer true if any of the generators of
the set is omitted.
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It turned out useful to associate to each generator g a 2n-dimensional
binary row vector v(g) that has, for 1 ≤ i ≤ n, in the ith position
((n + i)th position) 1 if and only if g has in the ith position X or Y
(Y or Z).

By putting all such row vectors together we can represent a set of
generators by so called stabilizer check matrix of the dimension
k × (2n) that is usually drawn as two matrices separated by a vertical
line (as a “double-matrix”).
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For example, the set of generators

M1 I I I X X X X

M2 I X X I I X X

M3 X I X I X I X

M4 I I I Z Z Z Z

M5 I Z Z I I Z Z

M6 Z I Z I Z I Z

has the check matrix.





































0 0 0 1 1 1 1 | 0 0 0 0 0 0 0

0 1 1 0 0 1 1 | 0 0 0 0 0 0 0

1 0 1 0 1 0 1 | 0 0 0 0 0 0 0

0 0 0 0 0 0 0 | 0 0 0 1 1 1 1

0 0 0 0 0 0 0 | 0 1 1 0 0 1 1

0 0 0 0 0 0 0 | 1 0 1 0 1 0 1





































.
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The following result is the first demonstration of the usefulness of the concept of the
stabilizer check matrix.

Theorem 0.12 Rows of a stabilizer check matrix are independent if and only if they
correspond to an independent set of generators.

In connection with check matrices of importance is so called symplectic inner product
·s of row vectors

v(g1) = (a1, . . . , a2n) and v(g2) = (b1, . . . , b2n)

defined by

v(g1) ·s v(g2) =
n
∑

i=1
aibn+i + bian+i.

One reason why simpletic product is considered as important is the following result.

Theorem 0.13 Two generators commute if and only if the symplectic inner product of
their row vectors is 0.
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MEASURING EIGENVALUES of OPERATORS

In the following we will deal with so-called measurement of operators or, in other terminlogy, with

measurement of eigenvalues. This concerns the case that operators are at the same time observables

and their eigenvalues are +1 or −1.

In such a case there is a trick how to “measure eigenvalues” corresponding to given eigenvectors, that

is demonstrated in Figure 6, where we assume that U is an one-qubit operator whose eigenvalues are

±1 – an important example are Pauli operators. It is easy to determine that after the last Hadamard

transformation the overall state is

1

2
(|φ〉 + U |φ〉)|0〉 +

1

2
(|φ〉 − U |φ〉)|1〉.

This means that if the input eigenvector corresponds to the eigenvalue 1, then a measurement of

second qubit gives 0 and if the input eigenvector corresponds to the eigenvalue −1, then measurement

of the second qubit gives 1.

U

H H|0>

|φ> |φ>

m

Figure 6: A circuit to measure eigenvalues of operators/observable
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STABILIZER CIRCUITS AND STATES

If a subgroup G of the Pauli group Pn, with a set of generators {g1, . . . , gk}, stabilizes a subspace SG
and U is a unitary operation, then the subgroup denoted UGU †, and generated by generators

{Ug1U
†, . . . , UgkU †}, stabilizes the subspace USGU

†.

This implies that in order to understand an impact of a unitary transformation on a set (infinite in

general) SG of states stabilized by G, we only need to understand impact of U on a finite set of

generators of G.

This is already “a big deal”. The advantage of this approach is then much amplified by the fact that

for some especially important unitary transformations such a transformations of Pauli generators have

especially simple form and result again in easy to determine Pauli generators.
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It is straightforward to see the impact of Pauli operators on themselves because

XXX = X, XZX = −Z, XY X = −Y

Y XY = −X, Y Y Y = Y, Y ZY = −Z
ZXZ = −X, ZY Z = −Y, ZZZ = Z

and also for the CNOT, Hadamard and Phase shift operations as depicted in the following table that

shows how the above operation map possible Pauli generators.

Operation U stabilizer g UgU †

CNOT X ⊗ I X ⊗X

I ⊗X I ⊗X

Z ⊗ I Z ⊗ I

I ⊗ Z Z ⊗ Z

H X Z

Z X

P X Y

Z Z

It has not been by chance that we have considered CNOT, H and P operations/gates. As the following

theorem demonstrates, these gates play the crucial role concerning Pauli stabilizers and in the

understanding of a certain class of quantum dynamics in terms of stabilizers.
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Theorem 0.14 If U is a unitary operation such that UgU† ∈ Pn for any
g ∈ Pn, then, up to a global phase, U can be implemented by a circuit
consisting of n2 gates CNOT, H and P.

