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8. QUANTUM FINITE AUTOMATA

For most of the main classical models of automata there are also their quantum
versions. For example for finite automata, Turing machines and quantumcellular
automata (QCA).
Models of quantum automata are used:

• To get an insight into the power of different quantum computing models and
modes, using language/automata theoretic methods.

• To discover the simplest models of computation at which one can demonstrate
large (or huge) difference in the power of quantum versus classical models.

• To develop quantum automata (networks, algorithms) design methodologies.

• To explore mutual relations between different quantum computation models and
modes.

• To discover, in a transparent and elegant form, limitations of quantum
computations and communications.
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MAIN MODELS of QUANTUM AUTOMATA

1. QUANTUM FINITE AUTOMATA (QFA)

QFA are considered to be the simplest model of quantum processors, with “finite” quantum

memory, that models well the most basic mode of quantum computing — a quantum action is

performed on each classical input.

2. QUANTUM (one-tape) TURING MACHINES (QTM)

QTM are used to explore, at the most general level of sequential computation, the potential and

limitations of quantum computing. Using this model the main computational complexity classes are

defined. QTM are a main quantum abstraction of human computational processes.

3. QUANTUM CELLULAR AUTOMATA (QCA)

QCA are used to model and to explore, on every general and basic level of parallel computation, the

potential and limitations of quantum computing. QCA are a very basic quantum abstraction of

computation by nature.

Main classical modes of computation:

deterministic, nondeterministic and randomized.
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BASIC MODELS of CLASSICAL FINITE AUTOMATA

• Deterministic (one-way) finite automata.

• Deterministic two-way finite automata.

• Nondeterministic finite automata (one-way or two-way)

• Probabilistic (randomized) versions of finite automata
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Figure 1: Models of finite automata
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FROM CLASSICAL TO QUANTUM AUTOMATA

The basic formal way to develop a quantum version of a classical
automata model is

to replace in its probabilistic version probabilities of transitions by
probability amplitudes.

The main problem is to do this replacement in such a way that a
to-be-quantum automaton is really quantum, that is that its evolution
is unitary.
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QUANTUM FINITE AUTOMATA

Input: #w1 . . . wn$ #w$, |w| = n

States: Q = Qa ∪Qr ∪Qn

Configuration (q, i) — a state and a position on the input tape

Set of configurations: C(Q,w) = {(q, i) | q ∈ Q, 0 ≤ i ≤ |w| + 1}

Hilbert space: l(C(Q,w)) Transitions: δ(q, i) =
∑

q′∈Q,1≤j≤n αq′,j|(q′, j)〉

(Evolution has to be unitary.)

Measurements: Projections into one of the subspaces:

Ea = l({(q, i) | q ∈ Qa}), Er = l({(q, i) | q ∈ Qr}), El = l({(q, i) | q ∈ Qn})

Measurement modes:

• MM-mode (many measurements mode)

• MO-mode (measurement once mode)
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QUANTUM MEASUREMENT IN QUANTUM AUTOMATA

The main type of the measurement used so far in quantum finite automata theory represents a

projection into three subspaces: of accepting configurations, of rejecting configurations and of

nonterminating configurations.
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ONE-WAY QUANTUM FA

Definition 0.1 A one-way (real-time) quantum finite automaton (1QFA) A is given by: Σ —

the input alphabet; Q — the set of states; q0 – the initial state; Qa ⊆ Q, Qr ⊆ Q, Qn = Q−Qa −Qr,

Qa ∩Qr = ∅ are sets of accepting, rejecting and nonterminating states and the transition function

δ : Q× Γ×Q→ C[0,1],

where Γ = Σ ∪ {#, $} and #, $ are endmarkers.

The evolution (computation) of A is performed on the Hilbert space l2(Q) with basis states

{|q〉 | q ∈ Q} using unitary operators Vσ, σ ∈ Γ, defined by

Vσ|q〉 =
∑

q′∈Q
δ(q, σ, q′)|q′〉.