Jozef Gruska December 6, 2010 67



Quantum computing 10, 2010

STABILIZER CODES - STABILIZERS

Let C be a quantum error-correcting code of H2n. C spans a subspace of H2n. The group Pn can be

seen as acting on states of C.

A stabilizer SC of the error-correcting code C is the set

SC = {M ∈ Pn |M |φ〉 = |φ〉 if |φ〉 ∈ C}.

The following property is of crucial importance for the “stabilizer codes” to be defined later:

If M ∈ Pn and S ∈ SC are such that {M,S} = 0 (that is MS = −SM), then for any |φ〉, |ψ〉 ∈ C,

〈φ|M |ψ〉 = 〈φ|MS|ψ〉 = −〈φ|SM |ψ〉 = −〈φ|M |ψ〉

and therefore 〈φ|M |ψ〉 = 0.

The code C therefore satisfies the condition

〈ψi|M ∗
aMb|ψj〉 = ca,bδij,

for some constant ca,b, whenever errors Ma and Mb are such that Ma
∗Mb anticommute with some

element of S.

This implies that if for all errors Ma,Mb of some set E of errors M ∗
aMb anticomutes with some

element of SC , then the code C corrects the set E of errors.
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Comment However, it is unlikely that M ∗
aMb anticomutes with some element of SC

for all errors Ma,Mb that need to be corrected.

A trivial example is the “error” I which commutes with all elements of SC. In
addition, I is in SC because SC is a group.

However, this actually does not matter because for all S ∈ SC it holds
〈ψi|S|ψj〉 = 〈ψi|ψj〉 = δij.
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STABILIZER CODES – EXAMPLE

M1 Z Z I I I I I I I
M2 Z I Z I I I I I I
M3 I I I Z Z I I I I
M4 I I I Z I Z I I I
M5 I I I I I I Z Z I
M6 I I I I I I Z I Z
M7 X X X X X X I I I
M8 X X X I I I X X X

M1 I I I X X X X
M2 I X X I I X X
M3 X I X I X I X
M4 I I I Z Z Z Z
M5 I Z X I I Z Z
M6 Z I Z I Z I Z

(a) (b)

M1 X Z Z X I
M2 I X Z Z X
M3 X I X Z Z
M4 Z X I X Z

M1 X X X X X X X X
M2 Z Z Z Z Z Z Z Z
M3 I X I X Y Z Y Z
M4 I X Z Y I X Z Y
M5 I Y X Z X Z I Y

(c) (d)

Figure 7: Stabilizers

Figures 7a,b,c show generators of the stabilizers for Shor’s code, Steane’s code and LMPZ’s code.

Let us discuss design and use of the stabilizer for Shor’s code. Error vectors in Figure 7a can be

discovered in a straightforward way from how one detects a single bit or sign error for this code.

Indeed, to detect a bit error in a state |ψ〉 on one of the first three qubits it is sufficient to compare the

first qubit with second and then the first qubit with the third in |ψ〉.
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One way of doing that is to measure |ψ〉 with respect to M1 and M2 as observables. Indeeed, in the

case of the bit error on the first or the second (on the second or on the third) qubit we have

M1|ψ〉 = −|ψ〉 (M2|ψ〉 = −|ψ〉). A similar role play the generators M3 to M6. M3 and M4 (M5 and

M6) are used to detect bit errors in the second (third) triplet of qubits. M7 and M8 can be used to

detect sign errors.
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BASICS of (binary) STABILIZERS CODES

The very basic concept is very simple. An [n, k] stabilizer code CG is the subspace of H2n stabilized by

a an Abelian subgroup G of Pn, such that −I 6∈ G, generated by an independent set of n− k

generators (say G = 〈g1, . . . , gn−k〉).

Error-correction potential of an [n, k] stabilizer code CG is characterized by the following theorem.

Theorem 0.15 Let CG be an [n, k] stabilizer code with a stabilizer group G. Any set of Pauli error

operators {Ei} from Pn such that E†
jEi 6∈ Z(G) −G, for all j and i, where Z(G) is the centralizer1 of

G, is correctable by CG.

Proof Let {g1, . . . , gn−k} be a set of generators of G. In the proof we will make an essential use of

the fact that the projector PG into the code CG has the form PG = 2k−n
∏n−k
i=1 (I + gi).

For two error operators Ei and Ej there are two possibilities.

1. E†
iEj ∈ G. Since the projector PG is invariant under multiplication by elements of G we get

PGE
†
iEjPG = P 2

G = PG.
1A centralize Z(G) of G is the set of all elements of Pn that commute with all elements of G. An equivalent concept is that of a normalizer of G as the set of all those elements

E of Pn such that EgE†
∈ G for all g ∈ G.
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2. E†
iEj ∈ Pn −N(G). Then E†

iEj has to anticomute with some element of G and without loss of

generality we can assume that anticomutes with g1. This implies

PGE
†
iEjPG =

∏n−k
l=2 (I + gl)

2n−k
(I + g1)(I − g1)E

†
iEj

∏n−k
l=2 (I + gl)

2n−k
= 0

because (I + g1)(I − g1) = 0 and, due to anticomutativity, (1 − g1)E
†
iEj = E†

iEj(1 + g1).

In both cases therefore the error correction conditions 6 are satisfied, what was to show.

The above theorem has implications that have a form similar to that for classical linear codes.

Let us say that a stabilizer [n, k] code with generator group G has a distance d, or that it is an [n, k, d]

code, if d is the smallest weight of operators in Z(G) −G (that is number of elements of the tensor

product forming the operator that are not the identity).

By Theorem 0.15, a code with distance at least 2t + 1 is capable to correct Pauli errors on t qubits.
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DESIGN of LOGICAL X and Z OPERATORS

and computational basis states

Given a stabilizer code CG with G = 〈g1, . . . , gn−k〉 we can choose as codes of the computational basis

states any orthonormal set of 2k vectors in CG.

There is, however, a better (more elegant/straightforward/systematic) way of doing that.

The basic task is to define logical operators x and z acting on particular qubits.

1. First, we choose, somehow, operators z1, . . . zk of Pn such that the set of operators

g1, . . . , gn−k, z1, . . . , zk forms an independent and commuting set. zj will play the role of a logical

Pauli σz-operator acting on the jth logical qubit. Once this is done, the logical computational basis

state |a1 . . . ak〉 is then the fix-point of the stabilizer

〈g1, . . . , gn−k, z1, . . . , zk〉.

In order to define the logical xj operator acting as NOT on the jth logical qubit, we take as xj such a

product of Pauli matrices that maps zj into −zj under conjugation and maps all other zj and

generators gi into themselves.

Clearly, such xj commutes with all zi except zj, with which it anticomutes.
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ENCODINGS and DECODINGS of STABILIZER CODES

We again assume that an [n, k] stabilizer code CG is given by a set of independent
generators G = 〈g1, . . . , gn−k〉 and a set z1, . . . , zk of logical Z-operators.

There are several ways to encode using stabilizer codes. A simple to explain, though
non-unitary, is the following approach to encoding of an known quantum state:

The starting point is the state |0〉⊕n which is first measured by observables
g1, . . . , gn−k, z1, . . . , zk and then the resulting state will have stabilizer
〈±g1, . . . ,±gn−k,±z1, . . . ,±zk〉, where signs depend on the results of the
measurement.

As the next step we can obtain a state with the stabilizer g1, . . . , gn−k, z1, . . . , zk by
changing necessary signs of stabilizers using the technique presented in the proof of
Theorem 0.15.

The resulting state encodes |0〉⊕k. Using the corresponding operators from the set
x1, . . . , xk we can obtain then encoding of the computational basis states |a1 . . . ak〉.
Cleve and Gottesman (????) have shown how to design systematically a unitary
stabilizer circuit with O(n(n− k)) gates for encoding of an arbitrary (unknown) state
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in a given stabilizer [n, k] code, using the above standard form of the check matrix.
This circuit can be used also for decoding once applied in the reverse way.

However, such decoding is mostly not needed because once computation is realized in
a fault-tolerant manner, gates are performed by circuits on encoded qubits and also
the outcome of computations can be obtained by measuring logical Z operators.
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SYNDROME COMPUTATION by STABILIZER CODES

Syndrome computation and subsequent error-correction is also very simple for
stabilizer [n, k] codes with a generator group G = 〈g1, . . . , gn−k〉 and a set {Ei} of
correctable errors.

To compute the error syndrome of an erroneous state the state is measured with
respect to the observables g1, . . . , gn−k to obtain, as the syndromes, classical
outcomes m1, . . . , mn−k of the measurements.

In the case the syndrome uniquely determines (up to a phase factor) the error Ej,

what is always true for non-degenerate codes, then the application of the operator E†
j

makes needed error correction.