For measurement the computational observable is used that corresponds to the direct sum of

l2(Q):

l2(Q) = Ea ⊕ Er ⊕ En,

where

Ea = span{|q〉 | q ∈ Qa}
Er = span{|q〉 | q ∈ Qr}
En = span{|q〉 | q ∈ Qn}
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TWO COMPUTATION MODES for 1QFA

1. MANY-MEASUREMENT COMPUTATION MODE

Computation of A on an input #σ1 . . . σn$: At first the operator V# is applied to the initial state

|q0〉 and then the observable O is applied to the resulting state. Let |ψ′〉 be the resulting state:

• If |ψ′〉 ∈ Ea, the input is accepted (with probability equal to square of the norm of |ψ′〉).
• If |ψ′〉 ∈ Er, the input is rejected (with probability equal to square of the norm of |ψ′〉).
• If |ψ′〉 ∈ En, then |ψ′〉 is not normalized and the pair of operators OVσ1

is applied.

The above process, an application of operators

OVσi
, i = 1, . . . , n

continues and ends by operators OV$.

2. ONE-MEASUREMENT COMPUTATION MODE

A computation of A consists in an application, on |q0〉, of the following sequence of operators:

OV$VσnVσn−1
. . . Vσ2

Vσ1
V#.
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ACCEPTANCE and REJECTION PROBABILITIES FORMALLY

In case of 1QFA, the projection measurement can be defined through three projections

Pa =
∑

q∈Qa
|q〉〈q|, Pr =

∑

q∈Qr
|q〉〈q|, Pn =

∑

q∈Qn
|q〉〈q|

and then the acceptance and rejection probabilities in the case of an input string

σ1σ2 . . . σm$

and the initial state |φ0〉 can be formally expressed as follows.

Pra =
m+1

∑

k=1
||PaVσk

k−1
∏

i=1
(PnVσi)|φ0〉||2

Prr =
m+1

∑

k=1
||PrVσk

k−1
∏

i=1
(PnVσi)|φ0〉||2

where we define ∏n
i=1Ai = AnAn−1 . . . A1 instead of A + 1A2 . . . An.
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ACCEPTANCE of WORDS and LANGUAGES by 1QFA

A 1QFA A accepts (rejects) a word w of length n with probability p if p is the sum of
probabilities pi that w is accepted (rejected) after i symbols of w are scanned for
i = 1, . . . , n.

A 1QFA A accepts a language L with probability 1
2

+ ε, ε > 0, if A accepts (rejects)
any x ∈ L (x 6∈ L) with probability at least 1

2 + ε.

If there is an ε such that A accepts L with probability 1
2 + ε, then A is said to accept

L with BOUNDED ERROR PROBABILITY.

A language L is accepted by A with UNBOUNDED ERROR
PROBABILITY if x ∈ L (x 6∈ L) is accepted (rejected) with probability at least
1
2.
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Example. A 1QFA accepting L = {0i1j | i ≥ 0, j ≥ 0} with probability p = 0.68 (such that

p = 1− p3).

States: Q = {q0, q1, q2, qa, qr}, Qa = {qa}, Qr = {qr}. Transitions:

V#|q0〉 =
√

1− p|q1〉 +
√
p|q2〉,

V0|q1〉 = (1− p)|q1〉 +
√

p(1− p)|q2〉 +
√
p|qr〉,

V0|q2〉 =
√

p(1− p)|q1〉 + p|q2〉 −
√

1− p|qr〉,
V1|q1〉 = |qr〉, V1|q2〉 = |q2〉, V$|q1〉 = |qr〉, V$|q2〉 = |qa〉.

The remaining transitions are defined arbitrarily to satisfy unitarity.

The above example is the basis of the following result:

Theorem There is a regular language that can be recognized by a MM-1QFA with probability

0.68 . . . but neither by MM-1QFA with probability at least 7
9 + ε nor by RFA.
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PROOF OF ACCEPTANCE — CASE 1

Example. A 1QFA accepting L = {0i1j | i ≥ 0.j ≥ 0} with probability p = 0.68 (t p = 1− p3).