For degenerate codes it may happen that syndromes for two errors, say Ei and Ej are

the same. In such a case EiPE
†
i = EjPE

†
j , where P is the projector into CG code,

and therefore E†
iEjPE

†
jEi = P what implies that E†

iEj ∈ G. Hence an application

of the operator E†
j again performs desired error correction.
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In other words, if an error Ei is detected, using a syndrome computation, then an
application of the operator E†

j performs error correction and it does not matter
whether error is uniquely determined by a syndrome.
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CSS codes

A very important class of stabilizer quantum codes are so called CSS-codes, or Calderbank-Shor-Steane

codes, as named by their inventors.

CSS quantum codes make, in a very simple and direct way, an elegant use of the bit correction

potential of certain pairs of the classical linear codes.

If C1 and C2 are classical [n, k1] and [n, k2] linear codes such that C2 ⊆ C1 and both C1 and C⊥
2 can

correct up to t errors, then these codes can be used to construct an [n, k1 − k2] quantum CSS code, of

C1 over C2, denoted as CSS(C1, C2), capable of correcting errors on t qubits, as follows:

C1 is partitioned by C2 on cosets u + C2 for u ∈ C1 in such a way that for different u, v ∈ C1 cosets

u+C2 and v+C2 are either identical or disjoint. Number of different cosets is therefore |C1|
|C2| = 2k1−k2.

The quantum code CSS(C1, C2) is now defined as the vector space (of dimension 2k1−k2) spanned by

the states

|u + C2〉 =
1

√

|C2|
∑

w∈C2

|u + w〉 =
1

√

|C†
2|

∑

w∈C⊥
1

|u + w〉.

If u1 and u2 are elements of the same (or different) cosets of C1 with respect to C2, then the states

|u1 + C2〉 and |u2 + C2〉 are identical (are orthogonal) as it follows from the definition of cosets.

Jozef Gruska December 6, 2010 79



Quantum computing 10, 2010

It is easy to verify that each CSS(C1, C2) code is a stabilizer code with generators having the following

check matrix






HC⊥
2

| 0

0 | HC1





 .

An important special case of CSS-codes is if C1 = C2 = C and C⊥ ⊆ C, that is if C is self-dual.

ExampleLet us now illustrate in details how to detect and correct errors in the case a codeword

|φ〉 =
1

√

|C⊥
2 |

∑

w∈C⊥
2

|u + w〉

of the code CSS(C1, C2), associated to an u ∈ C1, is currupted by bit errors represented by a

bit-vector x and by sign errors represented by a bit-vector z to get a state |φ1〉.

Let us denote by Hi, i = 1, 2 the parity check matrices for codes C1 and C2. By using an ancilla and a

syndrome computation circuit to map

|v〉|0〉 to |v〉|H1v〉,

we can transform

|φ1〉|0〉 → |φ1〉|H1x〉
and that allows to detect and to correct bit errors x. After the correction, the resulting state is

|φ2〉 =
1

√

|C⊥
2 |

∑

w∈C⊥
2

(−1)(u+w)·z|u + w〉.
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Next task is to detect and correct z-errors. This can be done at first by multiplying |φ2〉 with the

Hadamard transform to get

|φ3〉 = H|φ2〉 =
1

√

|C⊥
2 |2n

∑

v∈C2

∑

w∈C⊥
2

(−1)(u+w)·(v+z)|v〉

and then by “removing” z from the exponent in the phase of the basis states using at first the

substitution z + v → v′ and then replacing v′ with v. Hence

|φ4〉 =
1

√

|C⊥
2 |2n

∑

v∈C2

∑

w∈C⊥
2

(−1)(u+w)·v|v + z〉.

The above sum can be simplified using the following identities

∑

w∈C⊥
2

(−1)w·v =











|C⊥
2 |, if v 6∈ C2,

0, otherwise;

to yield

|φ4〉 =

√

√

√

√

√

|C⊥
2 |

2n
∑

v∈C2

(−1)u·v|v + z〉.

The rest of the error detection and correction process is then straightforward. At first, using the parity

check matrix for C2, the error z is detected and then corrected to get the state

|φ5〉 =

√

√

√

√

√

|C⊥
2 |

2n
∑

v∈C2

(−1)u·v|v〉 = H|φ〉

Since the Hadamard transform is self-inverse, one application on the Hadamard transform on the state

|φ5〉 provides the original state |φ〉.
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