States: Q = {q0, q1, q2, qa, qr}, Qa = {qa}, Qr = {qr}. Transitions:

V#|q0〉 =
√

1− p|q1〉 +
√
p|q2〉,

V0|q1〉 = (1− p)|q1〉 +
√

p(1− p)|q2〉 +
√
p|qr〉, V0|q2〉 =

√

p(1− p)|q1〉 + p|q2〉 −
√

1− p|qr〉,
V1|q1〉 = |qr〉, V1|q2〉 = |q2〉, V$|q1〉 = |qr〉, V$|q2〉 = |qa〉.

The remaining transitions are defined arbitrarily to satisfy

CASE 1 w = 0i

Since

V0(
√

1− p|q1〉 +
√
p|q2〉) =

√
1− p|q1〉 +

√
p|q2〉

the automaton A remains in the state
√

1− p|q1〉 +
√
p|q2〉

while reading 0i.

At the right endmarker the operator V$ provides the state
√

1− p|qr〉 +
√
p|qa〉

and therefore A accepts the input 0i with probability p
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PROOF OF ACCEPTANCE — CASE 2

Example. A 1QFA accepting L = {0i1j | i ≥ 0.j ≥ 0} with probability p = 0.68 ( p = 1− p3).

States: Q = {q0, q1, q2, qa, qr}, Qa = {qa}, Qr = {qr}. Transitions:

V#|q0〉 =
√

1− p|q1〉 +
√
p|q2〉,

V0|q1〉 = (1− p)|q1〉 +
√

p(1− p)|q2〉 +
√
p|qr〉, V0|q2〉 =

√

p(1− p)|q1〉 + p|q2〉 −
√

1− p|qr〉,
V1|q1〉 = |qr〉, V1|q2〉 = |q2〉, V$|q1〉 = |qr〉, V$|q2〉 = |qa〉.

CASE 2 x = 0i1j, i ≥ 0, j > 0.

A will be in the state √
1− p|q1〉 +

√
p|q2〉

after reading 0i. The first 1 changes the state into
√

1− p|qr〉 +
√
p|q2〉

afterwards, the nonhalting part, obtained with probabilty p, is

|q2〉
keep being unchanged till the right endmarker $, and then it is changed into

|qa〉.
The acceptance probability is therefore p.
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PROOF OF ACCEPTANCE — CASE 3

States: Q = {q0, q1, q2, qa, qr}, Qa = {qa}, Qr = {qr}. Transitions:

V#|q0〉 =
√

1− p|q1〉 +
√
p|q2〉,

V0|q1〉 = (1− p)|q1〉 +
√

p(1− p)|q2〉 +
√
p|qr〉, V0|q2〉 =

√

p(1− p)|q1〉 + p|q2〉 −
√

1− p|qr〉,
V1|q1〉 = |qr〉, V1|q2〉 = |q2〉, V$|q1〉 = |qr〉, V$|q2〉 = |qa〉.

CASE 3 x has a prefix of the type 0i1j0k, i ≥ 0, j > 0, k > 0. (That is x 6∈ L.) After reading the

first symbol 1 A is in the state √
1− p|qr〉 +

√
p|q2〉

and rejects with probability 1− p.

The nonhalting part |q2〉, obtained with probability p, is changed only by first 0 into
√

p(1− p)|q1〉 + p|q2〉 −
√

(1− p)|qr〉
and, at this moment, A rejects with the overall probability p(1− p). The nonhalting part of the state

√

p(1− p)|q1〉 + p|q2〉
is not changed by 0s and only at the right endmarker it is changed into

√

p(1− p)|qr〉 + p|qa〉
Jozef Gruska November 22, 2010 14
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The input is therefore rejected with probability

(1− p) + p(1− p) + p2(1− p) = 1− p3 = p.
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A 1QFA accepting the language

L = {0i1j | i ≥ 0, j ≥ 0}
Transition matrices:
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BASIC RESULTS - POWER and DECIDABILITY 1

Theorem MM-1QFA can accept only regular languages but not all of them. For
example not the language L = {0, 1}∗0.
Theorem The family of languages accepted by MM-1QFA is closed under
complement, inverse homomorphism and word quotients, but not under
homomorphism.

Results concerning succinctness of quantum finite automata:

• In some cases (sequential) quantum one-way finite automata can be, due to the
parallelism in their evolution, exponentially more succinct than classical DFA.

• In some cases quantum one-way finite automata can be, due to their requirement
on unitarity of their evolution, exponentially larger, with respect to the number of
states, as the corresponding DFA.

1Results are due to Ambainis, Brodsky, Freivalds, Kondacs, Pippenger, Watrous
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TYPES OF QUANTUM FINITE AUTOMATA

2QFA — Two way quantum finite automata
Heads can move in both directions

g1QFA — Generalized one-way quantum automata
Heads can (but do not have to) move only in one direction.

1QFA —- Real-time one-way quantum automata
In each step all heads move in the same direction.

RFA — reversible deterministic finite automata (DFA)
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2QFA — WELL-FORMEDNESS CONDITIONS

A two-way quantum finite automaton A is specified by the finite
(input) alphabet Σ, the finite set of states Q, the initial state q0, the
sets Qa ⊂ Q and Qr ⊂ Q of accepting and rejecting states,
respectively, with Qa ∩Qr = ∅, and the transition function

δ : Q× Γ×Q× {←, ↓,→} −→ C[0,1],

where Γ = Σ ∪ {#, $} is the tape alphabet of A and # and $ are
endmarkers not in Σ, which satisfies the following conditions (of
well-formedness) for any q1, q2 ∈ Q, σ, σ1, σ2 ∈ Γ, d ∈ {←, ↓,→}:

1. Local probability and orthogonality condition.
∑

q′,d δ
∗(q1, σ, q′, d)δ(q2, σ, q′, d) =















1, if q1 = q2;
0, otherwise.

2. Separability condition I.
∑

q′ δ
∗(q1, σ1, q

′,→)δ(q2, σ2, q
′, ↓) + ∑

q′ δ
∗(q1, σ1, q

′, ↓)δ(q2, σ2, q
′,←) = 0.

3. Separability condition II. ∑

q′ δ
∗(q1, σ1, q

′,→)δ(q2, σ2, q
′,←) = 0.
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SIMPLIFIED DESCRIPTIONS of 2QFA

• To each two-way quantum finite automaton there is an
equivalent one (the so-called unidirectional or simple)
2QFA in which

1. For each pair of states q and q′ a probability
amplitude is assigned that the automaton moves
from the state q to the state q′.

2. To each state q a head movement D(q) — to right,
to left or no movement — is defined with the
interpretation that if automaton comes to a state q,
then the head always moves in the direction D(q).
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RECOGNITION POWER OF 2QFA

2QFA can accept any regular language and also some non-regular (even non-context

Power of 2QFA comes from the fact that during their computations the heads of the automaton can be

simultaneously on different input symbols and in different states.

q q

q q

# $

α α

α α

1

1

2

2

3
3

4

4

Qa = {sn}, Qr = {s1, . . . , sn−1}

Total state is then:

α1|q1〉 + α2|q2〉 + α3|q3〉 + α4|q4〉,
where

|α1|2 + |α2|2 + |α3|2 + |α4|2 = 1
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2QFA accepting the language {0i1i | i ≥ 0}

Q = {q0, q1, q2, q3} ∪ {sj | 1 ≤ j ≤ n} ∪ {rj,k | 1 ≤ j ≤ n, 1 ≤ k ≤ n− j + 1}, Qa = {sn}

V#|q0〉 = |q0〉, V$|q0〉 = |q3〉,
V#|q1〉 = |q3〉, V$|q2〉 = 1√

n

∑n
j=1 |rj,0〉,

V#|rj,0〉 = 1√
n

∑n
l=1 e

2πi
n jl|sl〉, 1 ≤ j ≤ n,

V0|q0〉 = |q0〉, D(q0) =→,
V0|q1〉 = |q2〉, D(q1) =←,
V0|q2〉 = |q3〉, D(q2) =→,
V0|rj,0〉 = |rj,j〉, 1 ≤ j ≤ n, D(q3) =↓,
V0|rj,k〉 = |rj,k−1〉, 1 ≤ k ≤ j, 1 ≤ j ≤ n,

V1|q0〉 = |q1〉, D(rj,0) =←, 1 ≤ j ≤ n,

V1|q2〉 = |q2〉, D(rj,k) =↓, 1 ≤ j ≤ n, k 6= 0,

V1|rj,0〉 = |rj,n−j+1〉, 1 ≤ j ≤ n, D(sj) =↓, 1 ≤ j ≤ n,

V1|rj,k〉 = |rj,k−1〉, 1 ≤ k ≤ j ≤ n.
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checking whether the input

0 10 1

has the form 0  1

i

$#

x $

x $

#

$

x

#

#

Stage 2. At the right endmarker a

each state branches into a superposition of

Stage 1. QFA keeps moving right

Stage 4. A measurement is performed.

ACCEPT
superposition of new states is created

new states and if they arrive simultaneously

i j

the input has the form 0
left endmarker simultaneously iff

i1i.

this superposition results in a single state.

and all states move left arriving at the

Stage 3. After arriving at the left endmarker
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FINITE AUTOMATA WITH CLASSICAL and QUANTUM STATES

The models of QFA considered so far have all been natural quantum versions of the
classical models of automata.

Of a different type is the model introduced by Ambainis and Watrous (1999), and
called two-way finite automata with quantum and classical states (2QCFA).

This model is also more powerful than classical (probabilistic) 2FA and at the same
time it seems to be more realistic, and really more “finite” than 2QFA because 2QFA
need quantum memory of size O(lgn) to process an input of the size n. 2QCFA can
be seen as an intermediate model between 1QFA and 2QFA.

A 2QCFA is defined similarly as a classical 2FA, but, in addition, it has a fixed size
quantum register (which can be in a mixed state) upon which the automaton can
perform either a unitary operation or a measurement.
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a

q

classical 2FA quantum  register

a unitary oeration

a meqsurement

result of measuremnt detrmines the action
of the classical automaton
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a

q

classical 2FA quantum  register

a unitary oeration

a meqsurement

result of measuremnt detrmines the action
of the classical automaton

A 2QCFA has a classical initial state q0 and an initial quantum state |φ0〉.

The evolution of a quantum state of the register is specified by a mapping Θ that assigns to each

classical state q and a tape symbol σ an action Θ(q, σ).

One possibility is that Θ(q, σ) = (q′, d, U), where q′ is a new state, d is next movement of the head

(to left, no movement or to right), and U is a unitary operator to be performed on the current

quantum register state.

The second possibility is that

Θ(q, σ) = (M,m1, q1, d1,m2, q2, d2, . . . ,mk, qk, dk)

where M is a measurement, m1, . . . ,mk are its possible classical outcomes and for each measurement

outcome new state and new movement of the head is determined. In such a case the state

transmission and the head movement are probabilistic.
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Ambainis and Watrous (1999) have shown that 2QCFA with 1 qubit of quantum memory are already

very powerful. Such 2QCFA can accept with bounded error the language of palindromes over the

alphabet {0, 1}, which cannot be accepted by probabilistic 2FA at all, and also the language

{0i1i | i ≥ 0}, in polynomial time — this language can be accepted by probabilistic 2FA, but only in

exponential time.
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RECOGNITION of L = {w |w = wR, w ∈ {a, b}∗}
Quantum states: |q0〉, |q1〉, |q2〉; initial state |q0〉.

UNITARY OPERATORS

Ua|q0〉 = 4
5|q0〉 − 3

5|q1〉 Ub|q1〉 = 4
5|q0〉 − 3

5|q1〉
Ua|q1〉 = 3

5
|q0〉 + 4

5
|q1〉 Ub|q1〉 = |q1〉

Ua|q2〉 = |q2〉 Ub|q2〉 = 3
5
|q0〉 + 4

5
|q2〉

AUTOMATON

1. Automaton moves to the leftmost symbol of the input in #w$, and sets the quantum state to |q0〉.
2. Automaton goes through input, from left to right, and each time it reads a symbol σ, it applies Uσ

to its quantum state.

3. Automaton returns to the left endmarker making no change on its quantum state.

4. Automaton moves from left to right and each time it reads a symbol σ it applies U−1
σ on its

quantum state.

5. Quantum state is measured. If outcome is not |q0〉 the input is rejected.

6. b← 0
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7. Automaton moves from right to left and at each symbol simulates tossing k coins. If all outcomes

are heads b is set to 1.

8. If b = 1 the input is accepted.

9. The cycle specified by points 1 to 7 are repeated infinitely many times.
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EXTRAS
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QUANTUM TURING MACHINES

Definition 0.2 A (one-tape) quantum Turing machine (QTM)M = 〈Σ, Q, q0, qf , δ〉, QTM in

short, is defined by sets of states and tape symbols, the initial state q0 and the final state qf , and the

transition amplitude mapping

δ : Q× Σ× Σ×Q× {←, ↓,→} −→ C[0,1]

which is required to be such that quantum evolution ofM is unitary.

A configuration ofM is determined by the content τ of the tape, τ ∈ ΣZ, by an i ∈ Z which

specifies the position of the head, and by a q ∈ Q, the current state of the tape.

Let CM denote the set of all configurations ofM. Computation (evolution) ofM is performed in the

inner-product space HM = l2(CM) with the basis {|c〉 | c ∈ CM}.

The transition function δ uniquely determines a mapping a : CM × CM → C such that for

c1, c2 ∈ CM, a(c1, c2) is the amplitude of the transition ofM from the basis state |c1〉 to |c2〉.
The time evolution mapping UM : HM → HM is defined

for a basis state by

UM|c〉 =
∑

c′∈CM
a(c, c′)|c′〉.
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WELL-FORMEDNESS CONDITIONS

Definition 0.3 A QTMM = 〈Σ, Q, q0, qf , δ〉 with the transition mapping

δ : Q× Σ× Σ×Q× {←, ↓,→} −→ C

is said to be strongly well-formed if the following conditions are satisfied.

1. Local probability condition. For any (q1, σ1) ∈ Q× Σ;
∑

(σ,q,d)∈Σ×Q×{←,↓,→}
|δ(q1, σ1, σ, q, d)|2 = 1.

2. Separability condition I. For any two different pairs (q1, σ1), (q2, σ2) from the set Q× Σ:
∑

(q,σ,d)∈Q×Σ×{←,↓,→}
δ∗(q1, σ1, σ, q, d)δ(q2, σ2, σ, q, d) = 0.

3. Separability condition II. For any (q, σ, d), (q′, σ′, d′) from the set Q× Σ× {←, ↓,→} such

that (q, σ, d) 6= (q′, σ′, d′):
∑

(q1,σ1)∈Q×Σ
δ∗(q1, σ1, σ, q, d)δ(q1, σ1, σ

′, q′, d′) = 0.

4. Separability condition III. For any (q1, σ1, σ
′
1), (q2, σ2, σ

′
2) ∈ Q× Σ× Σ and

d1 6= d2 ∈ {←, ↓,→}:
∑

q∈Q
δ∗(q1, σ1, σ

′
1, q, d1)δ(q2, σ2, σ

′
2, q, d2) = .
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BASIC RESULTS

• There exists universal quantum Turing machines that can efficiently simulate any
other quantum Turing machine.

• Quantum Turing machines and (uniform families of) quantum circuits are
polynomially equivalent models of quantum computers.

•Well-formedness conditions have been formulated also for multitape quantum
Turing machines.

• A variety of normal forms for one-tape QTM have been established. For example,
the so-called unidirectional QTM at which the movement of the head is uniquely
determined by the state the QTM comes into.

• Power of QTM with various types of amplitudes has been explored (complex, real,
rational, algebraic, computable).
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